1
|
Saikia B, Chen D, de Coene Y, Van Cleuvenbergen S. Organogels of FmocFF: Exploring the Solvent-Dependent Gelmorphic Behavior. Gels 2024; 10:749. [PMID: 39590105 PMCID: PMC11594169 DOI: 10.3390/gels10110749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
FmocFF (9-fluorenyl methoxycarbonyl-phenylalanine) is an extensively studied low-molecular-weight hydrogel. Although there have been numerous studies on FmocFF hydrogel, its potential to form organogels has not been well explored. In this work, we systematically explore the organogels of FmocFF in a wide range of organic solvents. FmocFF is found to be a robust organogeltor, and the subsequent organogels exhibit diverse gelmorphic behavior exhibiting various degrees of crystallinity and morphology depending on the solvent used. The mechanical strength of the organogels is evaluated using rheology. A novel technique, in situ SHG microscopy, is introduced to study the gel structure in its native state. In addition to the solvent-solute interactions that are typically used to predict gelmorphic behavior, we observed indications that the degree of crystallinity also plays a significant role in determining the mechanical properties and structure of FmocFF organogels.
Collapse
Affiliation(s)
- Basanta Saikia
- Department of Chemistry, Molecular Imaging and Photonics, KULAK—KU Leuven, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (B.S.); (D.C.)
| | - Dong Chen
- Department of Chemistry, Molecular Imaging and Photonics, KULAK—KU Leuven, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (B.S.); (D.C.)
| | - Yovan de Coene
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium;
| | - Stijn Van Cleuvenbergen
- Department of Chemistry, Molecular Imaging and Photonics, KULAK—KU Leuven, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (B.S.); (D.C.)
| |
Collapse
|
2
|
Bauland J, Andrieux V, Pignon F, Frath D, Bucher C, Gibaud T. Viologen-based supramolecular crystal gels: gelation kinetics and sensitivity to temperature. SOFT MATTER 2024; 20:8278-8290. [PMID: 39387141 DOI: 10.1039/d4sm00826j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Supramolecular crystal gels, a subset of molecular gels, are formed through the self-assembly of low molecular weight gelators into interconnecting crystalline fibers, creating a three-dimensional soft solid network. This study focuses on the formation and properties of viologen-based supramolecular crystalline gels. It aims to answer key questions about the tunability of network properties and the origin of these properties through in-depth analyses of the gelation kinetics triggered by thermal quenching. Experimental investigations, including UV-Vis absorption spectroscopy, rheology, microscopy and scattering measurements, contribute to a comprehensive and self-consistent understanding of the system kinetics. We confirm that viologen-based gelators crystallize by forming nanometer radius hollow tubes that assemble into micro to millimetric spherulites. We then show that crystallization follows the Avrami theory and is based on pre-existing nuclei. We also establish that the growth is interface-controlled, leading the hollow tubes to branch into spherulites with fractal structures. Finally, we demonstrate that the gel properties can be tuned depending on the quenching temperature. Lowering the temperature results in the formation of denser and smaller spherulites. In contrast, the gel's elasticity is not significantly affected by the quench temperature, leading us to hypothesize that the densification of spherulites occurs at the expense of connectivity between spherulites.
Collapse
Affiliation(s)
- Julien Bauland
- ENS de Lyon, CNRS, Laboratoire de Physique, UMR 5672, F-69342 Lyon, France.
| | - Vivien Andrieux
- ENS de Lyon, CNRS, LCH, UMR 5182, 69342, Lyon cedex 07, France.
| | - Frédéric Pignon
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LRP, F-38000 Grenoble, France
| | - Denis Frath
- ENS de Lyon, CNRS, LCH, UMR 5182, 69342, Lyon cedex 07, France.
| | | | - Thomas Gibaud
- ENS de Lyon, CNRS, Laboratoire de Physique, UMR 5672, F-69342 Lyon, France.
