1
|
Shokri M, Kharaziha M, Ahmadi Tafti H, Dalili F, Mehdinavaz Aghdam R, Baghaban Eslaminejad M. Engineering Wet-Resistant and Osteogenic Nanocomposite Adhesive to Control Bleeding and Infection after Median Sternotomy. Adv Healthc Mater 2024; 13:e2304349. [PMID: 38593272 DOI: 10.1002/adhm.202304349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Median sternotomy surgery stands as one of the prevailing strategies in cardiac surgery. In this study, the cutting-edge bone adhesive is designed, inspired by the impressive adhesive properties found in mussels and sandcastle worms. This work has created an osteogenic nanocomposite coacervate adhesive by integrating a cellulose-polyphosphodopamide interpenetrating network, quaternized chitosan, and zinc, gallium-doped hydroxyapatite nanoparticles. This adhesive is characterized by robust catechol-metal coordination which effectively adheres to both hard and soft tissues with a maximum adhesive strength of 900 ± 38 kPa on the sheep sternum bone, surpassing that of commercial bone adhesives. The release of zinc and gallium cations from nanocomposite adhesives and quaternized chitosan matrix imparts remarkable antibacterial properties and promotes rapid blood coagulation, in vitro and ex vivo. It is also proved that this nanocomposite adhesive exhibits significant in vitro bioactivity, stable degradability, biocompatibility, and osteogenic ability. Furthermore, the capacity of nanocomposite coacervate to adhere to bone tissue and support osteogenesis contributes to the successful healing of a sternum bone defect in a rabbit model in vivo. In summary, these nanocomposite coacervate adhesives with promising characteristics are expected to provide solutions to clinical issues faced during median sternotomy surgery.
Collapse
Affiliation(s)
- Mahshid Shokri
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
- Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Hossein Ahmadi Tafti
- Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Dalili
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
2
|
Sharma A, Dutta T, Srivastava A. Underwater Adhesives from Redox-Responsive Polyplexes of Thiolated Polyamide Polyelectrolytes. Chemistry 2024; 30:e202302157. [PMID: 37751057 DOI: 10.1002/chem.202302157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 09/27/2023]
Abstract
We report the fabrication of optically clear underwater adhesives using polyplexes of oppositely charged partially-thiolated polyamide polyelectrolytes (TPEs). The thiol content of the constituent PEs was varied to assess its influence on the adhesive properties of the resulting glues. These catechol-free, redox-responsive TPE-adhesives were formulated in aquo and exhibited high optical transparency and strong adhesion even on submerged or moist surfaces of diverse polar substrates such as glass, aluminium, wood, and bone pieces. The adhesives could be cured under water through oxidative disulphide crosslinking of the constituent TPEs. The polyamide backbone provided multi-site H-bonding interactions with the substrates while the disulphide crosslinking provided the cohesive strength to the glue. Strong adhesion of mammalian bones (load bearing capacity upto 7 kg/cm2 ) was achieved using the adhesive containing 30 mol % thiol residues. Higher pH and use of oxidants such as povidone-iodine solution enhanced the curing rate of the adhesives, and so did the use of Tris buffer instead of Phosphate buffer. The porous architecture of the adhesive and its progressive degradation in aqueous medium over the course of three weeks bode well for diverse biomedical applications where temporary adhesion of tissues is required.
Collapse
Affiliation(s)
- Aashish Sharma
- Department of Chemistry, Indian Institute of Science Education Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, India
- Current Affiliation: School of Medical and Allied Sciences, G.D. Goenka University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Tanmay Dutta
- Department of Chemistry, Indian Institute of Science Education Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, India
| |
Collapse
|
3
|
Zheng C, Gao Q, Quan Y, Bai Q, Hu F, Chen W, Liu J, Zhang Y, Lu T. Preparation and Hemostatic Effect of Micro-Nanograded Porous Particles Doped with Dopamine-Based Water-Triggered Intelligent Composite Adhesives. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39847-39863. [PMID: 37578471 DOI: 10.1021/acsami.3c07062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The wet environment of water or tissue in bleeding wounds poses significant challenges to the adhesion performance of existing hemostatic adhesives. An intelligent composite adhesive prepared by doping starch-based silicate micro-nanograded porous particles (MBC@CMS) with dopamine-hyperbranched polymers (HPD, 7800 Mw) synthesized by the Michael addition reaction could be triggered by water to form a glue (MBC@CMS-HPD). The results indicated that MBC@CMS-HPD could still have adhesion properties under running water washing and water immersion and could effectively seal the water outlet. The results of the glue-forming mechanism showed that MBC@CMS-HPD had better wettability than water, which could eliminate water molecules at the wet adhesive surface. When contacted with water, the agglomeration of the HPD hydrophobic chain increases the exposure of the catechol group, and the relative atomic mass of the N element on the surface increases from 2.8 to 4.8%. The adhesion of MBC@CMS-HPD was enhanced and stable. MBC@CMS-HPD showed significant hemostasis effects in five injury bleeding models of Sprague-Dawley (SD) rats and New Zealand rabbits. Especially in the fatal femoral artery bleeding model of New Zealand rabbits, MBC@CMS-HPD reduced the amount of bleeding by 75% and shortened the bleeding time by 78% compared with the a-cyanoacrylate adhesives. The results of the coagulation mechanism showed that compared with HPD, MBC@CMS-HPD could activate both endogenous and exogenous coagulation pathways. Among them, after contact with blood, HPD formed a gel to close the blood outlet, and MBC@CMS entered the wound to activate the internal and external coagulation pathways. In addition, HPD and MBC@CMS had good histocompatibility and degradability, which has the potential to be applied to different wounds.
Collapse
Affiliation(s)
- Caiyun Zheng
- School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Qian Gao
- School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Yanxiao Quan
- School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Que Bai
- School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Fangfang Hu
- School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Wenting Chen
- School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Jinxi Liu
- School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Yanni Zhang
- School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Tingli Lu
- School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| |
Collapse
|
4
|
Bingol HB, Bender JC, Opsteen JA, Leeuwenburgh SC. Bone adhesive materials: From bench to bedside. Mater Today Bio 2023; 19:100599. [PMID: 37063249 PMCID: PMC10102013 DOI: 10.1016/j.mtbio.2023.100599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Biodegradable bone adhesives represent a highly sought-after type of biomaterial which would enable replacement of traditional metallic devices for fixation of bone. However, these biomaterials should fulfil an extremely large number of requirements. As a consequence, bone-adhesive biomaterials which meet all of these requirements are not yet commercially available. Therefore, this comprehensive review provides an extensive overview of the development of bone adhesives from a translational perspective. First, the definition, classification, and chemistry of various types of bone adhesives are highlighted to provide a detailed overview of this emerging class of biomaterials. In this review we particularly focused studies which describe the use of materials that are capable of gluing two pieces of bone together within a time frame of minutes to days. Second, this review critically reflects on i) the experimental conditions of commonly employed adhesion tests to assess bone adhesion and ii) the current state-of-the-art regarding their preclinical and clinical applicability.
