1
|
Yoshida T, Aoki S, Hirai T, Nakamura Y, Fujii S. Polyhedral Vinyl Polymer Particles Synthesized Via Solvent-Free Radical Polymerization. Macromol Rapid Commun 2024; 45:e2400438. [PMID: 38980977 DOI: 10.1002/marc.202400438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Liquid marbles (LMs) with a cubic shape are created by using various vinyl monomers as an inner liquid and polymer plates with mm size as a stabilizer. The relationship between the surface tension of the vinyl monomers and formability of the LMs is investigated. LMs can be fabricated using vinyl monomers with surface tensions of 42.7-40.3 mN m-1. The cubic polymer particles are successively synthesized via free-radical polymerizations by irradiation of the cubic LMs with UV light in a solvent-free manner. In addition, controlling the number of polymer plates per one LM, the shape of the plate or the coalescence of the LMs can lead to production of polymer particles with desired forms (e.g., Platonic and rectangular solids) that correspond to the shapes of the original LMs.
Collapse
Affiliation(s)
- Tatsuro Yoshida
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Shoichiro Aoki
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| |
Collapse
|
2
|
Iwata Y, Yoshida T, Hirai T, Nakamura Y, Fujii S. Non-Aqueous Polyhedral Liquid Marbles Stabilized with Polymer Plates Having Surface Roughness. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402297. [PMID: 38837678 DOI: 10.1002/smll.202402297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Indexed: 06/07/2024]
Abstract
Hydrophobic polymer plates with smooth and rough surfaces are used as a stabilizer for cubic liquid marbles (LMs) to study the effect of surface roughness on their formation. The smooth and rough polymer plates can stabilize LMs using liquids with surface tensions of 72.8-26.6 and 72.8-22.9 mN m-1, respectively. It is clarified that the higher the surface roughness, the lower the surface tension of the liquids are stabilized to form the LMs. These results indicated that the introduction of surface roughness improves the hydrophobicity of the polymer plates and the rough polymer plates can stabilize LMs using liquids with a wider surface tension range. Electron microscopy studies and numerical analyses confirmed that the LMs can be formed, when the Cassie-Baxter wetting state, where θY>90° (θY: the contact angle on smooth surfaces) and θR>90° (θR: the contact angle on rough surfaces), and the metastable Cassie-Baxter wetting state, where θY<90° and θR>90°, are realized. Finally, the synthesis of cubic polymer particles are succeeded by free radical polymerization of the cubic LMs containing a hydrophobic vinyl monomer (dodecyl acrylate) in a solvent-free manner.
Collapse
Affiliation(s)
- Yamato Iwata
- Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Tatsuro Yoshida
- Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering. Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering. Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering. Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka, 535-8585, Japan
| |
Collapse
|
3
|
Liu Y, Wang Y, Xin JH. Capillarity in Interfacial Liquids and Marbles: Mechanisms, Properties, and Applications. Molecules 2024; 29:2986. [PMID: 38998938 PMCID: PMC11243323 DOI: 10.3390/molecules29132986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The mechanics of capillary force in biological systems have critical roles in the formation of the intra- and inter-cellular structures, which may mediate the organization, morphogenesis, and homeostasis of biomolecular condensates. Current techniques may not allow direct and precise measurements of the capillary forces at the intra- and inter-cellular scales. By preserving liquid droplets at the liquid-liquid interface, we have discovered and studied ideal models, i.e., interfacial liquids and marbles, for understanding general capillary mechanics that existed in liquid-in-liquid systems, e.g., biomolecular condensates. The unexpectedly long coalescence time of the interfacial liquids revealed that the Stokes equation does not hold as the radius of the liquid bridge approaches zero, evidencing the existence of a third inertially limited viscous regime. Moreover, liquid transport from a liquid droplet to a liquid reservoir can be prohibited by coating the droplet surface with hydrophobic or amphiphilic particles, forming interfacial liquid marbles. Unique characteristics, including high stability, transparency, gas permeability, and self-assembly, are observed for the interfacial liquid marbles. Phase transition and separation induced by the formation of nanostructured materials can be directly observed within the interfacial liquid marbles without the need for surfactants and agitation, making them useful tools to research the interfacial mechanics.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong 999077, China; (Y.W.); (J.H.X.)
- School of Physics and Electronic Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Yuanfeng Wang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong 999077, China; (Y.W.); (J.H.X.)
| | - John H. Xin
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong 999077, China; (Y.W.); (J.H.X.)
| |
Collapse
|
4
|
Aoki S, Yoshida T, Nguyen HK, Nakajima K, Hirai T, Nakamura Y, Fujii S. Nonspherical Epoxy Resin Polymer Particles Synthesized via Solvent-Free Polyaddition Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5872-5879. [PMID: 37039828 DOI: 10.1021/acs.langmuir.3c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cubic liquid marbles (LMs) were fabricated by using various epoxy monomers as internal liquids and millimeter-sized polymer plates as stabilizers. Successively, cubic polymer particles were synthesized via solvent-free polyaddition reactions by exposing the cubic LMs to NH3 vapor used as a curing agent. The effect of the solubility parameters (SPs) for the epoxy monomers on the formation of the cubic polymer particles was investigated. As a result, we succeeded in fabricating cubic polymer particles reflecting the shapes of the original LMs by using epoxy monomers with SP values of 23.70-21.66 (MPa)1/2. Furthermore, the shapes of the LMs could be controlled on demand (e.g., pentahedral and rectangular) by control of the number of polymer plates per LM and/or coalescence of the LMs, resulting in fabrication of polymer particles with shapes reflecting those of the LMs.
Collapse
Affiliation(s)
- Shoichiro Aoki
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tatsuro Yoshida
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Hung K Nguyen
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552, Japan
| | - Ken Nakajima
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
5
|
Tsumura Y, Fameau AL, Matsui K, Hirai T, Nakamura Y, Fujii S. Photo- and Thermoresponsive Liquid Marbles Based on Fatty Acid as Phase Change Material Coated by Polypyrrole: From Design to Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:878-889. [PMID: 36602465 DOI: 10.1021/acs.langmuir.2c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Responsive liquid marbles (LMs), which can change their shape, stability, and motion by the application of stimuli, attract a growing interest due to their wide range of applications. Our approach to design photo- and thermoresponsive LMs is based on the use of micrometer-sized fatty acid (FA) particles as phase change material covered with polypyrrole (PPy) overlayers with photothermal property. The core-shell particles were synthesized by aqueous chemical oxidative seeded dispersion polymerization. First, we investigated the effect of the alkyl chain length of FA on the resulting FA/PPy core-shell particles by characterizing their size and its distribution, shape, morphology, chemical composition, and photothermal behavior. Then LMs were fabricated by rolling water droplets on the dried FA/PPy particle powder bed and their light and temperature dual stimuli-responsive nature was studied as a function of the FA alkyl chain length. For all FAs studied, LMs disrupted in a domino manner by light irradiation as the first trigger: the temperature of the FA/PPy particles on the LM surface increased by light irradiation, followed by phase change of FA core of the particles from solid to liquid, resulting in disruption of the LM and release of the encapsulated water. The disruption time was closely correlated to the melting point of FA linked to the alkyl chain length and light irradiation power, and it could be controlled and tuned easily between quasi instantaneous and approximately 10 s. Finally, we showed potential applications of the LMs as a carrier for controlled delivery and release of substances and a sensor.
