1
|
Ma S, Zhang P, Ye J, Tian Y, Tian X, Jung J, Macauley MS, Zhang J, Wu P, Wen L. Enzyme-Sialylation-Controlled Chemical Sulfation of Glycan Epitopes for Decoding the Binding of Siglec Ligands. J Am Chem Soc 2024; 146:29469-29480. [PMID: 39417319 DOI: 10.1021/jacs.4c08817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Widely distributed in nature, sulfated glycan epitopes play important roles in diverse pathophysiological processes. However, due to their structural complexity, the preparation of glycan epitopes with structurally defined sulfation patterns is challenging, which significantly hampers the detailed elucidation of their biological functions at the molecular level. Here, we introduce a strategy for site-specific chemical sulfation of glycan epitopes, leveraging enzymatic sialylation and desialylation processes to precisely control the regio-specificity of sulfation of disaccharide or trisaccharide glycan backbones. Using this method, a sulfated glycan library covering the most common sialylated glycan epitopes was prepared in high yield and efficiency. By screening a microarray prepared with this glycan library, we systematically probed their binding specificity with human Siglecs (sialic acid-binding immunoglobulin-type lectins), many of which function as glyco-immune checkpoints to suppress immune system activation. Our investigation revealed that sulfation and sialylation patterns serve as important determinants of Siglec binding affinity and specificity. Thus, these findings offer new insights for the development of research tools and potential therapeutic agents targeting glyco-immune checkpoints by modulating the Siglec signaling pathway.
Collapse
Affiliation(s)
- Shengzhou Ma
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Pengfei Zhang
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jinfeng Ye
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yinping Tian
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao Tian
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China
| | - Jaesoo Jung
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Jiabin Zhang
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Ji RJ, Cao GH, Zhao WQ, Wang MY, Gao P, Zhang YZ, Wang XB, Qiu HY, Chen DD, Tong XH, Duan M, Yin H, Zhang Y. Epitope prime editing shields hematopoietic cells from CD123 immunotherapy for acute myeloid leukemia. Cell Stem Cell 2024:S1934-5909(24)00317-5. [PMID: 39353428 DOI: 10.1016/j.stem.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/28/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Acute myeloid leukemia (AML) is a malignant cancer characterized by abnormal differentiation of hematopoietic stem and progenitor cells (HSPCs). While chimeric antigen receptor T (CAR-T) cell immunotherapies target AML cells, they often induce severe on-target/off-tumor toxicity by attacking normal cells expressing the same antigen. Here, we used base editors (BEs) and a prime editor (PE) to modify the epitope of CD123 on HSPCs, protecting healthy cells from CAR-T-induced cytotoxicity while maintaining their normal function. Although BE effectively edits epitopes, complex bystander products are a concern. To enhance precision, we optimized prime editing, increasing the editing efficiency from 5.9% to 78.9% in HSPCs. Epitope-modified cells were resistant to CAR-T lysis while retaining normal differentiation and function. Furthermore, BE- or PE-edited HSPCs infused into humanized mice endowed myeloid lineages with selective resistance to CAR-T immunotherapy, demonstrating a proof-of-concept strategy for treating relapsed AML.
Collapse
Affiliation(s)
- Rui-Jin Ji
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Guo-Hua Cao
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Wei-Qiang Zhao
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Mu-Yao Wang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Pan Gao
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yi-Zhou Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xue-Bin Wang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hou-Yuan Qiu
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Di-Di Chen
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xiao-Han Tong
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Min Duan
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hao Yin
- Departments of Clinical Laboratory and Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan University, Wuhan 430071, China
| | - Ying Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
3
|
Li Y, Chen H, Gao J, Wu P, Hong S. Glycoengineering in antigen-specific immunotherapies. Curr Opin Chem Biol 2024; 81:102503. [PMID: 39053235 DOI: 10.1016/j.cbpa.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Advances in immunotherapy have revolutionized modern medical care paradigms. However, many patients respond poorly to the current FDA-approved treatment regimens that primarily target protein-based antigens or checkpoints. Current progress in developing therapeutic strategies that target disease-associated glycans has pinpointed a new class of glycoimmune checkpoints that function orthogonally to the established protein-immune checkpoints. Glycoengineering using chemical, enzymatic, and genetic methods is also increasingly recognized for its massive potential to improve biopharmaceuticals, such as tailoring therapies with antigen-targeting agents. Here, we review the recent development and applications of glycoengineering of antibodies and cells to suit therapeutic applications. We highlight living-cell glycoengineering strategies on cancer and immune cells for better therapeutic efficacy against specific antigens by leveraging the pre-existing immune machinery or instructing de novo creation of targeting agents. We also discuss glycoengineering strategies for studying basic immuno-oncology. Collectively, glycoengineering has a significant contribution to the design of antigen-specific immunotherapies.
Collapse
Affiliation(s)
- Yuxin Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Hongming Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Jiuxiang Gao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Peng Wu
- Department of Molecular and Cellular Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Senlian Hong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
4
|
McCord K, Wang C, Anhalt M, Poon WW, Gavin AL, Wu P, Macauley MS. Dissecting the Ability of Siglecs To Antagonize Fcγ Receptors. ACS CENTRAL SCIENCE 2024; 10:315-330. [PMID: 38435516 PMCID: PMC10906256 DOI: 10.1021/acscentsci.3c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 03/05/2024]
Abstract
Fcγ receptors (FcγRs) play key roles in the effector function of IgG, but their inappropriate activation plays a role in several disease etiologies. Therefore, it is critical to better understand how FcγRs are regulated. Numerous studies suggest that sialic acid-binding immunoglobulin-type lectins (Siglecs), a family of immunomodulatory receptors, modulate FcγR activity; however, it is unclear of the circumstances in which Siglecs can antagonize FcγRs and which Siglecs have this ability. Using liposomes displaying selective ligands to coengage FcγRs with a specific Siglec, we explore the ability of Siglec-3, Siglec-5, Siglec-7, and Siglec-9 to antagonize signaling downstream of FcγRs. We demonstrate that Siglec-3 and Siglec-9 can fully inhibit FcγR activation in U937 cells when coengaged with FcγRs. Cells expressing Siglec mutants reveal differential roles for the immunomodulatory tyrosine-based inhibitory motif (ITIM) and immunomodulatory tyrosine-based switch motif (ITSM) in this inhibition. Imaging flow cytometry enabled visualization of SHP-1 recruitment to Siglec-3 in an ITIM-dependent manner, while SHP-2 recruitment is more ITSM-dependent. Conversely, both cytosolic motifs of Siglec-9 contribute to SHP-1/2 recruitment. Siglec-7 poorly antagonizes FcγR activation for two reasons: masking by cis ligands and differences in its ITIM and ITSM. A chimera of the Siglec-3 extracellular domains and Siglec-5 cytosolic tail strongly inhibits FcγR when coengaged, providing evidence that Siglec-5 is more like Siglec-3 and Siglec-9 in its ability to antagonize FcγRs. Additionally, Siglec-3 and Siglec-9 inhibited FcγRs when coengaged by cells displaying ligands for both the Siglec and FcγRs. These results suggest a role for Siglecs in mediating FcγR inhibition in the context of an immunological synapse, which has important relevance to the effectiveness of immunotherapies.
Collapse
Affiliation(s)
- Kelli
A. McCord
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Chao Wang
- Department
of Molecular Medicine, Scripps Research
Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Mirjam Anhalt
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Wayne W. Poon
- Institute
for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92617, United States
| | - Amanda L. Gavin
- Department
of Immunology and Microbiology, Scripps
Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peng Wu
- Department
of Molecular Medicine, Scripps Research
Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Matthew S. Macauley
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
5
|
Parija I, Yadav S, Jayaraman N. Con A lectin binding by synthetic bivalent arabinomannan tri- and pentasaccharides reveals connectivity-dependent functional valencies. Carbohydr Res 2024; 536:109050. [PMID: 38335804 DOI: 10.1016/j.carres.2024.109050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/13/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Lectin Con A, with specificity to interact with α-d-mannopyranoside, achieves tight binding affinity with the aid of optimal multivalent ligand valencies, distances and orientations between the ligands. A series of synthetic arabinomannans, possessing arabinan core and mannan at the non-reducing ends, is studied to assess the above constraints involved with lectin binding in this report. Trisaccharides, with (1 → 2)(1 → 3), (1 → 2)(1 → 5) and (1 → 3)(1 → 5) glycosidic bond connectivities, and a pentasaccharide with mannopyranosides at the non-reducing ends are synthesized. The binding affinities of the mannose bivalent ligands are studied with tetrameric Con A lectin by isothermal titration calorimetry (ITC). Among the derivatives, trisaccharide with (1 → 2)(1 → 3) glycosidic bond connectivity and the pentasaccharide undergo lectin interaction, clearly fulfilling the bivalent structural and functional valencies. Remaining oligosaccharides exhibit only a functional monovalency, defying the bivalent structural valency. The trisaccharide fulfilling the structural and functional valencies represent the smallest bivalent ligand, undergoing the lectin interaction in a trans-mode.
Collapse
Affiliation(s)
- Ipsita Parija
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | - Shivender Yadav
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
6
|
Wang Y, Xu Z, Wu KL, Yu L, Wang C, Ding H, Gao Y, Sun H, Wu YH, Xia M, Chen Y, Xiao H. Siglec-15/sialic acid axis as a central glyco-immune checkpoint in breast cancer bone metastasis. Proc Natl Acad Sci U S A 2024; 121:e2312929121. [PMID: 38252825 PMCID: PMC10835054 DOI: 10.1073/pnas.2312929121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Immunotherapy is a promising approach for treating metastatic breast cancer (MBC), offering new possibilities for therapy. While checkpoint inhibitors have shown great progress in the treatment of metastatic breast cancer, their effectiveness in patients with bone metastases has been disappointing. This lack of efficacy seems to be specific to the bone environment, which exhibits immunosuppressive features. In this study, we elucidate the multiple roles of the sialic acid-binding Ig-like lectin (Siglec)-15/sialic acid glyco-immune checkpoint axis in the bone metastatic niche and explore potential therapeutic strategies targeting this glyco-immune checkpoint. Our research reveals that elevated levels of Siglec-15 in the bone metastatic niche can promote tumor-induced osteoclastogenesis as well as suppress antigen-specific T cell responses. Next, we demonstrate that antibody blockade of the Siglec-15/sialic acid glyco-immune checkpoint axis can act as a potential treatment for breast cancer bone metastasis. By targeting this pathway, we not only aim to treat bone metastasis but also inhibit the spread of metastatic cancer cells from bone lesions to other organs.