Collapse
Affiliation(s)
- Hatice B. Bingol
- Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- GATT Technologies BV, Nijmegen, the Netherlands
| | | | | | - Sander C.G. Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Corresponding author.
| |
Collapse
|
5
|
Moazami S, Kharaziha M, Emadi R, Dinari M. Multifunctional Bioinspired Bredigite-Modified Adhesive for Bone Fracture Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6499-6513. [PMID: 36700731 DOI: 10.1021/acsami.2c20038] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Despite recent advances in bone adhesives applied for full median sternotomy, the regeneration of bone defects has remained challenging since the healing process is hampered by poor adhesiveness, limited bioactivity, and lack of antibacterial functions. Bioinspired adhesives by marine organisms provide a novel concept to circumvent these problems. Herein, a dual cross-link strategy is employed in designing a multifaceted bioinspired adhesive consisting of a catechol amine-functionalized hyperbranched polymer (polydopamine-co-acrylate, PDA), bredigite (BR) nanoparticles, and Fe3+ ions. The hybrid adhesives exhibit strong adhesion to various substrates such as poly(methyl methacrylate), glass, bone, and skin tissues through synergy between irreversible covalent and reversible noncovalent cross-linking, depending on the BR content. Noticeably, the adhesion strength of hybrid adhesives containing 2 wt % BR nanoparticles to bone tissues is 2.3 ± 0.8 MPa, which is about 3 times higher than that of pure PDA adhesives. We also demonstrate that these hybrid adhesives not only are bioactive and accelerate in vitro bone-like apatite formation but also exhibit antibacterial properties against Staphylococcus aureus, depending on the BR concentration. Furthermore, the superior cellular responses in contact with hybrid adhesives, including improved human osteosarcoma MG63 cell spreading and osteogenic differentiation, are achieved owing to the appropriate ion release and flexibility of the cross-linked double-network adhesive. In summary, multifunctional hybrid PDA/BR adhesives with appreciable osteoconductive, mechanical, and antibacterial properties represent the potential applications for median sternotomy surgery as a bone tissue adhesive.
Collapse
Affiliation(s)
- Shima Moazami
- Department of Materials Engineering, Isfahan University of Technology, Isfahan84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan84156-83111, Iran
| | - Rahmatallah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan84156-83111, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan84156-83111, Iran
| |
Collapse
|
6
|
Balcioglu S, Noma SAA, Ulu A, Karaaslan-Tunc MG, Ozhan O, Koytepe S, Parlakpinar H, Vardi N, Colak MC, Ates B. Fast Curing Multifunctional Tissue Adhesives of Sericin-Based Polyurethane-Acrylates for Sternal Closure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41819-41833. [PMID: 36066351 PMCID: PMC9501797 DOI: 10.1021/acsami.2c14078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 06/09/2023]
Abstract
The use of wire cerclage after sternal closure is the standard method because of its rigidity and strength. Despite this, they have many disadvantages such as tissue trauma, operator-induced failures, and the risk of infection. To avoid complications during sternotomy and promote tissue regeneration, tissue adhesives should be used in post-surgical treatment. Here, we report a highly biocompatible, biomimetic, biodegradable, antibacterial, and UV-curable polyurethane-acrylate (PU-A) tissue adhesive for sternal closure as a supportive to wire cerclage. In the study, PU-As were synthesized with variable biocompatible monomers, such as silk sericin, polyethylene glycol, dopamine, and an aliphatic isocyanate 4,4'-methylenebis(cyclohexyl isocyanate). The highest adhesion strength was found to be 4322 kPa, and the ex vivo compressive test result was determined as 715 kPa. The adhesive was determined to be highly biocompatible (on L-929 cells), biodegradable, and antibacterial (on Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus bacteria). Finally, after opening the sternum of rats, the adhesive was applied to bond the bones and cured with UV for 5 min. According to the results, there was no visible inflammation in the adhesive groups, while some animals had high inflammation in the cyanoacrylate and wire cerclage groups. These results indicate that the adhesive may be suitable for sternal fixation by preventing the disadvantages of the steel wires and promoting tissue healing.
Collapse
Affiliation(s)
- Sevgi Balcioglu
- Department
of Medicinal Laboratory, Sakarya University
of Applied Sciences, 54000 Sakarya, Turkey
| | - Samir Abbas Ali Noma
- Faculty
of Arts and Sciences, Department of Chemistry, Bursa Uludaǧ University, 16059 Bursa, Turkey
| | - Ahmet Ulu
- Faculty
of Arts and Sciences, Department of Chemistry, İnönü University, 44210 Malatya, Turkey
| | | | - Onural Ozhan
- Medical
Faculty, Department of Medicinal Pharmacology, İnönü University, 44210 Malatya, Turkey
| | - Suleyman Koytepe
- Faculty
of Arts and Sciences, Department of Chemistry, İnönü University, 44210 Malatya, Turkey
| | - Hakan Parlakpinar
- Medical
Faculty, Department of Medicinal Pharmacology, İnönü University, 44210 Malatya, Turkey
| | - Nigar Vardi
- Medical
Faculty, Department of Histology and Embryology, İnönü University, 44210 Malatya, Turkey
| | - Mehmet Cengiz Colak
- Medical Faculty,
Department of Cardiovascular Surgery, İnönü
University, 44210 Malatya, Turkey
| | - Burhan Ates
- Faculty
of Arts and Sciences, Department of Chemistry, İnönü University, 44210 Malatya, Turkey
| |
Collapse
|
7
|
Bu Y, Pandit A. Cohesion mechanisms for bioadhesives. Bioact Mater 2022; 13:105-118. [PMID: 35224295 PMCID: PMC8843969 DOI: 10.1016/j.bioactmat.2021.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
Due to the nature of non-invasive wound closure, the ability to close different forms of leaks, and the potential to immobilize various devices, bioadhesives are altering clinical practices. As one of the vital factors, bioadhesives' strength is determined by adhesion and cohesion mechanisms. As well as being essential for adhesion strength, the cohesion mechanism also influences their bulk functions and the way the adhesives can be applied. Although there are many published reports on various adhesion mechanisms, cohesion mechanisms have rarely been addressed. In this review, we have summarized the most used cohesion mechanisms. Furthermore, the relationship of cohesion strategies and adhesion strategies has been discussed, including employing the same functional groups harnessed for adhesion, using combinational approaches, and exploiting different strategies for cohesion mechanism. By providing a comprehensive insight into cohesion strategies, the paper has been integrated to offer a roadmap to facilitate the commercialization of bioadhesives.
Collapse
Affiliation(s)
- Yazhong Bu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- CÚRAM, SFI Research Centre for Medical Devices National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices National University of Ireland, Galway, Ireland
| |
Collapse
|
8
|
Shokri M, Dalili F, Kharaziha M, Baghaban Eslaminejad M, Ahmadi Tafti H. Strong and bioactive bioinspired biomaterials, next generation of bone adhesives. Adv Colloid Interface Sci 2022; 305:102706. [PMID: 35623113 DOI: 10.1016/j.cis.2022.102706] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/20/2022] [Accepted: 05/15/2022] [Indexed: 12/29/2022]
Abstract
The bone adhesive is a clinical requirement for complicated bone fractures always articulated by surgeons. Applying glue is a quick and easy way to fix broken bones. Adhesives, unlike conventional fixation methods such as wires and sutures, improve healing conditions and reduce postoperative pain by creating a complete connection at the fractured joint. Despite many efforts in the field of bone adhesives, the creation of a successful adhesive with robust adhesion and appropriate bioactivity for the treatment of bone fractures is still in its infancy. Because of the resemblance of the body's humid environment to the underwater environment, in the latest decades, researchers have pursued inspiration from nature to develop strong bioactive adhesives for bone tissue. The aim of this review article is to discuss the recent state of the art in bone adhesives with a specific focus on biomimetic adhesives, their action mechanisms, and upcoming perspective. Firstly, the adhesive biomaterials with specific affinity to bone tissue are introduced and their rational design is studied. Consequently, various types of synthetic and natural bioadhesives for bone tissue are comprehensively overviewed. Then, bioinspired-adhesives are described, highlighting relevant structures and examples of biomimetic adhesives mainly made of DOPA and the complex coacervates inspired by proteins secreted in mussel and sandcastle worms, respectively. Finally, this article overviews the challenges of the current bioadhesives and the future research for the improvement of the properties of biomimetic adhesives for use as bone adhesives.