Collapse
Affiliation(s)
- Yusuke Tsumura
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Anne-Laure Fameau
- Université Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Kanade Matsui
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
6
|
Samanta P, Mete S, Pal S, De P. Polymeric peroxides: Synthesis, characterization, degradation and applications. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2125814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Pousali Samanta
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Sourav Mete
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Sunirmal Pal
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| |
Collapse
|
7
|
Tsumura Y, Oyama K, Fameau AL, Seike M, Ohtaka A, Hirai T, Nakamura Y, Fujii S. Photo/Thermo Dual Stimulus-Responsive Liquid Marbles Stabilized with Polypyrrole-Coated Stearic Acid Particles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41618-41628. [PMID: 36043393 DOI: 10.1021/acsami.2c12681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, we report on the fabrication of photo/thermo dual stimulus-responsive liquid marbles (LMs) that can be disrupted by light irradiation and/or heating. To stabilize the LMs, we synthesized micrometer-sized stearic acid (SA) particles coated with overlayers of polypyrrole (PPy) by aqueous chemical oxidative seeded dispersion polymerization. The SA/PPy core-shell particles could adsorb at the air-water interface to stabilize LMs by rolling water droplets on the particle powder bed. The presence of SA, known as a phase-change material, which undergoes a transition from solid to liquid by heating, and PPy, which can transduce light to heat, gives rise to the photo and thermo dual stimulus-responsive characters of the LMs. The disruption of the LMs could be induced in a cascade manner: light irradiation on the LM induced a temperature increase, followed by melting of the SA component on the LM surface, leading to its disruption and release of the inner water. The disruption time is linked to the PPy loading and light irradiation power, and it can be tuned from quasi-instantaneous to a few tens of seconds. The melting of SA due to a light-induced phase change from the solid to liquid state is a new mechanism to trigger the disruption of LMs. We finally demonstrated two applications of the LMs as a light-responsive microreactor and a sensor.
Collapse
Affiliation(s)
- Yusuke Tsumura
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Keigo Oyama
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Anne-Laure Fameau
- Université Lille, CNRS, INRAE, Centrale Lille, UMR 8207─UMET─Unité Matériaux et Transformations, F-59000 Lille, France
| | - Musashi Seike
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Atsushi Ohtaka
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
8
|
Sun Y, Zheng Y, Liu C, Zhang Y, Wen S, Song L, Zhao M. Liquid marbles, floating droplets: preparations, properties, operations and applications. RSC Adv 2022; 12:15296-15315. [PMID: 35693225 PMCID: PMC9118372 DOI: 10.1039/d2ra00735e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/21/2022] [Indexed: 12/20/2022] Open
Abstract
Liquid marbles (LMs) are non-wettable droplets formed with a coating of hydrophobic particles. They can move easily across either solid or liquid surfaces since the hydrophobic particles protect the internal liquid from contacting the substrate. In recent years, mainly due to their simple preparation, abundant materials, non-wetting/non-adhesive properties, elasticities and stabilities, LMs have been applied in many fields such as microfluidics, sensors and biological incubators. In this review, the recent advances in the preparation, physical properties and applications of liquid marbles, especially operations and floating abilities, are summarized. Moreover, the challenges to achieve uniformity, slow volatilization and stronger stability are pointed out. Various applications generated by LMs' structural characteristics are also expected.
Collapse
Affiliation(s)
- Yukai Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Chuntian Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Yihan Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Shiying Wen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Le Song
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| |
Collapse
|
9
|
Nguyen NK, Singha P, Dai Y, Rajan Sreejith K, Tran DT, Phan HP, Nguyen NT, Ooi CH. Controllable high-performance liquid marble micromixer. LAB ON A CHIP 2022; 22:1508-1518. [PMID: 35344578 DOI: 10.1039/d2lc00017b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A liquid marble is a liquid droplet coated with a shell of microparticles. Liquid marbles have served as a unique microreactor for chemical reactions and cell culture. Mixing is an essential task for liquid marbles as a microreactor. However, the potential of liquid marble-based microreactors is significantly limited due to the lack of effective mixing strategies. Most mixing strategies used manual and contact-based actuation schemes. This paper reports the development of a manipulation scheme that induces fluid motion into a liquid marble, leading to enhanced mixing. By inducing rotation on a horizontal axis, we significantly increased the mixing rate by 27.6 times compared to a non-actuated liquid marble and reduced the reaction time by more than 10 times. The proposed method provides a simple, continuous, precise, and controllable high-performance mixing strategy on a liquid marble platform.
Collapse
Affiliation(s)
- Nhat-Khuong Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Pradip Singha
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Kamalalayam Rajan Sreejith
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Du Tuan Tran
- R&D Department, Bestmix Corporation, Binh Duong 820000, Vietnam
| | - Hoang-Phuong Phan
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| |
Collapse
|
10
|
Lobel BT, Robertson H, Webber GB, Ireland PM, Wanless EJ. Impact of surface free energy on electrostatic extraction of particles from a bed. J Colloid Interface Sci 2022; 611:617-628. [PMID: 34974225 DOI: 10.1016/j.jcis.2021.12.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/19/2022]
Abstract
HYPOTHESIS Electrostatic extraction of particles from a bed to a pendent droplet to form liquid marbles has previously been investigated with respect to particle conductivity, size and shape, however, interparticle forces have not been specifically interrogated. If cohesion is the dominant force within the particle bed, then particles will be more readily extracted with reduced surface free energy. EXPERIMENTS Glass particles were surface-modified using various alkyltrichlorosilanes. The surface free energy was measured for each sample using colloid probe atomic force microscopy (AFM) and sessile drop measurements on similarly modified glass slides. The ease of electrostatic particle extraction of each particle sample to a pendent droplet was compared by quantifying the electric field force required for successful extraction as a function of the measured surface free energy. FINDINGS Surface free energy calculated from sessile droplet measurements and AFM were not in agreement, as work of adhesion of a liquid droplet on a planar substrate is not representative of the contact between particles. Ease of electrostatic extraction of particles was observed to generally decrease as a function of AFM-derived surface free energy, confirming this is a critical factor in electrostatic delivery of particles to a pendent droplet. Roughness was also shown to inhibit particle extraction.
Collapse
Affiliation(s)
- Benjamin T Lobel
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Hayden Robertson
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Grant B Webber
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Peter M Ireland
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Erica J Wanless
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
11
|
Pang X, Duan M, Liu H, Xi Y, Shi H, Li X. Oscillation-Induced Mixing Advances the Functionality of Liquid Marble Microreactors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11999-12009. [PMID: 35171580 DOI: 10.1021/acsami.1c22314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Droplet-based microreactors often uncover fascinating phenomena and exhibit diverse functionality, which make them applicable in various fields. Liquid marbles (LMs) are non-wetting droplets coated with particles, and these features highlight their potential as microreactors. However, sophisticated experimental designs are typically hindered because it is difficult to obtain sufficient substance mixing in these miniature, damage-prone, self-supporting liquid containers. Here, we demonstrate that subjecting LMs to vertical oscillations by audio signals represents a controllable approach that allows sufficient mixing with variable dynamic modes. The characteristics and key issues in LM oscillation are systematically explored. The effects of oscillation on application potential are examined. Under oscillation conditions, homogeneous mixing can be achieved within a few seconds in LMs consisting of either water or viscous liquids. Importantly, the structures of materials synthesized in LMs can be regulated by modulating the oscillation modes. The variable modes, flexible adjustability, high efficiency, and wide applicability of this oscillation method make it a verified manipulation strategy for advancing the functionality of LM microreactors.
