1
|
Angle SR, Sharma HA, Choi CK, Carlson KE, Hou Y, Nwachukwu JC, Kim SH, Katzenellenbogen BS, Nettles KW, Katzenellenbogen JA, Jacobsen EN. Iterative Catalyst-Controlled Diastereoselective Matteson Homologations Enable the Selective Synthesis of Benzestrol Isomers. J Am Chem Soc 2024; 146:30771-30777. [PMID: 39481083 DOI: 10.1021/jacs.4c12857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
We report the development of an iterative Matteson homologation reaction with catalyst-controlled diastereoselectivity through the design of a new catalyst. This reaction was applied to the selective synthesis of each stereoisomer of benzestrol, a bioactive compound with estrogenic activity featuring three contiguous stereocenters. The different stereoisomers were assayed to determine their binding affinity for the estrogen receptor α (ERα), and the absolute configuration of the compound having uniquely high activity was determined. This research lays a framework for the catalytic synthesis and study of complete stereoisomeric sets of other bioactive molecules and chemical probes containing contiguous stereocenters.
Collapse
Affiliation(s)
- Samantha R Angle
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Hayden A Sharma
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christie K Choi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Kathryn E Carlson
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Yingwei Hou
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Jerome C Nwachukwu
- Department of Immunology and Microbiology, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, Florida 33458, United States
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology and Cancer Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Kendall W Nettles
- Department of Immunology and Microbiology, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, Florida 33458, United States
| | | | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
2
|
Seidler G, Schwenzer M, Clausen F, Daniliuc CG, Studer A. Borylative transition metal-free couplings of vinyl iodides with various nucleophiles, alkenes or alkynes. Chem Sci 2024; 15:1672-1678. [PMID: 38303934 PMCID: PMC10829001 DOI: 10.1039/d3sc06131k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024] Open
Abstract
Alkyl boronic esters are highly valuable compounds in organic chemistry and related fields due to their good stability and highly versatile reactivity. In this edge article, stereoselective borylative couplings of vinyl iodides with various nucleophiles, alkenes or alkynes is reported. These coupling reactions proceed through stereospecific hydroboration and subsequent stereospecific 1,2-metallate rearrangement. The cascades utilize readily available reagents and proceed without the need of a transition metal catalyst.
Collapse
Affiliation(s)
- Gesa Seidler
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Munster Germany
| | - Max Schwenzer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Munster Germany
| | - Florian Clausen
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Munster Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Munster Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Munster Germany
| |
Collapse
|
3
|
Deng C, Song BQ, Lusi M, Bezrukov AA, Haskins MM, Gao MY, Peng YL, Ma JG, Cheng P, Mukherjee S, Zaworotko MJ. Crystal Engineering of a Chiral Crystalline Sponge That Enables Absolute Structure Determination and Enantiomeric Separation. CRYSTAL GROWTH & DESIGN 2023; 23:5211-5220. [PMID: 37426545 PMCID: PMC10326857 DOI: 10.1021/acs.cgd.3c00446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Indexed: 07/11/2023]
Abstract
Chiral metal-organic materials (CMOMs), can offer molecular binding sites that mimic the enantioselectivity exhibited by biomolecules and are amenable to systematic fine-tuning of structure and properties. Herein, we report that the reaction of Ni(NO3)2, S-indoline-2-carboxylic acid (S-IDECH), and 4,4'-bipyridine (bipy) afforded a homochiral cationic diamondoid, dia, network, [Ni(S-IDEC)(bipy)(H2O)][NO3], CMOM-5. Composed of rod building blocks (RBBs) cross-linked by bipy linkers, the activated form of CMOM-5 adapted its pore structure to bind four guest molecules, 1-phenyl-1-butanol (1P1B), 4-phenyl-2-butanol (4P2B), 1-(4-methoxyphenyl)ethanol (MPE), and methyl mandelate (MM), making it an example of a chiral crystalline sponge (CCS). Chiral resolution experiments revealed enantiomeric excess, ee, values of 36.2-93.5%. The structural adaptability of CMOM-5 enabled eight enantiomer@CMOM-5 crystal structures to be determined. The five ordered crystal structures revealed that host-guest hydrogen-bonding interactions are behind the observed enantioselectivity, three of which represent the first crystal structures determined of the ambient liquids R-4P2B, S-4P2B, and R-MPE.
Collapse
Affiliation(s)
- Chenghua Deng
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Bai-Qiao Song
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Matteo Lusi
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Andrey A. Bezrukov
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Molly M. Haskins
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Mei-Yan Gao
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Yun-Lei Peng
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Jian-Gong Ma
- Department
of Chemistry and Key Laboratory of Advanced Energy Material Chemistry,
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- Department
of Chemistry and Key Laboratory of Advanced Energy Material Chemistry,
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Soumya Mukherjee
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Michael J. Zaworotko
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
4
|
Shibutani Y, Kusumoto S, Nozaki K. Synthesis, Characterization, and Trapping of a Cyclic Diborylcarbene, an Electrophilic Carbene. J Am Chem Soc 2023. [PMID: 37354094 DOI: 10.1021/jacs.3c04933] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
A carbene bearing two geminal boryl substituents, called diborylcarbene (DBC), has been predicted to be highly Lewis acidic in sharp contrast to the well-studied persistent carbenes stabilized by π-donating substituents. Studies on DBC have been limited to either the base-trapping or theoretical calculations. Herein, we developed chemical equivalents for DBC, namely, K/X-diborylcarbenoids 2X (X = F or Cl). Treatment of 2F with Al(C6F5)3 yielded [AlF(C6F5)3]--stabilized DBC 1-FAl, which showed a significant low-field shift of the carbenoid carbon from 169 ppm (doublet, coupling with 19F) to 242 ppm (singlet). The loss of halogen was also detected through electrospray ionization time-of-flight mass spectrometry analysis of 2X only in the presence of Al(C6F5)3. Generated DBC 1 from 1-FAl or 2Cl was successfully trapped with excess amounts of trialkylphosphines (PR3, R = Me or Et), which afforded the corresponding DBC-PR3 adducts. In addition, the Lewis acidity of DBC 1 was evaluated both experimentally and theoretically to reveal that 1 is one of the most Lewis acidic species among neutral molecules.
