1
|
Hata Y, Serizawa T. Nanoarchitectonics of cello-oligosaccharides: A route toward artificial nanocelluloses. Adv Colloid Interface Sci 2025; 336:103361. [PMID: 39642432 DOI: 10.1016/j.cis.2024.103361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Colloidal cellulose nanoparticles, or nanocelluloses, are derived from natural cellulose sources in a top-down manner via physical and/or chemical treatments that extract naturally occurring cellulose nanostructures. Naturally derived nanocelluloses have been successfully commercialized in various fields, and their potential is still being widely explored in materials science. Moreover, recent advances in nanoarchitectonics of low-molecular-weight cellulose, or cello-oligosaccharides, have opened new avenues for developing "artificial nanocelluloses". Artificial nanocelluloses composed of cello-oligosaccharides synthesized via enzymatic oligomerization or solid-phase glycan synthesis technology are termed "synthetic nanocelluloses". These nanostructures are abiotically constructed in a bottom-up manner at the molecular level via self-assembly of cello-oligosaccharides in vitro. Modulation of the assembly process and molecular design provides control over the molecular alignment, nanomorphology, and surface functionality of artificial nanocelluloses. This review summarizes recent research progress in artificial nanocelluloses, from the preparation and self-assembly of cello-oligosaccharides to their potential applications.
Collapse
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1-H-121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1-H-121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
2
|
Pylkkänen R, Maaheimo H, Liljeström V, Mohammadi P, Penttilä M. Glycoside Phosphorylase Catalyzed Cellulose and β-1,3-Glucan Synthesis Using Chromophoric Glycosyl Acceptors. Biomacromolecules 2024; 25:5048-5057. [PMID: 39025475 PMCID: PMC11322998 DOI: 10.1021/acs.biomac.4c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
Glycoside phosphorylases are enzymes that are frequently used for polysaccharide synthesis. Some of these enzymes have broad substrate specificity, enabling the synthesis of reducing-end-functionalized glucan chains. Here, we explore the potential of glycoside phosphorylases in synthesizing chromophore-conjugated polysaccharides using commercially available chromophoric model compounds as glycosyl acceptors. Specifically, we report cellulose and β-1,3-glucan synthesis using 2-nitrophenyl β-d-glucopyranoside, 4-nitrophenyl β-d-glucopyranoside, and 2-methoxy-4-(2-nitrovinyl)phenyl β-d-glucopyranoside with Clostridium thermocellum cellodextrin phosphorylase and Thermosipho africanus β-1,3-glucan phosphorylase as catalysts. We demonstrate activity for both enzymes with all assayed chromophoric acceptors and report the crystallization-driven precipitation and detailed structural characterization of the synthesized polysaccharides, i.e., their molar mass distributions and various structural parameters, such as morphology, fibril diameter, lamellar thickness, and crystal form. Our results provide insights for the studies of chromophore-conjugated low molecular weight polysaccharides, glycoside phosphorylases, and the hierarchical assembly of crystalline cellulose and β-1,3-glucan.
Collapse
Affiliation(s)
- Robert Pylkkänen
- VTT
Technical Research Centre of Finland Ltd., FI-02044 VTT, Finland
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 AALTO, Finland
| | - Hannu Maaheimo
- VTT
Technical Research Centre of Finland Ltd., FI-02044 VTT, Finland
| | - Ville Liljeström
- Nanomicroscopy
Center, OtaNano, Aalto University, FI-00076 AALTO, Finland
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., FI-02044 VTT, Finland
| | - Merja Penttilä
- VTT
Technical Research Centre of Finland Ltd., FI-02044 VTT, Finland
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 AALTO, Finland
| |
Collapse
|
3
|
Zhong C, Nidetzky B. Bottom-Up Synthesized Glucan Materials: Opportunities from Applied Biocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400436. [PMID: 38514194 DOI: 10.1002/adma.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Indexed: 03/23/2024]
Abstract
Linear d-glucans are natural polysaccharides of simple chemical structure. They are comprised of d-glucosyl units linked by a single type of glycosidic bond. Noncovalent interactions within, and between, the d-glucan chains give rise to a broad variety of macromolecular nanostructures that can assemble into crystalline-organized materials of tunable morphology. Structure design and functionalization of d-glucans for diverse material applications largely relies on top-down processing and chemical derivatization of naturally derived starting materials. The top-down approach encounters critical limitations in efficiency, selectivity, and flexibility. Bottom-up approaches of d-glucan synthesis offer different, and often more precise, ways of polymer structure control and provide means of functional diversification widely inaccessible to top-down routes of polysaccharide material processing. Here the natural and engineered enzymes (glycosyltransferases, glycoside hydrolases and phosphorylases, glycosynthases) for d-glucan polymerization are described and the use of applied biocatalysis for the bottom-up assembly of specific d-glucan structures is shown. Advanced material applications of the resulting polymeric products are further shown and their important role in the development of sustainable macromolecular materials in a bio-based circular economy is discussed.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz, 8010, Austria
| |
Collapse
|
4
|
Suehiro F, Hata Y, Sawada T, Serizawa T. Freeze-Dryable, Stable, and Click-Reactive Nanoparticles Composed of Cello-oligosaccharides for Biomolecular Sensing. ACS APPLIED BIO MATERIALS 2024; 7:4007-4016. [PMID: 38739554 DOI: 10.1021/acsabm.4c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Nanoparticles have been widely used as platforms for biomolecular sensing because of their high specific surface area and attractive properties depending on their constituents and structures. Nevertheless, it remains challenging to develop nanoparticulate sensing platforms that are easily storable without aggregation and conjugatable with various ligands in a simple manner. Herein, we demonstrate that nanoparticulate assemblies of cello-oligosaccharides with terminal azido groups are promising candidates. Azidated cello-oligosaccharides can be readily synthesized via the enzyme-catalyzed oligomerization reaction. This study characterized the assembled structures of azidated cello-oligosaccharides produced during the enzymatic synthesis and revealed that the terminal azidated cello-oligosaccharides formed rectangular nanosheet-shaped lamellar crystals. The azido groups located on the nanosheet surfaces were successfully exploited for antigen conjugation via the click chemistry. The resultant antigen-conjugated nanosheets allowed for the quantitative and specific detection of a corresponding antibody, even in 10% serum, owing to the antifouling properties of cello-oligosaccharide assemblies against proteins. It was found that the functionalized nanosheets were redispersible in water after freeze-drying. This remarkable characteristic is attributed to the well-hydrated saccharide residues on the nanosheet surfaces. Moreover, the antibody detection capability did not decline after the thermal treatment of the functionalized nanosheets in a freeze-dried state. Our findings contribute to developing convenient nanoparticulate biomolecular sensing platforms.