Collapse
Affiliation(s)
- Yixian Wang
- Department of Chemistry, Rice University, Houston, TX77005
| | - Zhan Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Kuan-Lin Wu
- Department of Chemistry, Rice University, Houston, TX77005
| | - Liqun Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Chenhang Wang
- Department of Chemistry, Rice University, Houston, TX77005
| | - Haoxue Ding
- Department of Chemistry, Rice University, Houston, TX77005
| | - Yang Gao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Han Sun
- Department of Chemistry, Rice University, Houston, TX77005
| | - Yi-Hsuan Wu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Meng Xia
- Department of Chemistry, Rice University, Houston, TX77005
| | - Yuda Chen
- Department of Chemistry, Rice University, Houston, TX77005
| | - Han Xiao
- Department of Chemistry, Rice University, Houston, TX77005
- Department of Biosciences, Rice University, Houston, TX77005
- Department of Bioengineering, Rice University, Houston, TX77005
| |
Collapse
|
7
|
Liu CC, Ye J, Cao H. Chemical Evolution of Enzyme-Catalyzed Glycosylation. Acc Chem Res 2024. [PMID: 38286791 DOI: 10.1021/acs.accounts.3c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
ConspectusThe limited availability of structurally well-defined diverse glycans remains a major obstacle for deciphering biological functions as well as biomedical applications of carbohydrates. Despite tremendous progress that has been made in past decades, the synthesis of structurally well-defined complex glycans still represents one of the most challenging topics in synthetic chemistry. Chemical synthesis of glycans is a time-consuming and labor-intensive process that requires elaborate planning and skilled personnel. In contrast, glycosyltransferase-catalyzed enzymatic synthesis provides a more efficient, convenient, low-cost, and sustainable alternative to affording diverse and complex glycans. However, the existing methods are still insufficient to fulfill the increasing demand for specific synthetic glycan libraries necessary for functional glycomics research. This is mainly attributed to the inherent character of the glycan biosynthetic pathway. In nature, there are too many glycosyltransferases involved in the in vivo glycan synthesis, but only a small number of them are available for in vitro enzymatic synthesis. For instance, humans have over 200 glycosyltransferases, but only a few of them could be produced from the conventional bacterial expression system, and most of these membrane-associated enzymes could be overexpressed only in eukaryotic cells. Moreover, the glycan biosynthetic pathway is a nontemplate-driven process, which eventually ends up with heterogeneous glycan product mixtures. Therefore, it is not a practical solution for the in vitro enzymatic synthesis of complex glycans by simply copying the glycan biosynthetic pathway.In the past decade, we have tried to develop a simplified and transformable approach to the enzymatic modular assembly of a human glycan library. Despite the structural complexity of human glycans, the glycoinformatic analysis based on the known glycan structure database and the human glycosyltransferase database indicates that there are approximately 56 disaccharide patterns present in the human glycome and only 16 disaccharide linkages are required to account for over 80% of the total disaccharide fragments, while 35 disaccharide linkages are sufficient to cover over 95% of all disaccharide fragments of human glycome. Regardless of the substrate specificity, if one glycosyltransferase could be used for the synthesis of all of the same glycosidic linkages in human glycome, it will require only a few dozen glycosyltransferases for the assembly of entire human glycans. According to the glycobioinformatics analysis results, we rationally designed about two dozen enzyme modules for the synthesis of over 20 common glycosidic linkages in human glycome, in which each enzyme module contains a glycosyltransferase and a group of enzymes for the in situ generation of a nucleotide-activated sugar donor. By sequential glycosylation using orchestrated enzyme modules, we have completed the synthesis of over 200 structurally well-defined complex human glycans including blood group antigens, O-mannosyl glycans, human milk oligosaccharides, and others. To overcome the product microheterogeneity problem of enzymatic synthesis in the nontemplate-driven glycan biosynthetic pathway, we developed several substrate engineering strategies to control or manipulate the outcome of glycosyltransferase-catalyzed reactions for the precise synthesis of structurally well-defined isomeric complex glycans.
Collapse
Affiliation(s)
- Chang-Cheng Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Jinfeng Ye
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
8
|
Frank M, Kuhfeldt E, Cramer J, Watzl C, Prescher H. Synthesis and Binding Mode Predictions of Novel Siglec-7 Ligands. J Med Chem 2023; 66:14315-14334. [PMID: 37793071 DOI: 10.1021/acs.jmedchem.3c01349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Siglec-7 regulates immune cell activity and is a promising target for immunomodulation. Here, we report the discovery of novel sialic acid derivatives binding to Siglec-7. Synthesis and affinity measurements are complemented by high-quality models of sialoside-Siglec-7 complexes based on molecular dynamics (MD) simulations on the microsecond time scale. We provide details for the predicted binding modes for the new ligands, e.g., that an extension of the carbon backbone leads to a different molecular interaction pattern with the receptor and the nearby water structure than found for known Siglec-7 ligands. Further on, we uncover some shortcomings of the GLYCAM06 and GAFF2 force fields when used for the simulation of sialoside-based glycomimetics. Our results open new opportunities for the rational design of Siglec-7 inhibitors. In addition, we provide strategies on how to use and visualize MD simulations to describe and investigate sialoside-Siglec complexes in general.
Collapse
Affiliation(s)
- Martin Frank
- Molecular Structure Analysis Core Facility-W160, German Cancer Research Center, 69120 Heidelberg, Germany
- Biognos AB, Generatorsgatan 1, 40274 Göteborg, Sweden
| | | | - Jonathan Cramer
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Carsten Watzl
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
9
|
O'Sullivan JA, Youngblood BA, Schleimer RP, Bochner BS. Siglecs as potential targets of therapy in human mast cell- and/or eosinophil-associated diseases. Semin Immunol 2023; 69:101799. [PMID: 37413923 PMCID: PMC10528103 DOI: 10.1016/j.smim.2023.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Siglecs (sialic acid-binding immunoglobulin-like lectins) are a family of vertebrate glycan-binding cell-surface proteins. The majority mediate cellular inhibitory activity once engaged by specific ligands or ligand-mimicking molecules. As a result, Siglec engagement is now of interest as a strategy to therapeutically dampen unwanted cellular responses. When considering allergic inflammation, human eosinophils and mast cells express overlapping but distinct patterns of Siglecs. For example, Siglec-6 is selectively and prominently expressed on mast cells while Siglec-8 is highly specific for both eosinophils and mast cells. This review will focus on a subset of Siglecs and their various endogenous or synthetic sialoside ligands that regulate eosinophil and mast cell function and survival. It will also summarize how certain Siglecs have become the focus of novel therapies for allergic and other eosinophil- and mast cell-related diseases.
Collapse
Affiliation(s)
- Jeremy A O'Sullivan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
10
|
Ung T, Rutledge NS, Weiss AM, Esser-Kahn AP, Deak P. Cell-targeted vaccines: implications for adaptive immunity. Front Immunol 2023; 14:1221008. [PMID: 37662903 PMCID: PMC10468591 DOI: 10.3389/fimmu.2023.1221008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Recent advancements in immunology and chemistry have facilitated advancements in targeted vaccine technology. Targeting specific cell types, tissue locations, or receptors can allow for modulation of the adaptive immune response to vaccines. This review provides an overview of cellular targets of vaccines, suggests methods of targeting and downstream effects on immune responses, and summarizes general trends in the literature. Understanding the relationships between vaccine targets and subsequent adaptive immune responses is critical for effective vaccine design. This knowledge could facilitate design of more effective, disease-specialized vaccines.
Collapse
Affiliation(s)
- Trevor Ung
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Nakisha S. Rutledge
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Adam M. Weiss
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Peter Deak
- Chemical and Biological Engineering Department, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
11
|
Rivollier P, Samain E, Armand S, Jeacomine I, Richard E, Fort S. Synthesis of Neuraminidase-Resistant Sialyllactose Mimetics from N-Acyl Mannosamines using Metabolically Engineered Escherichia coli. Chemistry 2023; 29:e202301555. [PMID: 37294058 DOI: 10.1002/chem.202301555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
Herein, we describe the efficient gram-scale synthesis of α2,3- and α2,6-sialyllactose oligosaccharides as well as mimetics from N-acyl mannosamines and lactose in metabolically engineered bacterial cells grown at high cell density. We designed new Escherichia coli strains co-expressing sialic acid synthase and N-acylneuraminate cytidylyltransferase from Campylobacter jejuni together with the α2,3-sialyltransferase from Neisseria meningitidis or the α2,6-sialyltransferase from Photobacterium sp. JT-ISH-224. Using their mannose transporter, these new strains actively internalized N-acetylmannosamine (ManNAc) and its N-propanoyl (N-Prop), N-butanoyl (N-But) and N-phenylacetyl (N-PhAc) analogs and converted them into the corresponding sialylated oligosaccharides, with overall yields between 10 % and 39 % (200-700 mg.L-1 of culture). The three α2,6-sialyllactose analogs showed similar binding affinity for Sambucus nigra SNA-I lectin as for the natural oligosaccharide. They also proved to be stable competitive inhibitors of Vibrio cholerae neuraminidase. These N-acyl sialosides therefore hold promise for the development of anti-adhesion therapy against influenza viral infections.