Collapse
Affiliation(s)
- Yuki Shibutani
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shuhei Kusumoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
5
|
Sakamoto R, Odagi M, Izumiseki A, Konuki K, Nagasawa K. Stereodivergent Synthesis of 1,3-Dienes via Protodeboronation of Homoallenylboronic Esters. J Org Chem 2022; 87:8084-8098. [PMID: 35671244 DOI: 10.1021/acs.joc.2c00744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vinylboronic esters and allylboronic esters are well known to afford olefins by protodeboronation, and therefore homoallenylboronic esters should be similarly available as precursors for 1,3-dienes, but this strategy has not been well explored due to the limited availability of homoallenylboronic esters. Here, we describe a versatile synthesis of homoallenylboronic esters via lithiation-borylation and subsequent 1,2-rearrangement. The resulting homoallenylboronic esters were successfully converted into Z- and E-1,3-dienes by protodeboronation using Bu4NF and B(C6F5)3/PhOH, respectively.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Minami Odagi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Atsuto Izumiseki
- Research & Development Division, MicroBiopharm Japan Co., Ltd. 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Kaname Konuki
- Research & Development Division, MicroBiopharm Japan Co., Ltd. 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
6
|
Blair DJ, Chitti S, Trobe M, Kostyra DM, Haley HMS, Hansen RL, Ballmer SG, Woods TJ, Wang W, Mubayi V, Schmidt MJ, Pipal RW, Morehouse GF, Palazzolo Ray AME, Gray DL, Gill AL, Burke MD. Automated iterative Csp 3-C bond formation. Nature 2022; 604:92-97. [PMID: 35134814 PMCID: PMC10500635 DOI: 10.1038/s41586-022-04491-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/28/2022] [Indexed: 11/09/2022]
Abstract
Fully automated synthetic chemistry would substantially change the field by providing broad on-demand access to small molecules. However, the reactions that can be run autonomously are still limited. Automating the stereospecific assembly of Csp3-C bonds would expand access to many important types of functional organic molecules1. Previously, methyliminodiacetic acid (MIDA) boronates were used to orchestrate the formation of Csp2-Csp2 bonds and were effective building blocks for automating the synthesis of many small molecules2, but they are incompatible with stereospecific Csp3-Csp2 and Csp3-Csp3 bond-forming reactions3-10. Here we report that hyperconjugative and steric tuning provide a new class of tetramethyl N-methyliminodiacetic acid (TIDA) boronates that are stable to these conditions. Charge density analysis11-13 revealed that redistribution of electron density increases covalency of the N-B bond and thereby attenuates its hydrolysis. Complementary steric shielding of carbonyl π-faces decreases reactivity towards nucleophilic reagents. The unique features of the iminodiacetic acid cage2, which are essential for generalized automated synthesis, are retained by TIDA boronates. This enabled Csp3 boronate building blocks to be assembled using automated synthesis, including the preparation of natural products through automated stereospecific Csp3-Csp2 and Csp3-Csp3 bond formation. These findings will enable increasingly complex Csp3-rich small molecules to be accessed via automated assembly.
Collapse
Affiliation(s)
- Daniel J Blair
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Sriyankari Chitti
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Melanie Trobe
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - David M Kostyra
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hannah M S Haley
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Richard L Hansen
- Department of Chemistry, REVOLUTION Medicines, Inc., Redwood City, CA, USA
| | - Steve G Ballmer
- Department of Chemistry, REVOLUTION Medicines, Inc., Redwood City, CA, USA
| | - Toby J Woods
- George L. Clark X-Ray Facility and 3M Materials Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wesley Wang
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Vikram Mubayi
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael J Schmidt
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Robert W Pipal
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Greg F Morehouse
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrea M E Palazzolo Ray
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Danielle L Gray
- George L. Clark X-Ray Facility and 3M Materials Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Adrian L Gill
- Department of Chemistry, REVOLUTION Medicines, Inc., Redwood City, CA, USA
| | - Martin D Burke
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carle Illinois College of Medicine, Urbana, IL, USA.
- Arnold and Mabel Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
7
|
Ming W, Soor HS, Liu X, Trofimova A, Yudin AK, Marder TB. α-Aminoboronates: recent advances in their preparation and synthetic applications. Chem Soc Rev 2021; 50:12151-12188. [PMID: 34585200 DOI: 10.1039/d1cs00423a] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
α-Aminoboronic acids and their derivatives are useful as bioactive agents. Thus far, three compounds containing an α-aminoboronate motif have been approved by the Food and Drug Administration (FDA) as protease inhibitors, and more are currently undergoing clinical trials. In addition, α-aminoboronic acids and their derivatives have found applications in organic synthesis, e.g. as α-aminomethylation reagents for the synthesis of chiral nitrogen-containing molecules, as nucleophiles for preparing valuable vicinal amino alcohols, and as bis-nucleophiles in the construction of valuable small molecule scaffolds. This review summarizes new methodology for the preparation of α-aminoboronates, including highlights of asymmetric synthetic methods and mechanistic explanations of reactivity. Applications of α-aminoboronates as versatile synthetic building blocks are also discussed.