Collapse
Affiliation(s)
- Fumi Suehiro
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
5
|
Kuga T, Sunagawa N, Igarashi K. Effect of Free Cysteine Residues to Serine Mutation on Cellodextrin Phosphorylase. J Appl Glycosci (1999) 2024; 71:37-46. [PMID: 38863949 PMCID: PMC11163329 DOI: 10.5458/jag.jag.jag-2023_0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/19/2024] [Indexed: 06/13/2024] Open
Abstract
Cellodextrin phosphorylase (CDP) plays a key role in energy-efficient cellulose metabolism of anaerobic bacteria by catalyzing phosphorolysis of cellodextrin to produce cellobiose and glucose 1-phosphate, which can be utilized for glycolysis without consumption of additional ATP. As the enzymatic phosphorolysis reaction is reversible, CDP is also employed to produce cellulosic materials in vitro. However, the enzyme is rapidly inactivated by oxidation, which hinders in vitro utilization in aerobic environments. It has been suggested that the cysteine residues of CDP, which do not form disulfide bonds, are responsible for the loss of activity, and the aim of the present work was to test this idea. For this purpose, we replaced all 11 free cysteine residues of CDP from Acetivibrio thermocellus (formerly known as Clostridium thermocellum) with serine, which structurally resembles cysteine in our previous work. Herein, we show that the resulting CDP variant, named CDP-CS, has comparable activity to the wild-type enzyme, but shows increased stability to oxidation during long-term storage. X-Ray crystallography indicated that the mutations did not markedly alter the overall structure of the enzyme. Ensemble refinement of the crystal structures of CDP and CDP-CS indicated that the C372S and C625S mutations reduce structural fluctuations in the protein main chain, which may contribute to the increased stability of CDP-CS to oxidation.
Collapse
Affiliation(s)
- Tomohiro Kuga
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
6
|
Kamada H, Hata Y, Sugiura K, Sawada T, Serizawa T. Interfacial jamming of surface-alkylated synthetic nanocelluloses for structuring liquids. Carbohydr Polym 2024; 331:121896. [PMID: 38388029 DOI: 10.1016/j.carbpol.2024.121896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Nanocelluloses derived from natural cellulose sources are promising sustainable nanomaterials. Previous studies have reported that nanocelluloses are strongly adsorbed onto liquid-liquid interfaces with the concurrent use of ligands and allow for the structuring of liquids, that is, the kinetic trapping of nonequilibrium shapes of liquids. However, the structuring of liquids using nanocelluloses alone has yet to be demonstrated, despite its great potential in the development of sustainable liquid-based materials that are biocompatible and environmentally friendly. Herein, we demonstrated the structuring of liquids using rectangular sheet-shaped synthetic nanocelluloses with surface alkyl groups. Synthetic nanocelluloses with ethyl, butyl, and hexyl groups on their surfaces were readily prepared following our previous reports via the self-assembly of enzymatically synthesized cello-oligosaccharides having the corresponding alkyl groups. Among the alkylated synthetic nanocelluloses, the hexylated nanocellulose was adsorbed and jammed at water-n-undecane interfaces to form interfacial assemblies, which acted substantially as an integrated film for structuring liquids. These phenomena were attributed to the unique structural characteristics of the surface-hexylated synthetic nanocelluloses; their sheet shape offered a large area for adsorption onto interfaces, and their controlled surface hydrophilicity/hydrophobicity enhanced the affinity for both liquid phases. Our findings promote the development of all-liquid devices using nanocelluloses.
Collapse
Affiliation(s)
- Hirotaka Kamada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kai Sugiura
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
7
|
Kim H, Dutta SD, Randhawa A, Patil TV, Ganguly K, Acharya R, Lee J, Park H, Lim KT. Recent advances and biomedical application of 3D printed nanocellulose-based adhesive hydrogels: A review. Int J Biol Macromol 2024; 264:130732. [PMID: 38479658 DOI: 10.1016/j.ijbiomac.2024.130732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Nanocellulose-based tissue adhesives show promise for achieving rapid hemostasis and effective wound healing. Conventional methods, such as sutures and staples, have limitations, prompting the exploration of bioadhesives for direct wound adhesion and minimal tissue damage. Nanocellulose, a hydrolysis product of cellulose, exhibits superior biocompatibility and multifunctional properties, gaining interest as a base material for bioadhesive development. This study explores the potential of nanocellulose-based adhesives for hemostasis and wound healing using 3D printing techniques. Nanocellulose enables the creation of biodegradable adhesives with minimal adverse effects and opens avenues for advanced wound healing and complex tissue regeneration, such as skin, blood vessels, lungs, cartilage, and muscle. This study reviews recent trends in various nanocellulose-based 3D printed hydrogel patches for tissue engineering applications. The review also introduces various types of nanocellulose and their synthesis, surface modification, and bioadhesive fabrication techniques via 3D printing for smart wound healing.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea.
| |
Collapse
|
8
|
Serizawa T, Yamaguchi S, Sugiura K, Marten R, Yamamoto A, Hata Y, Sawada T, Tanaka H, Tanaka M. Antibacterial Synthetic Nanocelluloses Synergizing with a Metal-Chelating Agent. ACS APPLIED BIO MATERIALS 2024; 7:246-255. [PMID: 37967519 PMCID: PMC10792664 DOI: 10.1021/acsabm.3c00846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
Antibacterial materials composed of biodegradable and biocompatible constituents that are produced via eco-friendly synthetic strategies will become an attractive alternative to antibiotics to combat antibiotic-resistant bacteria. In this study, we demonstrated the antibacterial properties of nanosheet-shaped crystalline assemblies of enzymatically synthesized aminated cellulose oligomers (namely, surface-aminated synthetic nanocelluloses) and their synergy with a metal-chelating antibacterial agent, ethylenediaminetetraacetic acid (EDTA). Growth curves and colony counting assays revealed that the surface-aminated cellulose assemblies had an antibacterial effect against Gram-negative Escherichia coli (E. coli). The cationic assemblies appeared to destabilize the cell wall of E. coli through electrostatic interactions with anionic lipopolysaccharide (LPS) molecules on the outer membrane. The antibacterial properties were significantly enhanced by the concurrent use of EDTA, which potentially removed metal ions from LPS molecules, resulting in synergistic bactericidal effects. No antibacterial activity of the surface-aminated cellulose assemblies was observed against Gram-positive Staphylococcus aureus even in the presence of EDTA, further supporting the contribution of electrostatic interactions between the cationic assemblies and anionic LPS to the activity against Gram-negative bacteria. Analysis using quartz crystal microbalance with dissipation monitoring revealed the attractive interaction of the surface-aminated cellulose assembly with LPS Ra monolayers artificially produced on the device substrate.
