1
|
Quezada D, Herrera B, Santibáñez R, Palma JL, Landaeta E, Álvarez CA, Valenzuela S, Cobos-Montes K, Ramírez D, Santana PA, Ahumada M. Impedimetric Sensor for SARS-CoV-2 Spike Protein Detection: Performance Assessment with an ACE2 Peptide-Mimic/Graphite Interface. BIOSENSORS 2024; 14:592. [PMID: 39727857 DOI: 10.3390/bios14120592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/30/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024]
Abstract
The COVID-19 pandemic has prompted the need for the development of new biosensors for SARS-CoV-2 detection. Particularly, systems with qualities such as sensitivity, fast detection, appropriate to large-scale analysis, and applicable in situ, avoiding using specific materials or personnel to undergo the test, are highly desirable. In this regard, developing an electrochemical biosensor based on peptides derived from the angiotensin-converting enzyme receptor 2 (ACE2) is a possible answer. To this end, an impedimetric detector was developed based on a graphite electrode surface modified with an ACE2 peptide-mimic. This sensor enables accurate quantification of recombinant 2019-nCoV spike RBD protein (used as a model analyte) within a linear detection range of 0.167-0.994 ng mL-1, providing a reliable method for detecting SARS-CoV-2. The observed sensitivity was further demonstrated by molecular dynamics that established the high affinity and specificity of the peptide to the protein. Unlike other impedimetric sensors, the herein presented system can detect impedance in a single frequency, allowing a measure as fast as 3 min to complete the analysis and achieving a detection limit of 45.08 pg mL-1. Thus, the proposed peptide-based electrochemical biosensor offers fast results with adequate sensitivity, opening a path to new developments concerning other viruses of interest.
Collapse
Affiliation(s)
- Diego Quezada
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Beatriz Herrera
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Rodrigo Santibáñez
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Juan Luis Palma
- School of Engineering, Universidad Central de Chile, Santiago 8330601, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago 9170124, Chile
| | - Esteban Landaeta
- School of Engineering, Universidad Central de Chile, Santiago 8330601, Chile
| | - Claudio A Álvarez
- Laboratorio de Cultivo de Peces, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1781421, Chile
- Laboratorio de Fisiología y Genética Marina, Centro de Estudios Avanzados en Zonas Áridas, Larrondo 1281, Coquimbo 1781421, Chile
| | - Santiago Valenzuela
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Kevin Cobos-Montes
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Sede Concepción, Talcahuano 4260000, Chile
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - Paula A Santana
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Manuel Ahumada
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile
| |
Collapse
|
2
|
Hewson AR, Lloyd-Laney HO, Keenan T, Richards SJ, Gibson MI, Linclau B, Signoret N, Fascione MA, Parkin A. Harnessing glycofluoroforms for impedimetric biosensing. Chem Sci 2024; 15:d4sc04409f. [PMID: 39282644 PMCID: PMC11393611 DOI: 10.1039/d4sc04409f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Glycans play a major role in biological cell-cell recognition and signal transduction but have found limited application in biosensors due to glycan/lectin promiscuity; multiple proteins are capable of binding to the same native glycan. Here, site-specific fluorination is used to introduce protein-glycan selectivity, and this is coupled with an electrochemical detection method to generate a novel biosensor platform. 3F-lacto-N-biose glycofluoroform is installed onto polymer tethers, which are subsequently immobilised onto gold screen printed electrodes, providing a non-fouling surface. The impedance biosensing platform is shown to selectively bind cancer-associated galectin-3 compared to control glycans and proteins. To improve the analytical capability, Bayesian statistical analysis was deployed in the equivalent circuit fitting of electrochemical impedance spectroscopy data. It is shown that Markov Chain Monte Carlo (MCMC) analysis is a helpful method for visualising experimental irreproducibility, and we apply this as a quality control step.
Collapse
Affiliation(s)
- Alice R Hewson
- Department of Chemistry, University of York YO10 5DD York UK
| | | | - Tessa Keenan
- Department of Chemistry, University of York YO10 5DD York UK
| | - Sarah-Jane Richards
- Department of Chemistry, The University of Manchester M13 9PL UK
- Manchester Institute of Biotechnology, The University of Manchester M1 7DN UK
| | - Matthew I Gibson
- Department of Chemistry, The University of Manchester M13 9PL UK
- Manchester Institute of Biotechnology, The University of Manchester M1 7DN UK
| | - Bruno Linclau
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Gent Belgium
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| | | | | | - Alison Parkin
- Department of Chemistry, University of York YO10 5DD York UK
| |
Collapse
|
3
|
Ahmadipour M, Bhattacharya A, Sarafbidabad M, Syuhada Sazali E, Krishna Ghoshal S, Satgunam M, Singh R, Rezaei Ardani M, Missaoui N, Kahri H, Pal U, Ling Pang A. CA19-9 and CEA biosensors in pancreatic cancer. Clin Chim Acta 2024; 554:117788. [PMID: 38246211 DOI: 10.1016/j.cca.2024.117788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Cancer is a complex pathophysiological condition causing millions of deaths each year. Early diagnosis is essential especially for pancreatic cancer. Existing diagnostic tools rely on circulating biomarkers such as Carbohydrate Antigen 19-9 (CA19-9) and Carcinoembryonic Antigen (CEA). Unfortunately, these markers are nonspecific and may be increased in a variety of disorders. Accordingly, diagnosis of pancreatic cancer generally involves more invasive approaches such as biopsy as well as imaging studies. Recent advances in biosensor technology have allowed the development of precise diagnostic tools having enhanced analytical sensitivity and specificity. Herein we examine these advances in the detection of cancer in general and in pancreatic cancer specifically. Furthermore, we highlight novel technologies in the measurement of CA19-9 and CEA and explore their future application in the early detection of pancreatic cancer.
Collapse
Affiliation(s)
- Mohsen Ahmadipour
- Institute of Power Engineering, Universiti Tenaga Nasional, 43650 Serdang, Selangor, Malaysia.