Collapse
Affiliation(s)
- Wenbo Ming
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Harjeet S Soor
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada.
| | - Xiaocui Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Alina Trofimova
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada.
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada.
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
8
|
Rogers JJ, Aggarwal VK. Synthesis of Dysoxylactam A Using Iterative Homologation of Boronic Esters. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jack J. Rogers
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS United Kingdom
| | - Varinder K. Aggarwal
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS United Kingdom
| |
Collapse
|
9
|
Grayson JD, Dennis FM, Robertson CC, Partridge BM. Chan-Lam Amination of Secondary and Tertiary Benzylic Boronic Esters. J Org Chem 2021; 86:9883-9897. [PMID: 34169720 DOI: 10.1021/acs.joc.1c00976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report a Chan-Lam coupling reaction of benzylic and allylic boronic esters with primary and secondary anilines to form valuable alkyl amine products. Both secondary and tertiary boronic esters can be used as coupling partners, with mono-alkylation of the aniline occurring selectively. This is a rare example of a transition-metal-mediated transformation of a tertiary alkylboron reagent. Initial investigation into the reaction mechanism suggests that transmetalation from B to Cu occurs through a single-electron, rather than a two-electron process.
Collapse
Affiliation(s)
- James D Grayson
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield S3 7HF, United Kingdom
| | - Francesca M Dennis
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield S3 7HF, United Kingdom
| | - Craig C Robertson
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield S3 7HF, United Kingdom
| | - Benjamin M Partridge
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield S3 7HF, United Kingdom
| |
Collapse
|
10
|
Wang J, Wang D, Tong X. Synthesis of trisubstituted hydrazine via MnO 2-promoted oxidative coupling of N, N-disubstituted hydrazine and boronic ester. Org Biomol Chem 2021; 19:5762-5766. [PMID: 34126632 DOI: 10.1039/d1ob00929j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A MnO2-promoted oxidative coupling process between N,N-disubstituted hydrazine and boronic ester is reported. A 1,1-diazene species is firstly generated upon oxidation of a hydrazine substrate in the presence of MnO2 which then interacts with boronic ester to form the key intermediate boron-ate complex, followed by migration from boron to nitrogen to form a new C-N bond. This new finding provides mild, scalable, and operationally straightforward access to trisubstituted hydrazine.
Collapse
Affiliation(s)
- Jiaoyang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xiaofeng Tong
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
11
|
Ashraf MA, Tambe SD, Cho EJ. Diastereoselective Reductive Cyclization of
Allene‐Tethered
Ketoamines via
Copper‐Catalyzed
Cascade Carboboronation and Protodeborylation. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Muhammad Awais Ashraf
- Department of Chemistry Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu, Seoul 06974 Republic of Korea
| | - Shrikant D. Tambe
- Department of Chemistry Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu, Seoul 06974 Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu, Seoul 06974 Republic of Korea
| |
Collapse
|
12
|
Dilchert K, Schmidt M, Großjohann A, Feichtner K, Mulvey RE, Gessner VH. Lösungsmitteleinflüsse auf die Struktur und Stabilität von Alkalimetallcarbenoiden. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Katharina Dilchert
- Lehrstuhl für Anorganische Chemie II Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
- WestCHEM Department of Pure and Applied Chemistry University of Strathclyde Glasgow G1 1XL UK
| | - Michelle Schmidt
- Lehrstuhl für Anorganische Chemie II Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Angela Großjohann
- Lehrstuhl für Anorganische Chemie II Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Kai‐Stephan Feichtner
- Lehrstuhl für Anorganische Chemie II Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Robert E. Mulvey
- WestCHEM Department of Pure and Applied Chemistry University of Strathclyde Glasgow G1 1XL UK
| | - Viktoria H. Gessner
- Lehrstuhl für Anorganische Chemie II Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| |
Collapse
|
13
|
Dilchert K, Schmidt M, Großjohann A, Feichtner K, Mulvey RE, Gessner VH. Solvation Effects on the Structure and Stability of Alkali Metal Carbenoids. Angew Chem Int Ed Engl 2021; 60:493-498. [PMID: 33006796 PMCID: PMC7821203 DOI: 10.1002/anie.202011278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/26/2022]
Abstract
s-Block metal carbenoids are carbene synthons and applied in a myriad of organic transformations. They exhibit a strong structure-activity relationship, but this is only poorly understood due to the challenging high reactivity and sensitivity of these reagents. Here, we report on systematic VT and DOSY NMR studies, XRD analyses as well as DFT calculations on a sulfoximinoyl-substituted model system to explain the pronounced solvent dependency of the carbenoid stability. While the sodium and potassium chloride carbenoids showed high stabilities independent of the solvent, the lithium carbenoid was stable at room temperature in THF but decomposed at -10 °C in toluene. These divergent stabilities could be explained by the different structures formed in solution. In contrast to simple organolithium reagents, the monomeric THF-solvate was found to be more stable than the dimer in toluene, since the latter more readily forms direct Li/Cl interactions which facilitate decomposition via α-elimination.