Collapse
Affiliation(s)
- Takeshi Serizawa
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Saeko Yamaguchi
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kai Sugiura
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ramona Marten
- Physical
Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg D69120, Germany
- Center
for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Akihisa Yamamoto
- Center
for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Yuuki Hata
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hiroshi Tanaka
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Motomu Tanaka
- Physical
Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg D69120, Germany
- Center
for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Chen S, Feng J, Jiang F, Briber RM, Wang H. Facile preparation of near-monodisperse oligocellulose and its elastomeric derivatives with tunable mechanical properties. Carbohydr Polym 2024; 324:121493. [PMID: 37985085 DOI: 10.1016/j.carbpol.2023.121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023]
Abstract
Oligocellulose (OC) with low polydispersity indices has been produced in large quantities using an improved method of acid-assisted hydrolysis, in which long cellulose chains disintegrate in concentrated phosphoric acid at moderately elevated temperatures. The hydrolysis time has been reduced by three orders of magnitude without compromising the overall yield of the process or the quality of OC products. The efficient production of high-quality OCs in large quantities allows for developing OC-derived elastomeric materials. A series of OC-graft-poly(isobornyl methacrylate-random-n-butyl acrylate) [OC-g-P(IBOMA-r-BA)] elastomers have been synthesized via activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP). OC-g-P(IBOMA-r-BA) elastomers have tunable molecular architectures and phase morphologies toward desirable mechanical properties and thermal stability suitable for various applications. The methodologies of the OC production and the graft-polymers synthesis in this study would help advance technologies for broader applications of bio-based elastomers.
Collapse
Affiliation(s)
- Shuaishuai Chen
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jiajun Feng
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Feng Jiang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China; Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Robert M Briber
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Howard Wang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA; Spallation Neutron Source Science Center, Dongguan, Guangdong 523803, China.
| |
Collapse
|
10
|
Hayakawa N, Nishiura M, Anada T, Kobayashi S, Sawada T, Serizawa T, Tanaka M. Suspension Culture System for Isolating Cancer Spheroids using Enzymatically Synthesized Cellulose Oligomers. ACS APPLIED BIO MATERIALS 2024; 7:306-314. [PMID: 38091496 DOI: 10.1021/acsabm.3c00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Isolating cancer cells from tissues and providing an appropriate culture environment are important for a better understanding of cancer behavior. Although various three-dimensional (3D) cell culture systems have been developed, techniques for collecting high-purity spheroids without strong stimulation are required. Herein, we report a 3D cell culture system for the isolation of cancer spheroids using enzymatically synthesized cellulose oligomers (COs) and demonstrate that this system isolates only cancer spheroids under coculture conditions with normal cells. CO suspensions in a serum-containing cell culture medium were prepared to suspend cells without settling. High-purity cancer spheroids could be separated by filtration without strong stimulation because the COs exhibited antibiofouling properties and a viscosity comparable to that of the culture medium. When human hepatocellular carcinoma (HepG2) cells, a model for cancer cells, were cultured in the CO suspensions, they proliferated clonally and efficiently with time. In addition, only developed cancer spheroids from HepG2 cells were collected in the presence of normal cells by using a mesh filter with an appropriate pore size. These results indicate that this approach has potential applications in basic cancer research and cancer drug screening.
Collapse
Affiliation(s)
- Natsuki Hayakawa
- DKS Co. Ltd., 55 Nishishichijo Higashikubocho, Shimogyo-ku, Kyoto 600-8873, Japan
| | - Masahito Nishiura
- DKS Co. Ltd., 55 Nishishichijo Higashikubocho, Shimogyo-ku, Kyoto 600-8873, Japan
| | - Takahisa Anada
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shingo Kobayashi
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masaru Tanaka
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Serizawa T, Yamaguchi S, Amitani M, Ishii S, Tsuyuki H, Tanaka Y, Sawada T, Kawamura I, Watanabe G, Tanaka M. Alkyl chain length-dependent protein nonadsorption and adsorption properties of crystalline alkyl β-celluloside assemblies. Colloids Surf B Biointerfaces 2022; 220:112898. [DOI: 10.1016/j.colsurfb.2022.112898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/27/2022]
|
12
|
Lehrhofer AF, Goto T, Kawada T, Rosenau T, Hettegger H. The in vitro synthesis of cellulose – A mini-review. Carbohydr Polym 2022; 285:119222. [DOI: 10.1016/j.carbpol.2022.119222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/02/2022]
|
13
|
Zhong C, Nidetzky B. Precision synthesis of reducing-end thiol-modified cellulose enabled by enzyme selection. Polym J 2021. [DOI: 10.1038/s41428-021-00599-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AbstractEnzyme-catalyzed iterative β-1,4-glycosylation of β-glycosides is promising for bottom-up polymerization of reducing-end-modified cello-oligosaccharide chains. Self-assembly of the chains from solution yields crystalline nanocellulose materials with properties that are tunable by the glycoside group used. Cellulose chains with a reducing-end thiol group are of interest to install a controllable pattern of site-selective modifications into the nanocellulose material. Selection of the polymerizing enzyme (cellodextrin phosphorylase; CdP) was pursued here to enhance the synthetic precision of β-1-thio-glucose conversion to generate pure “1-thio-cellulose” (≥95%) unencumbered by plain (unlabeled) cellulose resulting from enzymatic side reactions. The CdP from Clostridium stercorarium (CsCdP) was 21 times more active on β-1-thio-glucose (0.17 U/mg; 45 °C) than the CdP from Clostridium cellulosi (CcCdP), and it lacked hydrolase activity, which is substantial in CcCdP, against the α-d-glucose 1-phosphate donor substrate. The combination of these enzyme properties indicated that CsCdP is a practical catalyst for 1-thio-cellulose synthesis directly from β-1-thio-glucose (8 h; 25 mol% yield) that does not require a second enzyme (cellobiose phosphorylase), which was essential when using the less selective CcCdP. The 1-thio-cellulose chains had an average degree of polymerization of ∼10 and were assembled into highly crystalline cellulose II crystallinity material.