Collapse
Affiliation(s)
- Mahshid Shokri
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Faezeh Dalili
- School of Metallurgy & Materials Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Ahmadi Tafti
- Tehran Heart Hospital Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Schön MP. The tick and I: Parasite-host interactions between ticks and humans. J Dtsch Dermatol Ges 2022; 20:818-853. [PMID: 35674196 DOI: 10.1111/ddg.14821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Ticks, particularly hard ticks (Ixodidae), which are among the most important vectors of dangerous infectious agents, feed on their hosts for extended periods of time. With this lifestyle, numerous adaptations have evolved in ticks and their hosts, the pharmacological importance of which is increasingly being recognized. Many bioactive substances in tick saliva are being considered as the basis of new drugs. For example, components of tick cement can be developed into tissue adhesives or wound closures. Analgesic and antipruritic salivary components inhibit histamine or bradykinin, while other tick-derived molecules bind opioid or cannabinoid receptors. Tick saliva inhibits the extrinsic, intrinsic, or common pathway of blood coagulation with implications for the treatment of thromboembolic diseases. It contains vasodilating substances and affects wound healing. The broad spectrum of immunomodulatory and immunosuppressive effects of tick saliva, such as inhibition of chemokines or cellular immune responses, allows development of drugs against inflammation in autoimmune diseases and/or infections. Finally, modern vaccines against ticks can curb the spread of serious infections. The medical importance of the complex tick-host interactions is increasingly being recognized and translated into first clinical applications. Using selected examples, an overview of the mutual adaptations of ticks and hosts is given here, focusing on their significance to medical advance.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Germany
| |
Collapse
|
10
|
Schön MP. Die Zecke und ich: Parasiten-Wirt-Interaktionen zwischen Zecken und Menschen. J Dtsch Dermatol Ges 2022; 20:818-855. [PMID: 35711058 DOI: 10.1111/ddg.14821_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Michael P Schön
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Göttingen
| |
Collapse
|
11
|
Affiliation(s)
- Youbing Mu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Qian Sun
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Bowen Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Xiaobo Wan
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| |
Collapse
|
12
|
Zhang M, Liu J, Zhu T, Le H, Wang X, Guo J, Liu G, Ding J. Functional Macromolecular Adhesives for Bone Fracture Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1-19. [PMID: 34939784 DOI: 10.1021/acsami.1c17434] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Compared with traditional internal fixation devices, bone adhesives are expected to exhibit remarkable advantages, such as improved fixation of comminuted fractures and maintained spatial location of fractured scattered bone pieces in treating bone injuries. In this review, different bone adhesives are summarized from the aspects of bone tissue engineering, and the applications of bone adhesives are emphasized. The concepts of "liquid scaffold" and "liquid plate" are proposed to summarize two different research directions of bone adhesives. Furthermore, significant advances of bone adhesives in recent years in mechanical strength, osseointegration, osteoconductivity, and osteoinductivity are discussed. We conclude this topic by providing perspectives on the state-of-the-art research progress and future development trends of bone adhesives. We hope this review will provide a comprehensive summary of bone adhesives and inspire more extensive and in-depth research on this subject.
Collapse
Affiliation(s)
- Mingran Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, People's Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Jiaxue Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, 5 Jilin Street, Jilin 132000, People's Republic of China
| | - Tongtong Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, People's Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Hanxiang Le
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, People's Republic of China
| | - Xukai Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, People's Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Jinshan Guo
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, 1023 Southern Shatai Road, Guangzhou 510515, People's Republic of China
| | - Guangyao Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, People's Republic of China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| |
Collapse
|
13
|
Balcioglu S, Gurses C, Ozcan I, Yildiz A, Koytepe S, Parlakpinar H, Vardi N, Ates B. Photocrosslinkable gelatin/collagen based bioinspired polyurethane-acrylate bone adhesives with biocompatibility and biodegradability. Int J Biol Macromol 2021; 192:1344-1356. [PMID: 34536477 DOI: 10.1016/j.ijbiomac.2021.09.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 01/11/2023]
Abstract
Hard or soft tissue adhesives have been presented as a promising candidate to replace traditional wound closure methods. However, there are mechanical strength problems in biological adhesives and biocompatibility problems in synthetic-based adhesives. At this point, we aimed to remove all these disadvantages and produce a single adhesive that contains all the necessary features and acrylate functionalized UV-curable polyurethane formulations were produced with high crosslink density, high adhesion strength, biocompatibility and injectable property for easy application as potential biomedical adhesives. Aliphatic isophorone diisocyanate (IPDI) was used as the isocyanate source and β-cyclodextrin was used for host-guest relationship with gentamicin by crosslinking. Proteins (gelatin (GEL), collagen (COL)) and PEGs of various molecular weight ranges (P200, P400, P600) were selected as the polyol backbone for polyurethane synthesis due to their multiple biological activities such as biocompatibility, biodegradability, biomimetic property. Several techniques have been used to characterize the structural, thermal, morphological, and various other physicochemical properties of the adhesive formulations. Besides, the possibility of its use as a hard tissue adhesive was investigated by evaluating the tissue adhesion strength in vitro and ex vivo via a universal testing analyzer in tensile mode. Corresponding adhesive formulations were evaluated by in vitro and in vivo techniques for biocompatibility. The best adhesion strength results were obtained as 3821.0 ± 214.9, and 3722.2 ± 486.8 kPa, for IPDI-COL-P200 and IPDI-GEL-P200, respectively. Good antibacterial activity capability toward Escherichia coli Pseudomonas aeruginosa, and Staphylococcus aureus were confirmed using disc diffusion method. Moreover, cell viability assay demonstrated that the formulations have no significant cytotoxicity on the L929 fibroblast cells. Most importantly, we finally performed the in vivo biodegradability and in vivo biocompatibility evaluations of the adhesive formulations on rat model. Considering their excellent cell/tissue viability, fast curable, strong adhesion, high antibacterial character, and injectability, these adhesive formulations have significant potential for tissue engineering applications.
Collapse
Affiliation(s)
- Sevgi Balcioglu
- Sakarya University of Applied Sciences, Department of Medicinal Laboratory, Sakarya, Turkey.
| | - Canbolat Gurses
- İnönü University, Science Faculty, Department of Molecular Biology and Genetics, Malatya, Turkey
| | - Imren Ozcan
- İnönü University, Science Faculty, Department of Chemistry, Malatya, Turkey
| | - Azibe Yildiz
- İnönü University, Medical Faculty, Department of Histology and Embryology, Malatya, Turkey
| | - Suleyman Koytepe
- İnönü University, Science Faculty, Department of Chemistry, Malatya, Turkey
| | - Hakan Parlakpinar
- İnönü University, Medical Faculty, Department of Medicinal Pharmacology, Malatya, Turkey
| | - Nigar Vardi
- İnönü University, Medical Faculty, Department of Histology and Embryology, Malatya, Turkey
| | - Burhan Ates
- İnönü University, Science Faculty, Department of Chemistry, Malatya, Turkey.
| |
Collapse
|
14
|
Saadati A, Hasanzadeh M, Seidi F. Biomedical application of hyperbranched polymers: Recent Advances and challenges. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116308] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Ganesh K, Jung J, Woo Park J, Kim BS, Seo S. Effect of Substituents in Mussel-inspired Surface Primers on their Oxidation and Priming Efficiency. ChemistryOpen 2021; 10:852-859. [PMID: 34437767 PMCID: PMC8389193 DOI: 10.1002/open.202100158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Indexed: 11/09/2022] Open
Abstract
Marine mussels contain an abundant catechol moiety, 3,4-dihydroxyphenylalanine (DOPA), in their interfacial foot proteins. DOPA contributes to both surface adhesion and bridging between the surface and overhead proteins (surface priming) by taking advantage of the unique redox properties of catechol. Inspired by the mussel surface priming mechanism, herein we synthesized a series of DOPA-mimetic analogs - a bifunctional group molecule, consisting of a catechol group and an acrylic group at the opposite ends. The surface primers with differently substituted (-COOH, -CH3 ) alkyl chains in the middle spacer were synthesized. Time-dependent oxidation and redox potentials of the surface primers were studied in an oxidizing environment to gain a better understanding of the mussel's redox chemistry. The thickness and degree of priming of the surface primers on silicon-based substrates were analyzed by ellipsometry and UV/Vis absorption spectroscopy. The post-reactivity of the acrylic groups of the primed layer was first visualized through a reaction with an acrylic group-reactive dye.