Collapse
Affiliation(s)
- Xianglong Pang
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Mei Duan
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Heng Liu
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Yuhang Xi
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Haixiao Shi
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Xiaoguang Li
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| |
Collapse
|
12
|
Dedovets D, Li Q, Leclercq L, Nardello‐Rataj V, Leng J, Zhao S, Pera‐Titus M. Multiphase Microreactors Based on Liquid-Liquid and Gas-Liquid Dispersions Stabilized by Colloidal Catalytic Particles. Angew Chem Int Ed Engl 2022; 61:e202107537. [PMID: 34528366 PMCID: PMC9293096 DOI: 10.1002/anie.202107537] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 01/08/2023]
Abstract
Pickering emulsions, foams, bubbles, and marbles are dispersions of two immiscible liquids or of a liquid and a gas stabilized by surface-active colloidal particles. These systems can be used for engineering liquid-liquid-solid and gas-liquid-solid microreactors for multiphase reactions. They constitute original platforms for reengineering multiphase reactors towards a higher degree of sustainability. This Review provides a systematic overview on the recent progress of liquid-liquid and gas-liquid dispersions stabilized by solid particles as microreactors for engineering eco-efficient reactions, with emphasis on biobased reagents. Physicochemical driving parameters, challenges, and strategies to (de)stabilize dispersions for product recovery/catalyst recycling are discussed. Advanced concepts such as cascade and continuous flow reactions, compartmentalization of incompatible reagents, and multiscale computational methods for accelerating particle discovery are also addressed.
Collapse
Affiliation(s)
- Dmytro Dedovets
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
- Laboratoire du Futur (LOF)UMR 5258, CNRS-Solvay-Universite Bordeaux 1178 Av Dr Albert Schweitzer33608Pessac CedexFrance
| | - Qingyuan Li
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
| | - Loïc Leclercq
- Univ LilleCNRSCentrale LilleUniv ArtoisUMR 8181 UCCSF-59000LilleFrance
| | | | - Jacques Leng
- Laboratoire du Futur (LOF)UMR 5258, CNRS-Solvay-Universite Bordeaux 1178 Av Dr Albert Schweitzer33608Pessac CedexFrance
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologySchool of Chemistry and Chemical EngineeringGuangxi University530004NanningChina
| | - Marc Pera‐Titus
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
13
|
Dedovets D, Li Q, Leclercq L, Nardello‐Rataj V, Leng J, Zhao S, Pera‐Titus M. Multiphase Microreactors Based on Liquid–Liquid and Gas–Liquid Dispersions Stabilized by Colloidal Catalytic Particles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dmytro Dedovets
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
- Laboratoire du Futur (LOF) UMR 5258, CNRS-Solvay-Universite Bordeaux 1 178 Av Dr Albert Schweitzer 33608 Pessac Cedex France
| | - Qingyuan Li
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
| | - Loïc Leclercq
- Univ Lille CNRS Centrale Lille Univ Artois UMR 8181 UCCS F-59000 Lille France
| | | | - Jacques Leng
- Laboratoire du Futur (LOF) UMR 5258, CNRS-Solvay-Universite Bordeaux 1 178 Av Dr Albert Schweitzer 33608 Pessac Cedex France
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology School of Chemistry and Chemical Engineering Guangxi University 530004 Nanning China
| | - Marc Pera‐Titus
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| |
Collapse
|
14
|
Abstract
Modelling the profile of a liquid droplet has been a mainstream technique for researchers to study the physical properties of a liquid. This study proposes a facile modelling approach using an elliptic model to generate the profile of sessile droplets, with MATLAB as the simulation environment. The concept of the elliptic method is simple and easy to use. Only three specific points on the droplet are needed to generate the complete theoretical droplet profile along with its critical parameters such as volume, surface area, height, and contact radius. In addition, we introduced fitting coefficients to accurately determine the contact angle and surface tension of a droplet. Droplet volumes ranging from 1 to 300 µL were chosen for this investigation, with contact angles ranging from 90° to 180°. Our proposed method was also applied to images of actual water droplets with good results. This study demonstrates that the elliptic method is in excellent agreement with the Young–Laplace equation and can be used for rapid and accurate approximation of liquid droplet profiles to determine the surface tension and contact angle.
Collapse
|
15
|
Gallo A, Tavares F, Das R, Mishra H. How particle-particle and liquid-particle interactions govern the fate of evaporating liquid marbles. SOFT MATTER 2021; 17:7628-7644. [PMID: 34318861 DOI: 10.1039/d1sm00750e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Liquid marbles refer to droplets that are covered with a layer of non-wetting particles. They are observed in nature and have practical significance. These squishy objects bounce, coalesce, break, inflate, and deflate while the liquid does not touch the substrate underneath. Despite the considerable cross-disciplinary interest and value of the research on liquid marbles, a unified framework for describing the mechanics of deflating liquid marbles-as the liquid evaporates-is unavailable. For instance, analytical approaches for modeling the evaporation of liquid marbles exploit empirical parameters that are not based on liquid-particle and particle-particle interactions. Here, we have combined complementary experiments and theory to fill this gap. To unentangle the contributions of particle size, roughness, friction, and chemical make-up, we investigated the evaporation of liquid marbles formed with particles of sizes varying over 7 nm-300 μm and chemical compositions ranging from hydrophilic to superhydrophobic. We demonstrate that the potential final states of evaporating liquid marbles are characterized by one of the following: (I) constant surface area, (II) particle ejection, or (III) multilayering. Based on these insights, we developed an evaporation model for liquid marbles that takes into account their time-dependent shape evolution. The model fits are in excellent agreement with our experimental results. Furthermore, this model and the general framework can provide mechanistic insights into extant literature on the evaporation of liquid marbles. Altogether, these findings advance our fundamental understanding of liquid marbles and should contribute to the rational development of technologies.
Collapse
Affiliation(s)
- A Gallo
- Interfacial Lab (iLab), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Sciences (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | | | | | | |
Collapse
|
16
|
Fujiwara J, Yokoyama A, Seike M, Vogel N, Rey M, Oyama K, Hirai T, Nakamura Y, Fujii S. Boxes fabricated from plate-stabilized liquid marbles. MATERIALS ADVANCES 2021; 2:4604-4609. [PMID: 34355189 PMCID: PMC8290327 DOI: 10.1039/d1ma00398d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Polyhedral liquid marbles were fabricated using hydrophobic polymer plates in the shape of a circle, a heart and a star as a stabilizer and water as an inner liquid phase. Boxes could be fabricated by the evaporation of the inner water from the liquid marbles. The fabrication efficiency and stability of these boxes as a function of the plate shape were investigated. Functional materials such as polymers and colloidal particles were successfully introduced into the boxes.