| |
Collapse
|
3
|
Holey S, Nayak RR. Harnessing Glycolipids for Supramolecular Gelation: A Contemporary Review. ACS OMEGA 2024; 9:25513-25538. [PMID: 38911776 PMCID: PMC11190938 DOI: 10.1021/acsomega.4c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024]
Abstract
Within the scope of this review, our exploration spans diverse facets of amphiphilic glycolipid-based low-molecular-weight gelators (LMWGs). This journey explores glycolipid synthesis, self-assembly, and gelation with tailorable properties. It begins by examining the design of glycolipids and their influence on gel formation. Following this, a brief exploration of several gel characterization techniques adds another layer to the understanding of these materials. The final section is dedicated to unraveling the various applications of these glycolipid-based supramolecular gels. A meticulous analysis of available glycolipid gelators and their correlations with desired properties for distinct applications is a pivotal aspect of their investigation. As of the present moment, there exists a notable absence of a review dedicated exclusively to glycolipid gelators. This study aims to bridge this critical gap by presenting an overview that provides novel insights into their unique properties and versatile applications. This holistic examination seeks to contribute to a deeper understanding of molecular design, structural characteristics, and functional applications of glycolipid gelators by offering insights that can propel advancements in these converging scientific disciplines. Overall, this review highlights the diverse classifications of glycolipid-derived gelators and particularly emphasizes their capacity to form gels.
Collapse
Affiliation(s)
- Snehal
Ashokrao Holey
- Department
of Oils, Lipid Science and Technology, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500 007, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rati Ranjan Nayak
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute
of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| |
Collapse
|
4
|
Wu Y, Nie Y, Long Z, Si P, Zhang D. Coacervation-Based Method for Constructing a Multifunctional Strain-Stiffening Crystalline Polyvinylamine Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31354-31362. [PMID: 35771154 DOI: 10.1021/acsami.2c08838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Strain-stiffening hydrogels are essential in the development of ionic skin, as human skin possesses a strain-stiffening property for self-protection. Semicrystalline polymers such as poly(vinyl alcohol) (PVA) have been widely investigated to fabricate strain-stiffening hydrogels via freeze-thaw cycling or chemical cross-linking but with limited adjustable properties. Compared with PVA, polyvinylamine (PVAm) has a higher reactive activity, making it easier to achieve multifunctionalities including strain-stiffening in a PVAm hydrogel. However, the amine moieties in the backbone tend to be ionized and form strong ionic hydrogen bonds with water, resulting in difficulties in forming crystalline hydrogels by conventional methods. Herein, a one-pot method to induce crystallinity and achieve multifunctional hydrogel is devised via coacervation of PVAm. Different from a published coacervation method to fabricate hydrogels with various properties via noncovalent interactions between different chemicals, coacervation occurs between PVAm to form aggregated and loose PVAm in our devised system. Such a strategy lowers the amine-water binding energy in the polymer-dense phase to achieve crystallinity and subsequently the strain-stiffening property; meanwhile, self-healability, self-adhesion, and ionic conductivity can be realized in the polymer-loose phase. The obtained hydrogel integrates stretchability (∼1300% elongation), toughness (227 kPa), the strain-stiffening property (∼10 times increase), self-adhesion (90 J m-2), self-healability (∼80% healing efficiency in toughness), and ionic conductivity (0.22 mS m-1). This convenient strategy will open a new horizon to design multifunctional skin-mimic materials.
Collapse
Affiliation(s)
- Yun Wu
- College of Textile Science and Engineering Jiangnan University ,1800 Lihu Avenue, Wuxi 214222, China
| | - Yiping Nie
- College of Textile Science and Engineering Jiangnan University ,1800 Lihu Avenue, Wuxi 214222, China
| | - Zhu Long
- College of Textile Science and Engineering Jiangnan University ,1800 Lihu Avenue, Wuxi 214222, China
| | - Pengxiang Si
- College of Textile Science and Engineering Jiangnan University ,1800 Lihu Avenue, Wuxi 214222, China
| | - Dan Zhang
- College of Textile Science and Engineering Jiangnan University ,1800 Lihu Avenue, Wuxi 214222, China
| |
Collapse
|
5
|
Laishram R, Sarkar S, Seth I, Khatun N, Aswal VK, Maitra U, George SJ. Secondary Nucleation-Triggered Physical Cross-Links and Tunable Stiffness in Seeded Supramolecular Hydrogels. J Am Chem Soc 2022; 144:11306-11315. [PMID: 35707951 DOI: 10.1021/jacs.2c03230] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mechanistic understanding and the control of molecular self-assembly at all hierarchical levels remain grand challenges in supramolecular chemistry. Functional realization of dynamic supramolecular materials especially requires programmed assembly at higher levels of molecular organization. Herein, we report an unprecedented molecular control on the fibrous network topology of supramolecular hydrogels and their resulting macroscopic properties by biasing assembly pathways of higher-order structures. The surface-catalyzed secondary nucleation process, a well-known mechanism in amyloid fibrilization and chiral crystallization of small molecules, is introduced as a non-covalent strategy to induce physical cross-links and bundling of supramolecular fibers, which influences the microstructure of gel networks and subsequent mechanical properties of hydrogels. In addition, seed-induced instantaneous gelation is realized in the kinetically controlled self-assembled system under this study, and more importantly, the extent of secondary nucleation events and network topology is manipulated by the concentration of seeds.