Collapse
|
14
|
Sakurai Y, Sawada T, Serizawa T. Phosphorylase-catalyzed synthesis and self-assembled structures of cellulose oligomers in the presence of protein denaturants. Polym J 2021. [DOI: 10.1038/s41428-021-00592-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Wang Y, Li Q, Miao W, Lu P, You C, Wang Z. Hydrophilic PVDF membrane with versatile surface functions fabricated via cellulose molecular coating. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Bulmer GS, de Andrade P, Field RA, van Munster JM. Recent advances in enzymatic synthesis of β-glucan and cellulose. Carbohydr Res 2021; 508:108411. [PMID: 34392134 PMCID: PMC8425183 DOI: 10.1016/j.carres.2021.108411] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/07/2023]
Abstract
Bottom-up synthesis of β-glucans such as callose, fungal β-(1,3)(1,6)-glucan and cellulose, can create the defined compounds that are needed to perform fundamental studies on glucan properties and develop applications. With the importance of β-glucans and cellulose in high-profile fields such as nutrition, renewables-based biotechnology and materials science, the enzymatic synthesis of such relevant carbohydrates and their derivatives has attracted much attention. Here we review recent developments in enzymatic synthesis of β-glucans and cellulose, with a focus on progress made over the last five years. We cover the different types of biocatalysts employed, their incorporation in cascades, the exploitation of enzyme promiscuity and their engineering, and reaction conditions affecting the production as well as in situ self-assembly of (non)functionalised glucans. The recent achievements in the application of glycosyl transferases and β-1,4- and β-1,3-glucan phosphorylases demonstrate the high potential and versatility of these biocatalysts in glucan synthesis in both industrial and academic contexts.
Collapse
Affiliation(s)
- Gregory S Bulmer
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Peterson de Andrade
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jolanda M van Munster
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; Scotland's Rural College, Edinburgh, UK.
| |
Collapse
|
17
|
Hata Y, Serizawa T. Robust Gels Composed of Self-Assembled Cello-oligosaccharide Networks. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yuuki Hata
- Division of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
18
|
Hata Y, Serizawa T. Self-assembly of cellulose for creating green materials with tailor-made nanostructures. J Mater Chem B 2021; 9:3944-3966. [PMID: 33908581 DOI: 10.1039/d1tb00339a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Inspired by living systems, biomolecules have been employed in vitro as building blocks for creating advanced nanostructured materials. In regard to nucleic acids, peptides, and lipids, their self-assembly pathways and resulting assembled structures are mostly encoded in their molecular structures. On the other hand, outside of its chain length, cellulose, a polysaccharide, lacks structural diversity; therefore, it is challenging to direct this homopolymer to controllably assemble into ordered nanostructures. Nevertheless, the properties of cellulose assemblies are outstanding in terms of their robustness and inertness, and these assemblies are attractive for constructing versatile materials. In this review article, we summarize recent research progress on the self-assembly of cellulose and the applications of assembled cellulose materials, especially for biomedical use. Given that cellulose is the most abundant biopolymer on Earth, gaining control over cellulose assembly represents a promising route for producing green materials with tailor-made nanostructures.
Collapse
Affiliation(s)
- Yuuki Hata
- Division of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa-shi, Saitama 359-8513, Japan.
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
19
|
Nigmatullin R, de Andrade P, Harniman R, Field RA, Eichhorn SJ. Postsynthesis Self- And Coassembly of Enzymatically Produced Fluorinated Cellodextrins and Cellulose Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9215-9221. [PMID: 34297578 DOI: 10.1021/acs.langmuir.1c01389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The design of new functional materials and devices substantially relies on self-assembly of hierarchical structures. Formation of 2D platelets is known in the enzymatic synthesis of cellulose-like polymers. Here we demonstrate the feasibility of postsynthesis assembly of novel fluorinated cellodextrins. Highly ordered 2D structures of large lateral dimensions, unattainable in the polymerization process, can be formed because of postsynthesis assembly of the cellodextrins. These cellodextrins were also involved in coassembly with cellulose nanocrystals (CNCs) leading to hybrid systems. The hybrid architectures obtained depend on the content of fluorine atoms in the fluorinated cellodextrins. Monofluorinated cellodextrins coassemble with CNCs into a nanoweb, while multifluorinated cellodextrins assemble around the CNCs.
Collapse
Affiliation(s)
- Rinat Nigmatullin
- Bristol Composites Institute, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom
| | - Peterson de Andrade
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7TH, U.K
| | - Robert Harniman
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7TH, U.K
| | - Stephen J Eichhorn
- Bristol Composites Institute, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom
| |
Collapse
|
20
|
Sugiura K, Sawada T, Tanaka H, Serizawa T. Enzyme-catalyzed propagation of cello-oligosaccharide chains from bifunctional oligomeric primers for the preparation of block co-oligomers and their crystalline assemblies. Polym J 2021. [DOI: 10.1038/s41428-021-00513-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Serizawa T, Tanaka S, Sawada T. Control of parallel versus antiparallel molecular arrangements in crystalline assemblies of alkyl β-cellulosides. J Colloid Interface Sci 2021; 601:505-516. [PMID: 34090028 DOI: 10.1016/j.jcis.2021.05.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 11/28/2022]
Abstract
HYPOTHESIS The precise control of parallel versus antiparallel molecular arrangements in synthetic assemblies of biorelated molecules is an attractive research focus from both scientific and technological viewpoints. However, little is known about cellulose-based synthetic assemblies. We hypothesized the existence of potential parameters, such as temperature, salt concentration, salt species, and solvent species, for controlling the molecular arrangement in assemblies of alkyl β-cellulosides with different alkyl chain lengths. EXPERIMENTAL The self-assembly of alkyl β-cellulosides was triggered by neutralization-induced water insolubilization. The crystal structures of the cellulose moieties in the assemblies were characterized by attenuated total reflection-Fourier transform infrared absorption spectroscopy and wide-angle X-ray diffraction measurements. The morphologies of the assemblies were also characterized by scanning electron, atomic force, and transmission electron microscopy. FINDINGS The temperature for the self-assembly, the concentration and species of inorganic salt in the self-assembly solution, and the solvent species (namely, the addition of water-miscible organic solvents into the self-assembly solution) strongly affected the molecular arrangement of the assemblies. The observations suggested that hydrophobic effects between the alkyl groups of the alkyl β-cellulosides and/or interactions of the alkyl β-cellulosides with solvent species were potential factors for controlling the molecular arrangement.
Collapse
Affiliation(s)
- Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Shoki Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| |
Collapse
|
22
|
Zhong C, Zajki-Zechmeister K, Nidetzky B. Reducing end thiol-modified nanocellulose: Bottom-up enzymatic synthesis and use for templated assembly of silver nanoparticles into biocidal composite material. Carbohydr Polym 2021; 260:117772. [PMID: 33712130 DOI: 10.1016/j.carbpol.2021.117772] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022]
Abstract
Nanoparticle-polymer composites are important functional materials but structural control of their assembly is challenging. Owing to its crystalline internal structure and tunable nanoscale morphology, cellulose is promising polymer scaffold for templating such composite materials. Here, we show bottom-up synthesis of reducing end thiol-modified cellulose chains by iterative bi-enzymatic β-1,4-glycosylation of 1-thio-β-d-glucose (10 mM), to a degree of polymerization of ∼8 and in a yield of ∼41% on the donor substrate (α-d-glucose 1-phosphate, 100 mM). Synthetic cellulose oligomers self-assemble into highly ordered crystalline (cellulose allomorph II) material showing long (micrometers) and thin nanosheet-like morphologies, with thickness of 5-7 nm. Silver nanoparticles were attached selectively and well dispersed on the surface of the thiol-modified cellulose, in excellent yield (≥ 95%) and high loading efficiency (∼2.2 g silver/g thiol-cellulose). Examined against Escherichia coli and Staphylococcus aureus, surface-patterned nanoparticles show excellent biocidal activity. Bottom-up approach by chemical design to a functional cellulose nanocomposite is presented. Synthetic thiol-containing nanocellulose can expand the scope of top-down produced cellulose materials.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria.
| | - Krisztina Zajki-Zechmeister
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria.