Collapse
Affiliation(s)
- Junya Fujiwara
- Division of Applied Chemistry, Graduate School of Engineering Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Ai Yokoyama
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Musashi Seike
- Division of Applied Chemistry, Graduate School of Engineering Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg Cauerstrasse 4 Erlangen 91058 Germany
| | - Marcel Rey
- Department of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road Edinburgh EH9 3FD UK
| | - Keigo Oyama
- Division of Applied Chemistry, Graduate School of Engineering Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
| |
Collapse
|
17
|
Lobel BT, Thomas CA, Ireland PM, Wanless EJ, Webber GB. Liquid marbles, formation and locomotion using external fields and forces. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Uda M, Kawashima H, Mayama H, Hirai T, Nakamura Y, Fujii S. Locomotion of a Nonaqueous Liquid Marble Induced by Near-Infrared-Light Irradiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4172-4182. [PMID: 33788574 DOI: 10.1021/acs.langmuir.1c00041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Micrometer-sized hydrophobic polyaniline (PANI) grains were synthesized via an aqueous chemical oxidative polymerization protocol in the presence of dopant carrying perfluoroalkyl or alkyl groups. The critical surface tensions of the PANIs synthesized in the presence of heptadecafluorooctanesulfonic acid and sodium dodecyl sulfate dopants were lower than that of PANI synthesized in the absence of dopant, indicating the presence of hydrophobic dopant on the grain surfaces. The PANI grains could adsorb to air-liquid interfaces, and aqueous and nonaqueous liquid marbles (LMs) were successfully fabricated using liquids with surface tensions ranging between 72.8 and 42.9 mN/m. Thermography studies confirmed that the surface temperature of the LMs increased by near-infrared light irradiation thanks to the photothermal property of the PANI, and the maximum temperatures measured for nonaqueous LMs were higher than that measured for aqueous LM. We demonstrated that transport of the LMs on a planar water surface can be achieved via Marangoni flow generated by the near-infrared light-induced temperature gradient. Numerical analyses indicated that the LMs containing liquids with lower specific heat and thermal conductivity and higher density showed longer path length per one light irradiation shot and longer decay time. This is because generated heat could efficiently transfer from the LMs to the water surface and larger inertial force could work on the LMs. The LMs could also move over the solid substrate thanks to their near-spherical shapes. Furthermore, it was also demonstrated that the inner liquids of the LMs could be released on site by an external stimulus.
Collapse
Affiliation(s)
- Makoto Uda
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Hisato Kawashima
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Hiroyuki Mayama
- Department of Chemistry, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
19
|
Ooi CH, Vadivelu R, Jin J, Sreejith KR, Singha P, Nguyen NK, Nguyen NT. Liquid marble-based digital microfluidics - fundamentals and applications. LAB ON A CHIP 2021; 21:1199-1216. [PMID: 33656019 DOI: 10.1039/d0lc01290d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid marbles are droplets with volume typically on the order of microliters coated with hydrophobic powder. Their versatility, ease of use and low cost make liquid marbles an attractive platform for digital microfluidics. This paper provides the state of the art of discoveries in the physics of liquid marbles and their practical applications. The paper first discusses the fundamental properties of liquid marbles, followed by the summary of different techniques for the synthesis of liquid marbles. Next, manipulation techniques for handling liquid marbles are discussed. Applications of liquid marbles are categorised according to their use as chemical and biological reactors. The paper concludes with perspectives on the future development of liquid marble-based digital microfluidics.
Collapse
Affiliation(s)
- Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | | | | | | | | | | | | |
Collapse
|
20
|
Uda M, Higashimoto S, Hirai T, Nakamura Y, Fujii S. Synthesis of poly(alkylaniline)s by aqueous chemical oxidative polymerization and their use as stimuli-responsive liquid marble stabilizer. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Nguyen N, Singha P, Zhang J, Phan H, Nguyen N, Ooi CH. Digital Imaging‐based Colourimetry for Enzymatic Processes in Transparent Liquid Marbles. Chemphyschem 2020; 22:99-105. [DOI: 10.1002/cphc.202000760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/04/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Nhat‐Khuong Nguyen
- Queensland Micro- and Nanotechnology Centre Griffith University 170 Kessels Road Nathan 4111 Queensland Australia
| | - Pradip Singha
- Queensland Micro- and Nanotechnology Centre Griffith University 170 Kessels Road Nathan 4111 Queensland Australia
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre Griffith University 170 Kessels Road Nathan 4111 Queensland Australia
| | - Hoang‐Phuong Phan
- Queensland Micro- and Nanotechnology Centre Griffith University 170 Kessels Road Nathan 4111 Queensland Australia
| | - Nam‐Trung Nguyen
- Queensland Micro- and Nanotechnology Centre Griffith University 170 Kessels Road Nathan 4111 Queensland Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre Griffith University 170 Kessels Road Nathan 4111 Queensland Australia
| |
Collapse
|
22
|
Asaumi Y, Fujiwara J, Oyama K, Rey M, Vogel N, Hirai T, Nakamura Y, Fujii S. Synthesis of Millimeter-sized Polymer Particles by Seeded Polymerization and Their Use as Shape-designable Liquid Marble Stabilizer. CHEM LETT 2020. [DOI: 10.1246/cl.200508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yuta Asaumi
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Junya Fujiwara
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Keigo Oyama
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Marcel Rey
- Institute of Particle Technology, Friedrich–Alexander University Erlangen–Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich–Alexander University Erlangen–Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
23
|
Abstract
The need for miniaturised reaction systems has led to the development of various microreactor platforms, such as droplet-based microreactors. However, these microreactors possess inherent drawbacks, such as rapid evaporation and difficult handling, that limit their use in practical applications. Liquid marbles are droplets covered with hydrophobic particles and are a potential platform that can overcome the weaknesses of bare droplets. The coating particles completely isolate the interior liquids from the surrounding environment, thus conveniently encapsulating the reactions. Great efforts have been made over the past decade to demonstrate the feasibility of liquid marble-based microreactors for chemical and biological applications. This review systemically summarises state-of-the-art implementations of liquid marbles as microreactors. This paper also discusses the various aspects of liquid marble-based microreactors, such as the formation, manipulation, and future perspectives.
Collapse
|
24
|
Huang J, Wang Z, Shi H, Li X. Mechanical robustness of monolayer nanoparticle-covered liquid marbles. SOFT MATTER 2020; 16:4632-4639. [PMID: 32373907 DOI: 10.1039/d0sm00496k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Powder-derived liquid marbles (LMs) are versatile nonwetting systems but are confronted with many limitations in application, as their surface particles are usually large and agglomerated. Recently, sol-gel film-derived LMs have come on the scene that are termed monolayer nanoparticle-covered (mNPc) LMs based on their unique characteristics, revealing great application potential but also generating many questions. Here, mechanical robustness, a very important yet to be addressed property, of mNPc LMs was systematically studied. Rolling, pendant contact, and compression experiments were designed using bare and coated glasses with water contact angles (WCAs) ranging from 23° to 157°. With rupture as a quality criteria, the mechanical robustness of mNPc LMs enhanced with the hydrophobicity of solid surfaces that exerted pressure on them, but maintained much weaker than typical powder LMs until the solid surface was superhydrophobic. In particular, when contacting hydrophilic surfaces of WCAs ≤53°, an mNPc LM did not have the capacity for nonwetting and ruptured immediately, even if the pressure approached zero. This was distinct from powder LMs and indicated that a particle shell as thin as ∼20 nm could not prevent intermolecular attractions between the internal liquid and external solid surface. An interface scenario consisting of solid surface microroughness was proposed to address this issue. On the other hand, mNPc LMs remained unruptured on superhydrophobic surfaces but presented degraded elasticity under extreme compression. Uncovering these properties could be of much help for developments of mNPc LMs and their counterparts, the mNPc liquid plasticines.