Collapse
Affiliation(s)
- Katharina Dilchert
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Michelle Schmidt
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Angela Großjohann
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Kai‐Stephan Feichtner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Robert E. Mulvey
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Viktoria H. Gessner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
14
|
Park D, Baek D, Lee CW, Ryu H, Park S, Han W, Hong S. Enantioselective C(sp2)–H borylation of diarylmethylsilanes catalyzed by chiral pyridine-dihydroisoquinoline iridium complexes. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
|
16
|
Dilchert K, Scherpf T, Gessner VH. Carbenoid‐Mediated Formation and Activation of Element‐Element and Element–Hydrogen Bonds. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Katharina Dilchert
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr‐University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Thorsten Scherpf
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr‐University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Viktoria H. Gessner
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr‐University Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
17
|
Zhang S, Fairen‐Jimenez D, Zaworotko MJ. Structural Elucidation of the Mechanism of Molecular Recognition in Chiral Crystalline Sponges. Angew Chem Int Ed Engl 2020; 59:17600-17606. [PMID: 32589318 PMCID: PMC7540565 DOI: 10.1002/anie.202006438] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/25/2020] [Indexed: 11/11/2022]
Abstract
To gain insight into chiral recognition in porous materials we have prepared a family of fourth generation chiral metal-organic frameworks (MOFs) that have rigid frameworks and adaptable (flexible) pores. The previously reported parent material, [Co2 (S-mandelate)2 (4,4'-bipyridine)3 ](NO3 )2 , CMOM-1S, is a modular MOF; five new variants in which counterions (BF4- , CMOM-2S) or mandelate ligands are substituted (2-Cl, CMOM-11R; 3-Cl, CMOM-21R; 4-Cl, CMOM-31R; 4-CH3 , CMOM-41R) and the existing CF3 SO3- variant CMOM-3S are studied herein. Fine-tuning of pore size, shape, and chemistry afforded a series of distinct host-guest binding sites with variable chiral separation properties with respect to three structural isomers of phenylpropanol. Structural analysis of the resulting crystalline sponge phases revealed that host-guest interactions, guest-guest interactions, and pore adaptability collectively determine chiral discrimination.
Collapse
Affiliation(s)
- Shi‐Yuan Zhang
- Department of Chemical ScienceBernal InstitutionUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
- Department of Chemical Engineering & BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - David Fairen‐Jimenez
- Department of Chemical Engineering & BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Michael J. Zaworotko
- Department of Chemical ScienceBernal InstitutionUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| |
Collapse
|
18
|
Zhang S, Fairen‐Jimenez D, Zaworotko MJ. Structural Elucidation of the Mechanism of Molecular Recognition in Chiral Crystalline Sponges. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shi‐Yuan Zhang
- Department of Chemical Science Bernal Institution University of Limerick Limerick V94 T9PX Republic of Ireland
- Department of Chemical Engineering & Biotechnology University of Cambridge Cambridge CB3 0AS UK
| | - David Fairen‐Jimenez
- Department of Chemical Engineering & Biotechnology University of Cambridge Cambridge CB3 0AS UK
| | - Michael J. Zaworotko
- Department of Chemical Science Bernal Institution University of Limerick Limerick V94 T9PX Republic of Ireland
| |
Collapse
|
19
|
Delany PK, Hodgson DM. Synthesis and Homologation of an Azetidin-2-yl Boronic Ester with α-Lithioalkyl Triisopropylbenzoates. Org Lett 2019; 21:9981-9984. [PMID: 31800252 DOI: 10.1021/acs.orglett.9b03901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An α-boryl azetidine, obtained by α-lithiation-borylation of N-Botc azetidine, undergoes reaction with α-triisopropylbenzoyloxy organolithiums to give homologated boronic esters that can be further oxidized, homologated, arylated, and deprotected to give a range of α-substituted azetidines. Scalemic α-boryl azetidine-α-triisopropylbenzoyloxy organolithium pairings show stereospecific reagent control, providing access to either diastereomeric series of homologated boronic esters with very high er's.
Collapse
Affiliation(s)
- Pascal K Delany
- Department of Chemistry, Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , U.K
| | - David M Hodgson
- Department of Chemistry, Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , U.K
| |
Collapse
|
20
|
Salvado O, Gava R, Fernández E. Diborylalkyllithium Salts Trigger Regioselective Ring Opening of Vinyl Aziridines. Org Lett 2019; 21:9247-9250. [DOI: 10.1021/acs.orglett.9b03672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Oriol Salvado
- Dept. Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Riccardo Gava
- Dept. Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Elena Fernández
- Dept. Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
21
|
Music A, Baumann AN, Spieß P, Hilgert N, Köllen M, Didier D. Single-Pot Access to Bisorganoborinates: Applications in Zweifel Olefination. Org Lett 2019; 21:2189-2193. [PMID: 30864807 DOI: 10.1021/acs.orglett.9b00493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Zweifel olefination is a catalyst-free reaction that serves alkene functionalization. While most methods employ commercially available boron pinacol esters, we have assembled a sequence in which the two partners of the formal coupling reaction are installed successively, starting from inexpensive boron alkoxides. The in situ formation of bisorganoborinates was accomplished by consecutive reaction of two different organometallic species. This single-pot procedure represents a great advancement in the generation of organoborinates and their involvement in C-C bond formation.