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010 Graz, Austria.
| |
Collapse
|
23
|
Li Q, Ma Z, Meng D, Sui X, You C. Facile biosynthesis of synthetic crystalline cellulose nanoribbon from maltodextrin through a minimized two-enzyme phosphorylase cascade and its application in emulsion. J Biotechnol 2021; 332:54-60. [PMID: 33785372 DOI: 10.1016/j.jbiotec.2021.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 11/19/2022]
Abstract
Nanocellulose has many promising applications such as a green ingredient for Pickering emulsion. Traditional strategies to produce nanocellulose, which are acid or enzymatic hydrolysis and mechanical methods on natural complicated cellulose, are hard to control and can result in significant pollutants during the processes. Herein, we demonstrated a facile and sustainable method for the biocatalytic production of insoluble synthetic crystalline cellulose nanoribbon (CCNR) from cheap maltodextrin by coupling α-glucan phosphorylase (αGP) and cellodextrin phosphorylase (CDP) using cellobiose as a primer. And by optimizing the combination of different αGP and CDP, it turned out that the optimal enzyme combination is αGP from Thermotoga maritime and CDP from Clostridium thermocellum, in which CDP was attached to a family 9 cellulose-binding module. The product yield and degree of polymerization (DP) of insoluble synthetic CCNR was affected by the primer concentration at a fixed concentration of maltodextrin. After optimization of reaction conditions, the highest product yield of insoluble synthetic CCNR was 44.92 % and the highest DP of the insoluble synthetic CCNR was 24 from 50 g 1-1 maltodextrin. This insoluble synthetic CCNR can be used as a Pickering emulsions stabilizer, showing excellent emulsifiability. This study provides a promising alternative for cost-efficient production of insoluble synthetic CCNR which was used as a green emulsion stabilizer.
Collapse
Affiliation(s)
- Qiangzi Li
- University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District, Beijing 100049, P.R. China; Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
| | - Zhongsheng Ma
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P.R. China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai, 201620, P.R. China
| | - Dongdong Meng
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P.R. China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai, 201620, P.R. China.
| | - Chun You
- University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District, Beijing 100049, P.R. China; Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, P.R. China.
| |
Collapse
|
24
|
de Andrade P, Muñoz‐García JC, Pergolizzi G, Gabrielli V, Nepogodiev SA, Iuga D, Fábián L, Nigmatullin R, Johns MA, Harniman R, Eichhorn SJ, Angulo J, Khimyak YZ, Field RA. Chemoenzymatic Synthesis of Fluorinated Cellodextrins Identifies a New Allomorph for Cellulose-Like Materials*. Chemistry 2021; 27:1374-1382. [PMID: 32990374 PMCID: PMC7898601 DOI: 10.1002/chem.202003604] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Understanding the fine details of the self-assembly of building blocks into complex hierarchical structures represents a major challenge en route to the design and preparation of soft-matter materials with specific properties. Enzymatically synthesised cellodextrins are known to have limited water solubility beyond DP9, a point at which they self-assemble into particles resembling the antiparallel cellulose II crystalline packing. We have prepared and characterised a series of site-selectively fluorinated cellodextrins with different degrees of fluorination and substitution patterns by chemoenzymatic synthesis. Bearing in mind the potential disruption of the hydrogen-bond network of cellulose II, we have prepared and characterised a multiply 6-fluorinated cellodextrin. In addition, a series of single site-selectively fluorinated cellodextrins was synthesised to assess the structural impact upon the addition of one fluorine atom per chain. The structural characterisation of these materials at different length scales, combining advanced NMR spectroscopy and microscopy methods, showed that a 6-fluorinated donor substrate yielded multiply 6-fluorinated cellodextrin chains that assembled into particles presenting morphological and crystallinity features, and intermolecular interactions, that are unprecedented for cellulose-like materials.
Collapse
Affiliation(s)
- Peterson de Andrade
- Department of Biological ChemistryJohn Innes CentreNorwichNR4 7UHUK
- Present address: Department of Chemistry and Manchester Institute of BiotechnologyUniversity of ManchesterManchesterM1 7DNUK
| | - Juan C. Muñoz‐García
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Giulia Pergolizzi
- Department of Biological ChemistryJohn Innes CentreNorwichNR4 7UHUK
- Iceni Diagnostics Ltd.Norwich Research Park Innovation CentreColney LaneNorwichNorfolkNR4 7GJUK
| | - Valeria Gabrielli
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | | | - Dinu Iuga
- Department of PhysicsUniversity of WarwickCoventryCV4 7ALUK
| | - László Fábián
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Rinat Nigmatullin
- Bristol Composites InstituteCAME School of EngineeringUniversity of BristolBristolBS8 1TRUK
| | - Marcus A. Johns
- Bristol Composites InstituteCAME School of EngineeringUniversity of BristolBristolBS8 1TRUK
| | | | - Stephen J. Eichhorn
- Bristol Composites InstituteCAME School of EngineeringUniversity of BristolBristolBS8 1TRUK
| | - Jesús Angulo
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Yaroslav Z. Khimyak
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Robert A. Field
- Department of Biological ChemistryJohn Innes CentreNorwichNR4 7UHUK
- Iceni Diagnostics Ltd.Norwich Research Park Innovation CentreColney LaneNorwichNorfolkNR4 7GJUK
- Present address: Department of Chemistry and Manchester Institute of BiotechnologyUniversity of ManchesterManchesterM1 7DNUK
| |
Collapse
|
25
|
Awad FN. Glycoside phosphorylases for carbohydrate synthesis: An insight into the diversity and potentiality. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Nidetzky B, Zhong C. Phosphorylase-catalyzed bottom-up synthesis of short-chain soluble cello-oligosaccharides and property-tunable cellulosic materials. Biotechnol Adv 2020; 51:107633. [PMID: 32966861 DOI: 10.1016/j.biotechadv.2020.107633] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/23/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
Abstract
Cellulose-based materials are produced industrially in countless varieties via top-down processing of natural lignocellulose substrates. By contrast, cellulosic materials are only rarely prepared via bottom up synthesis and oligomerization-induced self-assembly of cellulose chains. Building up a cellulose chain via precision polymerization is promising, however, for it offers tunability and control of the final chemical structure. Synthetic cellulose derivatives with programmable material properties might thus be obtained. Cellodextrin phosphorylase (CdP; EC 2.4.1.49) catalyzes iterative β-1,4-glycosylation from α-d-glucose 1-phosphate, with the ability to elongate a diversity of acceptor substrates, including cellobiose, d-glucose and a range of synthetic glycosides having non-sugar aglycons. Depending on the reaction conditions leading to different degrees of polymerization (DP), short-chain soluble cello-oligosaccharides (COS) or insoluble cellulosic materials are formed. Here, we review the characteristics of CdP as bio-catalyst for synthetic applications and show advances in the enzymatic production of COS and reducing end-modified, tailored cellulose materials. Recent studies reveal COS as interesting dietary fibers that could provide a selective prebiotic effect. The bottom-up synthesized celluloses involve chains of DP ≥ 9, as precipitated in solution, and they form ~5 nm thick sheet-like crystalline structures of cellulose allomorph II. Solvent conditions and aglycon structures can direct the cellulose chain self-assembly towards a range of material architectures, including hierarchically organized networks of nanoribbons, or nanorods as well as distorted nanosheets. Composite materials are also formed. The resulting materials can be useful as property-tunable hydrogels and feature site-specific introduction of functional and chemically reactive groups. Therefore, COS and cellulose obtained via bottom-up synthesis can expand cellulose applications towards product classes that are difficult to access via top-down processing of natural materials.