Collapse
Affiliation(s)
- Raju Laishram
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Souvik Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Indranil Seth
- Department of Organic Chemistry, Indian Institute of Science (IISc), Bangalore 560012, India
| | - Nurjahan Khatun
- Centre for Nano and Soft Matter Sciences (CeNS), Bangalore 562162, India
| | - Vinod Kumar Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Mumbai 400085, India
| | - Uday Maitra
- Department of Organic Chemistry, Indian Institute of Science (IISc), Bangalore 560012, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
6
|
Baccile N, Ben Messaoud G, Le Griel P, Cowieson N, Perez J, Geys R, De Graeve M, Roelants SLKW, Soetaert W. Palmitic acid sophorolipid biosurfactant: from self-assembled fibrillar network (SAFiN) to hydrogels with fast recovery. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200343. [PMID: 34334020 DOI: 10.1098/rsta.2020.0343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/18/2021] [Indexed: 06/13/2023]
Abstract
Nanofibres are an interesting phase into which amphiphilic molecules can self-assemble. Described for a large number of synthetic lipids, they were seldom reported for natural lipids like microbial amphiphiles, known as biosurfactants. In this work, we show that the palmitic acid congener of sophorolipids (SLC16:0), one of the most studied families of biosurfactants, spontaneously forms a self-assembled fibre network (SAFiN) at pH below 6 through a pH jump process. pH-resolved in situ small-angle X-ray scattering (SAXS) shows a continuous micelle-to-fibre transition, characterized by an enhanced core-shell contrast between pH 9 and pH 7 and micellar fusion into a flat membrane between pH 7 and pH 6, approximately. Below pH 6, homogeneous, infinitely long nanofibres form by peeling off the membranes. Eventually, the nanofibre network spontaneously forms a thixotropic hydrogel with fast recovery rates after applying an oscillatory strain amplitude out of the linear viscoelastic regime: after being submitted to strain amplitudes during 5 min, the hydrogel recovers about 80% and 100% of its initial elastic modulus after, respectively, 20 s and 10 min. Finally, the strength of the hydrogel depends on the medium's final pH, with an elastic modulus fivefold higher at pH 3 than at pH 6. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Niki Baccile
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, F-75005 Paris, France
| | - Ghazi Ben Messaoud
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, F-75005 Paris, France
| | - Patrick Le Griel
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, F-75005 Paris, France
| | - Nathan Cowieson
- Harwell Science and Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, UK
| | - Javier Perez
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP48,91192 Gif-sur-Yvette Cedex, France
| | - Robin Geys
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Coupure Links 653, Ghent, Oost-Vlaanderen BE 9000, Belgium
| | - Marilyn De Graeve
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Coupure Links 653, Ghent, Oost-Vlaanderen BE 9000, Belgium
| | - Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Coupure Links 653, Ghent, Oost-Vlaanderen BE 9000, Belgium
- Bio Base Europe Pilot Plant, Rodenhuizekaai 1, Ghent, Oost-Vlaanderen BE 9000, Belgium
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Coupure Links 653, Ghent, Oost-Vlaanderen BE 9000, Belgium
- Bio Base Europe Pilot Plant, Rodenhuizekaai 1, Ghent, Oost-Vlaanderen BE 9000, Belgium
| |
Collapse
|
7
|
Nasr P, Leung H, Auzanneau FI, Rogers MA. Supramolecular Fractal Growth of Self-Assembled Fibrillar Networks. Gels 2021; 7:gels7020046. [PMID: 33919860 PMCID: PMC8167784 DOI: 10.3390/gels7020046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Complex morphologies, as is the case in self-assembled fibrillar networks (SAFiNs) of 1,3:2,4-Dibenzylidene sorbitol (DBS), are often characterized by their Fractal dimension and not Euclidean. Self-similarity presents for DBS-polyethylene glycol (PEG) SAFiNs in the Cayley Tree branching pattern, similar box-counting fractal dimensions across length scales, and fractals derived from the Avrami model. Irrespective of the crystallization temperature, fractal values corresponded to limited diffusion aggregation and not ballistic particle–cluster aggregation. Additionally, the fractal dimension of the SAFiN was affected more by changes in solvent viscosity (e.g., PEG200 compared to PEG600) than crystallization temperature. Most surprising was the evidence of Cayley branching not only for the radial fibers within the spherulitic but also on the fiber surfaces.