| | - Anish Bhattacharya
- Advanced Optical Materials Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Ibnu Sina Institute of Laser Centre, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohsen Sarafbidabad
- Biomedical Engineering Department, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Ezza Syuhada Sazali
- Advanced Optical Materials Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Ibnu Sina Institute of Laser Centre, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Sib Krishna Ghoshal
- Advanced Optical Materials Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Ibnu Sina Institute of Laser Centre, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Meenaloshini Satgunam
- Institute of Power Engineering, Universiti Tenaga Nasional, 43650 Serdang, Selangor, Malaysia; Department of Mechanical Engineering, Universiti Tenaga Nasional, 43650 Serdang, Selangor, Malaysia
| | - Ramesh Singh
- Institute of Power Engineering, Universiti Tenaga Nasional, 43650 Serdang, Selangor, Malaysia; Center of Advanced Manufacturing and Materials Processing (AMMP), Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohammad Rezaei Ardani
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Nadhem Missaoui
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, University of Monastir, Monastir, Tunisia
| | - Hamza Kahri
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, University of Monastir, Monastir, Tunisia
| | - Ujjwal Pal
- Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Ai Ling Pang
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
| |
Collapse
|
4
|
Echeverri D, Orozco J. Glycan-Based Electrochemical Biosensors: Promising Tools for the Detection of Infectious Diseases and Cancer Biomarkers. Molecules 2022; 27:8533. [PMID: 36500624 PMCID: PMC9736010 DOI: 10.3390/molecules27238533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Glycan-based electrochemical biosensors are emerging as analytical tools for determining multiple molecular targets relevant to diagnosing infectious diseases and detecting cancer biomarkers. These biosensors allow for the detection of target analytes at ultra-low concentrations, which is mandatory for early disease diagnosis. Nanostructure-decorated platforms have been demonstrated to enhance the analytical performance of electrochemical biosensors. In addition, glycans anchored to electrode platforms as bioreceptors exhibit high specificity toward biomarker detection. Both attributes offer a synergy that allows ultrasensitive detection of molecular targets of clinical interest. In this context, we review recent advances in electrochemical glycobiosensors for detecting infectious diseases and cancer biomarkers focused on colorectal cancer. We also describe general aspects of structural glycobiology, definitions, and classification of electrochemical biosensors and discuss relevant works on electrochemical glycobiosensors in the last ten years. Finally, we summarize the advances in electrochemical glycobiosensors and comment on some challenges and limitations needed to advance toward real clinical applications of these devices.
Collapse
Affiliation(s)
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N°52–20, Medellin 050010, Colombia
| |
Collapse
|
5
|
Bacterial identification and adhesive strength evaluation based on a mannose biosensor with dual-mode detection. Biosens Bioelectron 2022; 203:114044. [PMID: 35123316 DOI: 10.1016/j.bios.2022.114044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/23/2022]
Abstract
A biosensor integrated with mannose nano-surface was developed for the identification and adhesive strength evaluation of bacteria. Different bacteria were studied on the designed surface by both electrochemical impedance spectroscopy (EIS) and surface enhanced Raman spectroscopy (SERS). S. typhimurium and E. coli JM109 (type 1 pili) were found to be captured by the mannose nano-surface. SERS spectra were used to identify the species of captured bacteria by combing with partial least squares discriminant analysis (PLS-DA). Meanwhile, binding affinities of the two captured bacteria to mannose nano-surface were obtained by EIS measurements and Frumkin isotherm model analysis, which were 6.859 × 1023 M-1 and 2.054 × 1017 M-1 respectively. A higher binding affinity indicates a stronger adhesive strength. Hence the results show the S. typhimurium has a stronger adhesive strength to mannose. Normalized impedance change (NIC) was proved to have a positive relevant relationship with binding affinities, which could be used as an indicator for the adhesive strength of bacteria. It was demonstrated that 100% accuracy of bacteria species discrimination and good consistency of NIC and adhesive strength for blind samples. The developed biosensor can provide both qualitative and quantitative information of selective recognition between bacteria and mannose.
Collapse
|
6
|
Antunez EE, Mahon CS, Tong Z, Voelcker NH, Müllner M. A Regenerable Biosensing Platform for Bacterial Toxins. Biomacromolecules 2020; 22:441-453. [PMID: 33320642 DOI: 10.1021/acs.biomac.0c01318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Waterborne diarrheal diseases such as travelers' diarrhea and cholera remain a threat to public health in many countries. Rapid diagnosis of an infectious disease is critical in preventing the escalation of a disease outbreak into an epidemic. Many of the diagnostic tools for infectious diseases employed today are time-consuming and require specialized laboratory settings and trained personnel. There is hence a pressing need for fit-for-purpose point-of-care diagnostic tools with emphasis in sensitivity, specificity, portability, and low cost. We report work toward thermally reversible biosensors for detection of the carbohydrate-binding domain of the Escherichia coli heat-labile enterotoxin (LTB), a toxin produced by enterotoxigenic E. coli strains, which causes travelers' diarrhea. The biosensing platform is a hybrid of two materials, combining the optical properties of porous silicon (pSi) interferometric transducers and a thermoresponsive multivalent glycopolymer, to enable recognition of LTB. Analytical performance of our biosensors allows us to detect, using a label-free format, sub-micromolar concentrations of LTB in solution as low as 0.135 μM. Furthermore, our platform shows a temperature-mediated "catch-and-release" behavior, an exciting feature with potential for selective protein capture, multiple readouts, and regeneration of the sensor over consecutive cycles of use.
Collapse
Affiliation(s)
- E Eduardo Antunez
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Clare S Mahon
- Department of Chemistry, Durham University, Durham DH1 3LE, U.K
| | - Ziqiu Tong
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia.,The University of Sydney Nano Institute (Sydney Nano), Sydney 2006, New South Wales, Australia
| |
Collapse
|
7
|
Hassan SU, Donia A, Sial U, Zhang X, Bokhari H. Glycoprotein- and Lectin-Based Approaches for Detection of Pathogens. Pathogens 2020; 9:pathogens9090694. [PMID: 32847039 PMCID: PMC7558909 DOI: 10.3390/pathogens9090694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 01/08/2023] Open
Abstract
Infectious diseases alone are estimated to result in approximately 40% of the 50 million total annual deaths globally. The importance of basic research in the control of emerging and re-emerging diseases cannot be overemphasized. However, new nanotechnology-based methodologies exploiting unique surface-located glycoproteins or their patterns can be exploited to detect pathogens at the point of use or on-site with high specificity and sensitivity. These technologies will, therefore, affect our ability in the future to more accurately assess risk. The critical challenge is making these new methodologies cost-effective, as well as simple to use, for the diagnostics industry and public healthcare providers. Miniaturization of biochemical assays in lab-on-a-chip devices has emerged as a promising tool. Miniaturization has the potential to shape modern biotechnology and how point-of-care testing of infectious diseases will be performed by developing smart microdevices that require minute amounts of sample and reagents and are cost-effective, robust, and sensitive and specific. The current review provides a short overview of some of the futuristic approaches using simple molecular interactions between glycoproteins and glycoprotein-binding molecules for the efficient and rapid detection of various pathogens at the point of use, advancing the emerging field of glyconanodiagnostics.
Collapse
Affiliation(s)
- Sammer-ul Hassan
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
- Correspondence: (S.H); (H.B.)
| | - Ahmed Donia
- Biosciences Department, Faculty of Science, Comsats University Islamabad, Islamabad 45550, Pakistan; (A.D.); (U.S.)
| | - Usman Sial
- Biosciences Department, Faculty of Science, Comsats University Islamabad, Islamabad 45550, Pakistan; (A.D.); (U.S.)
| | - Xunli Zhang
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
| | - Habib Bokhari
- Biosciences Department, Faculty of Science, Comsats University Islamabad, Islamabad 45550, Pakistan; (A.D.); (U.S.)