Collapse
Affiliation(s)
- Paul Rivollier
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Eric Samain
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Sylvie Armand
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | | | | | - Sébastien Fort
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| |
Collapse
|
12
|
Jangid AK, Kim S, Kim K. Polymeric biomaterial-inspired cell surface modulation for the development of novel anticancer therapeutics. Biomater Res 2023; 27:59. [PMID: 37344853 DOI: 10.1186/s40824-023-00404-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Immune cell-based therapies are a rapidly emerging class of new medicines that directly treat and prevent targeted cancer. However multiple biological barriers impede the activity of live immune cells, and therefore necessitate the use of surface-modified immune cells for cancer prevention. Synthetic and/or natural biomaterials represent the leading approach for immune cell surface modulation. Different types of biomaterials can be applied to cell surface membranes through hydrophobic insertion, layer-by-layer attachment, and covalent conjugations to acquire surface modification in mammalian cells. These biomaterials generate reciprocity to enable cell-cell interactions. In this review, we highlight the different biomaterials (lipidic and polymeric)-based advanced applications for cell-surface modulation, a few cell recognition moieties, and how their interplay in cell-cell interaction. We discuss the cancer-killing efficacy of NK cells, followed by their surface engineering for cancer treatment. Ultimately, this review connects biomaterials and biologically active NK cells that play key roles in cancer immunotherapy applications.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Sungjun Kim
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea.
| |
Collapse
|
13
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
14
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
15
|
Holborough-Kerkvliet MD, Kroos S, de Wetering RV, Toes REM. Addressing the key issue: Antigen-specific targeting of B cells in autoimmune diseases. Immunol Lett 2023:S0165-2478(23)00075-5. [PMID: 37209914 DOI: 10.1016/j.imlet.2023.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Autoimmune diseases are heterogeneous pathologies characterized by a breakdown of immunological tolerance to self, resulting in a chronic and aberrant immune response to self-antigens. The scope and extent of affected tissues can vary greatly per autoimmune disease and can involve multiple organs and tissue types. The pathogenesis of most autoimmune diseases remains unknown but it is widely accepted that a complex interplay between (autoreactive) B and T cells in the context of breached immunological tolerance drives autoimmune pathology. The importance of B cells in autoimmune disease is exemplified by the successful use of B cell targeting therapies in the clinic. For example, Rituximab, a depleting anti-CD20 antibody, has shown favorable results in reducing the signs and symptoms of multiple autoimmune diseases, including Rheumatoid Arthritis, Anti-Neutrophil Cytoplasmic Antibody associated vasculitis and Multiple Sclerosis. However, Rituximab depletes the entire B cell repertoire, leaving patients susceptible to (latent) infections. Therefore, multiple ways to target autoreactive cells in an antigen-specific manner are currently under investigation. In this review, we will lay out the current state of antigen-specific B cell inhibiting or depleting therapies in the context of autoimmune diseases.
Collapse
Affiliation(s)
| | - Sanne Kroos
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Renee van de Wetering
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
16
|
Thames AH, Moons SJ, Wong DA, Boltje TJ, Bochner BS, Jewett MC. GlycoCAP: A Cell-Free, Bacterial Glycosylation Platform for Building Clickable Azido-Sialoglycoproteins. ACS Synth Biol 2023; 12:1264-1274. [PMID: 37040463 PMCID: PMC10758250 DOI: 10.1021/acssynbio.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Glycan-binding receptors known as lectins represent a class of potential therapeutic targets. Yet, the therapeutic potential of targeting lectins remains largely untapped due in part to limitations in tools for building glycan-based drugs. One group of desirable structures is proteins with noncanonical glycans. Cell-free protein synthesis systems have matured as a promising approach for making glycoproteins that may overcome current limitations and enable new glycoprotein medicines. Yet, this approach has not been applied to the construction of proteins with noncanonical glycans. To address this limitation, we develop a cell-free glycoprotein synthesis platform for building noncanonical glycans and, specifically, clickable azido-sialoglycoproteins (called GlycoCAP). The GlycoCAP platform uses an Escherichia coli-based cell-free protein synthesis system for the site-specific installation of noncanonical glycans onto proteins with a high degree of homogeneity and efficiency. As a model, we construct four noncanonical glycans onto a dust mite allergen (Der p 2): α2,3 C5-azido-sialyllactose, α2,3 C9-azido-sialyllactose, α2,6 C5-azido-sialyllactose, and α2,6 C9-azido-sialyllactose. Through a series of optimizations, we achieve more than 60% sialylation efficiency with a noncanonical azido-sialic acid. We then show that the azide click handle can be conjugated with a model fluorophore using both strain-promoted and copper-catalyzed click chemistry. We anticipate that GlycoCAP will facilitate the development and discovery of glycan-based drugs by granting access to a wider variety of possible noncanonical glycan structures and also provide an approach for functionalizing glycoproteins by click chemistry conjugation.
Collapse
Affiliation(s)
- Ariel Helms Thames
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Sam J Moons
- Synvenio B.V., Mercator 3, Nijmegen 6525ED, The Netherlands
| | - Derek A Wong
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Thomas J Boltje
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen 6525AJ, The Netherlands
| | - Bruce S Bochner
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Michael C Jewett
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
17
|
Bochner BS, O'Sullivan JA, Chang AT, Youngblood BA. Siglecs in allergy and asthma. Mol Aspects Med 2023; 90:101104. [PMID: 35835621 PMCID: PMC10757266 DOI: 10.1016/j.mam.2022.101104] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 01/21/2023]
Abstract
The term "allergic diseases" encompasses several common, IgE-mediated conditions that range from being annoying to those that are life-threatening. Available treatments include active avoidance of the instigating allergen and the use of a variety of oral, inhaled, intranasal, intraocular and injected agents. While most individuals with allergies do well with existing therapies, there are still unmet therapeutic needs. Siglecs (sialic acid-binding, immunoglobulin-like lectins) are a family of single-pass transmembrane I-type lectins found on various subsets of cells, especially those of the immune system. All Siglecs have extracellular domains recognizing sialoside ligands, and most contain cytoplasmic domains with inhibitory signaling activity. This review focuses on Siglecs that likely play a role in regulating allergic and asthmatic responses, and how specific Siglecs, expressed on cells such as eosinophils and mast cells, are being targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Jeremy A O'Sullivan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
18
|
Rische CH, Thames AN, Krier-Burris RA, O’Sullivan JA, Bochner BS, Scott EA. Drug delivery targets and strategies to address mast cell diseases. Expert Opin Drug Deliv 2023; 20:205-222. [PMID: 36629456 PMCID: PMC9928520 DOI: 10.1080/17425247.2023.2166926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Current and developing mast cell therapeutics are reliant on small molecule drugs and biologics, but few are truly selective for mast cells. Most have cellular and disease-specific limitations that require innovation to overcome longstanding challenges to selectively targeting and modulating mast cell behavior. This review is designed to serve as a frame of reference for new approaches that utilize nanotechnology or combine different drugs to increase mast cell selectivity and therapeutic efficacy. AREAS COVERED Mast cell diseases include allergy and related conditions as well as malignancies. Here, we discuss the targets of existing and developing therapies used to treat these disease pathologies, classifying them into cell surface, intracellular, and extracellular categories. For each target discussed, we discuss drugs that are either the current standard of care, under development, or have indications for potential use. Finally, we discuss how novel technologies and tools can be used to take existing therapeutics to a new level of selectivity and potency against mast cells. EXPERT OPINION There are many broadly and very few selectively targeted therapeutics for mast cells in allergy and malignant disease. Combining existing targeting strategies with technology like nanoparticles will provide novel platforms to treat mast cell disease more selectively.
Collapse
Affiliation(s)
- Clayton H. Rische
- Northwestern University McCormick School of Engineering, Department of Biomedical Engineering, Evanston, IL, USA
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Ariel N. Thames
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
- Northwestern University McCormick School of Engineering, Department of Chemical and Biological Engineering, Evanston, IL, USA
| | - Rebecca A. Krier-Burris
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Jeremy A. O’Sullivan
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Bruce S. Bochner
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Evan A. Scott
- Northwestern University McCormick School of Engineering, Department of Biomedical Engineering, Evanston, IL, USA
- Northwestern University Feinberg School of Medicine, Department of Microbiolgy-Immunology, Chicago, IL, USA
| |
Collapse
|
19
|
Kufleitner M, Haiber LM, Wittmann V. Metabolic glycoengineering - exploring glycosylation with bioorthogonal chemistry. Chem Soc Rev 2023; 52:510-535. [PMID: 36537135 DOI: 10.1039/d2cs00764a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glycans are involved in numerous biological recognition events. Being secondary gene products, their labeling by genetic methods - comparable to GFP labeling of proteins - is not possible. To overcome this limitation, metabolic glycoengineering (MGE, also known as metabolic oligosaccharide engineering, MOE) has been developed. In this approach, cells or organisms are treated with synthetic carbohydrate derivatives that are modified with a chemical reporter group. In the cytosol, the compounds are metabolized and incorporated into newly synthesized glycoconjugates. Subsequently, the reporter groups can be further derivatized in a bioorthogonal ligation reaction. In this way, glycans can be visualized or isolated. Furthermore, diverse targeting strategies have been developed to direct drugs, nanoparticles, or whole cells to a desired location. This review summarizes research in the field of MGE carried out in recent years. After an introduction to the bioorthogonal ligation reactions that have been used in in connection with MGE, an overview on carbohydrate derivatives for MGE is given. The last part of the review focuses on the many applications of MGE starting from mammalian cells to experiments with animals and other organisms.