Collapse
Affiliation(s)
- Arif Music
- Department of Chemistry and Pharmacy , Ludwig-Maximilians-Universität München , Butenandtstraße 5-13 , 81377 Munich , Germany
| | - Andreas N Baumann
- Department of Chemistry and Pharmacy , Ludwig-Maximilians-Universität München , Butenandtstraße 5-13 , 81377 Munich , Germany
| | - Philipp Spieß
- Department of Chemistry and Pharmacy , Ludwig-Maximilians-Universität München , Butenandtstraße 5-13 , 81377 Munich , Germany
| | - Nicolas Hilgert
- Department of Chemistry and Pharmacy , Ludwig-Maximilians-Universität München , Butenandtstraße 5-13 , 81377 Munich , Germany
| | - Martin Köllen
- Department of Chemistry and Pharmacy , Ludwig-Maximilians-Universität München , Butenandtstraße 5-13 , 81377 Munich , Germany
| | - Dorian Didier
- Department of Chemistry and Pharmacy , Ludwig-Maximilians-Universität München , Butenandtstraße 5-13 , 81377 Munich , Germany
| |
Collapse
|
22
|
He Z, Hu Y, Xia C, Liu C. Recent advances in the borylative transformation of carbonyl and carboxyl compounds. Org Biomol Chem 2019; 17:6099-6113. [DOI: 10.1039/c9ob01029g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The recent advances in the borylative transformation of carbonyl and carboxyl compounds are summarized.
Collapse
Affiliation(s)
- Zeyu He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Yue Hu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
| |
Collapse
|
23
|
Mykura RC, Veth S, Varela A, Dewis L, Farndon JJ, Myers EL, Aggarwal VK. Investigation of the Deprotonative Generation and Borylation of Diamine-Ligated α-Lithiated Carbamates and Benzoates by in Situ IR spectroscopy. J Am Chem Soc 2018; 140:14677-14686. [PMID: 30260635 DOI: 10.1021/jacs.8b06871] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diamine-mediated α-deprotonation of O-alkyl carbamates or benzoates with alkyllithium reagents, trapping of the carbanion with organoboron compounds, and 1,2-metalate rearrangement of the resulting boronate complex are the primary steps by which organoboron compounds can be stereoselectively homologated. Although the final step can be easily monitored by 11B NMR spectroscopy, the first two steps, which are typically carried out at cryogenic temperatures, are less well understood owing to the requirement for specialized analytical techniques. Investigation of these steps by in situ IR spectroscopy has provided invaluable data for optimizing the homologation reactions of organoboron compounds. Although the deprotonation of benzoates in noncoordinating solvents is faster than that in ethereal solvents, the deprotonation of carbamates shows the opposite trend, a difference that has its origin in the propensity of carbamates to form inactive parasitic complexes with the diamine-ligated alkyllithium reagent. Borylation of bulky diamine-ligated lithiated species in toluene is extremely slow, owing to the requirement for initial complexation of the oxygen atoms of the diol ligand on boron with the lithium ion prior to boron-lithium exchange. However, ethereal solvent, or very small amounts of THF, facilitate precomplexation through initial displacement of the bulky diamines coordinated to the lithium ion. Comparison of the carbonyl stretching frequencies of boronates derived from pinacol boronic esters with those derived from trialkylboranes suggests that the displaced lithium ion is residing on the pinacol oxygen atoms and the benzoate/carbamate carbonyl group, respectively, explaining, at least in part, the faster 1,2-metalate rearrangements of boronates derived from the trialkylboranes.
Collapse
Affiliation(s)
- Rory C Mykura
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Simon Veth
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Ana Varela
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Lydia Dewis
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Joshua J Farndon
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Eddie L Myers
- School of Chemistry , NUI Galway , Galway H91 TK33 , Ireland
| | - Varinder K Aggarwal
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| |
Collapse
|
24
|
Stephens TC, Lawer A, French T, Unsworth WP. Iterative Assembly of Macrocyclic Lactones using Successive Ring Expansion Reactions. Chemistry 2018; 24:13947-13953. [PMID: 30011360 PMCID: PMC6334170 DOI: 10.1002/chem.201803064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/12/2018] [Indexed: 12/27/2022]
Abstract
Macrocyclic lactones can be prepared from lactams and hydroxyacid derivatives via an efficient 3- or 4-atom iterative ring expansion protocol. The products can also be expanded using amino acid-based linear fragments, meaning that macrocycles with precise sequences of hydroxy- and amino acids can be assembled in high yields by "growing" them from smaller rings, using a simple procedure in which high dilution is not required. The method should significantly expedite the practical synthesis of diverse nitrogen containing macrolide frameworks.
Collapse
|
25
|
Trobe M, Burke MD. The Molecular Industrial Revolution: Automated Synthesis of Small Molecules. Angew Chem Int Ed Engl 2018; 57:4192-4214. [PMID: 29513400 PMCID: PMC5912692 DOI: 10.1002/anie.201710482] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/05/2017] [Indexed: 11/10/2022]
Abstract
Today we are poised for a transition from the highly customized crafting of specific molecular targets by hand to the increasingly general and automated assembly of different types of molecules with the push of a button. Creating machines that are capable of making many different types of small molecules on demand, akin to that which has been achieved on the macroscale with 3D printers, is challenging. Yet important progress is being made toward this objective with two complementary approaches: 1) Automation of customized synthesis routes to different targets by machines that enable the use of many reactions and starting materials, and 2) automation of generalized platforms that make many different targets using common coupling chemistry and building blocks. Continued progress in these directions has the potential to shift the bottleneck in molecular innovation from synthesis to imagination, and thereby help drive a new industrial revolution on the molecular scale.