Collapse
Affiliation(s)
- Junchao Huang
- School of Physical Science and Technology, Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Northwestern Polytechnical University, Xi'an, 710129, China.
| | | | | | | |
Collapse
|
25
|
Asaumi Y, Rey M, Vogel N, Nakamura Y, Fujii S. Particle Monolayer-Stabilized Light-Sensitive Liquid Marbles from Polypyrrole-Coated Microparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2695-2706. [PMID: 32078776 DOI: 10.1021/acs.langmuir.0c00061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liquid marbles are water droplets coated with solid particles that prevent coalescence and allow storage, transport, and handling of liquids in the form of a powder. Here, we report on the formation of liquid marbles that are stabilized entirely by a single monolayer of solid particles and thus minimize the amount of required solid material. As stabilizing particles, we synthesize relatively monodisperse, 80 μm-sized polystyrene (PS) particles coated with heptadecafluorooctanesulfonic acid-doped polypyrrole (PPy-C8F) shell (PS/PPy-C8F particles) by aqueous chemical oxidative seeded polymerization of pyrrole using FeCl3 as an oxidant and heptadecafluorooctanesulfonic acid as a hydrophobic dopant. We characterize the physicochemical properties of the particles as a function of the PPy-C8F loading. Laser diffraction particle size analyses of dilute aqueous suspensions indicate that the polymer particles disperse stably in water medium before and after coating with the PPy-C8F shell. X-ray photoelectron spectroscopy studies indicate the formation of a PPy-C8F shell around the PS seed particles, which was further supported by deflated morphologies observed by scanning electron microscopy after extraction of the PS component from the PS/PPy-C8F particles. We investigate the performance of the dried PS/PPy-C8F particles to stabilize liquid marbles. Stereo- and laser microscope observations, as well as gravimetric studies, confirm that the PS/PPy-C8F particles adsorb to the water droplet surface in the form of a particle monolayer with the characteristic hexagonal close-packed structure expected for spherical (colloidal) particles. Mechanical integrity of the liquid marble increases with an increase of PPy-C8F loading of the PS/PPy-C8F particles. The water contact angle of the PS/PPy-C8F particles at air-water interface increases from 82 ± 12° to 102 ± 17° with an increase of PPy-C8F loading. This increase in water contact angle directly correlates with the shape of the LM, with higher contact angles giving more spherical LMs. Furthermore, the broadband light absorption properties of the PPy coating was used to control evaporation rate of the enclosed water phase on demand by irradiation with a near-infrared laser. The evaporation rate could be finely controlled by the thickness of the PPy-C8F shell of the particles stabilizing the liquid marbles.
Collapse
Affiliation(s)
| | - Marcel Rey
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | | | | |
Collapse
|
26
|
Šišáková M, Asaumi Y, Uda M, Seike M, Oyama K, Higashimoto S, Hirai T, Nakamura Y, Fujii S. Dodecyl sulfate-doped polypyrrole derivative grains as a light-responsive liquid marble stabilizer. Polym J 2020. [DOI: 10.1038/s41428-020-0307-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Liquid marbles and liquid plasticines with nanoparticle monolayers. Adv Colloid Interface Sci 2019; 271:101988. [PMID: 31330397 DOI: 10.1016/j.cis.2019.101988] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/16/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
Liquid marbles, as particle-covered macroscopic liquid drops in an air environment, have exhibited great value as self-standing liquid containers in various areas, such as material synthesis, chemical analysis, and cell culture. However, conventional liquid marbles obtained by the rolling-on-powder-bed method usually feature micron-sized or larger particle agglomerates, which harm marble transparency and fine control of marble shape and thus results in considerable limitations for marble applications. Recently, monolayer nanoparticle (NP) coverage has been achieved using a sol-gel film instead of a powder as the particle source. The NP monolayer structure can not only result in highly transparent liquid marbles with very smooth and symmetrical profiles, but can also lead to liquid entities with arbitrarily designable shapes, as called liquid plasticines. Monolayer NP-covered (mNPc) liquid marbles and plasticines have generated important results in both fundamental and practical applications, as ideal physical models or advanced self-standing containers, showing great advantages in some conditions over conventional powder-derived liquid marbles. In this review, the preparations and current applications of the two mNPc systems are summarized and perspectives on their advantages, unclear issues, and application extension are provided.
Collapse
|
28
|
Fujii S. Stimulus-responsive soft dispersed systems developed based on functional polymer particles: bubbles and liquid marbles. Polym J 2019. [DOI: 10.1038/s41428-019-0233-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Mozhi Devan Padmanathan A, Sneha Ravi A, Choudhary H, Varanakkottu SN, Dalvi SV. Predictive Framework for the Spreading of Liquid Drops and the Formation of Liquid Marbles on Hydrophobic Particle Bed. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6657-6668. [PMID: 31039316 DOI: 10.1021/acs.langmuir.9b00698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we have developed a model to describe the behavior of liquid drops upon impaction on hydrophobic particle bed and verified it experimentally. Poly(tetrafluoroethylene) (PTFE) particles were used to coat drops of water, aqueous solutions of glycerol (20, 40, and 60% v/v), and ethanol (5 and 12% v/v). The experiments were conducted for Weber number ( We) ranging from 8 to 130 and Reynolds number ( Re) ranging from 370 to 4460. The bed porosity was varied from 0.8 to 0.6. The experimental values of βmax (ratio of the diameter at the maximum spreading condition to the initial drop diameter) were estimated from the time-lapsed images captured using a high-speed camera. The theoretical βmax was estimated by making energy balances on the liquid drop. The proposed model accounts for the energy losses due to viscous dissipation and crater formation along with a change in kinetic energy and surface energy. A good agreement was obtained between the experimental βmax and the estimated theoretical βmax. The proposed model yielded a least % absolute average relative deviation (% AARD) of 5.5 ± 4.3 compared to other models available in the literature. Further, it was found that the liquid drops impacting on particle bed are completely coated with PTFE particles with βmax values greater than 2.
Collapse
Affiliation(s)
| | - Apoorva Sneha Ravi
- Chemical Engineering , Indian Institute of Technology Gandhinagar , Palaj, Gandhinagar 382355 , Gujarat , India
| | - Hema Choudhary
- Chemical Engineering , Indian Institute of Technology Gandhinagar , Palaj, Gandhinagar 382355 , Gujarat , India
| | | | - Sameer V Dalvi
- Chemical Engineering , Indian Institute of Technology Gandhinagar , Palaj, Gandhinagar 382355 , Gujarat , India
| |
Collapse
|
30
|
Kasahara M, Akimoto SI, Hariyama T, Takaku Y, Yusa SI, Okada S, Nakajima K, Hirai T, Mayama H, Okada S, Deguchi S, Nakamura Y, Fujii S. Liquid Marbles in Nature: Craft of Aphids for Survival. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6169-6178. [PMID: 30991804 DOI: 10.1021/acs.langmuir.9b00771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Some aphids that live in the leaf galls of the host plant are known to fabricate liquid marbles consisting of honeydew and wax particles as an inner liquid and a stabilizer, respectively. In this study, the liquid marbles fabricated by the galling aphids, Eriosoma moriokense, were extensively characterized with respect to size and size distribution, shape, nanomorphology, liquid/solid weight ratio, and chemical compositions. The stereo microscopy studies confirmed that the liquid marbles have a near-spherical morphology and that the number-average diameter was 368 ± 152 μm, which is 1 order of magnitude smaller than the capillary length of the honeydew. The field emission scanning electron microscopy studies indicated that micrometer-sized wax particles with fiber- and dumpling-like shapes coated the honeydew droplets, which rendered the liquid marbles hydrophobic and nonwetting. Furthermore, the highly magnified scanning electron microscopy images confirmed that the wax particles were formed with assemblage of submicrometer-sized daughter fibers. The contact angle measurements indicated that the wax was intrinsically hydrophobic and that the liquid marbles were stabilized by the wax particles in the Cassie-Baxter model. The weight ratio of the honeydew and the wax particles was determined to be 96/4, and the honeydew consisted of 19 wt % nonvolatile components and 81 wt % water. The 1H nuclear magnetic resonance, Fourier transform infrared spectroscopy, and mass spectroscopy studies confirmed that the wax mainly consisted of triglycerides and that the honeydew mainly consisted of saccharides (glucose and fructose) and ribitol. The atomic force microscopy studies confirmed that honeydew is sticky in nature.