Collapse
Affiliation(s)
- Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria; Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz 8010, Austria.
| | - Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria
| |
Collapse
|
27
|
Serizawa T, Maeda T, Sawada T. Neutralization-Induced Self-Assembly of Cellulose Oligomers into Antibiofouling Crystalline Nanoribbon Networks in Complex Mixtures. ACS Macro Lett 2020; 9:301-305. [PMID: 35648536 DOI: 10.1021/acsmacrolett.9b01008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular self-assembly in solutions is a powerful strategy for fabricating functional architectures. Various bio(macro)molecules have been used as self-assembly components. However, structural polysaccharides, such as cellulose and chitin, have rarely been a research focus for molecular self-assembly, even though their crystalline assemblies potentially have robust physicochemical properties. Herein, we demonstrated the neutralization-induced self-assembly of cellulose oligomers into antibiofouling crystalline nanoribbon networks to produce physically cross-linked hydrogels. The self-assembly proceeded even in versatile complex mixtures, such as serum-containing cell culture media, in a controlled manner for 3D cell culture. The cultured cells grew into cell aggregates (spheroids), which were simply collected through natural filtration due to the mechanically crushable property of the crystalline nanoribbons through water flow by pipetting. We will show the potential of cellulose oligomers for biocompatible, crystalline soft materials.
Collapse
Affiliation(s)
- Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tohru Maeda
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| |
Collapse
|
28
|
Zhong C, Luley‐Goedl C, Nidetzky B. Product solubility control in cellooligosaccharide production by coupled cellobiose and cellodextrin phosphorylase. Biotechnol Bioeng 2019; 116:2146-2155. [PMID: 31062868 PMCID: PMC6767486 DOI: 10.1002/bit.27008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/18/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022]
Abstract
Soluble cellodextrins (linear β-1,4-d-gluco-oligosaccharides) have interesting applications as ingredients for human and animal nutrition. Their bottom-up synthesis from glucose is promising for bulk production, but to ensure a completely water-soluble product via degree of polymerization (DP) control (DP ≤ 6) is challenging. Here, we show biocatalytic production of cellodextrins with DP centered at 3 to 6 (~96 wt.% of total product) using coupled cellobiose and cellodextrin phosphorylase. The cascade reaction, wherein glucose was elongated sequentially from α-d-glucose 1-phosphate (αGlc1-P), required optimization and control at two main points. First, kinetic and thermodynamic restrictions upon αGlc1-P utilization (200 mM; 45°C, pH 7.0) were effectively overcome (53% → ≥90% conversion after 10 hrs of reaction) by in situ removal of the phosphate released via precipitation with Mg2+ . Second, the product DP was controlled by the molar ratio of glucose/αGlc1-P (∼0.25; 50 mM glucose) used in the reaction. In optimized conversion, soluble cellodextrins in a total product concentration of 36 g/L were obtained through efficient utilization of the substrates used (glucose: 98%; αGlc1-P: ∼80%) after 1 hr of reaction. We also showed that, by keeping the glucose concentration low (i.e., 1-10 mM; 200 mM αGlc1-P), the reaction was shifted completely towards insoluble product formation (DP ∼9-10). In summary, this study provides the basis for an efficient and product DP-controlled biocatalytic synthesis of cellodextrins from expedient substrates.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical EngineeringGraz University of Technology, NAWI GrazGrazAustria
| | | | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical EngineeringGraz University of Technology, NAWI GrazGrazAustria
- Austrian Centre of Industrial Biotechnology (ACIB)GrazAustria
| |
Collapse
|
29
|
Hata Y, Fukaya Y, Sawada T, Nishiura M, Serizawa T. Biocatalytic oligomerization-induced self-assembly of crystalline cellulose oligomers into nanoribbon networks assisted by organic solvents. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1778-1788. [PMID: 31501749 PMCID: PMC6720341 DOI: 10.3762/bjnano.10.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/06/2019] [Indexed: 05/05/2023]
Abstract
Crystalline poly- and oligosaccharides such as cellulose can form extremely robust assemblies, whereas the construction of self-assembled materials from such molecules is generally difficult due to their complicated chemical synthesis and low solubility in solvents. Enzyme-catalyzed oligomerization-induced self-assembly has been shown to be promising for creating nanoarchitectured crystalline oligosaccharide materials. However, the controlled self-assembly into organized hierarchical structures based on a simple method is still challenging. Herein, we demonstrate that the use of organic solvents as small-molecule additives allows for control of the oligomerization-induced self-assembly of cellulose oligomers into hierarchical nanoribbon network structures. In this study, we dealt with the cellodextrin phosphorylase-catalyzed oligomerization of phosphorylated glucose monomers from ᴅ-glucose primers, which produce precipitates of nanosheet-shaped crystals in aqueous solution. The addition of appropriate organic solvents to the oligomerization system was found to result in well-grown nanoribbon networks. The organic solvents appeared to prevent irregular aggregation and subsequent precipitation of the nanosheets via solvation for further growth into the well-grown higher-order structures. This finding indicates that small-molecule additives provide control over the self-assembly of crystalline oligosaccharides for the creation of hierarchically structured materials with high robustness in a simple manner.