Collapse
Affiliation(s)
- Markus Kufleitner
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Lisa Maria Haiber
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
20
|
Martínez-Bailén M, Rojo J, Ramos-Soriano J. Multivalent glycosystems for human lectins. Chem Soc Rev 2023; 52:536-572. [PMID: 36545903 DOI: 10.1039/d2cs00736c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities. We summarise this research by organizing based on lectin types to highlight the progression in this active field. The paper provides an overall picture of how these contributions have furnished relevant information on this topic to help in understanding and participate in these carbohydrate-lectin interactions.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| |
Collapse
|
21
|
Abstract
Siglecs are a family of immunomodulatory cell surface receptors present on white blood cells. Binding to cell surface sialic acid-containing glycans modulates the proximity of Siglecs to other receptors that they regulate. This proximity is key to enabling signaling motifs on the cytosolic domain of Siglecs to modulate immune responses. Given the important roles that Siglecs play in helping to maintain immune homeostasis, a better understanding of their glycan ligands is needed to elucidate their roles in health and disease. A common approach for probing Siglec ligands on cells is to use soluble versions of the recombinant Siglecs in conjunction with flow cytometry. Flow cytometry has many advantages in enabling the relative levels of Siglec ligands between cell types to be rapidly quantified. Here, a step-by-step protocol is described on how to detect Siglec ligands most sensitively and accurately on cells by flow cytometry.
Collapse
Affiliation(s)
- Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Jaesoo Jung
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
22
|
Cooper O, Waespy M, Chen D, Kelm S, Li Q, Haselhorst T, Tiralongo J. Sugar-decorated carbon dots: a novel tool for targeting immunomodulatory receptors. NANOSCALE ADVANCES 2022; 4:5355-5364. [PMID: 36540112 PMCID: PMC9729803 DOI: 10.1039/d2na00364c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Interactions between sialic acid (Sia) and sialic acid-binding immunoglobulin-like lectins (siglecs) regulate the immune system, with aberrations contributing to pathologies such as autoimmunity, infectious disease and cancer. Over the last decade, several multivalent Sia ligands have been synthesized to modulate the Sia-binding affinity of proteins/lectins. Here, we report a novel class of multivalent siglec probes through the decoration of α(2,6)-sialyllactose ligands on inherently fluorescent carbon dots (CD). We show that the preference of α(2,3)-linked Sia for siglec-1 can be altered by increasing the multivalence of Sia ligands present on the CD, and that a locally high glycan concentration can have a direct effect on linkage specificity. Additionally, micromolar (IC50 ∼ 70 μM) interaction of α(2,6)-sialyllactose-CD (6-CD) with siglec-2 (CD22) revealed it was capable of generating a significant cytotoxic effect on Burkitt's Lymphoma (BL) Daudi B cells. This phenonomen was attributed to 6-CD's ability to form trans interactions with CD22 on masked BL Daudi cells as a direct result of clustering of the Sia moiety on the CD surface. Overall, our glycoengineered carbon dots represent a novel high affinity molecular probe with multiple applications in sialoglycoscience and medicine.
Collapse
Affiliation(s)
- Oren Cooper
- Institute for Glycomics, Gold Coast Campus, Griffith University Queensland 4222 Australia
| | - Mario Waespy
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen 28334 Bremen Germany
| | - Dechao Chen
- School of Engineering and Built Environment, Nathan Campus, Griffith University QLD 4111 Australia
| | - Sørge Kelm
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen 28334 Bremen Germany
| | - Qin Li
- School of Engineering and Built Environment, Nathan Campus, Griffith University QLD 4111 Australia
- Queensland Micro- and Nanotechnology Centre, Australia, Nathan Campus, Griffith University QLD 4111 Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Gold Coast Campus, Griffith University Queensland 4222 Australia
| | - Joe Tiralongo
- Institute for Glycomics, Gold Coast Campus, Griffith University Queensland 4222 Australia
| |
Collapse
|
23
|
Targeting CD22 on memory B cells to induce tolerance to peanut allergens. J Allergy Clin Immunol 2022; 150:1476-1485.e4. [PMID: 35839842 PMCID: PMC9813968 DOI: 10.1016/j.jaci.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Circulating IgE and subsequent severe allergic reactions to peanut are sustained and propagated by recall of peanut allergen-specific memory B cells. OBJECTIVES This study aimed to determine whether targeting mouse and human CD22 on peanut-specific memory B cells induces tolerance to peanut allergens. METHODS Siglec-engaging tolerance-inducing antigenic liposomes (STALs) codisplaying peanut allergens (Ara h 1, Ara h 2, or Ara h 3) and high-affinity CD22 ligand (CD22L-STALs) were employed in various mouse models (BALB/cJ, C57BL/6, human CD22 transgenic, and NSG) of peanut allergy. To investigate memory B cells, a conferred memory model was used in which splenocytes from peanut-sensitized mice were transferred into naive animals. Reconstituted mice received either CD22L-STALs or an immunogenic liposome control, followed by a peanut allergen boost and later a challenge with individual peanut allergens. To assess the effects of CD22L-STALs on human B cells, PBMCs were injected into NSG mice, followed by administration of human CD22L-STALs (hCD22L-STALs) and later a whole peanut extract boost. Blood was collected to quantify WPE- and Ara h 1-, 2-, and 3-specific immunoglobulins. RESULTS Mouse CD22L-STALs (mCD22L-STALs) significantly suppressed systemic memory to Ara h 1, Ara h 2, and Ara h 3 in BALB/cJ and C57BL/6 mice, as demonstrated by reduced allergen-specific IgE, IgG1, and anaphylaxis on challenge. Importantly, 2 doses of mCD22L-STALs led to prolonged tolerance for at least 3 months. hCD22L-STALs displayed similar suppression in mice expressing human CD22 on B cells. Finally, human B cells were tolerized in vivo in NSG mice by hCD22L-STALs. CONCLUSIONS Antigen-specific exploitation of CD22 on memory B cells can induce systemic immune tolerance.
Collapse
|
24
|
Abstract
Through their specific interactions with proteins, cellular glycans play key roles in a wide range of physiological and pathological processes. One of the main goals of research in the areas of glycobiology and glycomedicine is to understand glycan-protein interactions at the molecular level. Over the past two decades, glycan microarrays have become powerful tools for the rapid evaluation of interactions between glycans and proteins. In this review, we briefly describe methods used for the preparation of glycan probes and the construction of glycan microarrays. Next, we highlight applications of glycan microarrays to rapid profiling of glycan-binding patterns of plant, animal and pathogenic lectins, as well as other proteins. Finally, we discuss other important uses of glycan microarrays, including the rapid analysis of substrate specificities of carbohydrate-active enzymes, the quantitative determination of glycan-protein interactions, discovering high-affinity or selective ligands for lectins, and identifying functional glycans within cells. We anticipate that this review will encourage researchers to employ glycan microarrays in diverse glycan-related studies.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
25
|
Prescher H, Schweizer A, Frank M, Kuhfeldt E, Ring J, Nitschke L. Targeting Human CD22/Siglec-2 with Dimeric Sialosides as Novel Oligosaccharide Mimetics. J Med Chem 2022; 65:10588-10610. [PMID: 35881556 DOI: 10.1021/acs.jmedchem.2c00765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Significant interest in the development of high-affinity ligands for Siglecs exists due to the various therapeutically relevant functions of these proteins. Here, we report a new strategy to develop and design Siglec ligands as disialyl-oligosaccharide mimetics exemplified on Siglec-2 (CD22). We report insights into development of dimeric ligands with high affinity and avidity to cell surface-expressed CD22, assay development, tool compounds, structure activity relationships, and biological data on calcium flux regulation in B-cells. The binding modes of selected ligands have been modeled based on state-of-the-art molecular dynamics simulations on the microsecond timescale, providing detailed views on ligand binding and opening a new perspective on drug design efforts for Siglecs. High-avidity dimeric ligands containing a linker opening the way towards bispecifics are presented as well.
Collapse
Affiliation(s)
| | - Astrid Schweizer
- Chair of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Martin Frank
- Biognos AB, Generatorsgatan 1, 40274 Göteborg, Sweden
| | | | - Julia Ring
- Chair of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Lars Nitschke
- Chair of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| |
Collapse
|
26
|
Islam M, Arlian BM, Pfrengle F, Duan S, Smith SA, Paulson JC. Suppressing Immune Responses Using Siglec Ligand-Decorated Anti-receptor Antibodies. J Am Chem Soc 2022; 144:9302-9311. [PMID: 35593593 DOI: 10.1021/jacs.2c00922] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The sialic acid-binding immunoglobulin-type lectins (Siglecs) are expressed predominantly on white blood cells and participate in immune cell recognition of self. Most Siglecs contain cytoplasmic inhibitory immunoreceptor tyrosine-based inhibitory motifs characteristic of inhibitory checkpoint co-receptors that suppress cell signaling when they are recruited to the immunological synapse of an activating receptor. Antibodies to activatory receptors typically activate immune cells by ligating the receptors on the cell surface. Here, we report that the conjugation of high affinity ligands of Siglecs to antibodies targeting activatory immune receptors can suppress receptor-mediated activation of immune cells. Indeed, B-cell activation by antibodies to the B-cell receptor IgD is dramatically suppressed by conjugation of anti-IgD with high affinity ligands of a B-cell Siglec CD22/Siglec-2. Similarly, degranulation of mast cells induced by antibodies to IgE, which ligate the IgE/FcεR1 receptor complex, is suppressed by conjugation of anti-IgE to high affinity ligands of a mast cell Siglec, CD33/Siglec-3 (CD33L). Moreover, the anti-IgE-CD33L suppresses anti-IgE-mediated systemic anaphylaxis of sensitized humanized mice and prevents anaphylaxis upon subsequent challenge with anti-IgE. The results demonstrate that attachment of ligands of inhibitory Siglecs to anti-receptor antibodies can suppress the activation of immune cells and modulate unwanted immune responses.