- Correspondence: (S.H); (H.B.)
| |
Collapse
|
8
|
Quinchia J, Echeverri D, Cruz-Pacheco AF, Maldonado ME, Orozco J. Electrochemical Biosensors for Determination of Colorectal Tumor Biomarkers. MICROMACHINES 2020; 11:E411. [PMID: 32295170 PMCID: PMC7231317 DOI: 10.3390/mi11040411] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022]
Abstract
The accurate determination of specific tumor markers associated with cancer with non-invasive or minimally invasive procedures is the most promising approach to improve the long-term survival of cancer patients and fight against the high incidence and mortality of this disease. Quantification of biomarkers at different stages of the disease can lead to an appropriate and instantaneous therapeutic action. In this context, the determination of biomarkers by electrochemical biosensors is at the forefront of cancer diagnosis research because of their unique features such as their versatility, fast response, accurate quantification, and amenability for multiplexing and miniaturization. In this review, after briefly discussing the relevant aspects and current challenges in the determination of colorectal tumor markers, it will critically summarize the development of electrochemical biosensors to date to this aim, highlighting the enormous potential of these devices to be incorporated into the clinical practice. Finally, it will focus on the remaining challenges and opportunities to bring electrochemical biosensors to the point-of-care testing.
Collapse
Affiliation(s)
- Jennifer Quinchia
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (J.Q.); (D.E.); (A.F.C.-P.)
| | - Danilo Echeverri
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (J.Q.); (D.E.); (A.F.C.-P.)
| | - Andrés Felipe Cruz-Pacheco
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (J.Q.); (D.E.); (A.F.C.-P.)
| | - María Elena Maldonado
- Grupo Impacto de los Componentes Alimentarios en la Salud, School of Dietetics and Human Nutrition, University of Antioquia, A.A. 1226, Medellín 050010, Colombia;
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (J.Q.); (D.E.); (A.F.C.-P.)
| |
Collapse
|
9
|
D’Aurelio R, Chianella I, Goode JA, Tothill IE. Molecularly Imprinted Nanoparticles Based Sensor for Cocaine Detection. BIOSENSORS 2020; 10:E22. [PMID: 32143406 PMCID: PMC7146329 DOI: 10.3390/bios10030022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 01/03/2023]
Abstract
The development of a sensor based on molecularly imprinted polymer nanoparticles (nanoMIPs) and electrochemical impedance spectroscopy (EIS) for the detection of trace levels of cocaine is described in this paper. NanoMIPs for cocaine detection, synthesized using a solid phase, were applied as the sensing element. The nanoMIPs were first characterized by Transmission Electron Microscopy (TEM) and Dynamic Light Scattering and found to be ~148.35 ± 24.69 nm in size, using TEM. The nanoMIPs were then covalently attached to gold screen-printed electrodes and a cocaine direct binding assay was developed and optimized, using EIS as the sensing principle. EIS was recorded at a potential of 0.12 V over the frequency range from 0.1 Hz to 50 kHz, with a modulation voltage of 10 mV. The nanoMIPs sensor was able to detect cocaine in a linear range between 100 pg mL-1 and 50 ng mL-1 (R2 = 0.984; p-value = 0.00001) and with a limit of detection of 0.24 ng mL-1 (0.70 nM). The sensor showed no cross-reactivity toward morphine and a negligible response toward levamisole after optimizing the sensor surface blocking and assay conditions. The developed sensor has the potential to offer a highly sensitive, portable and cost-effective method for cocaine detection.
Collapse
Affiliation(s)
- Roberta D’Aurelio
- Advanced Diagnostics and Sensors Group, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK;
| | - Iva Chianella
- Advanced Diagnostics and Sensors Group, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK;
| | - Jack A. Goode
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Ibtisam E. Tothill
- Advanced Diagnostics and Sensors Group, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK;
| |
Collapse
|
10
|
Jodat YA, Kiaee K, Vela Jarquin D, De la Garza Hernández RL, Wang T, Joshi S, Rezaei Z, de Melo BAG, Ge D, Mannoor MS, Shin SR. A 3D-Printed Hybrid Nasal Cartilage with Functional Electronic Olfaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901878. [PMID: 32154068 PMCID: PMC7055567 DOI: 10.1002/advs.201901878] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/18/2019] [Indexed: 05/05/2023]
Abstract
Advances in biomanufacturing techniques have opened the doors to recapitulate human sensory organs such as the nose and ear in vitro with adequate levels of functionality. Such advancements have enabled simultaneous targeting of two challenges in engineered sensory organs, especially the nose: i) mechanically robust reconstruction of the nasal cartilage with high precision and ii) replication of the nose functionality: odor perception. Hybrid nasal organs can be equipped with remarkable capabilities such as augmented olfactory perception. Herein, a proof-of-concept for an odor-perceptive nose-like hybrid, which is composed of a mechanically robust cartilage-like construct and a biocompatible biosensing platform, is proposed. Specifically, 3D cartilage-like tissue constructs are created by multi-material 3D bioprinting using mechanically tunable chondrocyte-laden bioinks. In addition, by optimizing the composition of stiff and soft bioinks in macro-scale printed constructs, the competence of this system in providing improved viability and recapitulation of chondrocyte cell behavior in mechanically robust 3D constructs is demonstrated. Furthermore, the engineered cartilage-like tissue construct is integrated with an electrochemical biosensing system to bring functional olfactory sensations toward multiple specific airway disease biomarkers, explosives, and toxins under biocompatible conditions. Proposed hybrid constructs can lay the groundwork for functional bionic interfaces and humanoid cyborgs.
Collapse
Affiliation(s)
- Yasamin A. Jodat
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
- Department of Mechanical EngineeringStevens Institute of TechnologyHobokenNJ07030USA
| | - Kiavash Kiaee
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
- Department of Mechanical EngineeringStevens Institute of TechnologyHobokenNJ07030USA
| | - Daniel Vela Jarquin
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
- Instituto Tecnológico y de Estudios Superiores de MonterreyCalle del Puente #222 Col. Ejidos de Huipulco, Tlalpan C.P.14380MéxicoD.F.Mexico
| | - Rosakaren Ludivina De la Garza Hernández
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
- Instituto Tecnológico y de Estudios Superiores de MonterreyAv. Eugenio Garza Sada 2501 Sur, Tecnológico64849MonterreyN.L.Mexico
| | - Ting Wang
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
- School of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Sudeep Joshi
- Department of Mechanical EngineeringStevens Institute of TechnologyHobokenNJ07030USA
| | - Zahra Rezaei
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
- Department of Chemical and Petroleum EngineeringSharif University of TechnologyAzadi Ave11365‐11155TehranIran
| | - Bruna Alice Gomes de Melo
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
- Department of Engineering of Materials and BioprocessesSchool of Chemical EngineeringUniversity of CampinasCampinasSão Paulo13083‐852Brazil
| | - David Ge
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
| | - Manu S. Mannoor
- Department of Mechanical EngineeringStevens Institute of TechnologyHobokenNJ07030USA
| | - Su Ryon Shin
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
| |
Collapse
|
11
|
Matsubara T, Ujie M, Yamamoto T, Einaga Y, Daidoji T, Nakaya T, Sato T. Avian Influenza Virus Detection by Optimized Peptide Termination on a Boron-Doped Diamond Electrode. ACS Sens 2020; 5:431-439. [PMID: 32077684 DOI: 10.1021/acssensors.9b02126] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The development of a simple detection method with high sensitivity is essential for the diagnosis and surveillance of infectious diseases. Previously, we constructed a sensitive biosensor for the detection of pathological human influenza viruses using a boron-doped diamond electrode terminated with a sialyloligosaccharide receptor-mimic peptide that could bind to hemagglutinins involved in viral infection. Circulation of influenza induced by the avian virus in humans has become a major public health concern, and methods for the detection of avian viruses are urgently needed. Here, peptide density and dendrimer generation terminated on the electrode altered the efficiency of viral binding to the electrode surface, thus significantly enhancing charge-transfer resistance measured by electrochemical impedance spectroscopy. The peptide-terminated electrodes exhibited an excellent detection limit of less than one plaque-forming unit of seasonal H1N1 and H3N2 viruses. Furthermore, the improved electrode was detectable for avian viruses isolated from H5N3, H7N1, and H9N2, showing the potential for the detection of all subtypes of influenza A virus, including new subtypes. The peptide-based electrochemical architecture provided a promising approach to biosensors for ultrasensitive detection of pathogenic microorganisms.