Collapse
Affiliation(s)
- Karuppasamy Ganesh
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Jaewon Jung
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Jun Woo Park
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungbaek Seo
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| |
Collapse
|
16
|
Kirillova A, Nillissen O, Liu S, Kelly C, Gall K. Reinforcement and Fatigue of a Bioinspired Mineral-Organic Bioresorbable Bone Adhesive. Adv Healthc Mater 2021; 10:e2001058. [PMID: 33111508 DOI: 10.1002/adhm.202001058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/25/2020] [Indexed: 12/21/2022]
Abstract
Bioresorbable bone adhesives may provide remarkable clinical solutions in areas ranging from fixation and osseointegration of permanent implants to the direct healing and fusion of bones without permanent fixation hardware. Mechanical properties of bone adhesives are critical for their successful application in vivo. Reinforcement of a tetracalcium phosphate-phosphoserine bone adhesive is investigated using three degradable reinforcement strategies: poly(lactic-co-glycolic) (PLGA) fibers, PLGA sutures, and chitosan lactate. All three approaches lead to higher compressive strengths of the material and better fatigue performance. Reinforcement with PLGA fibers and chitosan lactate results in a 100% probability of survival of samples at 20 MPa maximum compressive stress level, which is almost ten times higher compared to compressive loads observed in the intervertebral discs of the spine in vivo. High adhesive shear strength of 5.1 MPa is achieved for fiber-reinforced bone adhesive by tuning the surface architecture of titanium samples. Finally, biological and biomechanical performance of the fiber-reinforced adhesive is evaluated in a rabbit distal femur osteotomy model, showing the potential of the bone adhesive for clinical use.
Collapse
Affiliation(s)
- Alina Kirillova
- Department of Mechanical Engineering and Materials Science Pratt School of Engineering Duke University Durham NC 27708 USA
| | - Olivia Nillissen
- Department of Biomedical Engineering Pratt School of Engineering Duke University Durham NC 27708 USA
| | - Samuel Liu
- Department of Mechanical Engineering and Materials Science Pratt School of Engineering Duke University Durham NC 27708 USA
| | - Cambre Kelly
- Department of Biomedical Engineering Pratt School of Engineering Duke University Durham NC 27708 USA
| | - Ken Gall
- Department of Mechanical Engineering and Materials Science Pratt School of Engineering Duke University Durham NC 27708 USA
- Department of Biomedical Engineering Pratt School of Engineering Duke University Durham NC 27708 USA
| |
Collapse
|
17
|
Roisman S, Dotan AL, Lewitus DY. Polycaprolactone‐based hotmelt adhesive for
hernia‐mesh
fixation. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sabrina Roisman
- Department of Polymer Materials Engineering Shenkar College Ramat‐Gan Israel
| | - Ana L. Dotan
- Department of Polymer Materials Engineering Shenkar College Ramat‐Gan Israel
| | - Dan Y. Lewitus
- Department of Polymer Materials Engineering Shenkar College Ramat‐Gan Israel
| |
Collapse
|
18
|
Pradeep A, Rangasamy J, Varma PK. Recent developments in controlling sternal wound infection after cardiac surgery and measures to enhance sternal healing. Med Res Rev 2020; 41:709-724. [PMID: 33174619 DOI: 10.1002/med.21758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 01/25/2023]
Abstract
One of the major risks of cardiac surgery is the occurrence of infection at the sternal wound site. Sternal wound infections are primarily classified into superficial infection and deep sternal wound infection or mediastinitis. A patient is diagnosed with mediastinitis if microorganisms are present in their mediastinal tissue/fluid or with the observation of sternal wound infection during operation and with characteristic symptoms including chest pain, fever, and purulent drainage from the mediastinum. It is usually caused by Staphylococcal organisms in 75.8% of cases and the rest is caused by gram-negative bacteria. Currently, in cardiac surgery, hemostasis is achieved using electrocautery and bone wax, and the sternum is closed using wire cerclage. Several studies show that bone wax can act as a nidus for initiation of infection and the oozing blood and hematoma at the site can promote the growth of infectious organisms. Many research groups have developed different types of biomaterials and reported on the prevention of infection and healing of the sternum. These materials are reported to have both positive and negative effects. In this review, we highlight the current clinical practices undertaken to prevent infection and bleeding as well as research progress in this field and their outcomes in controlling bleeding, infection, and enhancing sternal healing.
Collapse
Affiliation(s)
- Aathira Pradeep
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Jayakumar Rangasamy
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Praveen Kerala Varma
- Department of Cardiovascular and Thoracic Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
19
|
Guo Q, Chen J, Wang J, Zeng H, Yu J. Recent progress in synthesis and application of mussel-inspired adhesives. NANOSCALE 2020; 12:1307-1324. [PMID: 31907498 DOI: 10.1039/c9nr09780e] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The rapid and robust adhesion of marine mussels to diverse solid surfaces in wet environments is mediated by the secreted mussel adhesive proteins which are abundant in a catecholic amino acid, l-3,4-dihydroxyphenylalanine (Dopa). Over the last two decades, enormous efforts have been devoted to the development of synthetic mussel-inspired adhesives with water-resistant adhesion and cohesion properties by modifying polymer systems with Dopa and its analogues. In the present review, an overview of the unique features of various mussel foot proteins is provided in combination with an up-to-date understanding of catechol chemistry, which contributes to the strong interfacial binding via balancing a variety of covalent and noncovalent interactions including oxidative cross-linking, electrostatic interaction, metal-catechol coordination, hydrogen bonding, hydrophobic interactions and π-π/cation-π interactions. The recent developments of novel Dopa-containing adhesives with on-demand mechanical properties and other functionalities are then summarized under four broad categories: viscous coacervated adhesives, soft adhesive hydrogels, smart adhesives, and stiff adhesive polyesters, where their emerging applications in engineering, biological and biomedical fields are discussed. Limitations of the developed adhesives are identified and future research perspectives in this field are proposed.
Collapse
Affiliation(s)
- Qi Guo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore.
| | | | | | | | | |
Collapse
|
20
|
Zhang Y, Zhao Y, Xia S, Tao L, Wei Y. A Facile Preparation of Mussel-Inspired Poly(dopamine phosphonate-co-PEGMA)s via a One-Pot Multicomponent Polymerization System. Macromol Rapid Commun 2019; 41:e1900533. [PMID: 31856366 DOI: 10.1002/marc.201900533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/08/2019] [Indexed: 12/23/2022]
Abstract
Mussel-inspired polymers attract much research interest due to their potential as effective adhesives. In this work, a new kind of mussel-inspired polymer, poly(dopamine phosphonate-co-PEGMA), is prepared via a one-pot multicomponent polymerization system. The multicomponent polymerization system refers to a combination of multicomponent Kabachnik-Fields (KF) reaction and reversible addition-fragmentation chain transfer (RAFT) polymerization system. Reactants are converted to dopamine phosphonate monomers in situ through the KF reaction and polymerized simultaneously along with poly(ethylene glycol methyl ether) methacrylate (PEGMA) co-monomers by the RAFT process in a one-pot operation. Target polymers with dopamine phosphonate as side groups and well-defined polymer structures are thus facilely and successfully prepared. Afterwards, a series of polymers with various ratios of dopamine phosphonates as well as the crosslinked polymer analogues are prepared. Benefiting from the dopamine phosphonate side groups, aqueous solutions of those polymers show potential as effective adhesives in both dry and wet conditions, and their adhesive strengths are highly related to ratios of dopamine phosphonates in the polymers. Those polymers are non-cytotoxic and show strong bonding affinities on various substrates including metals, polymers, and bovine bones, suggesting their potential as environmentally friendly general adhesives in broad areas.