Collapse
Affiliation(s)
- Pedram Nasr
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (P.N.); (H.L.)
| | - Hannah Leung
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (P.N.); (H.L.)
| | | | - Michael A. Rogers
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (P.N.); (H.L.)
- Correspondence: ; Tel.: +11-519-824-4120 (ext. 54327)
| |
Collapse
|
8
|
Saito N, Itoyama S, Kondo Y. Multi-responsive organo- and hydrogelation based on the supramolecular assembly of fluorocarbon- and hydrocarbon-containing hybrid surfactants. J Colloid Interface Sci 2020; 588:418-426. [PMID: 33429338 DOI: 10.1016/j.jcis.2020.12.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 01/10/2023]
Abstract
HYPOTHESIS Novel photoresponsive hybrid surfactants, in which a combination of perfluoroalkyl and alkyl chains and cationic head groups are connected via azobenzene moieties, are excellent candidates for assembling low-molecular-weight organogels (LMOGs) with reversibly switchable viscoelasticities triggered by external stimuli. EXPERIMENTS The structure-composition-property relationships of gels assembled with the hybrid surfactants were investigated by UV-vis and NMR spectroscopy, SEM, XRD, and rheology. FINDINGS Hybrid surfactants containing perfluorohexyl chains with more than six carbons gelled in a variety of organic solvents at concentrations of less than a few percent. In particular, compositions with the perfluorooctyl and somewhat shorter hydrocarbon chains (C1-C4) gelled in both organic solvents and water. The gellable solvent species can be well grouped according to their solubility parameters, suggesting that gelation properties can be predicted from the chemical structure of the surfactant. Mechanical and structural investigations revealed that gel viscoelasticity can be reversibly altered by applying photo, shear, and heat stimuli, which is achieved through the formation and deformation of lamella-like molecular aggregates. The multi-responsive gelation and facile molecular design of the present hybrid surfactants will expand the fields in which fluorinated LMOGs can be applied.
Collapse
Affiliation(s)
- Norio Saito
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
| | - Sekito Itoyama
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Yukishige Kondo
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
| |
Collapse
|
9
|
Lim JYC, Yu Y, Jin G, Li K, Lu Y, Xie J, Tan YN. Establishing empirical design rules of nucleic acid templates for the synthesis of silver nanoclusters with tunable photoluminescence and functionalities towards targeted bioimaging applications. NANOSCALE ADVANCES 2020; 2:3921-3932. [PMID: 36132803 PMCID: PMC9417482 DOI: 10.1039/d0na00381f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/23/2020] [Indexed: 05/10/2023]
Abstract
DNA-templated silver nanoclusters (AgNCs) are an emerging class of ultrasmall (<2 nm) fluorophores with increasing popularity for bioimaging due to their facile synthesis and tunable emission color. However, design rules correlating different nucleotide sequences with the photoemission properties of AgNCs are still largely unknown, preventing the rational design of DNA templates to fine-tune the emission color, brightness and functionalities of AgNCs for any targeted applications. Herein, we report a systematic investigation to understand the empirical influences of the four basic DNA nucleotides on AgNC synthesis and their effects on photoluminescence properties. After establishing the importance of nucleotide-Ag+ binding and AgNC encapsulation within DNA tetraplex structures, we then determined the unique attributes of each individual nucleobase using different combinations of systematically varied DNA templates. Using the empirical design rules established herein, we were able to predict the photoluminescence behaviours of AgNCs templated by complex aptamer sequences with specific binding affinity to human cancer cells, and to deliberately control their emission color by rational modifications of the DNA template sequences for targeted bioimaging. Our empirical findings from this systematic experimentation can contribute towards the rational design of DNA sequences to customise the photoluminescence properties and biofunctionalities of DNA-protected AgNCs towards multicolour targeted bioimaging applications.