Collapse
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Michiko Ujie
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takashi Yamamoto
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
- JST-ACCEL, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Tomo Daidoji
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
12
|
Chiadò A, Palmara G, Chiappone A, Tanzanu C, Pirri CF, Roppolo I, Frascella F. A modular 3D printed lab-on-a-chip for early cancer detection. LAB ON A CHIP 2020; 20:665-674. [PMID: 31939966 DOI: 10.1039/c9lc01108k] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A functional polymeric 3D device is produced in a single step printing process using a stereolithography based 3D printer. The photocurable formulation is designed for introducing a controlled amount of carboxyl groups (-COOH), in order to perform a covalent immobilization of bioreceptors on the device. The effectiveness of the application is demonstrated by performing an immunoassay for the detection of protein biomarkers involved in angiogenesis, whose role is crucial in the onset of cancer and in the progressive metastatic behavior of tumors. The detection of angiogenesis biomarkers is necessary for an early diagnosis of the pathology, allowing the employment of a less invasive therapy for the patient. In particular, vascular endothelial growth factor and angiopoietin-2 biomarkers are detected with a limit of detection of 11 ng mL-1 and 0.8 ng mL-1, respectively. This study shows how 3D microfabrication techniques, material characterization, and device development could be combined to obtain an engineered polymeric chip with intrinsic tuned functionalities.
Collapse
Affiliation(s)
- Alessandro Chiadò
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.
| | - Gianluca Palmara
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.
| | - Annalisa Chiappone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.
| | - Claudia Tanzanu
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy. and Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, Torino 10129, Italy
| | - Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.
| | - Francesca Frascella
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.
| |
Collapse
|
13
|
|
14
|
Di Iorio D, Huskens J. Surface Modification with Control over Ligand Density for the Study of Multivalent Biological Systems. ChemistryOpen 2020; 9:53-66. [PMID: 31921546 PMCID: PMC6948118 DOI: 10.1002/open.201900290] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/11/2019] [Indexed: 12/30/2022] Open
Abstract
In the study of multivalent interactions at interfaces, as occur for example at cell membranes, the density of the ligands or receptors displayed at the interface plays a pivotal role, affecting both the overall binding affinities and the valencies involved in the interactions. In order to control the ligand density at the interface, several approaches have been developed, and they concern the functionalization of a wide range of materials. Here, different methods employed in the modification of surfaces with controlled densities of ligands are being reviewed. Examples of such methods encompass the formation of self-assembled monolayers (SAMs), supported lipid bilayers (SLBs) and polymeric layers on surfaces. Particular emphasis is given to the methods employed in the study of different types of multivalent biological interactions occurring at the functionalized surfaces and their working principles.
Collapse
Affiliation(s)
- Daniele Di Iorio
- Molecular NanoFabrication group MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
| | - Jurriaan Huskens
- Molecular NanoFabrication group MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
| |
Collapse
|
15
|
Vacchini M, Edwards R, Guizzardi R, Palmioli A, Ciaramelli C, Paiotta A, Airoldi C, La Ferla B, Cipolla L. Glycan Carriers As Glycotools for Medicinal Chemistry Applications. Curr Med Chem 2019; 26:6349-6398. [DOI: 10.2174/0929867326666190104164653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/07/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature
uses to regulate organisms’ biochemistry, modulating plenty of signaling events within cells, triggering
a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier
systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal
chemistry applications. In the last few decades, efforts have been focused, among others, on the development
of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials
for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general
overview of the different carbohydrate carrier systems that have been developed as tools in different
medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of
this topic, the present review will focus on selected examples that highlight the advancements and potentialities
offered by this specific area of research, rather than being an exhaustive literature survey of
any specific glyco-functionalized system.
Collapse
Affiliation(s)
- Mattia Vacchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Rana Edwards
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Roberto Guizzardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alice Paiotta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
16
|
Valles DJ, Naeem Y, Carbonell C, Wong AM, Mootoo DR, Braunschweig AB. Maskless Photochemical Printing of Multiplexed Glycan Microarrays for High-Throughput Binding Studies. ACS Biomater Sci Eng 2019; 5:3131-3138. [DOI: 10.1021/acsbiomaterials.9b00033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel J. Valles
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Yasir Naeem
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Carlos Carbonell
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Alexa M. Wong
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - David R. Mootoo
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Adam B. Braunschweig
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
17
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
18
|
Dziąbowska K, Czaczyk E, Nidzworski D. Detection Methods of Human and Animal Influenza Virus-Current Trends. BIOSENSORS-BASEL 2018; 8:bios8040094. [PMID: 30340339 PMCID: PMC6315519 DOI: 10.3390/bios8040094] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
Abstract
The basic affairs connected to the influenza virus were reviewed in the article, highlighting the newest trends in its diagnostic methods. Awareness of the threat of influenza arises from its ability to spread and cause a pandemic. The undiagnosed and untreated viral infection can have a fatal effect on humans. Thus, the early detection seems pivotal for an accurate treatment, when vaccines and other contemporary prevention methods are not faultless. Public health is being attacked with influenza containing new genes from a genetic assortment between animals and humankind. Unfortunately, the population does not have immunity for mutant genes and is attacked in every viral outbreak season. For these reasons, fast and accurate devices are in high demand. As currently used methods like Rapid Influenza Diagnostic Tests lack specificity, time and cost-savings, new methods are being developed. In the article, various novel detection methods, such as electrical and optical were compared. Different viral elements used as detection targets and analysis parameters, such as sensitivity and specificity, were presented and discussed.
Collapse
Affiliation(s)
- Karolina Dziąbowska
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland.