Collapse
Affiliation(s)
- Yaling Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, P. R. China
| | - Yuan Zhao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuang Xia
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
21
|
Cui C, Fan C, Wu Y, Xiao M, Wu T, Zhang D, Chen X, Liu B, Xu Z, Qu B, Liu W. Water-Triggered Hyperbranched Polymer Universal Adhesives: From Strong Underwater Adhesion to Rapid Sealing Hemostasis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1905761. [PMID: 31625635 DOI: 10.1002/adma.201905761] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/26/2019] [Indexed: 05/20/2023]
Abstract
Despite recent advance in bioinspired adhesives, achieving strong adhesion and sealing hemostasis in aqueous and blood environments is challenging. A hyperbranched polymer (HBP) with a hydrophobic backbone and hydrophilic adhesive catechol side branches is designed and synthesized based on Michael addition reaction of multi-vinyl monomers with dopamine. It is demonstrated that upon contacting water, the hydrophobic chains self-aggregate to form coacervates quickly, displacing water molecules on the adherent surface to trigger increased exposure of catechol groups and thus rapidly strong adhesion to diverse materials from low surface energy to high energy in various environments, such as deionized water, sea water, PBS, and a wide range of pH solutions (pH = 3 to 11) without use of any oxidant. Also, this HBP adhesive (HBPA) exhibits a robust adhesion to fractured bone, precluding the problem of mismatched surface energy and mechanical properties. The HBPA's adhesion is repeatable in a wet condition. Intriguingly, the HBPA is capable of gluing dissimilar materials with distinct properties. Importantly, introducing long alkylamine into this modular hyperbranched architecture contributes to formation of an injectable hemostatic sealant that can rapidly stop visceral bleeding, especially hemorrhage from deep wound.
Collapse
Affiliation(s)
- Chunyan Cui
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Chuanchuan Fan
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Yuanhao Wu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Meng Xiao
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Tengling Wu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Dongfei Zhang
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xinyu Chen
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Bo Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Ziyang Xu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Bo Qu
- Institute of Disaster Medicine, Tianjin University, Tianjin, 300072, China
| | - Wenguang Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
22
|
Böker KO, Richter K, Jäckle K, Taheri S, Grunwald I, Borcherding K, von Byern J, Hartwig A, Wildemann B, Schilling AF, Lehmann W. Current State of Bone Adhesives-Necessities and Hurdles. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3975. [PMID: 31801225 PMCID: PMC6926991 DOI: 10.3390/ma12233975] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
Abstract
The vision of gluing two bone fragments with biodegradable and biocompatible adhesives remains highly fascinating and attractive to orthopedic surgeons. Possibly shorter operation times, better stabilization, lower infection rates, and unnecessary removal make this approach very appealing. After 30 years of research in this field, the first adhesive systems are now appearing in scientific reports that may fulfill the comprehensive requirements of bioadhesives for bone. For a successful introduction into clinical application, special requirements of the musculoskeletal system, challenges in the production of a bone adhesive, as well as regulatory hurdles still need to be overcome. In this article, we will give an overview of existing synthetic polymers, biomimetic, and bio-based adhesive approaches, review the regulatory hurdles they face, and discuss perspectives of how bone adhesives could be efficiently introduced into clinical application, including legal regulations.
Collapse
Affiliation(s)
- Kai O. Böker
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert Koch Straße 40, 37075 Göttingen, Germany; (K.J.); (S.T.); (A.F.S.); (W.L.)
| | - Katharina Richter
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Straße 12, 28359 Bremen, Germany; (K.R.); (K.B.); (A.H.)
| | - Katharina Jäckle
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert Koch Straße 40, 37075 Göttingen, Germany; (K.J.); (S.T.); (A.F.S.); (W.L.)
| | - Shahed Taheri
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert Koch Straße 40, 37075 Göttingen, Germany; (K.J.); (S.T.); (A.F.S.); (W.L.)
| | - Ingo Grunwald
- Industrial and Environmental Biology, Hochschule Bremen—City University of Applied Sciences, Neustadtswall 30, 28199 Bremen, Germany;
| | - Kai Borcherding
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Straße 12, 28359 Bremen, Germany; (K.R.); (K.B.); (A.H.)
| | - Janek von Byern
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, 1200 Vienna, Austria;
- Faculty of Life Science, University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Althanstrasse 14, 1090 Vienna, Austria
| | - Andreas Hartwig
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Straße 12, 28359 Bremen, Germany; (K.R.); (K.B.); (A.H.)
- Department 2 Biology/Chemistry, University of Bremen, Leobener Straße 3, 28359 Bremen, Germany
| | - Britt Wildemann
- Experimental Trauma Surgery, University Hospital Jena, 07747 Jena, Germany;
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert Koch Straße 40, 37075 Göttingen, Germany; (K.J.); (S.T.); (A.F.S.); (W.L.)
| | - Wolfgang Lehmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert Koch Straße 40, 37075 Göttingen, Germany; (K.J.); (S.T.); (A.F.S.); (W.L.)
| |
Collapse
|
23
|
Lei K, Zhu Q, Wang X, Xiao H, Zheng Z. In Vitro and in Vivo Characterization of a Foam-Like Polyurethane Bone Adhesive for Promoting Bone Tissue Growth. ACS Biomater Sci Eng 2019; 5:5489-5497. [PMID: 33464068 DOI: 10.1021/acsbiomaterials.9b00918] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kun Lei
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinling Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haijun Xiao
- Department of Orthopedics, Central Hospital of Fengxian District, Sixth People’s Hospital of Shanghai, Shanghai 201400, China
| | - Zhen Zheng
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
24
|
Mun MK, Jang YJ, Kim JE, Yeom GY, Kim DW. Plasma functional polymerization of dopamine using atmospheric pressure plasma and a dopamine solution mist. RSC Adv 2019; 9:12814-12822. [PMID: 35520781 PMCID: PMC9063741 DOI: 10.1039/c8ra10391g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/17/2019] [Indexed: 11/21/2022] Open
Abstract
By using DBD-type atmospheric pressure plasmas and a dopamine solution mist formed by a piezoelectric module, the possibility of depositing functional polymer films showing the physical and chemical characteristics of polydopamine without breaking the functional group of the dopamine has been investigated for different plasma voltages. The higher DBD voltages up to 3.0 kV decreased the functional groups such as catechol and amine (N/C ratio) relative to dopamine in the deposited polymer by increasing the dissociation of dopamine into atoms and small molecules due to higher electron energies. In contrast, the lower DBD voltages up to 1.5 kV increased the functional group and N/C ratio of dopamine in the deposited polymer by keeping the molecular structures of the dopamine due to lower electron energies. Therefore, the polymer deposited at the lower DBD voltages showed lower contact angles and higher metal absorption properties which are some of the surface modification characteristics of polydopamine. When the metal absorption properties of the polydopamine-like film deposited using the atmospheric pressure plasma of a low DBD voltage with a dopamine solution mist were compared with other metal absorbers for Cu, As, and Cr, the polydopamine-like film exhibited superior metal absorption properties. It is believed that this atmospheric pressure plasma process can be also applied to the plasma polymerization of other monomers without breaking the functional groups of the monomers.
Collapse
Affiliation(s)
- Mu Kyeom Mun
- Department of Materials Science and Engineering, Sungkyunkwan University Suwon Kyunggi-do South Korea 440-746
| | - Yun Jong Jang
- Department of Materials Science and Engineering, Sungkyunkwan University Suwon Kyunggi-do South Korea 440-746
| | - Ju Eun Kim
- Department of Materials Science and Engineering, Sungkyunkwan University Suwon Kyunggi-do South Korea 440-746
| | - Geun Young Yeom
- Department of Materials Science and Engineering, Sungkyunkwan University Suwon Kyunggi-do South Korea 440-746
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University Suwon Kyunggi-do South Korea 440-746
| | - Dong Woo Kim
- Department of Materials Science and Engineering, Sungkyunkwan University Suwon Kyunggi-do South Korea 440-746
| |
Collapse
|
25
|
Yin Y, Wu Q, Liu Q, Du L. Mussel-inspired fabrication of pH-sensitive biomimetic hydrogels based on greenhouse gas carbon dioxide. NEW J CHEM 2019. [DOI: 10.1039/c8nj06459h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomimetic hydrogels were prepared from carbon dioxide using a facile method. The PPC block and catechol groups contained in PPC-PU-LDA enable the hydrogel to have good cell compatibility and adhesion.