Collapse
Affiliation(s)
- Moe Kasahara
- Division of Applied Chemistry , Graduate School of Engineering, Osaka Institute of Technology , 5-16-1, Omiya, Asahi-ku , Osaka 535-8585 , Japan
| | - Shin-Ichi Akimoto
- Department of Ecology and Systematics , Graduate School of Agriculture, Hokkaido University , Kita 9, Nishi 9, Kita-ku , Sapporo 060-8589 , Japan
| | - Takahiko Hariyama
- Preeminent Medical Photonics Education & Research Center, Institute for NanoSuit Research , Hamamatsu University School of Medicine, Higashi-ku , Hamamatsu 431-3192 , Japan
| | - Yasuharu Takaku
- Preeminent Medical Photonics Education & Research Center, Institute for NanoSuit Research , Hamamatsu University School of Medicine, Higashi-ku , Hamamatsu 431-3192 , Japan
| | - Shin-Ichi Yusa
- Department of Applied Chemistry , University of Hyogo , 2167 Shosha , Himeji , Hyogo 671-2280 , Japan
| | - Shun Okada
- Division of Applied Chemistry , Graduate School of Engineering, Osaka Institute of Technology , 5-16-1, Omiya, Asahi-ku , Osaka 535-8585 , Japan
| | - Ken Nakajima
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology 2-12-1 O-okayama , Meguro, Tokyo 152-8552 Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering , Osaka Institute of Technology , 5-16-1 Omiya , Asahi-ku, Osaka 535-8585 , Japan
- Nanomaterials Microdevices Research Center , Osaka Institute of Technology , 5-16-1 Omiya , Asahi-ku, Osaka 535-8585 , Japan
| | - Hiroyuki Mayama
- Department of Chemistry , Asahikawa Medical University , 2-1-1-1 Midorigaoka-Higashi , Asahikawa 078-8510 , Japan
| | - Satoshi Okada
- Research Center for Bioscience and Nanoscience , Japan Agency for Marine-Earth Science and Technology (JAMSTEC) , 2-15 Natsushima-cho , Yokosuka 237-0061 , Japan
| | - Shigeru Deguchi
- Research Center for Bioscience and Nanoscience , Japan Agency for Marine-Earth Science and Technology (JAMSTEC) , 2-15 Natsushima-cho , Yokosuka 237-0061 , Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering , Osaka Institute of Technology , 5-16-1 Omiya , Asahi-ku, Osaka 535-8585 , Japan
- Nanomaterials Microdevices Research Center , Osaka Institute of Technology , 5-16-1 Omiya , Asahi-ku, Osaka 535-8585 , Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering , Osaka Institute of Technology , 5-16-1 Omiya , Asahi-ku, Osaka 535-8585 , Japan
- Nanomaterials Microdevices Research Center , Osaka Institute of Technology , 5-16-1 Omiya , Asahi-ku, Osaka 535-8585 , Japan
| |
Collapse
|
31
|
Sato E, Taketani S, Omori C, Horibe H, Matsumoto A. Regiospecificity of Alternating Copolymerization of Cyclic Conjugated Dienes and Oxygen. CHEM LETT 2019. [DOI: 10.1246/cl.181047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Eriko Sato
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Shuji Taketani
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Chisato Omori
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Hideo Horibe
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Akikazu Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
32
|
Li X, Shi H, Hu Y. Rod-shaped liquid plasticine for gas diffusion detection. SOFT MATTER 2019; 15:3085-3088. [PMID: 30924828 DOI: 10.1039/c9sm00362b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A rod-shaped liquid plasticine was produced here, which was then shown to serve as a versatile gas detector based on a coloration mechanism. It not only indicated gas existence but also visually revealed the gas frontier positions, which allowed the calculation of diffusion speeds and gas concentrations. This study demonstrated the feasibility of multifunctional applications in a liquid plasticine using its shape and optical advantages.
Collapse
Affiliation(s)
- Xiaoguang Li
- Department of Applied Physics, School of Science, Northwestern Polytechnical University, Xi'an, China.
| | | | | |
Collapse
|
33
|
Singha P, Swaminathan S, Yadav AS, Varanakkottu SN. Surfactant-Mediated Collapse of Liquid Marbles and Directed Assembly of Particles at the Liquid Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4566-4576. [PMID: 30829489 DOI: 10.1021/acs.langmuir.8b03821] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Extensive research is being devoted to both the fundamental and applied aspects of liquid marbles (LMs). However, influence of the surface tension of the liquid substrate on the stability of the LMs and LM-mediated capillary interaction remains unexplored. In this work, we unveil the role of the surface tension of the liquid substrate on the collapse of multilayered LMs and apply this knowledge for realizing a dense planar assembly of microparticles triggered by LM-mediated capillary interactions. Experiments and analysis show that the required surface tension for the collapse is dependent on the volume of the LMs. The larger LMs are less stable, and thus collapse at a higher surface tension than that required for smaller LMs. The results are explained on the basis of the balance between surface tension forces acting on the LM ( Fs) and its weight ( Fw). Force analysis reveals that the collapse of the LM on the liquid substrate occurs when the surface tension force approaches to its weight, that is, when Fs ≈ Fw. This has been verified for LMs having volume in the range 6-10 μL. The experiments with different surfactants (an anionic and a cationic) lead to similar results which indicate that the collapse condition of the LMs is mainly dependent on their weight and the surface tension of the liquid substrate. Further, we demonstrate the LM-mediated assembly of particles at the liquid surface, and interestingly, the LM can be collapsed once the assembly is completed, leading to a denser well-packed assembled structure. We believe that the presented results could provide new insights in the fields of microfluidics, particle patterning, and assembly.