Collapse
Affiliation(s)
- Maidul Islam
- Department of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Britni M Arlian
- Department of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Fabian Pfrengle
- Department of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Shiteng Duan
- Department of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Scott A Smith
- Department of Medicine, and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - James C Paulson
- Department of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
27
|
Transgenic mouse models to study the physiological and pathophysiological roles of human Siglecs. Biochem Soc Trans 2022; 50:935-950. [PMID: 35383825 DOI: 10.1042/bst20211203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are important immunomodulatory receptors. Due to differences between human and mouse Siglecs, defining the in vivo roles for human Siglecs (hSiglecs) can be challenging. One solution is the development and use of hSiglec transgenic mice to assess the physiological roles of hSiglecs in health and disease. These transgenic mice can also serve as important models for the pre-clinical testing of immunomodulatory approaches that are based on targeting hSiglecs. Four general methods have been used to create hSiglec-expressing transgenic mice, each with associated advantages and disadvantages. To date, transgenic mouse models expressing hSiglec-2 (CD22), -3 (CD33), -7, -8, -9, -11, and -16 have been created. This review focuses on both the generation of these hSiglec transgenic mice, along with the important findings that have been made through their study. Cumulatively, hSiglec transgenic mouse models are providing a deeper understanding of the differences between human and mice orthologs/paralogs, mechanisms by which Siglecs regulate immune cell signaling, physiological roles of Siglecs in disease, and different paradigms where targeting Siglecs may be therapeutically advantageous.
Collapse
|
28
|
Harumoto T, Iwai H, Tanigawa M, Kubo T, Atsumi T, Tsutsumi K, Takashima M, Destito G, Soloff R, Tomizuka K, Nycholat C, Paulson J, Uehara K. Enhancement of Gene Knockdown on CD22-Expressing Cells by Chemically Modified Glycan Ligand-siRNA Conjugates. ACS Chem Biol 2022; 17:292-298. [PMID: 35020348 DOI: 10.1021/acschembio.1c00652] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Extrahepatic targeted delivery of oligonucleotides, such as small interfering RNA (siRNA) and antisense oligonucleotides (ASOs), is an attractive technology for the development of nucleic acid-based medicines. To target CD22-expressing B cells, several drug platforms have shown promise, including antibodies, antibody-drug conjugates, and nanoparticles, but to date CD22-targeted delivery of oligonucleotide therapeutics has not been reported. Here we report the uptake and enhancement of siRNA gene expression knockdown in CD22-expressing B cells using a chemically stabilized and modified CD22 glycan ligand-conjugated siRNA. This finding has the potential to broaden the use of siRNA technology, opening up novel therapeutic opportunities, and presents an innovative approach for targeted delivery of siRNAs to B cell lymphomas.
Collapse
Affiliation(s)
- Toshimasa Harumoto
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Hiroto Iwai
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Mari Tanigawa
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Toshiko Kubo
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Toshiyuki Atsumi
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Kyoko Tsutsumi
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Michio Takashima
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Giuseppe Destito
- Kyowa Kirin Inc., 9420 Athena Circle, La Jolla, California 92037, United States
| | - Rachel Soloff
- Kyowa Kirin Inc., 9420 Athena Circle, La Jolla, California 92037, United States
| | - Kazuma Tomizuka
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Corwin Nycholat
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - James Paulson
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Keiji Uehara
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
29
|
Chappie TA, Abdelmessih M, Ambroise CW, Boehm M, Cai M, Green M, Guilmette E, Steppan CM, Stevens LM, Wei L, Xi S, Hasson SA. Discovery of Small-Molecule CD33 Pre-mRNA Splicing Modulators. ACS Med Chem Lett 2022; 13:55-62. [PMID: 35059124 PMCID: PMC8762744 DOI: 10.1021/acsmedchemlett.1c00396] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/29/2021] [Indexed: 01/16/2023] Open
Abstract
CD33/Siglec 3 is a myeloid lineage cell surface receptor that is known to regulate microglia activity. Multiple genome-wide association studies (GWAS) have identified genetic variants in the CD33 gene that convey protection from late-onset Alzheimer's disease. Furthermore, mechanistic studies into GWAS-linked variants suggest that disease protection is attributed to the alternative splicing of exon 2 of the CD33 pre-mRNA. Using a phenomimetic screen, a series of compounds were found to enhance the exclusion of CD33 exon 2, acting as a chemomimetic of the GWAS-linked gene variants. Additional studies confirmed that meyloid lineage cells treated with several of these compounds have a reduced full-length V-domain containing CD33 protein, while targeted RNA-seq concordantly demonstrated that compound 1 increases exon 2 skipping in cellular mRNA pools. These studies demonstrate how pharmacological interventions can be used to manipulate disease-relevant pre-mRNA splicing and provide a starting point for future efforts to identify small molecules that alter neuroimmune function that is rooted in the human biology of neurodegenerative disease.
Collapse
Affiliation(s)
- Thomas A. Chappie
- Internal
Medicine Medicinal Chemistry, Pfizer, Inc., Cambridge, Massachusetts 02139, United States,
| | - Mario Abdelmessih
- Primary
Pharmacology Group, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Claude W. Ambroise
- Internal
Medicine Research Unit, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Markus Boehm
- Internal
Medicine Medicinal Chemistry, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Mi Cai
- Internal
Medicine Research Unit, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Michael Green
- Internal
Medicine Medicinal Chemistry, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Edward Guilmette
- Internal
Medicine Research Unit, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Claire M. Steppan
- Primary
Pharmacology Group, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Lucy M. Stevens
- Primary
Pharmacology Group, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Liuqing Wei
- Internal
Medicine Medicinal Chemistry, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Simon Xi
- Internal
Medicine Research Unit, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Samuel A. Hasson
- Internal
Medicine Research Unit, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Jung J, Enterina JR, Bui DT, Mozaneh F, Lin PH, Nitin, Kuo CW, Rodrigues E, Bhattacherjee A, Raeisimakiani P, Daskhan GC, St. Laurent CD, Khoo KH, Mahal LK, Zandberg WF, Huang X, Klassen JS, Macauley MS. Carbohydrate Sulfation As a Mechanism for Fine-Tuning Siglec Ligands. ACS Chem Biol 2021; 16:2673-2689. [PMID: 34661385 DOI: 10.1021/acschembio.1c00501] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The immunomodulatory family of Siglecs recognizes sialic acid-containing glycans as "self", which is exploited in cancer for immune evasion. The biochemical nature of Siglec ligands remains incompletely understood, with emerging evidence suggesting the importance of carbohydrate sulfation. Here, we investigate how specific sulfate modifications affect Siglec ligands by overexpressing eight carbohydrate sulfotransferases (CHSTs) in five cell lines. Overexpression of three CHSTs─CHST1, CHST2, or CHST4─significantly enhance the binding of numerous Siglecs. Unexpectedly, two other CHSTs (Gal3ST2 and Gal3ST3) diminish Siglec binding, suggesting a new mode to modulate Siglec ligands via sulfation. Results are cell type dependent, indicating that the context in which sulfated glycans are presented is important. Moreover, a pharmacological blockade of N- and O-glycan maturation reveals a cell-type-specific pattern of importance for either class of glycan. Production of a highly homogeneous Siglec-3 (CD33) fragment enabled a mass-spectrometry-based binding assay to determine ≥8-fold and ≥2-fold enhanced affinity for Neu5Acα2-3(6-O-sulfo)Galβ1-4GlcNAc and Neu5Acα2-3Galβ1-4(6-O-sulfo)GlcNAc, respectively, over Neu5Acα2-3Galβ1-4GlcNAc. CD33 shows significant additivity in affinity (≥28-fold) for the disulfated ligand, Neu5Acα2-3(6-O-sulfo)Galβ1-4(6-O-sulfo)GlcNAc. Moreover, joint overexpression of CHST1 with CHST2 in cells greatly enhanced the binding of CD33 and several other Siglecs. Finally, we reveal that CHST1 is upregulated in numerous cancers, correlating with poorer survival rates and sodium chlorate sensitivity for the binding of Siglecs to cancer cell lines. These results provide new insights into carbohydrate sulfation as a general mechanism for tuning Siglec ligands on cells, including in cancer.
Collapse
Affiliation(s)
- Jaesoo Jung
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Jhon R. Enterina
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G 2J7, Canada
| | - Duong T. Bui
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Fahima Mozaneh
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Po-Han Lin
- Departments of Chemistry and Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Nitin
- Department of Chemistry, The University of British Columbia, Kelowna, V1V 1V7, Canada
| | - Chu-Wei Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Emily Rodrigues
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | | | | | - Gour C. Daskhan
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | | | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Wesley F. Zandberg
- Department of Chemistry, The University of British Columbia, Kelowna, V1V 1V7, Canada
| | - Xuefei Huang
- Departments of Chemistry and Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - John S. Klassen
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Matthew S. Macauley
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G 2J7, Canada
| |
Collapse
|
31
|
Increasing phagocytosis of microglia by targeting CD33 with liposomes displaying glycan ligands. J Control Release 2021; 338:680-693. [PMID: 34517042 DOI: 10.1016/j.jconrel.2021.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022]
Abstract
CD33 is an immunomodulatory receptor expressed by microglia and genetically linked to Alzheimer's disease (AD) susceptibility. While antibodies targeting CD33 have entered clinical trials to treat neurodegeneration, it is unknown whether the glycan-binding properties of CD33 can be exploited to modulate microglia. Here, we use liposomes that multivalently display glycan ligands of CD33 (CD33L liposomes) to engage CD33. We find that CD33L liposomes increase phagocytosis of cultured monocytic cells and microglia in a CD33-dependent manner. Enhanced phagocytosis strongly correlates with loss of CD33 from the cell surface and internalization of liposomes. Increased phagocytosis by treatment with CD33L liposomes is dependent on a key intracellular signaling motif on CD33 as well as the glycan-binding ability of CD33. These effects are specific to trans engagement of CD33 by CD33L liposomes, as cis engagement through insertion of lipid-linked CD33L into cells produces the opposite effect on phagocytosis. Moreover, intracerebroventricular injection of CD33L liposomes into transgenic mice expressing human CD33 in the microglial cell lineage enhances phagocytosis of microglia in a CD33-dependent manner. These results demonstrate that multivalent engagement of CD33 with glycan ligands can modulate microglial cell function.