Collapse
Affiliation(s)
- Yunfan Yin
- School of Chemistry and Chemical Engineering and the Key Laboratory of Environment-friendly Polymer Materials of Anhui Province
- Anhui University
- Hefei
- People's Republic of China
| | - Qianghua Wu
- State Key Laboratory of Fire Science and Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Qingxian Liu
- School of Chemistry and Chemical Engineering and the Key Laboratory of Environment-friendly Polymer Materials of Anhui Province
- Anhui University
- Hefei
- People's Republic of China
| | - Longchao Du
- School of Chemistry and Chemical Engineering and the Key Laboratory of Environment-friendly Polymer Materials of Anhui Province
- Anhui University
- Hefei
- People's Republic of China
| |
Collapse
|
26
|
Chen W, Kretzschmann A, Tian W, Wu S. Nonlinear Supramolecular Polymers for Therapeutic Applications. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wenzhuo Chen
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions; Shanxi Key Laboratory of Macromolecular Science and Technology; School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Annika Kretzschmann
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Wei Tian
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions; Shanxi Key Laboratory of Macromolecular Science and Technology; School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Si Wu
- Hefei National Laboratory for Physical Sciences at the Microscale; CAS Key Laboratory of Soft Matter Chemistry; Anhui Key Laboratory of Optoelectronic Science and Technology; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei 230026 China
| |
Collapse
|
27
|
Li A, Xu Z, Sun N, Si Z, Xu Y, Guo X. Cellulose‐reinforced catechol‐modified polyacrylic acid‐Zn
2+
coacervate as strong composite adhesive. J Appl Polym Sci 2018. [DOI: 10.1002/app.47126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- A. Li
- State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology, 130 Meilong Road Shanghai 200237 China
| | - Z. Xu
- School of PharmacyEast China University of Science and Technology, 130 Meilong Road Shanghai 200237 China
| | - N. Sun
- State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology, 130 Meilong Road Shanghai 200237 China
| | - Z. Si
- State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology, 130 Meilong Road Shanghai 200237 China
| | - Y. Xu
- State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology, 130 Meilong Road Shanghai 200237 China
- Engineering Research Center of Xinjiang Bingtuan of Materials Chemical EngineeringShihezi University, 280 Beisi Road Shihezi 832000 China
- International Joint Research Center of Green Energy Chemical EngineeringEast China University of Science and Technology, 130 Meilong Road Shanghai 200237 China
| | - X. Guo
- State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology, 130 Meilong Road Shanghai 200237 China
- Engineering Research Center of Xinjiang Bingtuan of Materials Chemical EngineeringShihezi University, 280 Beisi Road Shihezi 832000 China
- International Joint Research Center of Green Energy Chemical EngineeringEast China University of Science and Technology, 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
28
|
Kirillova A, Kelly C, Windheim N, Gall K. Bioinspired Mineral-Organic Bioresorbable Bone Adhesive. Adv Healthc Mater 2018; 7:e1800467. [PMID: 29938916 DOI: 10.1002/adhm.201800467] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/29/2018] [Indexed: 12/17/2022]
Abstract
Bioresorbable bone adhesives have potential to revolutionize the clinical treatment of the human skeletal system, ranging from the fixation and osteointegration of permanent implants to the direct healing and fusion of bones without permanent fixation hardware. Despite an unmet need, there are currently no bone adhesives in clinical use that provide a strong enough bond to wet bone while possessing good osteointegration and bioresorbability. Inspired by the sandcastle worm that creates a protective tubular shell around its body using a proteinaceous adhesive, a novel bone adhesive is introduced, based on tetracalcium phosphate and phosphoserine, that cures in minutes in an aqueous environment and provides high bone-to-bone adhesive strength. The new material is measured to be 10 times more adhesive than bioresorbable calcium phosphate cement and 7.5 times more adhesive than non-resorbable poly(methyl methacrylate) bone cement, both of which are standard of care in the clinic today. The bone adhesive also demonstrates chemical adhesion to titanium approximately twice that of its adhesion to bone, unlocking the potential for adherence to metallic implants during surrounding bony incorporation. Finally, the bone adhesive is shown to demonstrate osteointegration and bioresorbability over a 52-week period in a critically sized distal femur defect in rabbits.
Collapse
Affiliation(s)
- Alina Kirillova
- Department of Mechanical Engineering and Materials Science Edmund T. Pratt Jr., School of Engineering Duke University Durham NC 27708 USA
| | - Cambre Kelly
- Department of Mechanical Engineering and Materials Science Edmund T. Pratt Jr., School of Engineering Duke University Durham NC 27708 USA
| | - Natalia Windheim
- Department of Mechanical Engineering and Materials Science Edmund T. Pratt Jr., School of Engineering Duke University Durham NC 27708 USA
| | - Ken Gall
- Department of Mechanical Engineering and Materials Science Edmund T. Pratt Jr., School of Engineering Duke University Durham NC 27708 USA
| |
Collapse
|
29
|
Zhu W, Chuah YJ, Wang DA. Bioadhesives for internal medical applications: A review. Acta Biomater 2018; 74:1-16. [PMID: 29684627 DOI: 10.1016/j.actbio.2018.04.034] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/08/2018] [Accepted: 04/19/2018] [Indexed: 12/17/2022]
Abstract
Bioadhesives such as tissue adhesives, hemostatic agents, and tissue sealants have gained increasing popularity in different areas of clinical operations during the last three decades. Bioadhesives can be categorized into internal and external ones according to their application conditions. External bioadhesives are generally applied in topical medications such as wound closure and epidermal grafting. Internal bioadhesives are mainly used in intracorporal conditions with direct contact to internal environment including tissues, organs and body fluids, such as chronic organ leak repair and bleeding complication reduction. This review focuses on internal bioadhesives that, in contrast with external bioadhesives, emphasize much more on biocompatibility and adhesive ability to wet surfaces rather than on gluing time and intensity. The crosslinking mechanisms of present internal bioadhesives can be generally classified as follows: 1) chemical conjugation between reactive groups; 2) free radical polymerization by light or redox initiation; 3) biological or biochemical coupling with specificity; and 4) biomimetic adhesion inspired from natural phenomena. In this review, bioadhesive products of each class are summarized and discussed by comparing their designs, features, and applications as well as their prospects for future development. STATEMENT OF SIGNIFICANCE Despite the emergence of numerous novel bioadhesive formulations in recent years, thus far, the classification of internal and external bioadhesives has not been well defined and universally acknowledged. Many of the formulations have been proposed for treatment of several diseases even though they are not applicable for such conditions. This is because of the lack of a systematic standard or evaluation protocol during the development of a new adhesive product. In this review, the definition of internal and external bioadhesives is given for the first time, and with a focus on internal bioadhesives, the criteria of an ideal internal bioadhesive are adequately discussed; this is followed by the review of recently developed internal bioadhesives based on different gluing mechanisms.