- SensDx SA, 14b Postepu St., 02-676 Warsaw, Poland.
| | - Elżbieta Czaczyk
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland.
- SensDx SA, 14b Postepu St., 02-676 Warsaw, Poland.
| | - Dawid Nidzworski
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland.
- SensDx SA, 14b Postepu St., 02-676 Warsaw, Poland.
| |
Collapse
|
19
|
Photoswitchable peptide-based ‘on-off’ biosensor for electrochemical detection and control of protein-protein interactions. Biosens Bioelectron 2018; 118:188-194. [DOI: 10.1016/j.bios.2018.07.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/24/2022]
|
20
|
Bertok T, Lorencova L, Chocholova E, Jane E, Vikartovska A, Kasak P, Tkac J. Electrochemical Impedance Spectroscopy Based Biosensors: Mechanistic Principles, Analytical Examples and Challenges towards Commercialization for Assays of Protein Cancer Biomarkers. ChemElectroChem 2018. [DOI: 10.1002/celc.201800848] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tomas Bertok
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Lenka Lorencova
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Erika Chocholova
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Eduard Jane
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Alica Vikartovska
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Peter Kasak
- Center for Advanced MaterialsQatar University Doha 2713 Qatar
| | - Jan Tkac
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| |
Collapse
|
21
|
|
22
|
Wahiba M, Feng XQ, Zang Y, James TD, Li J, Chen GR, He XP. A supramolecular pyrenyl glycoside-coated 2D MoS 2 composite electrode for selective cell capture. Chem Commun (Camb) 2018; 52:11689-11692. [PMID: 27722250 DOI: 10.1039/c6cc06332b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Here we demonstrate the simple construction and characterization of a pyrenyl glycoside-coated 2D MoS2 material composite capable of selectively capturing proteins and live cells on an electrode, as determined by differential pulse voltammetry.
Collapse
Affiliation(s)
- Mokhtari Wahiba
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | - Xue-Qing Feng
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd., Shanghai 201203, P. R. China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Jia Li
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| |
Collapse
|
23
|
Liu HP, Meng X, Yu Q, Tao YC, Xu F, He Y, Yu P, Yang Y. Synthesis of S-sialyl polymers as efficient polyvalent influenza inhibitors and capturers. J Carbohydr Chem 2018. [DOI: 10.1080/07328303.2017.1403613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hai-Peng Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xin Meng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qun Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yun-Chang Tao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fei Xu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yun He
- Research Center for Molecular Diagnostics and Sequencing, Research Institute of Tsinghua University in Shenzhen, Nanshan District, Shenzhen, China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
24
|
Cui F, Xu Y, Wang R, Liu H, Chen L, Zhang Q, Mu X. Label-free impedimetric glycan biosensor for quantitative evaluation interactions between pathogenic bacteria and mannose. Biosens Bioelectron 2017; 103:94-98. [PMID: 29287240 DOI: 10.1016/j.bios.2017.11.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/09/2017] [Accepted: 11/29/2017] [Indexed: 12/27/2022]
Abstract
In order to understanding the pathogenic mechanism of infectious diseases, it was important to study the selective recognition and interaction between pathogenic bacteria and host cells. In this paper, a novel electrochemical impedance biosensor was proposed, in which the Man/MUA-MH/Au sensing surface (Man: mannose; MUA: 11-mercapto eleven acid; MH: 6-mercapto hexanol) was fabricated and was of good biologically active and stability. The capture capacity of the designed sensing surface for S. typhimurium ATCC14028, E. coli JM109 and E. coli DH5α were characterized by Electrochemical impedance spectroscopy (EIS). According to Randless equivalent circuit and the Frumkin isotherm model, electron transfer impedance (Ret) was obtained and the binding affinity of the three bacteria and Man was calculated. It was shown that the sensing surface had a better binding affinity for S. typhimurium ATCC14028 with KADS(S.T.) = 2.16 × 106 CFU/mL. The impedance normalized value NIC (S.T.-Man) was of a good linear relationship with the logarithm of bacterial concentration (R2 = 0.96) in the range of 50-1000 CFU/mL. The detection limit was 50 CFU/mL. Meanwhile, the E. coli JM109 which expresses type 1 fimbriae was also adsorbed on the designed sensing surface with KADS(JM109) = 5.84 × 103 CFU/mL. It was illustrated that the novel electrochemical impedance biosensor could be more rapid and reliable for studying interactions between pathogen and glycan, and it was also perspective for a new point-of-care diagnostic tool for evaluating the pathogenicity bacteria.
Collapse
Affiliation(s)
- Feiyun Cui
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China; Key Disciplines Lab of Novel Micro-nano Devices and System Technology, Chongqing University, Chongqing 400030, China; International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400030, China
| | - Yi Xu
- Key Disciplines Lab of Novel Micro-nano Devices and System Technology, Chongqing University, Chongqing 400030, China; Key Laboratory for Optoelectronic Technology & System of Ministry of Education, Chongqing University, Chongqing 400044, China; International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400030, China; School of Optoelectronics Engineering, Chongqing University, Chongqing 400044, China.
| | - Renjie Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China; Key Disciplines Lab of Novel Micro-nano Devices and System Technology, Chongqing University, Chongqing 400030, China; International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400030, China
| | - Haitao Liu
- Key Disciplines Lab of Novel Micro-nano Devices and System Technology, Chongqing University, Chongqing 400030, China; Key Laboratory for Optoelectronic Technology & System of Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Li Chen
- Key Disciplines Lab of Novel Micro-nano Devices and System Technology, Chongqing University, Chongqing 400030, China; Key Laboratory for Optoelectronic Technology & System of Ministry of Education, Chongqing University, Chongqing 400044, China; International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400030, China; School of Optoelectronics Engineering, Chongqing University, Chongqing 400044, China.
| | - Qing Zhang
- Chongqing institute for food and drug control, Chongqing 400044, China
| | - Xiaojing Mu
- Key Disciplines Lab of Novel Micro-nano Devices and System Technology, Chongqing University, Chongqing 400030, China; Key Laboratory for Optoelectronic Technology & System of Ministry of Education, Chongqing University, Chongqing 400044, China; International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400030, China; School of Optoelectronics Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
25
|
Abstract
A short description about the importance of glycan biorecognition in physiological (blood cell type) and pathological processes (infections by human and avian influenza viruses) is provided in this review. Glycans are described as much better information storage media, compared to proteins or DNA, due to the extensive variability of glycan structures. Techniques able to detect an exact glycan structure are briefly discussed with the main focus on the application of lectins (glycan-recognising proteins) in the specific analysis of glycans still attached to proteins or cells/viruses. Optical, electrochemical, piezoelectric and micromechanical biosensors with immobilised lectins or glycans able to detect a wide range of analytes including whole cells/viruses are also discussed.