Collapse
|
32
|
Sialic Acid-Siglec Axis in Human Immune Regulation, Involvement in Autoimmunity and Cancer and Potential Therapeutic Treatments. Int J Mol Sci 2021; 22:ijms22115774. [PMID: 34071314 PMCID: PMC8198044 DOI: 10.3390/ijms22115774] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Siglecs are sialic acid-binding immunoglobulin-like lectins. Most Siglecs function as transmembrane receptors mainly expressed on blood cells in a cell type-specific manner. They recognize and bind sialic acids in specific linkages on glycoproteins and glycolipids. Since Sia is a self-molecule, Siglecs play a role in innate immune responses by distinguishing molecules as self or non-self. Increasing evidence supports the involvement of Siglecs in immune signaling representing immune checkpoints able to regulate immune responses in inflammatory diseases as well as cancer. Although further studies are necessary to fully understand the involvement of Siglecs in pathological conditions as well as their interactions with other immune regulators, the development of therapeutic approaches that exploit these molecules represents a tremendous opportunity for future treatments of several human diseases, as demonstrated by their application in several clinical trials. In the present review, we discuss the involvement of Siglecs in the regulation of immune responses, with particular focus on autoimmunity and cancer and the chance to target the sialic acid-Siglec axis as novel treatment strategy.
Collapse
|
33
|
Abstract
A dense and diverse array of glycans on glycoproteins and glycolipids decorate all cell surfaces. In vertebrates, many of these carry sialic acid, in a variety of linkages and glycan contexts, as their outermost sugar moiety. Among their functions, glycans engage complementary glycan binding proteins (lectins) to regulate cell physiology. Among the glycan binding proteins are the Siglecs, sialic acid binding immunoglobulin-like lectins. In humans, there are 14 Siglecs, most of which are expressed on overlapping subsets of immune system cells. Each Siglec engages distinct, endogenous sialylated glycans that initiate signaling programs and regulate cellular responses. Here, we explore the emerging science of Siglec ligands, including endogenous sialoglycoproteins and glycolipids and synthetic sialomimetics. Knowledge in this field promises to reveal new molecular pathways controlling cell physiology and new opportunities for therapeutic intervention.
Collapse
|
34
|
Büll C, Nason R, Sun L, Van Coillie J, Madriz Sørensen D, Moons SJ, Yang Z, Arbitman S, Fernandes SM, Furukawa S, McBride R, Nycholat CM, Adema GJ, Paulson JC, Schnaar RL, Boltje TJ, Clausen H, Narimatsu Y. Probing the binding specificities of human Siglecs by cell-based glycan arrays. Proc Natl Acad Sci U S A 2021; 118:e2026102118. [PMID: 33893239 PMCID: PMC8092401 DOI: 10.1073/pnas.2026102118] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Siglecs are a family of sialic acid-binding receptors expressed by cells of the immune system and a few other cell types capable of modulating immune cell functions upon recognition of sialoglycan ligands. While human Siglecs primarily bind to sialic acid residues on diverse types of glycoproteins and glycolipids that constitute the sialome, their fine binding specificities for elaborated complex glycan structures and the contribution of the glycoconjugate and protein context for recognition of sialoglycans at the cell surface are not fully elucidated. Here, we generated a library of isogenic human HEK293 cells with combinatorial loss/gain of individual sialyltransferase genes and the introduction of sulfotransferases for display of the human sialome and to dissect Siglec interactions in the natural context of glycoconjugates at the cell surface. We found that Siglec-4/7/15 all have distinct binding preferences for sialylated GalNAc-type O-glycans but exhibit selectivity for patterns of O-glycans as presented on distinct protein sequences. We discovered that the sulfotransferase CHST1 drives sialoglycan binding of Siglec-3/8/7/15 and that sulfation can impact the preferences for binding to O-glycan patterns. In particular, the branched Neu5Acα2-3(6-O-sulfo)Galβ1-4GlcNAc (6'-Su-SLacNAc) epitope was discovered as the binding epitope for Siglec-3 (CD33) implicated in late-onset Alzheimer's disease. The cell-based display of the human sialome provides a versatile discovery platform that enables dissection of the genetic and biosynthetic basis for the Siglec glycan interactome and other sialic acid-binding proteins.
Collapse
Affiliation(s)
- Christian Büll
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Rebecca Nason
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lingbo Sun
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Julie Van Coillie
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Daniel Madriz Sørensen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Sam J Moons
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Steven Arbitman
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Steve M Fernandes
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Sanae Furukawa
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ryan McBride
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Corwin M Nycholat
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Gosse J Adema
- Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Ronald L Schnaar
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Thomas J Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
- GlycoDisplay ApS, Copenhagen, 2100 N, Denmark
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The aim of this study was to provide an update on the role of the innate immune system and neuroinflammation in the pathogenesis of Alzheimer's disease, with an emphasis on microglial receptors CD33 and TREM2. RECENT FINDINGS Genome-wide association studies (GWAS) have identified many Alzheimer's disease risk genes related to immune response and microglia including the phagocytic receptors CD33 and TREM2. Recent GWAS and pathway analyses emphasize the crucial role of the innate immune system and neuroinflammation in the pathogenesis of Alzheimer's disease. Disease-associated microglia have been characterized by TREM2-dependent upregulation of phagocytic and lipid metabolism genes. Impaired microglial phagocytosis results in amyloid beta (Aβ) accumulation leading to neuroinflammation that is the primary cause of neurodegeneration. CD33 and TREM2 modulate neuroinflammation in Alzheimer's disease and have emerged as therapeutic targets in Alzheimer's disease. Progress has been made to inhibit CD33 by gene therapy, small molecules or immunotherapy, and to increase TREM2 activity by immunotherapy. Finally, mAbs against CD33 and TREM2 have entered clinical trials and may reduce neuroinflammation in Alzheimer's disease brain. SUMMARY Targeting neuroinflammation via CD33 inhibition and/or TREM2 activation may have important implications for neurodegeneration in Alzheimer's disease and may be an addition to monoclonal anti-Aβ antibody treatments that remove plaques without reducing neuroinflammation.
Collapse
Affiliation(s)
- Ana Griciuc
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | | |
Collapse
|
36
|
Abdu-Allah HHM, Wu SC, Lin CH, Tseng YY. Design, synthesis and molecular docking study of α-triazolylsialosides as non-hydrolyzable and potent CD22 ligands. Eur J Med Chem 2020; 208:112707. [PMID: 32942185 DOI: 10.1016/j.ejmech.2020.112707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022]
Abstract
Ligand 1 was the first reported example of monomeric high-affinity synthetic CD22 ligand that regulated B cell activation in vitro, augmented antibody production and regulated immune responses in mice. Replacing O-glycoside linkage of 1 by nitrogen of triazole by click reaction afforded compounds which are as potent as the parent compound. The synthesis of the new compounds is straightforward with fewer synthetic steps and higher yield. Such a strategy provided stable ligand that can bind avidly and can be conjugated to drugs for B-cell targeting or multimeric formation. The new compounds were screened for their affinity to CD22, using surface plasmon resonance (SPR). Compound 12 was obtained as a bioisosteric analogue and an anomerically stable imitation of 1. It was, also, screened for MAG to test for selectivity and analyzed by molecular docking and dynamic simulation to explore the potential binding modes and source of selectivity within CD22. Our results could enable the development of small molecule drug capable of modulating the activity of CD22 in autoimmune diseases and malignancies derived from B-cells.
Collapse
Affiliation(s)
- Hajjaj H M Abdu-Allah
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.
| | - Shang-Chuen Wu
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yu-Yao Tseng
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.
| |
Collapse
|
37
|
Yadav S, Naresh K, Jayaraman N. Surface Ligand Density Switches Glycovesicles between Monomeric and Multimeric Lectin Recognition. Chembiochem 2020; 22:485-490. [PMID: 32926592 DOI: 10.1002/cbic.202000544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Indexed: 11/07/2022]
Abstract
Carbohydrate-protein interactions define a multitude of cellular recognition events. We present herein synthetic glycovesicles as cell-surface mimics in order to switch the nature of lectin recognition. The covalent glycovesicles, constituted with diacetylene monomers of various ligand densities at their surfaces, are prepared through photo-polymerization. Vesicles with sparsely imbedded ligands engage in a lectin interaction leading to the formation of a dense, crosslinked multimeric complex. On the other hand, vesicles with many ligands, or completely covered with them, switch the lectin interaction to form a fully soluble monomeric complex, without crosslinking. Nanomolar dissociation constants govern these interactions, as assessed by a ligand-displacement assay. The study demonstrates the switching nature - between monomeric and multimeric - of the interaction as a function of ligand density in the vesicles; the results are directly relevant to understanding such a phenomenon occurring at cell surfaces.