Collapse
Affiliation(s)
- Wenzhen Zhu
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Yon Jin Chuah
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637335, Singapore
| | - Dong-An Wang
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore.
| |
Collapse
|
30
|
Basiri Z, Rezayan AH, Akbari B, Aghdam RM, Tafti HA. Developing new synthetic biomimetic nanocomposite adhesives: Synthesis and evaluation of bond strength and solubilization. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
31
|
Zhang H, Zhao T, Newland B, Liu W, Wang W, Wang W. Catechol functionalized hyperbranched polymers as biomedical materials. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.09.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Kim JY, Ryu SB, Park KD. Preparation and characterization of dual-crosslinked gelatin hydrogel via Dopa-Fe3+ complexation and fenton reaction. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Lu D, Li Y, Wang X, Li T, Zhang Y, Guo H, Sun S, Wang X, Zhang Y, Lei Z. All-in-one hyperbranched polypeptides for surgical adhesives and interventional embolization of tumors. J Mater Chem B 2018; 6:7511-7520. [DOI: 10.1039/c8tb01015c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A series of hyperbranched, thermo-responsive and mussel-inspired polypeptides were synthesized and used for surgical adhesion, hemostasis and interventional embolization.
Collapse
Affiliation(s)
- Dedai Lu
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Yunfei Li
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Xiangya Wang
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Ting’e Li
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Yongyong Zhang
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Hongyun Guo
- Institute of Gansu Medical Science Research
- Gansu Provincial Cancer Hospital
- Lanzhou
- P. R. China
| | - Shaobo Sun
- Gansu University of Chinese Medicine
- Lanzhou
- P. R. China
| | - Xiaoqi Wang
- Institute of Gansu Medical Science Research
- Gansu Provincial Cancer Hospital
- Lanzhou
- P. R. China
| | - Yongdong Zhang
- Institute of Gansu Medical Science Research
- Gansu Provincial Cancer Hospital
- Lanzhou
- P. R. China
| | - Ziqiang Lei
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| |
Collapse
|
34
|
Mu Y, Wu X, Pei D, Wu Z, Zhang C, Zhou D, Wan X. Contribution of the Polarity of Mussel-Inspired Adhesives in the Realization of Strong Underwater Bonding. ACS Biomater Sci Eng 2017; 3:3133-3140. [DOI: 10.1021/acsbiomaterials.7b00673] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Youbing Mu
- The
Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling
Road, Qingdao 266101, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiao Wu
- The
Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling
Road, Qingdao 266101, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Danfeng Pei
- The
Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling
Road, Qingdao 266101, P. R. China
| | - Zelin Wu
- The
Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling
Road, Qingdao 266101, P. R. China
| | - Chen Zhang
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu Province 210093, P. R. China
| | - Dongshan Zhou
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu Province 210093, P. R. China
| | - Xiaobo Wan
- The
Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling
Road, Qingdao 266101, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
35
|
Jenkins CL, Siebert HM, Wilker JJ. Integrating Mussel Chemistry into a Bio-Based Polymer to Create Degradable Adhesives. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02213] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Courtney L. Jenkins
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Heather M. Siebert
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Jonathan J. Wilker
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
- School
of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, Indiana 47907-2045, United States
| |
Collapse
|
36
|
Bakhshi H, Agarwal S. Hyperbranched polyesters as biodegradable and antibacterial additives. J Mater Chem B 2017; 5:6827-6834. [DOI: 10.1039/c7tb01301a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we present novel hyperbranched poly(amino-ester)s functionalized with quaternary ammonium salts.
Collapse
Affiliation(s)
- Hadi Bakhshi
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces
- University of Bayreuth
- Bayreuth
- Germany
| | - Seema Agarwal
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces
- University of Bayreuth
- Bayreuth
- Germany
| |
Collapse
|
37
|
Guo J, Kim GB, Shan D, Kim JP, Hu J, Wang W, Hamad FG, Qian G, Rizk EB, Yang J. Click chemistry improved wet adhesion strength of mussel-inspired citrate-based antimicrobial bioadhesives. Biomaterials 2017; 112:275-286. [PMID: 27770631 PMCID: PMC5121090 DOI: 10.1016/j.biomaterials.2016.10.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/03/2016] [Accepted: 10/08/2016] [Indexed: 11/29/2022]
Abstract
For the first time, a convenient copper-catalyzed azide-alkyne cycloaddition (CuAAC, click chemistry) was successfully introduced into injectable citrate-based mussel-inspired bioadhesives (iCMBAs, iCs) to improve both cohesive and wet adhesive strengths and elongate the degradation time, providing numerous advantages in surgical applications. The major challenge in developing such adhesives was the mutual inhibition effect between the oxidant used for crosslinking catechol groups and the Cu(II) reductant used for CuAAC, which was successfully minimized by adding a biocompatible buffering agent typically used in cell culture, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), as a copper chelating agent. Among the investigated formulations, the highest adhesion strength achieved (223.11 ± 15.94 kPa) was around 13 times higher than that of a commercially available fibrin glue (15.4 ± 2.8 kPa). In addition, dual-crosslinked (i.e. click crosslinking and mussel-inspired crosslinking) iCMBAs still preserved considerable antibacterial and antifungal capabilities that are beneficial for the bioadhesives used as hemostatic adhesives or sealants for wound management.
Collapse
Affiliation(s)
- Jinshan Guo
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gloria B Kim
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Dingying Shan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jimin P Kim
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jianqing Hu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wei Wang
- Zhejiang Provincial Top Key Discipline of Bioengineering, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Fawzi G Hamad
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Guoying Qian
- Zhejiang Provincial Top Key Discipline of Bioengineering, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Elias B Rizk
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, 17033, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
38
|
Abstract
Tissue adhesives have been introduced as a promising alternative for the traditional wound closure method of suturing.
Collapse
Affiliation(s)
| | - Wen Zhong
- Department of Biosystem Engineering
- University of Manitoba
- Canada
| |
Collapse
|
39
|
Ghobril C, Rodriguez EK, Nazarian A, Grinstaff MW. Recent Advances in Dendritic Macromonomers for Hydrogel Formation and Their Medical Applications. Biomacromolecules 2016; 17:1235-52. [PMID: 26978246 DOI: 10.1021/acs.biomac.6b00004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogels represent one of the most important classes of biomaterials and are of interest for various medical applications including wound repair, tissue engineering, and drug release. Hydrogels possess tunable mechanical properties, biocompatibility, nontoxicity, and similarity to natural soft tissues. The need for hydrogels with specific properties, based on the design requirements of the in vitro, in vivo, or clinical application, motivates researchers to develop new synthetic approaches and cross-linking methodologies to form novel hydrogels with unique properties. The use of dendritic macromonomers represents one elegant strategy for the formation of hydrogels with specific properties. Specifically, the uniformity of dendrimers combined with the control of their size, architecture, density, and surface groups make them promising cross-linkers for hydrogel formation. Over the last two decades, a large variety of dendritic-based hydrogels are reported for their potential use in the clinic. This review describes the state of the art with these different dendritic hydrogel formulations including their design requirements, the synthetic routes, the measurement and determination of their properties, the evaluation of their in vitro and in vivo performances, and future perspectives.
Collapse
Affiliation(s)
- Cynthia Ghobril
- Departments of Biomedical Engineering, Chemistry and Medicine, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Edward K Rodriguez
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts, United States
| | - Ara Nazarian
- Center for Advanced Orthopaedic Studies, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts, United States
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry and Medicine, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
40
|
Newland B, Wolff P, Zhou D, Wang W, Zhang H, Rosser A, Wang W, Werner C. Synthesis of ROS scavenging microspheres from a dopamine containing poly(β-amino ester) for applications for neurodegenerative disorders. Biomater Sci 2016; 4:400-4. [PMID: 26756041 PMCID: PMC5657472 DOI: 10.1039/c5bm00542f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by a substantial decrease of dopaminergic neurons in the substantia nigra pars compacta. The neurological deterioration during PD can be, in part, attributed to elevated levels of reactive oxygen species (ROS). Radical scavengers have previously been shown to protect dopaminergic cells from toxic effects in vitro. Hence, new approaches need to be investigated to improve the administration of antioxidants in order to provide neuroprotection. Polymers exhibiting catechol structures offer one such approach due to their interesting physicochemical properties. In the present study a photocrosslinkable dopamine-containing poly(β-amino ester) (DPAE) was synthesized from poly(ethylene glycol) diacrylate (PEGDA) and dopamine hydrochloride using Michael type addition. A water-in-oil emulsion technique was used to photo-crosslink the polymer into spherical microparticles. DPAE microspheres featured excellent scavenging properties towards 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) radicals in a dose dependent manner and could even reduce the dissolved oxygen content of physiological solution. Furthermore, the concentrations required for radical scavenging were shown to be non-toxic towards dopaminergic SH-SY5Y cells as well as primary astrocytes and primary embryonic rat ventral midbrain cultures.