Collapse
Affiliation(s)
- Melanie Trobe
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martin D. Burke
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| |
Collapse
|
26
|
Trobe M, Burke MD. Die molekulare industrielle Revolution: zur automatisierten Synthese organischer Verbindungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710482] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Melanie Trobe
- Department of Chemistry University of Illinois Urbana-Champaign 600 S. Mathews, 454 RAL Urbana-Champaign IL 61801 USA
| | - Martin D. Burke
- Department of Chemistry University of Illinois Urbana-Champaign 600 S. Mathews, 454 RAL Urbana-Champaign IL 61801 USA
| |
Collapse
|
27
|
Abstract
Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the "building block approach", i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach.
Collapse
Affiliation(s)
- Jonathan W Lehmann
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Daniel J Blair
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martin D Burke
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| |
Collapse
|
28
|
Millán A, Grigol Martinez PD, Aggarwal VK. Stereocontrolled Synthesis of Polypropionate Fragments based on a Building Block Assembly Strategy using Lithiation-Borylation Methodologies. Chemistry 2017; 24:730-735. [DOI: 10.1002/chem.201704946] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Alba Millán
- School of Chemistry; University of Bristol, Cantock's Close; Bristol BS8 1TS UK
| | | | | |
Collapse
|
29
|
Molitor S, Feichtner KS, Gessner VH. Taming Metal/Fluorine Carbenoids. Chemistry 2017; 23:2527-2531. [PMID: 27906492 DOI: 10.1002/chem.201605592] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Indexed: 12/18/2022]
Abstract
Although Li/Cl carbenoids are versatile reagents in organic synthesis, the controlled handling of the extremely reactive and labile M/F carbenoids remains a challenge. We now show that even these compounds can be stabilized and isolated in solid state, as well as in solution. Particularly the sodium and potassium compounds exhibit a remarkable stability, thus allowing the first isolation of a room-temperature-stable fluorine carbenoid. Spectroscopic, as well as DFT studies confirmed the pronounced carbenoid character, showing M-F-C interactions with elongated C-F bonds. The different stabilities of the carbenoids was found to originate from the different strength of the M-F interaction. Hence, the lithium compounds are considerably more reactive than their heavier congeners. Reactivity studies showed that the nature of the metal also influences the reactivity, resulting in different selectivity in the addition to thioketones.
Collapse
Affiliation(s)
- Sebastian Molitor
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Kai-Stephan Feichtner
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Present address: Lehrstuhl für Anorganische Chemie II, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Viktoria H Gessner
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Present address: Lehrstuhl für Anorganische Chemie II, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| |
Collapse
|
30
|
Sandford C, Aggarwal VK. Stereospecific functionalizations and transformations of secondary and tertiary boronic esters. Chem Commun (Camb) 2017; 53:5481-5494. [DOI: 10.1039/c7cc01254c] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This feature article discusses the range of stereospecific transformations available to enantioenriched boronic esters, and their applications in synthesis.
Collapse
|
31
|
Zhao H, Tong M, Wang H, Xu S. Transition-metal-free synthesis of 1,1-diboronate esters with a fully substituted benzylic center via diborylation of lithiated carbamates. Org Biomol Chem 2017; 15:3418-3422. [DOI: 10.1039/c7ob00654c] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diborylation of lithiated carbamates is reported for the first time to synthesize 1,1-diboronate esters with a fully substituted benzylic center.
Collapse
Affiliation(s)
- Haonan Zhao
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Min Tong
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Haijun Wang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
| |
Collapse
|
32
|
Eisold M, Baumann AN, Kiefl GM, Emmerling ST, Didier D. Unsaturated Four-Membered Rings: Efficient Strategies for the Construction of Cyclobutenes and Alkylidenecyclobutanes. Chemistry 2016; 23:1634-1644. [PMID: 27862444 DOI: 10.1002/chem.201604585] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Indexed: 01/08/2023]
Abstract
Our recent studies of the diastereo- and enantioselective formation of strained alkylidenecycloalkanes drove us to more-thoroughly investigate the formation of four-membered rings for which only few efficient methods are described. We first developed a strategy to diversify the saturated part of the four-membered ring and applied it to a highly diastereoselective synthesis of more-elaborate alkylidenecyclobutanes, which completed our precedent studies. In parallel, cyclobutene structures were built employing simple organometallic methods and further functionalized to give a diverse range of new substitution patterns, which consequently enriched the pool of cyclobutene-based building blocks.
Collapse
Affiliation(s)
- Michael Eisold
- Department of Chemistry and Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Andreas N Baumann
- Department of Chemistry and Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Gabriel M Kiefl
- Department of Chemistry and Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Sebastian T Emmerling
- Department of Chemistry and Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Dorian Didier
- Department of Chemistry and Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 5-13, 81377, Munich, Germany
| |
Collapse
|
33
|
Coffinet M, Massicot F, Joseph J, Behr JB, Jaroschik F, Vasse JL. (+)-Camphor-mediated kinetic resolution of allylalanes: a strategy towards enantio-enriched cyclohex-2-en-1-ylalane. Chem Commun (Camb) 2016; 53:111-114. [PMID: 27858009 DOI: 10.1039/c6cc08649g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An efficient (+)-camphor-mediated kinetic resolution of racemic cyclohex-2-en-1-ylalane is described. This approach provides an enantiomerically enriched form of the alane, in situ available for synthetic uses. Applied to the allylation of aldehydes, this protocol leads to the corresponding homoallylalcohols in a highly enantioselective manner.