Collapse
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuka Fukaya
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Masahito Nishiura
- DKS Co. Ltd., 5 Ogawaracho, Kisshoin, Minami-ku, Kyoto-shi, Kyoto 601-8391, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
30
|
|
31
|
Nohara T, Sawada T, Tanaka H, Serizawa T. Templated Synthesis of Gold Nanoparticles on Surface-Aminated 2D Cellulose Assemblies. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Takatoshi Nohara
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
32
|
Macdonald SS, Armstrong Z, Morgan-Lang C, Osowiecka M, Robinson K, Hallam SJ, Withers SG. Development and Application of a High-Throughput Functional Metagenomic Screen for Glycoside Phosphorylases. Cell Chem Biol 2019; 26:1001-1012.e5. [PMID: 31080075 DOI: 10.1016/j.chembiol.2019.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/15/2019] [Accepted: 03/27/2019] [Indexed: 01/19/2023]
Abstract
Glycoside phosphorylases (GPs) catalyze the reversible phosphorolysis of glycosidic bonds, releasing sugar 1-phosphates. To identify a greater range of these under-appreciated enzymes, we have developed a high-throughput functional screening method based on molybdenum blue formation. In a proof-of-principle screen focused on cellulose-degrading GPs we interrogated ∼23,000 large insert (fosmid) clones sourced from microbial communities inhabiting two separate environments and identified seven novel GPs from carbohydrate active enzyme family GH94 and one from GH149. Characterization identified cellobiose phosphorylases, cellodextrin phosphorylases, laminaribiose phosphorylases, and a β-1,3-glucan phosphorylase. To demonstrate the versatility of the screening method, varying substrate combinations were used to identify GP activity from families GH13, GH65, GH112, and GH130 in addition to GH94 and GH149. These pilot screen and substrate versatility results provide a screening paradigm platform for recovering diverse GPs from uncultivated microbial communities acting on different substrates with considerable potential to unravel previously unknown degradative pathways within microbiomes.
Collapse
Affiliation(s)
- Spencer S Macdonald
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; ECOSCOPE Training Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Zachary Armstrong
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Connor Morgan-Lang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Magdalena Osowiecka
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Kyle Robinson
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; ECOSCOPE Training Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; ECOSCOPE Training Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Peter Wall Institute for Advanced Studies, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; ECOSCOPE Training Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
33
|
Yataka Y, Tanaka S, Sawada T, Serizawa T. Mechanically robust crystalline monolayer assemblies of oligosaccharide-based amphiphiles on water surfaces. Chem Commun (Camb) 2019; 55:11346-11349. [DOI: 10.1039/c9cc05629g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cellulose oligomers with a terminal alkyl group at the reducing end formed mechanically robust crystalline monolayers via self-assembly against water surfaces from aqueous solutions in air.
Collapse
Affiliation(s)
- Yusuke Yataka
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| | - Shoki Tanaka
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Meguro-ku
- Japan
- Precursory Research for Embryonic Science and Technology
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| |
Collapse
|
34
|
Environmentally friendly pathways towards the synthesis of vinyl-based oligocelluloses. Carbohydr Polym 2018; 193:196-204. [DOI: 10.1016/j.carbpol.2018.03.098] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/25/2018] [Accepted: 03/29/2018] [Indexed: 11/22/2022]
|
35
|
Hata Y, Sawada T, Sakai T, Serizawa T. Enzyme-Catalyzed Bottom-Up Synthesis of Mechanically and Physicochemically Stable Cellulose Hydrogels for Spatial Immobilization of Functional Colloidal Particles. Biomacromolecules 2018; 19:1269-1275. [DOI: 10.1021/acs.biomac.8b00092] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Takamasa Sakai
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
36
|
Serizawa T, Fukaya Y, Sawada T. Self-Assembly of Cellulose Oligomers into Nanoribbon Network Structures Based on Kinetic Control of Enzymatic Oligomerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13415-13422. [PMID: 29076732 DOI: 10.1021/acs.langmuir.7b03653] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ability to chemically synthesize desired molecules followed by their in situ self-assembly in reaction solution has attracted much attention as a simple and environmentally friendly method to produce self-assembled nanostructures. In this study, α-d-glucose 1-phosphate monomers and cellobiose primers were subjected to cellodextrin phosphorylase-catalyzed reverse phosphorolysis reactions in aqueous solution in order to synthesize cellulose oligomers, which were then in situ self-assembled into crystalline nanoribbon network structures. The average degree-of-polymerization (DP) values of the cellulose oligomers were estimated to be approximately 7-8 with a certain degree of DP distribution. The cellulose oligomers crystallized with the cellulose II allomorph appeared to align perpendicularly to the base plane of the nanoribbons in an antiparallel manner. Detailed analyses of reaction time dependence suggested that the production of nanoribbon network structures was kinetically controlled by the amount of water-insoluble cellulose oligomers produced.
Collapse
Affiliation(s)
- Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuka Fukaya
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency , 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| |
Collapse
|
37
|
Wang J, Niu J, Sawada T, Shao Z, Serizawa T. A Bottom-Up Synthesis of Vinyl-Cellulose Nanosheets and Their Nanocomposite Hydrogels with Enhanced Strength. Biomacromolecules 2017; 18:4196-4205. [DOI: 10.1021/acs.biomac.7b01224] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jianquan Wang
- Beijing
Engineering Research Center of Cellulose and Its Derivatives, School
of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Jiabao Niu
- Beijing
Engineering Research Center of Cellulose and Its Derivatives, School
of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Toshiki Sawada
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Ziqiang Shao
- Beijing
Engineering Research Center of Cellulose and Its Derivatives, School
of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Takeshi Serizawa
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
38
|
Afrin S, Karim Z. Isolation and Surface Modification of Nanocellulose: Necessity of Enzymes over Chemicals. CHEMBIOENG REVIEWS 2017. [DOI: 10.1002/cben.201600001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sadaf Afrin
- Aligarh Muslim University; Faculty of Science; Department of Chemistry; 202002 Aligarh India
| | - Zoheb Karim
- MoRe Research Örnsköldsvik AB; Box 70 891 22 Örnsköldsvik Sweden
| |
Collapse
|
39
|
Nohara T, Sawada T, Tanaka H, Serizawa T. Enzymatic synthesis and protein adsorption properties of crystalline nanoribbons composed of cellulose oligomer derivatives with primary amino groups. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:925-938. [DOI: 10.1080/09205063.2017.1322248] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Takatoshi Nohara
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
40
|
