1
|
Fang D, Gao G, Yang Y, Wang Y, Gao L, Zhi J. Redox Mediator‐Based Microbial Biosensors for Acute Water Toxicity Assessment: A Critical Review. ChemElectroChem 2020. [DOI: 10.1002/celc.202000367] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Deyu Fang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 PR China
- Current address: Ningde Amperex Technology Limited (ATL) Ningde 352100 PR China
| | - Guanyue Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yajie Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yu Wang
- Beijing Center for Physical and Chemical Analysis Beijing 100089 PR China
| | - Lijuan Gao
- Beijing Center for Physical and Chemical Analysis Beijing 100089 PR China
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| |
Collapse
|
2
|
Zhang J, Lan T, Lu Y. Translating in vitro diagnostics from centralized laboratories to point-of-care locations using commercially-available handheld meters. Trends Analyt Chem 2020; 124:115782. [PMID: 32194293 PMCID: PMC7081941 DOI: 10.1016/j.trac.2019.115782] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a growing demand for high-performance point-of-care (POC) diagnostic technologies where in vitro diagnostics (IVD) is fundamental for prevention, identification, and treatment of many diseases. Over the past decade, a shift of IVDs from the centralized laboratories to POC settings is emerging. In this review, we summarize recent progress in translating IVDs from centralized labs to POC settings using commercially available handheld meters. After introducing typical workflows for IVDs and highlight innovative technologies in this area, we discuss advantages of using commercially available handheld meters for translating IVDs from centralized labs to POC settings. We then provide comprehensive coverage of different signal transduction strategies to repurpose the commercially-available handheld meters, including personal glucose meter, pH meter, thermometer and pressure meter, for detecting a wide range of targets by integrating biochemical assays with the meters for POC testing. Finally, we identify remaining challenges and offer future outlook in this area.
Collapse
Affiliation(s)
- JingJing Zhang
- State Key Laboratory of Analytical Chemistry for Life
Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing
210023, China
| | - Tian Lan
- GlucoSentient, Inc., 2100 S. Oak Street, Suite 101,
Champaign, IL 61820, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Lisi F, Peterson JR, Gooding JJ. The application of personal glucose meters as universal point-of-care diagnostic tools. Biosens Bioelectron 2020; 148:111835. [DOI: 10.1016/j.bios.2019.111835] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
|
4
|
Mi Y, Tao X, Zhang X, Si Y. Acute biotoxicity assessment of heavy metals in sewage sludge based on the glucose consumption of Escherichia coli. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181769. [PMID: 30800404 PMCID: PMC6366162 DOI: 10.1098/rsos.181769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/11/2018] [Indexed: 05/31/2023]
Abstract
As a simple and feasible method for acute biotoxicity assessment, personal glucose meter (PGM) can be successfully applied in the early warning of environmental pollutants in sewage. In this paper, the acute biotoxicity of single and joint heavy metals in sewage and real sludge samples was systematically described based on the glucose metabolism of Escherichia coli (E. coli). Results indicated that the biotoxicity order of five single heavy metals in sewage was Hg2+ > As3+ > Cu2+ > Zn2+ > Cd2+. The joint heavy metals of Cu2+ + Zn2+, Cu2+ + Cd2+, and Cu2+ + Hg2+ produced synergistic effects, while Cu2+ + As3+ and Cd2+ + Zn2+ possessed antagonistic effects for the combined biotoxicity. In spiked sludge, Cd2+ and Zn2+ owned higher biotoxicity than Cu2+ and As3+. Notably, the electroplate factory and housing estate sludge respectively showed the highest and lowest inhibition rates as 57.4% and 17.7% under the real sludge biotoxicity assessment. These results demonstrated that PGM was a sensitive and portable method, which could be widely used for acute biotoxicity assessment of heavy metals in sewage sludge.
Collapse
Affiliation(s)
| | | | | | - Youbin Si
- Anhui Province Key Laboratory of FarmLand Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
5
|
Wu T, Yang Y, Cao Y, Song Y, Xu LP, Zhang X, Wang S. Bioinspired DNA-Inorganic Hybrid Nanoflowers Combined with a Personal Glucose Meter for Onsite Detection of miRNA. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42050-42057. [PMID: 30457317 DOI: 10.1021/acsami.8b15917] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biomineralization is an important process in nature, by which living organisms participate in producing organic/inorganic hybrid materials and the resultant materials show sophisticated structures and excellent physical and chemical properties. Inspired by biomineralization, DNA-Cu3(PO4)2 hybrid nanoflowers (HNFs) were prepared, which exhibited high stability, a high surface-to-volume ratio, and good DNA encapsulation ability. A facile thread platform for microRNA (miRNA) detection was fabricated by employing DNA-Cu3(PO4)2 HNFs as captors, and the signal could be easily read out by a personal glucose meter. The fabricated biosensor could detect miRNA-21 quantitatively and a detection limit of 0.41 nM was achieved. Furthermore, miRNA in A549 cell lysate could also be detected without pretreatment. In this work, we achieved a fast, simple, low-cost method based on the bioinspired DNA-inorganic HNFs for the specific and sensitive detection of miRNA in both aqueous solution and biological samples, indicating its great promise in biomedical and clinical applications.
Collapse
Affiliation(s)
- Tingting Wu
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Yuemeng Yang
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Yu Cao
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Yongchao Song
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Li-Ping Xu
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
6
|
Zhang L, Gu C, Ma H, Zhu L, Wen J, Xu H, Liu H, Li L. Portable glucose meter: trends in techniques and its potential application in analysis. Anal Bioanal Chem 2018; 411:21-36. [DOI: 10.1007/s00216-018-1361-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022]
|