Collapse
|
34
|
Hydrophobic poly(3,4-ethylenedioxythiophene) particles synthesized by aqueous oxidative coupling polymerization and their use as near-infrared-responsive liquid marble stabilizer. Polym J 2019. [DOI: 10.1038/s41428-019-0189-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Sato E, Yuri M, Matsumoto A, Horibe H. Reductants for polyperoxides to accelerate degradation at elevated temperatures. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
36
|
|
37
|
Inoue H, Hirai T, Hanochi H, Oyama K, Mayama H, Nakamura Y, Fujii S. Poly(3-hexylthiophene) Grains Synthesized by Solvent-Free Oxidative Coupling Polymerization and Their Use as Light-Responsive Liquid Marble Stabilizer. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02426] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | | | | | | | - Hiroyuki Mayama
- Department of Chemistry, Asahikawa Medical University 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | | | | |
Collapse
|
38
|
Tyowua AT, Mooney JM, Binks BP. Janus liquid marbles containing both oil and water stabilised by silica or sericite particles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.09.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Mete S, Mukherjee P, Maiti B, Pal S, Ghorai PK, De P. Degradable Crystalline Polyperoxides from Fatty Acid Containing Styrenic Monomers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Abstract
A mechanical flip-flop actuator has been developed that allows for the facile re-routing and distribution of liquid marbles (LMs) in digital microfluidic devices. Shaped loosely like a triangle, the actuating switch pivots from one bistable position to another, being actuated by the very low mass and momentum of a LM rolling under gravity (~4 × 10−6 kg ms−1). The actuator was laser-cut from cast acrylic, held on a PTFE coated pivot, and used a PTFE washer. Due to the rocking motion of the switch, sequential LMs are distributed along different channels, allowing for sequential LMs to traverse parallel paths. This distributing effect can be easily cascaded, for example to evenly divide sequential LMs down four different paths. This lightweight, cheap and versatile actuator has been demonstrated in the design and construction of a LM-operated mechanical multiplication device — establishing its effectiveness. The actuator can be operated solely by gravity, giving it potential use in point-of-care devices in low resource areas.
Collapse
|
41
|
Sato E, Omori C, Nishiyama T, Horibe H. Cross-linked Polyperoxides for Photoremovable Adhesives. J PHOTOPOLYM SCI TEC 2018. [DOI: 10.2494/photopolymer.31.511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eriko Sato
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University
| | - Chisato Omori
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University
| | - Takashi Nishiyama
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University
| | - Hideo Horibe
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University
| |
Collapse
|
42
|
Luo X, Yin H, Li X, Su X, Feng Y. CO2-Triggered microreactions in liquid marbles. Chem Commun (Camb) 2018; 54:9119-9122. [DOI: 10.1039/c8cc01786g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
CO2-Triggered microreactions in liquid marbles were developed by using CO2 to coalesce contacting patchy liquid marbles containing separate reagents.
Collapse
Affiliation(s)
- Xinjie Luo
- Polymer Research Institute
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Hongyao Yin
- Polymer Research Institute
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xian’e Li
- Polymer Research Institute
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xin Su
- Polymer Research Institute
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yujun Feng
- Polymer Research Institute
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
43
|
Oliveira NM, Reis RL, Mano JF. The Potential of Liquid Marbles for Biomedical Applications: A Critical Review. Adv Healthc Mater 2017; 6. [PMID: 28795516 DOI: 10.1002/adhm.201700192] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/20/2017] [Indexed: 12/31/2022]
Abstract
Liquid marbles (LM) are freestanding droplets covered by micro/nanoparticles with hydrophobic/hydrophilic properties, which can be manipulated as a soft solid. The phenomenon that generates these soft structures is regarded as a different method to generate a superhydrophobic behavior in the liquid/solid interface without modifying the surface. Several applications for the LM have been reported in very different fields, however the developments for biomedical applications are very recent. At first, the LM properties are reviewed, namely shell structure, LM shape, evaporation, floatability and robustness. The different strategies for LM manipulation are also described, which make use of magnetic, electrostatic and gravitational forces, ultraviolet and infrared radiation, and approaches that induce LM self-propulsion. Then, very distinctive applications for LM in the biomedical field are presented, namely for diagnostic assays, cell culture, drug screening and cryopreservation of mammalian cells. Finally, a critical outlook about the unexplored potential of LM for biomedical applications is presented, suggesting possible advances on this emergent scientific area.
Collapse
Affiliation(s)
- Nuno M. Oliveira
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Zona Industrial da Gandra; 4805-017 Barco GMR Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Zona Industrial da Gandra; 4805-017 Barco GMR Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - João F. Mano
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Zona Industrial da Gandra; 4805-017 Barco GMR Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
44
|
Al-Kaidy H, Kuthan K, Hering T, Tippkötter N. Aqueous Droplets Used as Enzymatic Microreactors and Their Electromagnetic Actuation. J Vis Exp 2017. [PMID: 28872132 DOI: 10.3791/54643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
For the successful implementation of microfluidic reaction systems, such as PCR and electrophoresis, the movement of small liquid volumes is essential. In conventional lab-on-a-chip-platforms, solvents and samples are passed through defined microfluidic channels with complex flow control installations. The droplet actuation platform presented here is a promising alternative. With it, it is possible to move a liquid drop (microreactor) on a planar surface of a reaction platform (lab-in-a-drop). The actuation of microreactors on the hydrophobic surface of the platform is based on the use of magnetic forces acting on the outer shell of the liquid drops which is made of a thin layer of superhydrophobic magnetite particles. The hydrophobic surface of the platform is needed to avoid any contact between the liquid core and the surface to allow a smooth movement of the microreactor. On the platform, one or more microreactors with volumes of 10 µL can be positioned and moved simultaneously. The platform itself consists of a 3 x 3 matrix of electrical double coils which accommodate either neodymium or iron cores. The magnetic field gradients are automatically controlled. By variation of the magnetic field gradients, the microreactors' magnetic hydrophobic shell can be manipulated automatically to move the microreactor or open the shell reversibly. Reactions of substrates and corresponding enzymes can be initiated by merging the microreactors or bringing them into contact with surface immobilized catalysts.
Collapse
Affiliation(s)
| | - Kai Kuthan
- Institute of Bioprocess Engineering, University of Kaiserslautern
| | - Thomas Hering
- Institute of Bioprocess Engineering, University of Kaiserslautern
| | - Nils Tippkötter
- Institute of Bioprocess Engineering, University of Kaiserslautern; Bioprocess Engineering, University of Applied Sciences, FH Aachen;
| |
Collapse
|
45
|
Chen Z, Zang D, Zhao L, Qu M, Li X, Li X, Li L, Geng X. Liquid Marble Coalescence and Triggered Microreaction Driven by Acoustic Levitation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6232-6239. [PMID: 28339204 DOI: 10.1021/acs.langmuir.7b00347] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Liquid marbles show promising potential for application in the microreactor field. Control of the coalescence between two or among multiple liquid marbles is critical; however, the successful merging of two isolated marbles is difficult because of their mechanically robust particle shells. In this work, the coalescence of multiple liquid marbles was achieved via acoustic levitation. The dynamic behaviors of the liquid marbles were monitored by a high-speed camera. Driven by the sound field, the liquid marbles moved toward each other, collided, and eventually coalesced into a larger single marble. The underlying mechanisms of this process were probed via sound field simulation and acoustic radiation pressure calculation. The results indicated that the pressure gradient on the liquid marble surface favors the formation of a liquid bridge between the liquid marbles, resulting in their coalescence. A preliminary indicator reaction was induced by the coalescence of dual liquid marbles, which suggests that expected chemical reactions can be successfully triggered with multiple reagents contained in isolated liquid marbles via acoustic levitation.