Collapse
|
26
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
27
|
Kveton F, Blšáková A, Hushegyi A, Damborsky P, Blixt O, Jansson B, Tkac J. Optimization of the Small Glycan Presentation for Binding a Tumor-Associated Antibody: Application to the Construction of an Ultrasensitive Glycan Biosensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2709-2716. [PMID: 28248511 PMCID: PMC5659382 DOI: 10.1021/acs.langmuir.6b04021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The main aim of the study was to optimize the interfacial presentation of a small antigen-a Tn antigen (N-acetylgalactosamine)-for binding to its analyte anti-Tn antibody. Three different methods for the interfacial display of a small glycan are compared here, including two methods based on the immobilization of the Tn antigen on a mixed self-assembled monolayer (SAM) (2D biosensor) and the third one utilizing a layer of a human serum albumin (HSA) for the immobilization of a glycan forming a 3D interface. Results showed that the 3D interface with the immobilized Tn antigen is the most effective bioreceptive surface for binding its analyte. The 3D impedimetric glycan biosensor exhibited a limit of detection of 1.4 aM, a wide linear range (6 orders of magnitude), and high assay reproducibility with an average relative standard deviation of 4%. The buildup of an interface was optimized using various techniques with the visualization of the glycans on the biosensor surface by atomic force microscopy. The study showed that the 3D biosensor is not only the most sensitive compared to other two biosensor platforms but that the Tn antigen on the 3D biosensor surface is more accessible for antibody binding with better kinetics of binding (t50% = 137 s, t50% = the time needed to attain 50% of a steady-state signal) compared to the 2D biosensor configuration with t50% = 354 s. The 3D glycan biosensor was finally applied for the analysis of a human serum sample spiked with an analyte.
Collapse
Affiliation(s)
- Filip Kveton
- Department of Glycobiotechnology, Institute of Chemistry,
Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Anna Blšáková
- Department of Glycobiotechnology, Institute of Chemistry,
Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Andras Hushegyi
- Department of Glycobiotechnology, Institute of Chemistry,
Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Pavel Damborsky
- Department of Glycobiotechnology, Institute of Chemistry,
Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Ola Blixt
- Department of Chemistry, University of Copenhagen, 1871
Frederiksberg, Copenhagen, Denmark
| | - Bo Jansson
- Division of Oncology and Pathology, Department of Clinical
Sciences, Lund, Lund University, Lund, SE 221 85 Sweden
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of Chemistry,
Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| |
Collapse
|
28
|
Akiba U, Anzai JI. Recent Progress in Electrochemical Biosensors for Glycoproteins. SENSORS (BASEL, SWITZERLAND) 2016; 16:E2045. [PMID: 27916961 PMCID: PMC5191026 DOI: 10.3390/s16122045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022]
Abstract
This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.
Collapse
Affiliation(s)
- Uichi Akiba
- Graduate School of Engineering and Science, Akita University, 1-1 Tegatagaluenn-machi, Akita 010-8502, Japan.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramakim, Sendai 980-8578, Japan.
| |
Collapse
|
29
|
Bhattarai JK, Tan YH, Pandey B, Fujikawa K, Demchenko AV, Stine KJ. Electrochemical Impedance Spectroscopy Study of Concanavalin A Binding to Self-Assembled Monolayers of Mannosides on Gold Wire Electrodes. J Electroanal Chem (Lausanne) 2016; 780:311-320. [PMID: 28413372 DOI: 10.1016/j.jelechem.2016.09.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The interactions of the lectin Concanavalin A (Con A) with self-assembled monolayers (SAMs) of thiolated mono-, di-, and tri-mannosides were studied on the surface of gold wires using electrochemical impedance spectroscopy (EIS). The SAMs of mannosides were prepared either pure or along with thiolated triethylene glycol (TEG) at different molar ratios (1:1, 1:2, 1:4, 1:9, and 1:19) to better understand and optimize the interaction conditions. The charge-transfer resistance of the [Fe(CN)6]3-/4- redox probe was compared before and after the interaction at different concentrations of Con A to determine the equilibrium dissociation constant (Kd) and limit of detection (LOD). Values of Kd were found in the nanomolar range showing multivalent interactions between mannosides and Con A, and LOD was found ranging from 4-13 nM depending on the type of mannoside SAM used. Analysis using the Hill equation suggests negative cooperativity in the binding behavior. Peanut agglutinin was used as a negative control, and cyclic voltammetry was used to further support the experiments. We have found that neither the pure nor the widely dispersed monolayers of mannosides provide the conditions for optimal binding of Con A. The binding of Con A to these SAMs is sensitive to the molar ratio of the mannoside used to prepare the SAM and to the structure of the mannoside. A simple cleaning method has also been shown to regenerate the used gold wire electrodes. The results from these experiments contribute to the development of simple, cheap, selective, and sensitive EIS-based bioassays, especially for lectin-carbohydrate interactions.
Collapse
Affiliation(s)
- Jay K Bhattarai
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, Saint Louis, MO 63121, USA
| | - Yih Horng Tan
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, Saint Louis, MO 63121, USA
| | - Binod Pandey
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, Saint Louis, MO 63121, USA
| | - Kohki Fujikawa
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, Saint Louis, MO 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, Saint Louis, MO 63121, USA
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, Saint Louis, MO 63121, USA
| |
Collapse
|
30
|
He XP, Zeng YL, Tang XY, Li N, Zhou DM, Chen GR, Tian H. Rapid Identification of the Receptor-Binding Specificity of Influenza A Viruses by Fluorogenic Glycofoldamers. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| | - Ya-Li Zeng
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| | - Xin-Ying Tang
- Vaccine Research Center; Key Laboratory of Molecular Virology & Immunology; Institut Pasteur of Shanghai; Chinese Academy of Sciences; Shanghai 200031 China
| | - Na Li
- National Center for Protein Science Shanghai; Shanghai Institutes of Biological Sciences; Chinese Academy of Sciences; Shanghai 200031 China
| | - Dong-Ming Zhou
- Vaccine Research Center; Key Laboratory of Molecular Virology & Immunology; Institut Pasteur of Shanghai; Chinese Academy of Sciences; Shanghai 200031 China
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| | - He Tian
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| |
Collapse
|
31
|
He XP, Zeng YL, Tang XY, Li N, Zhou DM, Chen GR, Tian H. Rapid Identification of the Receptor-Binding Specificity of Influenza A Viruses by Fluorogenic Glycofoldamers. Angew Chem Int Ed Engl 2016; 55:13995-13999. [DOI: 10.1002/anie.201606488] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| | - Ya-Li Zeng
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| | - Xin-Ying Tang
- Vaccine Research Center; Key Laboratory of Molecular Virology & Immunology; Institut Pasteur of Shanghai; Chinese Academy of Sciences; Shanghai 200031 China
| | - Na Li
- National Center for Protein Science Shanghai; Shanghai Institutes of Biological Sciences; Chinese Academy of Sciences; Shanghai 200031 China
| | - Dong-Ming Zhou
- Vaccine Research Center; Key Laboratory of Molecular Virology & Immunology; Institut Pasteur of Shanghai; Chinese Academy of Sciences; Shanghai 200031 China
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| | - He Tian
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; 130 Meilong Rd. Shanghai 200237 PR China
| |
Collapse
|
32
|
Bertok T, Dosekova E, Belicky S, Holazova A, Lorencova L, Mislovicova D, Paprckova D, Vikartovska A, Plicka R, Krejci J, Ilcikova M, Kasak P, Tkac J. Mixed Zwitterion-Based Self-Assembled Monolayer Interface for Impedimetric Glycomic Analyses of Human IgG Samples in an Array Format. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7070-8. [PMID: 27311591 PMCID: PMC5659378 DOI: 10.1021/acs.langmuir.6b01456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
An impedimetric lectin biosensor for the detection of changes in the glycan structure of antibodies isolated from human serum is here correlated with the progression of rheumatoid arthritis (RA). The biosensor was built up from a mixed self-assembled monolayer (SAM) on gold consisting of two different thiolated zwitterionic derivatives, carboxybetaine and sulfobetaine, to resist nonspecific interactions. The carboxyl-terminated one was applied also for the covalent immobilization of lectin Ricinus communis agglutinin I (RCA-I). The process of building a bioreceptive layer was optimized and characterized using a diverse range of techniques. Impedimetric assays were integrated on a chip consisting of eight gold working electrodes, which is an important step toward the achievement of a moderate level of multiplexing for the analysis of human serum samples. At the end, the results obtained by the impedimetric analysis of immunoglobulins G (IgGs) isolated from serum samples were compared with those of two other standard bioanalytical methods employing lectins, that is, lectin microarrays (MAs) and enzyme-linked lectin binding assays (ELLBAs). The impedimetric results agreed very well with the DAS28 index (RA disease activity score 28), suggesting that impedimetric assays could be used for the development of a new diagnostic procedure sensitive to glycosylation changes in human IgGs and thus RA progression.