Collapse
Affiliation(s)
- Jason Y C Lim
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way, #08-03, Innovis 138634 Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way, #08-03, Innovis 138634 Singapore
| | - Guorui Jin
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way, #08-03, Innovis 138634 Singapore
| | - Kai Li
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way, #08-03, Innovis 138634 Singapore
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana IL 61801 United States
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore 10 Kent Ridge Crescent 119260 Singapore
| | - Yen Nee Tan
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way, #08-03, Innovis 138634 Singapore
- Faculty of Science, Agriculture & Engineering, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| |
Collapse
|
10
|
He H, Zheng H, Ma M, Shi Y, Gao Z, Chen S, Wang X. Peripheral groups of polyhedral oligomeric silsesquioxane (POSS) core-based dendrimers: a crucial factor for higher-level supra-architecture building. NANOSCALE 2020; 12:12146-12153. [PMID: 32490499 DOI: 10.1039/d0nr03216f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The role of peripheral groups (PGs) on dendrimers in the spontaneous higher-level organization of hierarchically assembled nanofibers was investigated in a series of POSS-based dendritic gelators (POSS-Lys-X, X: -Boc, -Cbz, -Fmoc, etc.). We demonstrate that the PGs not only affect the gelation ability in solutions, but also the construction of orderly entangled fibrous supramolecular networks, e.g., "loofah-like" networks. Attributed to the PGs (especially the -Boc group) causing a lower cooperative assembly, the steady state with the lowest potential energy of gelators can be easily achieved by the higher ordering of nanofiber entanglement into superstructures. The -Boc group-containing dendrimers show low molar enthalpy and molar entropy of gelation, which help the construction of unique three-dimensional (3D) "loofah-like" superstructures. In contrast, the high cooperative assembly of the dendrimer (-Cbz as the PG) promotes the gelator into a higher enthalpy gelation process, with a constructed normal fibrous network. Hence, the PGs of POSS-based dendrimers act as the crucial factor in controlling the hierarchical self-assembly via a thermodynamics approach. This research presents new perspectives to explicate the relationships between PGs of dendrimers, supra-architectures and gel performances, which further guide the design of functional supramolecular materials via controllable self-assembly.
Collapse
Affiliation(s)
- Huiwen He
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China. and College of mechanical Engineering, Zhejiang University of Technology, 288 Liuhe Road, Hangzhou 310000, China
| | - Hao Zheng
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China.
| | - Meng Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China.
| | - Yanqing Shi
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China.
| | - Zengliang Gao
- College of mechanical Engineering, Zhejiang University of Technology, 288 Liuhe Road, Hangzhou 310000, China
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China.
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China.
| |
Collapse
|
11
|
Zhang L, Hu F, Zhu S, Lin Y, Meng Z, Yu R, Liu XY. Meso-Reconstruction of Wool Keratin 3D "Molecular Springs" for Tunable Ultra-Sensitive and Highly Recovery Strain Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000128. [PMID: 32390319 DOI: 10.1002/smll.202000128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/17/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Wool keratin (WK) consists of a large number of α-helices, which are just like many molecular-scale springs. Herein, the construction of 3D WK molecular spring networks are reported by cross-linking individual WK molecules via a Michael addition reaction. The as-prepared springs display a superior recovery capability with unusual nonlinear elasticity, very low dissipative energy, and turntable elastic constant achieved by adjusting the chemical crosslinking density of WK networks. Owing to these unique characteristics, the 3D WK networks based flexible strain sensors reveal a high sensitivity, broad sensing ranges, and extremely long and stable performance. While normal highly sensible strain sensors, obtained by highly sophisticated surface or bulk patterning, often exhibit a relatively narrow range of measurements and limited life cycles. Such the WK mediated sensing materials have widespread applications in wearable electronics, such as detection and tracking of different human motions, and even discern voice during speaking.