Collapse
Affiliation(s)
- Zhen Chen
- Functional Soft Matter & Materials Group, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Natural and Applied Sciences, Northwestern Polytechnical University , Xi'an 710129, China
| | - Duyang Zang
- Functional Soft Matter & Materials Group, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Natural and Applied Sciences, Northwestern Polytechnical University , Xi'an 710129, China
| | - Liang Zhao
- Functional Soft Matter & Materials Group, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Natural and Applied Sciences, Northwestern Polytechnical University , Xi'an 710129, China
| | - Mengfei Qu
- Functional Soft Matter & Materials Group, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Natural and Applied Sciences, Northwestern Polytechnical University , Xi'an 710129, China
| | - Xu Li
- School of Electronics and Information, Northwestern Polytechnical University , Xi'an 710129, China
| | - Xiaoguang Li
- Functional Soft Matter & Materials Group, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Natural and Applied Sciences, Northwestern Polytechnical University , Xi'an 710129, China
| | - Lixin Li
- School of Electronics and Information, Northwestern Polytechnical University , Xi'an 710129, China
| | - Xingguo Geng
- Functional Soft Matter & Materials Group, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Natural and Applied Sciences, Northwestern Polytechnical University , Xi'an 710129, China
| |
Collapse
|
46
|
Bormashenko E. Liquid Marbles, Elastic Nonstick Droplets: From Minireactors to Self-Propulsion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:663-669. [PMID: 28114756 DOI: 10.1021/acs.langmuir.6b03231] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Liquid marbles are nonstick droplets wrapped by micro- or nanometrically scaled colloidal particles, representing a platform for a variety of chemical, biological, and microfluidics applications. Liquid marbles demonstrate elastic properties and do not coalesce when bounced or pressed. The effective surface tension and Young modulus of liquid marbles are discussed. Physical sources of the elasticity of liquid marbles are considered. Liquids and powders used for the fabrication of liquid marbles are surveyed. This feature article reviews properties and applications of liquid marbles. Liquid marbles demonstrate potential as microreactors, microcontainers for growing micro-organisms and cells, and microfluidics devices. The Marangoni-flow-driven self-propulsion of marbles supported by liquids is addressed.
Collapse
Affiliation(s)
- Edward Bormashenko
- Ariel University , Engineering Faculty, Chemical Engineering Department, P.O.B. 3, 407000 Ariel, Israel
| |
Collapse
|
47
|
FUJII S, TAKEUCHI S, EDAHIRO M, YOSHIMI S, KOGURE A, TARUI Y, KASAHARA M, YASUI Y, NAKAMURA Y. Pressure-sensitive Adhesive Liquid Marble: Fabrication and Characterization of Structure and Adhesive Property. ACTA ACUST UNITED AC 2017. [DOI: 10.2497/jjspm.64.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Syuji FUJII
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology
| | - Seiji TAKEUCHI
- Analytical & Measuring Instruments Division, Shimadzu Corporation
| | - Masami EDAHIRO
- Analytical & Measuring Instruments Division, Shimadzu Corporation
| | - Satoshi YOSHIMI
- Analytical & Measuring Instruments Division, Shimadzu Corporation
| | - Akinori KOGURE
- Testing and Analysis Division, Shimadzu Techno-Research, INC
| | - Yasuo TARUI
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology
| | - Moe KASAHARA
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology
| | - Yoshihide YASUI
- Analytical & Measuring Instruments Division, Shimadzu Corporation
| | - Yoshinobu NAKAMURA
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology
| |
Collapse
|
48
|
Castro JO, Neves BM, Rezk AR, Eshtiaghi N, Yeo LY. Continuous Production of Janus and Composite Liquid Marbles with Tunable Coverage. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17751-17756. [PMID: 27389811 DOI: 10.1021/acsami.6b05321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report a simple method for on-demand continuous processing of composite liquid marbles with the aid of a 3D printed slide platform, which offers the potential for engineering novel functional surfaces for the production of combination drug therapies, particle-based barcode biomarkers and smart membranes, among other applications. Unlike other attempts at producing such liquid marbles, this novel technique not only facilitates controllable and reproducible production of the liquid marbles but also allows the selection of different morphologies such as banded, patchy, and Janus structures by controlling the coalescence conditions, with the possibility for tunable symmetric and asymmetric patterns, the latter by varying the particle species partitioning ratio.
Collapse
Affiliation(s)
- Jasmine O Castro
- School of Engineering, RMIT University , Melbourne, Victoria 3001, Australia
| | - Bruna M Neves
- School of Engineering, RMIT University , Melbourne, Victoria 3001, Australia
| | - Amgad R Rezk
- School of Engineering, RMIT University , Melbourne, Victoria 3001, Australia
| | - Nicky Eshtiaghi
- School of Engineering, RMIT University , Melbourne, Victoria 3001, Australia
| | - Leslie Y Yeo
- School of Engineering, RMIT University , Melbourne, Victoria 3001, Australia
| |
Collapse
|
49
|
Sheng Y, Sun G, Ngai T. Dopamine Polymerization in Liquid Marbles: A General Route to Janus Particle Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3122-3129. [PMID: 26963571 DOI: 10.1021/acs.langmuir.6b00525] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Coating a liquid with a particle shell not only renders a droplet superhydrophobic but also isolates a well-confined microenvironment for miniaturized chemical processes. Previously, we have demonstrated that particles at the liquid marble interface provide an ideal platform for the site-selective modification of superhydrophobic particles. However, the need for a special chemical reaction limits their potential use for the fabrication of Janus particles with various properties. Herein, we combine the employment of liquid marbles as microreactors with the remarkable adhesive ability of polydopamine to develop a general route for the synthesis of Janus particles from micrometer-sized superhydrophobic particles. We demonstrate that dopamine polymerization and deposition inside liquid marbles could be used for the selective surface modification of microsized silica particles, resulting in the formation of Janus particles. Moreover, it is possible to manipulate the Janus balance of the particles via the addition of surfactants and/or organic solvents to tune the interfacial energy. More importantly, owing to the many functional groups in polydopamine, we show that versatile strategies could be introduced to use these partially polydopamine-coated silica particles as platforms for further modification, including nanoparticle immobilization, metal ion chelation and reduction, as well as for chemical reactions. Given the flexibility in the choice of cores and the modification strategies, this developed method is distinctive in its high universality, good controllability, and great practicability.
Collapse
Affiliation(s)
- Yifeng Sheng
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Guanqing Sun
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
- Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, Shenzhen Research Institute, The Chinese University of Hong Kong , Shenzhen 518057, P. R. China
| |
Collapse
|
50
|
Lin X, Ma W, Wu H, Cao S, Huang L, Chen L, Takahara A. Superhydrophobic magnetic poly(DOPAm-co-PFOEA)/Fe3O4/cellulose microspheres for stable liquid marbles. Chem Commun (Camb) 2016; 52:1895-8. [DOI: 10.1039/c5cc08842a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cellulose-based micro/nano hierarchical spheres with magnetism and superhydrophobicity were fabricated and further used to transport and manipulate liquid droplets through the formation of stable liquid marbles.
Collapse
Affiliation(s)
- Xinxing Lin
- College of Material Engineering
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Wei Ma
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)
- Kyushu University
- Nishi-ku
- Japan
| | - Hui Wu
- College of Material Engineering
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Shilin Cao
- College of Material Engineering
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Liulian Huang
- College of Material Engineering
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Lihui Chen
- College of Material Engineering
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Atsushi Takahara
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)
- Kyushu University
- Nishi-ku
- Japan
- ERATO Takahara Soft Interface Project
| |
Collapse
|