Collapse
Affiliation(s)
- Ben Newland
- Leibniz-Institut für Polymerforschung, Hohe Strasse 6, Dresden, Germany. and Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - Paul Wolff
- Leibniz-Institut für Polymerforschung, Hohe Strasse 6, Dresden, Germany.
| | - Dezhong Zhou
- Charles Institute for Dermatology, University College Dublin, Dublin, Ireland
| | - Wei Wang
- Charles Institute for Dermatology, University College Dublin, Dublin, Ireland
| | - Hong Zhang
- Charles Institute for Dermatology, University College Dublin, Dublin, Ireland
| | - Anne Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - Wenxin Wang
- Charles Institute for Dermatology, University College Dublin, Dublin, Ireland and School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung, Hohe Strasse 6, Dresden, Germany.
| |
Collapse
|
41
|
Olofsson K, Granskog V, Cai Y, Hult A, Malkoch M. Activated dopamine derivatives as primers for adhesive-patch fixation of bone fractures. RSC Adv 2016. [DOI: 10.1039/c5ra23142f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activated dopamine derivatives are synthesized and evaluated as primers between a TEC-crosslinked matrix and bone. Dopamine derivatives are shown to significantly increase the adhesive strength of fiber-reinforced adhesive bone patches.
Collapse
Affiliation(s)
- K. Olofsson
- KTH Royal Institute of Technology
- Fibre and Polymer Technology
- Stockholm
- Sweden
| | - V. Granskog
- KTH Royal Institute of Technology
- Fibre and Polymer Technology
- Stockholm
- Sweden
| | - Y. Cai
- KTH Royal Institute of Technology
- Fibre and Polymer Technology
- Stockholm
- Sweden
| | - A. Hult
- KTH Royal Institute of Technology
- Fibre and Polymer Technology
- Stockholm
- Sweden
| | - M. Malkoch
- KTH Royal Institute of Technology
- Fibre and Polymer Technology
- Stockholm
- Sweden
| |
Collapse
|
42
|
Paez JI, Ustahüseyin O, Serrano C, Ton XA, Shafiq Z, Auernhammer GK, d’Ischia M, del Campo A. Gauging and Tuning Cross-Linking Kinetics of Catechol-PEG Adhesives via Catecholamine Functionalization. Biomacromolecules 2015; 16:3811-8. [DOI: 10.1021/acs.biomac.5b01126] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Julieta I. Paez
- Max- Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Oya Ustahüseyin
- Max- Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Cristina Serrano
- Max- Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Xuan-Anh Ton
- Max- Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Zahid Shafiq
- Max- Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Marco d’Ischia
- Department
of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy
| | - Aránzazu del Campo
- Max- Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
- INM − Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
43
|
Dararutana C, Ratanavaraporn J, Honsawek S, Kanokpanont S, Damrongsakkul S. Characteristics and Osteoconductivity of Bone Composite Scaffolds Made of Thai Silk Fibroin, Gelatin and Inorganic Compounds: A Comparative Study of β-Tricalcium Phosphate and Hydroxyapatite. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/masy.201400075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chotika Dararutana
- Department of Chemical Engineering, Faculty of Engineering; Chulalongkorn University; PhayaThai Road Phatumwan Bangkok 10330 Thailand
| | - Juthamas Ratanavaraporn
- Biomedical Engineering Program, Faculty of Engineering; Chulalongkorn University; PhayaThai Road Phatumwan Bangkok 10330 Thailand
| | - Sittisak Honsawek
- Department of Biochemistry, Faculty of Medicine; Chulalongkorn University; Rama IV Road Phatumwan Bangkok 10330 Thailand
| | - Sorada Kanokpanont
- Department of Chemical Engineering, Faculty of Engineering; Chulalongkorn University; PhayaThai Road Phatumwan Bangkok 10330 Thailand
| | - Siriporn Damrongsakkul
- Department of Chemical Engineering, Faculty of Engineering; Chulalongkorn University; PhayaThai Road Phatumwan Bangkok 10330 Thailand
| |
Collapse
|
44
|
Zhang H, Zhao T, Newland B, Duffy P, Annaidh AN, O'Cearbhaill ED, Wang W. On-demand and negative-thermo-swelling tissue adhesive based on highly branched ambivalent PEG-catechol copolymers. J Mater Chem B 2015; 3:6420-6428. [PMID: 32262550 DOI: 10.1039/c5tb00949a] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of well-designed highly branched PEG-catechol based thermo-responsive copolymers were synthesized via a one-pot RAFT polymerization. A varying degree of photocrosslinkable (meth)acrylate moieties were incorporated within the 3D structure to allow on-demand photocuring (strong cohesion, unlike conventional PEG adhesives). At the same time, multitudes of free catechol groups inspired from adhesive proteins of marine mussels were also introduced in the hyperbranched structure, giving rise to adherence to skin and cardiac tissue. The resulting ambivalent PEG-catechol based copolymers were systematically studied to investigate the effects of polymer composition on tissue bioadhesive and swelling properties, comparing acrylates to methacrylates and PEG to 2-hydroxyethyl acrylamide (HEAA). It was proved that DOPA played a major role in the adhesion performance as it significantly enhanced the adhesion performances on varied substrates. The highly branched PEG-catechol copolymers demonstrate the great potential in the design of novel surgical glues, sealants or drug delivery vectors.
Collapse
Affiliation(s)
- Hong Zhang
- The Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
45
|
Dong R, Pang Y, Su Y, Zhu X. Supramolecular hydrogels: synthesis, properties and their biomedical applications. Biomater Sci 2015. [PMID: 26221932 DOI: 10.1039/c4bm00448e] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As a novel class of three-dimensional (3D) hydrophilic cross-linked polymers, supramolecular hydrogels not only display unique physicochemical properties (e.g., water-retention ability, drug loading capacity, biodegradability and biocompatibility, biostability) as well as specific functionalities (e.g., optoelectronic properties, bioactivity, self-healing ability, shape memory ability), but also have the capability to undergo reversible gel-sol transition in response to various environmental stimuli inherent to the noncovalent cross-linkages, thereby showing great potential as promising biomaterial scaffolds for diagnosis and therapy. In this Review, we summarized the recent progress in the design and synthesis of supramolecular hydrogels through specific, directional noncovalent interactions, with particular emphasis on the structure-property relationship, as well as their wide-ranging applications in disease diagnosis and therapy including bioimaging, biodetection, therapeutic delivery, and tissue engineering. We believe that these current achievements in supramolecular hydrogels will greatly stimulate new ideas and inspire persistent efforts in this hot topic area in future.
Collapse
Affiliation(s)
- Ruijiao Dong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | | | | | | |
Collapse
|
46
|
Abstract
The recent research progress in biological and biomedical applications of hyperbranched polymers has been summarized in this review.
Collapse
Affiliation(s)
- Dali Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Tianyu Zhao
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Wenxin Wang
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| |
Collapse
|
47
|
Huang Y, Wang D, Zhu X, Yan D, Chen R. Synthesis and therapeutic applications of biocompatible or biodegradable hyperbranched polymers. Polym Chem 2015. [DOI: 10.1039/c5py00144g] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recent progress in the synthesis, modifications and therapeutic applications of biocompatible or biodegradable hyperbranched polymers has been reviewed.
Collapse
Affiliation(s)
- Yu Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Dali Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Rongjun Chen
- Department of Chemical Engineering
- Imperial College London
- London SW7 2AZ
- UK
| |
Collapse
|