Collapse
Affiliation(s)
- Michaël Coffinet
- Institut de Chimie Moléculaire, CNRS (UMR 7312) and Université de Reims, 51687 Reims Cedex 2, France.
| | - Fabien Massicot
- Institut de Chimie Moléculaire, CNRS (UMR 7312) and Université de Reims, 51687 Reims Cedex 2, France.
| | - Jomy Joseph
- Institut de Chimie Moléculaire, CNRS (UMR 7312) and Université de Reims, 51687 Reims Cedex 2, France.
| | - Jean-Bernard Behr
- Institut de Chimie Moléculaire, CNRS (UMR 7312) and Université de Reims, 51687 Reims Cedex 2, France.
| | - Florian Jaroschik
- Institut de Chimie Moléculaire, CNRS (UMR 7312) and Université de Reims, 51687 Reims Cedex 2, France.
| | - Jean-Luc Vasse
- Institut de Chimie Moléculaire, CNRS (UMR 7312) and Université de Reims, 51687 Reims Cedex 2, France.
| |
Collapse
|
34
|
Gessner VH. Stability and reactivity control of carbenoids: recent advances and perspectives. Chem Commun (Camb) 2016; 52:12011-12023. [PMID: 27498609 DOI: 10.1039/c6cc05524a] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Metal carbenoids such as lithium or Simmons-Smith-type reagents are widely used in organic synthesis, particularly in cyclopropanation and homologation reactions. These reagents are often highly reactive and thermally labile, thus limiting their isolation and hampering the development of new synthetic applications. Recent years however, have shown that by means of systematic stabilization a control of reactivity and the development of new applications is possible. This feature article documents recent developments in the control of carbenoid reactivity and stability and highlights structural and electronic properties as well as applications in main group element and transition metal chemistry.
Collapse
Affiliation(s)
- Viktoria H Gessner
- Inorganic Chemistry II - Organometallic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum, Germany.
| |
Collapse
|
35
|
Dean WM, Šiaučiulis M, Storr TE, Lewis W, Stockman RA. Versatile C(sp2)−C(sp3) Ligand Couplings of Sulfoxides for the Enantioselective Synthesis of Diarylalkanes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- William M. Dean
- School of Chemistry; University of Nottingham; University Park Nottingham NG7 2RD UK
| | - Mindaugas Šiaučiulis
- School of Chemistry; University of Nottingham; University Park Nottingham NG7 2RD UK
| | - Thomas E. Storr
- School of Chemistry; University of Nottingham; University Park Nottingham NG7 2RD UK
| | - William Lewis
- School of Chemistry; University of Nottingham; University Park Nottingham NG7 2RD UK
| | - Robert A. Stockman
- School of Chemistry; University of Nottingham; University Park Nottingham NG7 2RD UK
| |
Collapse
|
36
|
Dean WM, Šiaučiulis M, Storr TE, Lewis W, Stockman RA. Versatile C(sp(2) )-C(sp(3) ) Ligand Couplings of Sulfoxides for the Enantioselective Synthesis of Diarylalkanes. Angew Chem Int Ed Engl 2016; 55:10013-6. [PMID: 27435802 DOI: 10.1002/anie.201602264] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/29/2016] [Indexed: 01/01/2023]
Abstract
The reaction of chiral (hetero)aryl benzyl sulfoxides with Grignard reagents affords enantiomerically pure diarylalkanes in up to 98 % yield and greater than 99.5 % enantiomeric excess. This ligand coupling reaction is tolerant to multiple substitution patterns and provides access to diverse areas of chemical space in three operationally simple steps from commercially available reagents. This strategy provides orthogonal access to electron-deficient heteroaromatic compounds, which are traditionally synthesized by transition metal catalyzed cross-couplings, and circumvents common issues associated with proto-demetalation and β-hydride elimination.
Collapse
Affiliation(s)
- William M Dean
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Mindaugas Šiaučiulis
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Thomas E Storr
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - William Lewis
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Robert A Stockman
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
37
|
Molitor S, Gessner VH. Alkali Metal Carbenoids: A Case of Higher Stability of the Heavier Congeners. Angew Chem Int Ed Engl 2016; 55:7712-6. [PMID: 27100278 DOI: 10.1002/anie.201601356] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Indexed: 11/12/2022]
Abstract
As a result of the increased polarity of the metal-carbon bond when going down the group of the periodic table, the heavier alkali metal organyl compounds are generally more reactive and less stable than their lithium congeners. We now report a reverse trend for alkali metal carbenoids. Simple substitution of lithium by the heavier metals (Na, K) results in a significant stabilization of these usually highly reactive compounds. This allows their isolation and handling at room temperature and the first structure elucidation of sodium and potassium carbenoids. The control of stability was used to control reactivity and selectivity. Hence, the Na and K carbenoids act as selective carbene-transfer reagents, whereas the more labile lithium systems give rise to product mixtures. Additional fine tuning of the M-C interaction by means of crown ether addition further allows for control of the stability and reactivity.