Hata Y, Sawada T, Serizawa T. Effect of solution viscosity on the production of nanoribbon network hydrogels composed of enzymatically synthesized cellulose oligomers under macromolecular crowding conditions. Polym J 2017. [DOI: 10.1038/pj.2017.22] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Nishimura T, Akiyoshi K. Amylose engineering: phosphorylase-catalyzed polymerization of functional saccharide primers for glycobiomaterials. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:e1423. [PMID: 27506150 PMCID: PMC5333464 DOI: 10.1002/wnan.1423] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/26/2016] [Accepted: 07/05/2016] [Indexed: 12/31/2022]
Abstract
Interest in amylose and its hybrids has grown over many decades, and a great deal of work has been devoted to developing methods for designing functional amylose hybrids. In this context, phosphorylase-catalyzed polymerization shows considerable promise as a tool for preparing diverse amylose hybrids. Recently, advances have been made in the chemoenzymatic synthesis and characterization of amylose-block-polymers, amylose-graft-polymers, amylose-modified surfaces, hetero-oligosaccharides, and cellodextrin hybrids. Many of these saccharides provide clear opportunities for advances in biomaterials because of their biocompatibility and biodegradability. Important developments in bioapplications of amylose hybrids have also been made, and such newly developed amylose hybrids will help promote the development of new generations of glyco materials. WIREs Nanomed Nanobiotechnol 2017, 9:e1423. doi: 10.1002/wnan.1423 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Tomoki Nishimura
- Department of Polymer Chemistry, Graduate School of EngineeringKyoto UniversityKyotoJapan
- JST-ERATO Akiyoshi Bionanotransporter ProjectKyotoJapan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of EngineeringKyoto UniversityKyotoJapan
- JST-ERATO Akiyoshi Bionanotransporter ProjectKyotoJapan
| |
Collapse
|
42
|
Hata Y, Kojima T, Koizumi T, Okura H, Sakai T, Sawada T, Serizawa T. Enzymatic Synthesis of Cellulose Oligomer Hydrogels Composed of Crystalline Nanoribbon Networks under Macromolecular Crowding Conditions. ACS Macro Lett 2017; 6:165-170. [PMID: 35632887 DOI: 10.1021/acsmacrolett.6b00848] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macromolecular crowding, a solution state with high macromolecular concentrations, was used to promote the crystallization-driven self-assembly of enzymatically synthesized cellulose oligomers. Cellulose oligomers were synthesized via cellodextrin phosphorylase-catalyzed enzymatic reactions in the concentrated solutions of water-soluble polymers, such as dextran, poly(ethylene glycol), and poly(N-vinylpyrrolidone). The reaction mixtures were transformed into cellulose oligomer hydrogels composed of well-grown crystalline nanoribbon networks irrespective of the polymer species. This method was successfully applied in the one-pot preparation of double network hydrogels composed of the nanoribbons and physically cross-linked gelatin molecules through the simple control of reaction temperatures, demonstrating the superior mechanical properties of the composite hydrogels. Our concept that promotes the growth of self-assembled architectures under macromolecular crowding conditions demonstrates a new avenue into developing novel hydrogel materials.
Collapse
Affiliation(s)
| | | | | | | | - Takamasa Sakai
- Department
of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Precursory
Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | | | | |
Collapse
|
43
|
Pergolizzi G, Kuhaudomlarp S, Kalita E, Field RA. Glycan Phosphorylases in Multi-Enzyme Synthetic Processes. Protein Pept Lett 2017; 24:696-709. [PMID: 28799504 PMCID: PMC5688430 DOI: 10.2174/0929866524666170811125109] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/24/2017] [Accepted: 06/20/2017] [Indexed: 12/22/2022]
Abstract
Glycoside phosphorylases catalyse the reversible synthesis of glycosidic bonds by glycosylation with concomitant release of inorganic phosphate. The equilibrium position of such reactions can render them of limited synthetic utility, unless coupled with a secondary enzymatic step where the reaction lies heavily in favour of product. This article surveys recent works on the combined use of glycan phosphorylases with other enzymes to achieve synthetically useful processes.
Collapse
Affiliation(s)
- Giulia Pergolizzi
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH. United Kingdom
| | - Sakonwan Kuhaudomlarp
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH. United Kingdom
| | - Eeshan Kalita
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH. United Kingdom
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH. United Kingdom
| |
Collapse
|
44
|
Nohara T, Sawada T, Tanaka H, Serizawa T. Enzymatic Synthesis of Oligo(ethylene glycol)-Bearing Cellulose Oligomers for in Situ Formation of Hydrogels with Crystalline Nanoribbon Network Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12520-12526. [PMID: 27340728 DOI: 10.1021/acs.langmuir.6b01635] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Enzymatic synthesis of cellulose and its derivatives has gained considerable attention for use in the production of artificial crystalline nanocelluloses with unique structural and functional properties. However, the poor colloidal stability of the nanocelluloses during enzymatic synthesis in aqueous solutions limits their crystallization-based self-assembly to greater architectures. In this study, oligo(ethylene glycol) (OEG)-bearing cellulose oligomers with different OEG chain lengths were systematically synthesized via cellodextrin phosphorylase-catalyzed oligomerization of α-d-glucose l-phosphate monomers against OEG-bearing β-d-glucose primers. The products were self-assembled into extremely well-grown crystalline nanoribbon network structures with the cellulose II allomorph, potentially due to OEG-derived colloidal stability of the nanoribbon's precursors, followed by the in situ formation of physically cross-linked hydrogels. The monomer conversions, average degree of polymerization, and morphologies of the nanoribbons changed significantly, depending on the OEG chain length. Taken together, our findings open a new avenue for the enzymatic reaction-based facile production of novel cellulosic soft materials with regular nanostructures.
Collapse
Affiliation(s)
- Takatoshi Nohara
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
45
|
Yataka Y, Sawada T, Serizawa T. Multidimensional Self-Assembled Structures of Alkylated Cellulose Oligomers Synthesized via in Vitro Enzymatic Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10120-10125. [PMID: 27606835 DOI: 10.1021/acs.langmuir.6b02679] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The self-assembly of biomolecules into highly ordered nano-to-macroscale structures is essential in the construction of biological tissues and organs. A variety of biomolecular assemblies composed of nucleic acids, peptides, and lipids have been used as molecular building units for self-assembled materials. However, crystalline polysaccharides have rarely been utilized in self-assembled materials. In this study, we describe multidimensional self-assembled structures of alkylated cellulose oligomers synthesized via in vitro enzymatic reactions. We found that the alkyl chain length drastically affected the assembled morphologies and allomorphs of cellulose moieties. The modulation of the intermolecular interactions of cellulose oligomers by alkyl substituents was highly effective at controlling their assembly into multidimensional structures. This study proposes a new potential of crystalline oligosaccharides for structural components of molecular assemblies with controlled morphologies and crystal structures.
Collapse
Affiliation(s)
- Yusuke Yataka
- Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
46
|
Serizawa T, Kato M, Okura H, Sawada T, Wada M. Hydrolytic activities of artificial nanocellulose synthesized via phosphorylase-catalyzed enzymatic reactions. Polym J 2016. [DOI: 10.1038/pj.2015.125] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|