Collapse
Affiliation(s)
- Shivender Yadav
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Kottari Naresh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India.,Present address: HP Green R&D Centre, KIADB Industrial Area, Bangalore, 560 067, India
| | | |
Collapse
|
38
|
Mertsch A, Poschenrieder S, Fessner W. Semi‐Synthetic Sialic Acid Probes for Challenging the Substrate Promiscuity of Enzymes in the Sialoconjugation Pathway. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexander Mertsch
- Institute of Organic Chemistry and Biochemistry Technische Universität Darmstadt Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| | - Silvan Poschenrieder
- Institute of Organic Chemistry and Biochemistry Technische Universität Darmstadt Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| | - Wolf‐Dieter Fessner
- Institute of Organic Chemistry and Biochemistry Technische Universität Darmstadt Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| |
Collapse
|
39
|
A versatile soluble siglec scaffold for sensitive and quantitative detection of glycan ligands. Nat Commun 2020; 11:5091. [PMID: 33037195 PMCID: PMC7547722 DOI: 10.1038/s41467-020-18907-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
Sialic acid-binding immunoglobulin-type lectins (Siglecs) are immunomodulatory receptors that are regulated by their glycan ligands. The connections between Siglecs and human disease motivate improved methods to detect Siglec ligands. Here, we describe a new versatile set of Siglec-Fc proteins for glycan ligand detection. Enhanced sensitivity and selectivity are enabled through multimerization and avoiding Fc receptors, respectively. Using these Siglec-Fc proteins, Siglec ligands are systematically profiled on healthy and cancerous cells and tissues, revealing many unique patterns. Additional features enable the production of small, homogenous Siglec fragments and development of a quantitative ligand-binding mass spectrometry assay. Using this assay, the ligand specificities of several Siglecs are clarified. For CD33 (Siglec-3), we demonstrate that it recognizes both α2-3 and α2-6 sialosides in solution and on cells, which has implications for its link to Alzheimer’s disease susceptibility. These soluble Siglecs reveal the abundance of their glycan ligands on host cells as self-associated molecular patterns. Sialic acid-binding immunoglobulin-type lectins (Siglecs) are a family of immunomodulatory receptors expressed on cells of the hematopoietic lineage. Here the authors demonstrate an approach for the identification of the glycan ligands of Siglecs, which is also applicable to other families of glycan-binding proteins.
Collapse
|
40
|
Movsisyan LD, Macauley MS. Structural advances of Siglecs: insight into synthetic glycan ligands for immunomodulation. Org Biomol Chem 2020; 18:5784-5797. [PMID: 32756649 DOI: 10.1039/d0ob01116a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are transmembrane proteins of the immunoglobulin (Ig) superfamily predominantly expressed on the cells of our immune system. Siglecs recognize sialic acid via their terminal V-set domain. In mammals, sialic acid-terminated glycolipids and glycoproteins are the ligands of Siglecs, and the monomeric affinity of Siglecs for their sialic acid-containing ligands is weak. Significant efforts have been devoted toward the development of chemically modified sialoside ligands to target Siglecs with higher affinity and selectivity. In this review we discuss natural and synthetic sialoside ligands for each human Siglec, emphasizing the ligand binding determinants uncovered from recent advances in protein structural information. Potential therapeutic applications of these ligands are also discussed.
Collapse
Affiliation(s)
- Levon D Movsisyan
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
41
|
Wang X, Lang S, Tian Y, Zhang J, Yan X, Fang Z, Weng J, Lu N, Wu X, Li T, Cao H, Li Z, Huang X. Glycoengineering of Natural Killer Cells with CD22 Ligands for Enhanced Anticancer Immunotherapy. ACS CENTRAL SCIENCE 2020; 6:382-389. [PMID: 32232138 PMCID: PMC7099595 DOI: 10.1021/acscentsci.9b00956] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Indexed: 05/15/2023]
Abstract
Adoptive transfer of immune cells is being actively pursued for cancer treatment. Natural killer (NK) cells, a class of cytotoxic immune cells, generally lack inherent selectivities toward cancer. To bestow tumor-targeting abilities and enhance anticancer efficacy, a new strategy is established to glycoengineer NK cells. Carbohydrate-based ligands for CD22, a marker for B cell lymphoma, are introduced onto NK cells through either metabolic engineering or glyco-polymer insertion. Such NK cells exhibited greatly enhanced cytotoxicities toward CD22+ lymphoma cells in a CD22-dependent manner. Importantly, both CD22+ lymphoma cell lines and primary lymphoma cells from human cancer patients can be effectively killed by the engineered NK cells. Furthermore, glycoengineered NK cells provided significant protection to tumor-bearing mice. Thus, NK cell glycoengineering is an exciting new approach for cancer treatment complementing the current immune cell genetic engineering strategy.
Collapse
Affiliation(s)
- Xianwu Wang
- Department
of Biomaterials, College of Materials, Xiamen
University, 422 Siming Nan Road, Xiamen 361005, P. R. China
| | - Shuyao Lang
- Departments
of Chemistry and Biomedical Engineering, Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Yunpeng Tian
- Xiamen
Nuokangde Biological Technology Co., Ltd., Xiamen 361006, China
| | - Jianghong Zhang
- Xiamen
Nuokangde Biological Technology Co., Ltd., Xiamen 361006, China
| | - Xu Yan
- School
of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhihong Fang
- Department
of Hematology, The First Affiliated Hospital
of Xiamen University, Xiamen 361003, China
| | - Jian Weng
- Department
of Biomaterials, College of Materials, Xiamen
University, 422 Siming Nan Road, Xiamen 361005, P. R. China
| | - Na Lu
- National
Glycoengineering Research Center, Shandong
University, Qingdao, Shandong 266237, China
| | - Xuanjun Wu
- Departments
of Chemistry and Biomedical Engineering, Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
- National
Glycoengineering Research Center, Shandong
University, Qingdao, Shandong 266237, China
| | - Tianlu Li
- Departments
of Chemistry and Biomedical Engineering, Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
- National
Glycoengineering Research Center, Shandong
University, Qingdao, Shandong 266237, China
| | - Hongzhi Cao
- National
Glycoengineering Research Center, Shandong
University, Qingdao, Shandong 266237, China
| | - Zhu Li
- Xiamen
Nuokangde Biological Technology Co., Ltd., Xiamen 361006, China
- (Z.L.)
| | - Xuefei Huang
- Departments
of Chemistry and Biomedical Engineering, Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
- (X.H.)
| |
Collapse
|
42
|
Abstract
Sialic acid-binding immunoglobulin-type lectins (Siglecs) are expressed on the majority of white blood cells of the immune system and play critical roles in immune cell signaling. Through recognition of sialic acid-containing glycans as ligands, they help the immune system distinguish between self and nonself. Because of their restricted cell type expression and roles as checkpoints in immune cell responses in human diseases such as cancer, asthma, allergy, neurodegeneration, and autoimmune diseases they have gained attention as targets for therapeutic interventions. In this review we describe the Siglec family, its roles in regulation of immune cell signaling, current efforts to define its roles in disease processes, and approaches to target Siglecs for treatment of human disease.
Collapse
Affiliation(s)
- Shiteng Duan
- Departments of Molecular Medicine, and Immunology and Microbiology, Scripps Research, La Jolla, California 92037, USA;
| | - James C Paulson
- Departments of Molecular Medicine, and Immunology and Microbiology, Scripps Research, La Jolla, California 92037, USA;
| |
Collapse
|
43
|
Sialic acid and biology of life: An introduction. SIALIC ACIDS AND SIALOGLYCOCONJUGATES IN THE BIOLOGY OF LIFE, HEALTH AND DISEASE 2020. [PMCID: PMC7153325 DOI: 10.1016/b978-0-12-816126-5.00001-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sialic acids are important molecule with high structural diversity. They are known to occur in higher animals such as Echinoderms, Hemichordata, Cephalochorda, and Vertebrata and also in other animals such as Platyhelminthes, Cephalopoda, and Crustaceae. Plants are known to lack sialic acid. But they are reported to occur in viruses, bacteria, protozoa, and fungi. Deaminated neuraminic acid although occurs in vertebrates and bacteria, is reported to occur in abundance in the lower vertebrates. Sialic acids are mostly located in terminal ends of glycoproteins and glycolipids, capsular and tissue polysialic acids, bacterial lipooligosaccharides/polysaccharides, and in different forms that dictate their role in biology. Sialic acid play important roles in human physiology of cell-cell interaction, communication, cell-cell signaling, carbohydrate-protein interactions, cellular aggregation, development processes, immune reactions, reproduction, and in neurobiology and human diseases in enabling the infection process by bacteria and virus, tumor growth and metastasis, microbiome biology, and pathology. It enables molecular mimicry in pathogens that allows them to escape host immune responses. Recently sialic acid has found role in therapeutics. In this chapter we have highlighted the (i) diversity of sialic acid, (ii) their occurrence in the diverse life forms, (iii) sialylation and disease, and (iv) sialic acid and therapeutics.
Collapse
|
44
|
Liu G, Jia L, Xing G. Probing Sialidases or Siglecs with Sialic Acid Analogues, Clusters and Precursors. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guang‐jian Liu
- College of ChemistryBeijing Normal University Beijing 100875 P.R. China
| | - Li‐yan Jia
- College of ChemistryBeijing Normal University Beijing 100875 P.R. China
| | - Guo‐wen Xing
- College of ChemistryBeijing Normal University Beijing 100875 P.R. China
| |
Collapse
|
45
|
Characterisation of the Dynamic Interactions between Complex
N
‐Glycans and Human CD22. Chembiochem 2019; 21:129-140. [DOI: 10.1002/cbic.201900295] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Indexed: 12/21/2022]
|
46
|
SRSF1 and PTBP1 Are trans-Acting Factors That Suppress the Formation of a CD33 Splicing Isoform Linked to Alzheimer's Disease Risk. Mol Cell Biol 2019; 39:MCB.00568-18. [PMID: 31208978 PMCID: PMC6712934 DOI: 10.1128/mcb.00568-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/08/2019] [Indexed: 12/19/2022] Open
Abstract
A single nucleotide polymorphism (SNP) in exon 2 of the CD33 gene is associated with reduced susceptibility to late-onset Alzheimer’s disease (AD) and causal for elevated mRNA lacking exon 2. In contrast to full-length CD33, transcripts lacking exon 2 result in CD33 protein unable to suppress activation responses in myeloid cells, including microglia. Currently, little is known about the regulation of CD33 exon 2 splicing. A single nucleotide polymorphism (SNP) in exon 2 of the CD33 gene is associated with reduced susceptibility to late-onset Alzheimer’s disease (AD) and causal for elevated mRNA lacking exon 2. In contrast to full-length CD33, transcripts lacking exon 2 result in CD33 protein unable to suppress activation responses in myeloid cells, including microglia. Currently, little is known about the regulation of CD33 exon 2 splicing. Using functional genomics and proteomic approaches, we found that SRSF1 and PTBP1 act as splicing enhancers to increase CD33 exon 2 inclusion in mRNA. Binding of PTBP1 to RNA sequences proximal to the intron 1-exon 2 splice junction is altered by the SNP and represents a potential mechanism behind the SNP-genotype dependent alternative splicing. Our studies also reveal that binding of SRSF1 to the CD33 RNA is not altered by the SNP genotype. Instead, a putative SRSF1 binding sequence at the 3′ end of exon 2 directs CD33 exon 2 inclusion into the mRNA, indicating that PTBP1 and SRSF1 promote full-length isoform expression through different mechanisms. Our findings shed light on molecular interactions that regulate CD33 exon 2 splicing, ultimately impacting receptor expression on the cell surface. These data aid in the understanding of CD33’s regulation of microglial signaling underpinning the AD genetic associations.