Collapse
Affiliation(s)
- Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Erika Dosekova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Stefan Belicky
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Alena Holazova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Danica Mislovicova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Darina Paprckova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Alica Vikartovska
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Robert Plicka
- BVT Technologies, Inc., Hudcova 78c, Brno 612 00, Czech Republic
| | - Jan Krejci
- BVT Technologies, Inc., Hudcova 78c, Brno 612 00, Czech Republic
| | - Marketa Ilcikova
- Center for Advanced Materials, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| |
Collapse
|
33
|
Immobilization of bilirubin oxidase on graphene oxide flakes with different negative charge density for oxygen reduction. The effect of GO charge density on enzyme coverage, electron transfer rate and current density. Biosens Bioelectron 2016; 89:384-389. [PMID: 27297188 DOI: 10.1016/j.bios.2016.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 01/16/2023]
Abstract
Previously we showed that an effective bilirubin oxidase (BOD)-based biocathode using graphene oxide (GO) could be prepared in 2 steps: 1. electrostatic adsorption of BOD on GO; 2. electrochemical reduction of the BOD-GO composite to form a BOD-ErGO (electrochemically reduced GO) film on the electrode. In order to identify an optimal charge density of GO for BOD-ErGO composite preparation, several GO fractions differing in an average flake size and ζ-potential were prepared using centrifugation and consequently employed for BOD-ErGO biocathode preparation. A simple way to express surface charge density of these particular GO nanosheets was developed. The values obtained were then correlated with biocatalytic and electrochemical parameters of the prepared biocathodes, i.e. electrocatalytically active BOD surface coverage (Γ), heterogeneous electron transfer rate (kS) and a maximum biocatalytic current density. The highest bioelectrocatalytic current density of (597±25)μAcm-2 and the highest Γ of (23.6±0.9)pmolcm-2 were obtained on BOD-GO composite having the same moderate negative charge density, but the highest kS of (79.4±4.6)s-1 was observed on BOD-GO composite having different negative charge density. This study is a solid foundation for others to consider the influence of a charge density of GO on direct bioelectrochemistry/bioelectrocatalysis of other redox enzymes applicable for construction of biosensors, bioanodes, biocathodes or biofuel cells.
Collapse
|
34
|
Hushegyi A, Pihíková D, Bertok T, Adam V, Kizek R, Tkac J. Ultrasensitive detection of influenza viruses with a glycan-based impedimetric biosensor. Biosens Bioelectron 2016; 79:644-9. [PMID: 26765527 PMCID: PMC4883649 DOI: 10.1016/j.bios.2015.12.102] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/19/2015] [Accepted: 12/29/2015] [Indexed: 12/20/2022]
Abstract
An ultrasensitive impedimetric glycan-based biosensor for reliable and selective detection of inactivated, but intact influenza viruses H3N2 was developed. Such glycan-based approach has a distinct advantage over antibody-based detection of influenza viruses since glycans are natural viral receptors with a possibility to selectively distinguish between potentially pathogenic influenza subtypes by the glycan-based biosensors. Build-up of the biosensor was carefully optimized with atomic force microscopy applied for visualization of the biosensor surface after binding of viruses with the topology of an individual viral particle H3N2 analyzed. The glycan biosensor could detect a glycan binding lectin with a limit of detection (LOD) of 5 aM. The biosensor was finally applied for analysis of influenza viruses H3N2 with LOD of 13 viral particles in 1 μl, what is the lowest LOD for analysis of influenza viral particles by the glycan-based device achieved so far. The biosensor could detect H3N2 viruses selectively with a sensitivity ratio of 30 over influenza viruses H7N7. The impedimetric biosensor presented here is the most sensitive glycan-based device for detection of influenza viruses and among the most sensitive antibody or aptamer based biosensor devices.
Collapse
Affiliation(s)
- András Hushegyi
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Dominika Pihíková
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - René Kizek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia.
| |
Collapse
|
35
|
Pihikova D, Pakanova Z, Nemcovic M, Barath P, Belicky S, Bertok T, Kasak P, Mucha J, Tkac J. Sweet characterisation of prostate specific antigen using electrochemical lectin-based immunosensor assay and MALDI TOF/TOF analysis: Focus on sialic acid. Proteomics 2016; 16:3085-3095. [PMID: 26920336 DOI: 10.1002/pmic.201500463] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/21/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022]
Abstract
The construction of a sensitive electrochemical lectin-based immunosensor for detection of a prostate specific antigen (PSA) is shown here. Three lectins with different carbohydrate specificities were used in this study to glycoprofile PSA, which is the most common biomarker for prostate cancer (PCa) diagnosis. The biosensor showed presence of α-L-fucose and α-(2,6)-linked terminal sialic acid within PSA´s glycan with high abundance, while only traces of α-(2,3)-linked terminal sialic acid were found. MALDI TOF/TOF mass spectrometry was applied to validate results obtained by the biosensor with a focus on determination of a type of sialic acid linkage by two methods. The first direct comparison of electrochemical immunosensor assay employing lectins for PSA glycoprofiling with mass spectrometric techniques is provided here and both methods show significant agreement. Thus, electrochemical lectin-based immunosensor has potential to be applied for prostate cancer diagnosis.