Collapse
Affiliation(s)
- Lin Zhang
- Research Institution for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, 361005, China
| | - Fan Hu
- Research Institution for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, 361005, China
| | - Shuihong Zhu
- Research Institution for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, 361005, China
| | - Youhui Lin
- Research Institution for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, 361005, China
| | - Zhaohui Meng
- Research Institution for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, 361005, China
| | - Rui Yu
- Research Institution for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, 361005, China
| | - Xiang Yang Liu
- Research Institution for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, 361005, China
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| |
Collapse
|
12
|
Funnell NP, Fulford MF, Inoué S, Kletetschka K, Michel FM, Goodwin AL. Nanocomposite structure of two-line ferrihydrite powder from total scattering. Commun Chem 2020; 3:22. [PMID: 36703415 PMCID: PMC9814407 DOI: 10.1038/s42004-020-0269-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/04/2020] [Indexed: 01/29/2023] Open
Abstract
Ferrihydrite is one of the most important iron-containing minerals on Earth. Yet determination of its atomic-scale structure has been frustrated by its intrinsically poor crystallinity. The key difficulty is that physically-different models can appear consistent with the same experimental data. Using X-ray total scattering and a nancomposite reverse Monte Carlo approach, we evaluate the two principal contending models-one a multi-phase system without tetrahedral iron(III), and the other a single phase with tetrahedral iron(III). Our methodology is unique in considering explicitly the complex nanocomposite structure the material adopts: namely, crystalline domains embedded in a poorly-ordered matrix. The multi-phase model requires unphysical structural rearrangements to fit the data, whereas the single-phase model accounts for the data straightforwardly. Hence the latter provides the more accurate description of the short- and intermediate-range order of ferrihydrite. We discuss how this approach might allow experiment-driven (in)validation of complex models for important nanostructured phases beyond ferrihydrite.
Collapse
Affiliation(s)
- Nicholas P Funnell
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK.
| | - Maxwell F Fulford
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
- Department of Physics, Kings College London, Strand, London, WC2R 2LS, UK
| | - Sayako Inoué
- Department of Geosciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Karel Kletetschka
- Department of Geosciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - F Marc Michel
- Department of Geosciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Andrew L Goodwin
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
| |
Collapse
|
13
|
Tong F, Chen S, Li Z, Liu M, Al-Kaysi RO, Mohideen U, Yin Y, Bardeen CJ. Crystal-to-Gel Transformation Stimulated by a Solid-State E→Z Photoisomerization. Angew Chem Int Ed Engl 2019; 58:15429-15434. [PMID: 31397530 DOI: 10.1002/anie.201907454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/07/2019] [Indexed: 01/03/2023]
Abstract
The molecule (E)-(5-(3-anthracen-9-yl-allylidene)-2,2-dimethyl-[1,3] dioxane-4,6-dione) (E-AYAD) undergoes E→Z photoisomerization. In the solid state, this photoisomerization process can initiate a physical transformation of the crystal that is accompanied by a large volume expansion (ca. 10 times), loss of crystallinity, and growth of large pores. This physical change requires approximately 10 % conversion of the E isomer to the Z isomer and results in a gel-like solid with decreased stiffness that still retains its mechanical integrity. The induced porosity allows the expanding gel to engulf superparamagnetic nanoparticles from the surrounding liquid. The trapped superparamagnetic nanoparticles impart a magnetic susceptibility to the gel, allowing it to be moved by a magnetic field. The photoinduced phase transition, starting with a compact crystalline solid instead of a dilute solution, provides a new route for in situ production of functional porous materials.