Collapse
|
47
|
Biber K, Bhattacharya A, Campbell BM, Piro JR, Rohe M, Staal RGW, Talanian RV, Möller T. Microglial Drug Targets in AD: Opportunities and Challenges in Drug Discovery and Development. Front Pharmacol 2019; 10:840. [PMID: 31507408 PMCID: PMC6716448 DOI: 10.3389/fphar.2019.00840] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a large and increasing unmet medical need with no disease-modifying treatment currently available. Genetic evidence from genome-wide association studies (GWASs) and gene network analysis has clearly revealed a key role of the innate immune system in the brain, of which microglia are the most important element. Single-nucleotide polymorphisms (SNPs) in genes predominantly expressed in microglia have been associated with altered risk of developing AD. Furthermore, microglia-specific pathways are affected on the messenger RNA (mRNA) expression level in post-mortem AD tissue and in mouse models of AD. Together these findings have increased the interest in microglia biology, and numerous scientific reports have proposed microglial molecules and pathways as drug targets for AD. Target identification and validation are generally the first steps in drug discovery. Both target validation and drug lead identification for central nervous system (CNS) targets and diseases entail additional significant obstacles compared to peripheral targets and diseases. This makes CNS drug discovery, even with well-validated targets, challenging. In this article, we will illustrate the special challenges of AD drug discovery by discussing the viability/practicality of possible microglia drug targets including cluster of differentiation 33 (CD33), KCa3.1, kynurenines, ionotropic P2 receptor 7 (P2X7), programmed death-1 (PD-1), Toll-like receptors (TLRs), and triggering receptor expressed in myeloid cells 2 (TREM2).
Collapse
Affiliation(s)
- Knut Biber
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Ludwigshafen, Germany
| | | | | | - Justin R Piro
- AbbVie Foundational Neuroscience Center, Cambridge, MA, United States
| | - Michael Rohe
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Ludwigshafen, Germany
| | | | - Robert V Talanian
- AbbVie Foundational Neuroscience Center, Cambridge, MA, United States
| | - Thomas Möller
- AbbVie Foundational Neuroscience Center, Cambridge, MA, United States
| |
Collapse
|
48
|
Miles LA, Hermans SJ, Crespi GAN, Gooi JH, Doughty L, Nero TL, Markulić J, Ebneth A, Wroblowski B, Oehlrich D, Trabanco AA, Rives ML, Royaux I, Hancock NC, Parker MW. Small Molecule Binding to Alzheimer Risk Factor CD33 Promotes Aβ Phagocytosis. iScience 2019; 19:110-118. [PMID: 31369984 PMCID: PMC6669322 DOI: 10.1016/j.isci.2019.07.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/16/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
Polymorphism in the microglial receptor CD33 gene has been linked to late-onset Alzheimer disease (AD), and reduced expression of the CD33 sialic acid-binding domain confers protection. Thus, CD33 inhibition might be an effective therapy against disease progression. Progress toward discovery of selective CD33 inhibitors has been hampered by the absence of an atomic resolution structure. We report here the crystal structures of CD33 alone and bound to a subtype-selective sialic acid mimetic called P22 and use them to identify key binding residues by site-directed mutagenesis and binding assays to reveal the molecular basis for its selectivity toward sialylated glycoproteins and glycolipids. We show that P22, when presented on microparticles, increases uptake of the toxic AD peptide, amyloid-β (Aβ), into microglial cells. Thus, the sialic acid-binding site on CD33 is a promising pharmacophore for developing therapeutics that promote clearance of the Aβ peptide that is thought to cause AD.
Collapse
Affiliation(s)
- Luke A Miles
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3056, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Stefan J Hermans
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3056, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gabriela A N Crespi
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3056, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jonathan H Gooi
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3056, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Larissa Doughty
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3056, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tracy L Nero
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3056, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jasmina Markulić
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3056, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andreas Ebneth
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, 2340 Beerse, Belgium
| | - Berthold Wroblowski
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, 2340 Beerse, Belgium
| | - Daniel Oehlrich
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, 2340 Beerse, Belgium
| | - Andrés A Trabanco
- Neuroscience Medicinal Chemistry, Janssen Research & Development, 45007 Toledo, Spain
| | - Marie-Laure Rives
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, CA 92121, USA
| | - Ines Royaux
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, 2340 Beerse, Belgium
| | - Nancy C Hancock
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3056, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3056, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
49
|
Wu HR, Anwar MT, Fan CY, Low PY, Angata T, Lin CC. Expedient assembly of Oligo-LacNAcs by a sugar nucleotide regeneration system: Finding the role of tandem LacNAc and sialic acid position towards siglec binding. Eur J Med Chem 2019; 180:627-636. [PMID: 31351394 DOI: 10.1016/j.ejmech.2019.07.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/26/2019] [Accepted: 07/15/2019] [Indexed: 11/28/2022]
Abstract
Sialosides containing (oligo-)N-acetyllactosamine (LacNAc, Galβ(1,4)GlcNAc) as core structure are known to serve as ligands for Siglecs. However, the role of tandem inner epitope for Siglec interaction has never been reported. Herein, we report the effect of internal glycan (by length and type) on the binding affinity and describe a simple and efficient chemo-enzymatic sugar nucleotide regeneration protocol for the preparative-scale synthesis of oligo-LacNAcs by the sequential use of β1,4-galactosyltransferase (β4GalT) and β1,3-N-acetylglucosyl transferase (β3GlcNAcT). Further modification of these oligo-LacNAcs was performed in one-pot enzymatic synthesis to yield sialylated and/or fucosylated analogs. A glycan library of 23 different sialosides containing various LacNAc lengths or Lac core with natural/unnatural sialylation and/or fucosylation was synthesized. These glycans were used to fabricate a glycan microarray that was utilized to screen glycan binding preferences against five different Siglecs (2, 7, 9, 14 and 15).
Collapse
Affiliation(s)
- Hsin-Ru Wu
- Department of Chemistry, National Tsing-Hua University, Hsinchu, 30013, Taiwan; Instrumentation Center of Ministry of Science and Technology at National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | | | - Chen-Yo Fan
- Department of Chemistry, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Penk Yeir Low
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing-Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
50
|
Bednar KJ, Nycholat CM, Rao TS, Paulson JC, Fung-Leung WP, Macauley MS. Exploiting CD22 To Selectively Tolerize Autoantibody Producing B-Cells in Rheumatoid Arthritis. ACS Chem Biol 2019; 14:644-654. [PMID: 30835424 DOI: 10.1021/acschembio.8b01018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that primarily affects the synovial joints and can lead to bone erosion and cartilage damage. One hallmark of RA is anticitrullinated protein autoantibodies (ACPA) and memory citrulline-specific B-cells, which have been implicated in RA pathogenesis. While depletion of B-cells with Rituximab improves clinical responses in RA patients, this treatment strategy leaves patients susceptible to infections. Here we use of Siglec-engaging Tolerance-inducing Antigenic Liposomes (STALs) to selectively target the citrulline-specific B-cells. ACPA production from purified human RA patients' B-cells in vitro was achieved through a set of stimulation conditions, which includes the following: BAFF, anti-CD40, IL-21, and LPS. In vivo generation of citrulline specific B-cells and ACPA production was accomplished by antigenic liposomes consisting of monophosphoryl lipid A (MPLA) and a cyclic citrullinated peptide (CCP) administered to SJL/J mice. We show that STALs that codisplay a high affinity CD22 glycan ligand and synthetic citrullinated antigen (CCP STALs) can prevent ACPA production from RA patients' memory B-cells in vitro. These CCP STALs were also effective in inducing tolerance to citrullinated antigens in SJL/J mice. The results demonstrate that tolerization of the B-cells responsible for ACPA can be achieved by exploiting the inhibitory receptor CD22 with high-affinity glycan ligands. Such a treatment strategy could be beneficial in the treatment of RA.
Collapse
Affiliation(s)
- Kyle J. Bednar
- Discovery Immunology, Janssen Pharmaceutical Research and Development, LLC, 3210 Merryfield Road, San Diego, California 92121, United States
- Department of Molecular Medicine, The Scripps Research Institute, North Torrey Pines Road, La Jolla, California 92037, United States
| | - Corwin M. Nycholat
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tadimeti S. Rao
- Discovery Immunology, Janssen Pharmaceutical Research and Development, LLC, 3210 Merryfield Road, San Diego, California 92121, United States
| | - James C. Paulson
- Department of Molecular Medicine, The Scripps Research Institute, North Torrey Pines Road, La Jolla, California 92037, United States
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, North Torrey Pines Road, La Jolla, California 92037, United States
| | - Wai-Ping Fung-Leung
- Discovery Immunology, Janssen Pharmaceutical Research and Development, LLC, 3210 Merryfield Road, San Diego, California 92121, United States
| | - Matthew S. Macauley
- Department of Molecular Medicine, The Scripps Research Institute, North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|