Collapse
Affiliation(s)
- Dominika Pihikova
- Department of Glycobiotechnology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Zuzana Pakanova
- Center of Excellence for Glycomics, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Marek Nemcovic
- Center of Excellence for Glycomics, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Peter Barath
- Center of Excellence for Glycomics, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Stefan Belicky
- Department of Glycobiotechnology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Tomas Bertok
- Department of Glycobiotechnology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Peter Kasak
- Centre for Advanced Materials, Qatar University, Doha, Qatar
| | - Jan Mucha
- Center of Excellence for Glycomics, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Jan Tkac
- Department of Glycobiotechnology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| |
Collapse
|
36
|
Pihíková D, Belicky Š, Kasák P, Bertok T, Tkac J. Sensitive detection and glycoprofiling of a prostate specific antigen using impedimetric assays. Analyst 2015; 141:1044-51. [PMID: 26647853 DOI: 10.1039/c5an02322j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study presents a proof-of-concept for the development of an impedimetric biosensor for ultra-sensitive glycoprofiling of prostate specific antigen (PSA). The biosensor exhibits three unique characteristics: (1) analysis of PSA with limit of detection (LOD) down to 4 aM; (2) analysis of the glycan part of PSA with LOD down to 4 aM level and; (3) both assays (i.e., PSA quantification and PSA glycoprofiling) can be performed on the same interface due to label-free analysis.
Collapse
Affiliation(s)
- D Pihíková
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovak Republic.
| | | | | | | | | |
Collapse
|
37
|
Fei Y, Sun YS, Li Y, Yu H, Lau K, Landry JP, Luo Z, Baumgarth N, Chen X, Zhu X. Characterization of Receptor Binding Profiles of Influenza A Viruses Using An Ellipsometry-Based Label-Free Glycan Microarray Assay Platform. Biomolecules 2015; 5:1480-98. [PMID: 26193329 PMCID: PMC4598760 DOI: 10.3390/biom5031480] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/09/2015] [Accepted: 07/06/2015] [Indexed: 12/11/2022] Open
Abstract
A key step leading to influenza viral infection is the highly specific binding of a viral spike protein, hemagglutinin (HA), with an extracellular glycan receptor of a host cell. Detailed and timely characterization of virus-receptor binding profiles may be used to evaluate and track the pandemic potential of an influenza virus strain. We demonstrate a label-free glycan microarray assay platform for acquiring influenza virus binding profiles against a wide variety of glycan receptors. By immobilizing biotinylated receptors on a streptavidin-functionalized solid surface, we measured binding curves of five influenza A virus strains with 24 glycans of diverse structures and used the apparent equilibrium dissociation constants (avidity constants, 10–100 pM) as characterizing parameters of viral receptor profiles. Furthermore by measuring binding kinetic constants of solution-phase glycans to immobilized viruses, we confirmed that the glycan-HA affinity constant is in the range of 10 mM and the reaction is enthalpy-driven.
Collapse
Affiliation(s)
- Yiyan Fei
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Fudan University, 220 Handan Road, Shanghai 200433, China.
- Department of Physics, University of California, Davis, CA 95616, USA.
| | - Yung-Shin Sun
- Department of Physics, University of California, Davis, CA 95616, USA.
- Department of Physics, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Yanhong Li
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | - Hai Yu
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | - Kam Lau
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | - James P Landry
- Department of Physics, University of California, Davis, CA 95616, USA.
| | - Zeng Luo
- Center for Comparative Medicine, University of California, Davis, CA 95616, USA.
| | - Nicole Baumgarth
- Center for Comparative Medicine, University of California, Davis, CA 95616, USA.
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | - Xiangdong Zhu
- Department of Physics, University of California, Davis, CA 95616, USA.
| |
Collapse
|
38
|
Bertok T, Šedivá A, Filip J, Ilcikova M, Kasak P, Velic D, Jane E, Mravcová M, Rovenský J, Kunzo P, Lobotka P, Šmatko V, Vikartovská A, Tkac J. Carboxybetaine Modified Interface for Electrochemical Glycoprofiling of Antibodies Isolated from Human Serum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7148-57. [PMID: 26048139 PMCID: PMC4489201 DOI: 10.1021/acs.langmuir.5b00944] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Impedimetric lectin biosensors capable of recognizing two different carbohydrates (galactose and sialic acid) in glycans attached to antibodies isolated from human serum were prepared. The first step entailed the modification of a gold surface by a self-assembled monolayer (SAM) deposited from a solution containing a carboxybetaine-terminated thiol applied to the subsequent covalent immobilization of lectins and to resist nonspecific protein adsorption. In the next step, Sambucus nigra agglutinin (SNA) or Ricinus communis agglutinin (RCA) was covalently attached to the SAM, and the whole process of building a bioreceptive layer was optimized and characterized using a diverse range of techniques including electrochemical impedance spectroscopy, cyclic voltammetry, quartz crystal microbalance, contact angle measurements, zeta-potential assays, X-ray photoelectron spectroscopy, and atomic force microscopy. In addition, the application of the SNA-based lectin biosensor in the glycoprofiling of antibodies isolated from the human sera of healthy individuals and of patients suffering from rheumatoid arthritis (RA) was successfully validated using an SNA-based lectin microarray. The results showed that the SNA lectin, in particular, is capable of discriminating between the antibodies isolated from healthy individuals and those from RA patients based on changes in the amount of sialic acid present in the antibodies. In addition, the results obtained by the application of RCA and SNA biosensors indicate that the abundance of galactose and sialic acid in antibodies isolated from healthy individuals is age-related.
Collapse
Affiliation(s)
- Tomas Bertok
- Department
of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovak Republic
| | - Alena Šedivá
- Department
of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovak Republic
| | - Jaroslav Filip
- Department
of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovak Republic
| | - Marketa Ilcikova
- Centre
for Advanced Materials, Qatar University, Doha 2713, Qatar
| | - Peter Kasak
- Centre
for Advanced Materials, Qatar University, Doha 2713, Qatar
| | - Dusan Velic
- Department
of Physical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, Bratislava, 842 15, Slovak Republic
- International
Laser Centre, Ilkovičova
3, Bratislava 841 04, Slovak Republic
| | - Eduard Jane
- International
Laser Centre, Ilkovičova
3, Bratislava 841 04, Slovak Republic
| | - Martina Mravcová
- Laboratory
of Human Endocrinology, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, Bratislava, 833 06, Slovak Republic
| | - Jozef Rovenský
- National
Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt’any, Slovak Republic
| | - Pavol Kunzo
- Department
of Sensors and Detectors, Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 841 04, Slovak Republic
| | - Peter Lobotka
- Department
of Sensors and Detectors, Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 841 04, Slovak Republic
| | - Vasilij Šmatko
- Department
of Sensors and Detectors, Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 841 04, Slovak Republic
| | - Alica Vikartovská
- Department
of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovak Republic
| | - Jan Tkac
- Department
of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovak Republic
- Tel.: +421 2 5941 0263. E-mail:
| |
Collapse
|