Collapse
Affiliation(s)
- Sebastian Molitor
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Viktoria H Gessner
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
38
|
Molitor S, Gessner VH. Alkali Metal Carbenoids: A Case of Higher Stability of the Heavier Congeners. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601356] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sebastian Molitor
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Viktoria H. Gessner
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
39
|
Blair DJ, Zhong S, Hesse MJ, Zabaleta N, Myers EL, Aggarwal VK. Full chirality transfer in the synthesis of hindered tertiary boronic esters under in situ lithiation-borylation conditions. Chem Commun (Camb) 2016; 52:5289-92. [PMID: 27002235 DOI: 10.1039/c6cc00536e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hindered tertiary neopentyl glycol boronic esters can be prepared by using in situ lithiation-borylation of enantiopure secondary benzylic carbamates at -20 °C with full chirality transfer.
Collapse
Affiliation(s)
- D J Blair
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | | | | | | | | | | |
Collapse
|
40
|
Leibeling M, Shurrush KA, Werner V, Perrin L, Marek I. Preparation and Reactivity of Acyclic Chiral Allylzinc Species by a Zinc‐Brook Rearrangement. Angew Chem Int Ed Engl 2016; 55:6057-61. [PMID: 27061357 DOI: 10.1002/anie.201602393] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Markus Leibeling
- The Mallat Family Laboratory of Organic Chemistry Schulich Faculty of Chemistry and Lise Meitner-Minerva Center for Computational Quantum Chemistry Technion-Israel Institute of Technology Technion City Haifa 32000 Israel
| | - Khriesto A. Shurrush
- The Mallat Family Laboratory of Organic Chemistry Schulich Faculty of Chemistry and Lise Meitner-Minerva Center for Computational Quantum Chemistry Technion-Israel Institute of Technology Technion City Haifa 32000 Israel
| | - Veronika Werner
- The Mallat Family Laboratory of Organic Chemistry Schulich Faculty of Chemistry and Lise Meitner-Minerva Center for Computational Quantum Chemistry Technion-Israel Institute of Technology Technion City Haifa 32000 Israel
| | - Lionel Perrin
- ICBMS UMR 5246 Université de Lyon Bât. Curien 43 Bd du 11 Novembre 1918 69622 Villeurbanne Cedex 5 France
| | - Ilan Marek
- The Mallat Family Laboratory of Organic Chemistry Schulich Faculty of Chemistry and Lise Meitner-Minerva Center for Computational Quantum Chemistry Technion-Israel Institute of Technology Technion City Haifa 32000 Israel
| |
Collapse
|
41
|
Leibeling M, Shurrush KA, Werner V, Perrin L, Marek I. Preparation and Reactivity of Acyclic Chiral Allylzinc Species by a Zinc‐Brook Rearrangement. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Markus Leibeling
- The Mallat Family Laboratory of Organic Chemistry Schulich Faculty of Chemistry and Lise Meitner-Minerva Center for Computational Quantum Chemistry Technion-Israel Institute of Technology Technion City Haifa 32000 Israel
| | - Khriesto A. Shurrush
- The Mallat Family Laboratory of Organic Chemistry Schulich Faculty of Chemistry and Lise Meitner-Minerva Center for Computational Quantum Chemistry Technion-Israel Institute of Technology Technion City Haifa 32000 Israel
| | - Veronika Werner
- The Mallat Family Laboratory of Organic Chemistry Schulich Faculty of Chemistry and Lise Meitner-Minerva Center for Computational Quantum Chemistry Technion-Israel Institute of Technology Technion City Haifa 32000 Israel
| | - Lionel Perrin
- ICBMS UMR 5246 Université de Lyon Bât. Curien 43 Bd du 11 Novembre 1918 69622 Villeurbanne Cedex 5 France
| | - Ilan Marek
- The Mallat Family Laboratory of Organic Chemistry Schulich Faculty of Chemistry and Lise Meitner-Minerva Center for Computational Quantum Chemistry Technion-Israel Institute of Technology Technion City Haifa 32000 Israel
| |
Collapse
|
42
|
Battilocchio C, Feist F, Hafner A, Simon M, Tran DN, Allwood DM, Blakemore DC, Ley SV. Iterative reactions of transient boronic acids enable sequential C–C bond formation. Nat Chem 2016; 8:360-7. [DOI: 10.1038/nchem.2439] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 12/14/2015] [Indexed: 02/02/2023]
|
43
|
Eisold M, Didier D. Highly Diastereoselective Synthesis of Methylenecyclobutanes by Merging Boron-Homologation and Boron-Allylation Strategies. Angew Chem Int Ed Engl 2015; 54:15884-7. [PMID: 26563627 DOI: 10.1002/anie.201507444] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/21/2015] [Indexed: 11/08/2022]
Abstract
A highly diastereoselective synthesis of methylenecyclobutanes possessing a quaternary stereocenter is reported, in which boron homologation of an easily-generated cyclobutenylmetal species is performed, followed by an allylation reaction. Combining three steps in a one-pot process further optimized the method, which afforded the expected adducts in excellent yields and stereoselectivity, starting from commercially available 4-bromobutyne.
Collapse
Affiliation(s)
- Michael Eisold
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, 81377 Munich (Germany)
| | - Dorian Didier
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, 81377 Munich (Germany).
| |
Collapse
|
44
|
Eisold M, Didier D. Diastereoselektive Synthese von Methylencyclobutanen durch Vereinigung von Bor‐Homologisierungs‐ und ‐Allylierungsstrategie. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michael Eisold
- Department für Chemie und Pharmazie, Ludwig‐Maximilians‐Universität München, Butenandtstraße 5–13, 81377 München (Deutschland)
| | - Dorian Didier
- Department für Chemie und Pharmazie, Ludwig‐Maximilians‐Universität München, Butenandtstraße 5–13, 81377 München (Deutschland)
| |
Collapse
|