Collapse
Affiliation(s)
- Fei Tong
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Shaolong Chen
- Department of Physics & Astronomy, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Mingyue Liu
- Department of Physics & Astronomy, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Rabih O Al-Kaysi
- College of Science and Health Professions-3124, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, 11426, Kingdom of Saudi Arabia
| | - Umar Mohideen
- Department of Physics & Astronomy, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Christopher J Bardeen
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| |
Collapse
|
14
|
Okesola B, Wu Y, Derkus B, Gani S, Wu D, Knani D, Smith DK, Adams DJ, Mata A. Supramolecular Self-Assembly To Control Structural and Biological Properties of Multicomponent Hydrogels. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:7883-7897. [PMID: 31631941 PMCID: PMC6792223 DOI: 10.1021/acs.chemmater.9b01882] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/08/2019] [Indexed: 05/07/2023]
Abstract
Self-assembled nanofibers are ubiquitous in nature and serve as inspiration for the design of supramolecular hydrogels. A multicomponent approach offers the possibility of enhancing the tunability and functionality of this class of materials. We report on the synergistic multicomponent self-assembly involving a peptide amphiphile (PA) and a 1,3:2,4-dibenzylidene-d-sorbitol (DBS) gelator to generate hydrogels with tunable nanoscale morphology, improved stiffness, enhanced self-healing, and stability to enzymatic degradation. Using induced circular dichroism of Thioflavin T (ThT), electron microscopy, small-angle neutron scattering, and molecular dynamics approaches, we confirm that the PA undergoes self-sorting, while the DBS gelator acts as an additive modifier for the PA nanofibers. The supramolecular interactions between the PA and DBS gelators result in improved bulk properties and cytocompatibility of the two-component hydrogels as compared to those of the single-component systems. The tunable mechanical properties, self-healing ability, resistance to proteolysis, and biocompatibility of the hydrogels suggest future opportunities for the hydrogels as scaffolds for tissue engineering and drug delivery vehicles.
Collapse
Affiliation(s)
- Babatunde
O. Okesola
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Yuanhao Wu
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Burak Derkus
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
- Biomedical
Engineering Department, Faculty of Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Samar Gani
- Department
of Biotechnology Engineering, ORT Braude
College, P.O. Box 78, Karmiel 2161002, Israel
| | - Dongsheng Wu
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Dafna Knani
- Department
of Biotechnology Engineering, ORT Braude
College, P.O. Box 78, Karmiel 2161002, Israel
| | - David K. Smith
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Dave J. Adams
- School
of
Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Alvaro Mata
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| |
Collapse
|
15
|
Tong F, Chen S, Li Z, Liu M, Al‐Kaysi RO, Mohideen U, Yin Y, Bardeen CJ. Crystal‐to‐Gel Transformation Stimulated by a Solid‐State E→Z Photoisomerization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fei Tong
- Department of Chemistry University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Shaolong Chen
- Department of Physics & Astronomy University of California, Riverside 900 University Ave Riverside CA 92521 USA
| | - Zhiwei Li
- Department of Chemistry University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Mingyue Liu
- Department of Physics & Astronomy University of California, Riverside 900 University Ave Riverside CA 92521 USA
| | - Rabih O. Al‐Kaysi
- College of Science and Health Professions-3124 King Saud bin Abdulaziz University for Health Sciences King Abdullah International Medical Research Center Ministry of National Guard Health Affairs Riyadh 11426 Kingdom of Saudi Arabia
| | - Umar Mohideen
- Department of Physics & Astronomy University of California, Riverside 900 University Ave Riverside CA 92521 USA
| | - Yadong Yin
- Department of Chemistry University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Christopher J. Bardeen
- Department of Chemistry University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| |
Collapse
|
16
|
Wu R, Ma L, Hou C, Meng Z, Guo W, Yu W, Yu R, Hu F, Liu XY. Silk Composite Electronic Textile Sensor for High Space Precision 2D Combo Temperature-Pressure Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901558. [PMID: 31116907 DOI: 10.1002/smll.201901558] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/03/2019] [Indexed: 05/21/2023]
Abstract
Wearable electronic textiles based on natural biocompatible/biodegradable materials have attracted great attention due to applications in health care and smart clothes. Silkworm fibers are durable, good heat conductors, insulating, and biocompatible, and are therefore regarded as excellent mediating materials for flexible electronics. In this paper, a strategy on the design and fabrication of highly flexible multimode electronic textiles (E-textile) based on functionalized silkworm fiber coiled yarns and weaving technology is presented. To achieve enhanced temperature sensing performance, a mixture of carbon nanotubes and an ionic liquid ([EMIM]Tf2 N) is embedded, which displays top sensitivity of 1.23% °C-1 and stability compared with others. Furthermore, fibrous pressure sensing based on the capacitance change of each cross-point of two yarns gives rise to highly position dependent and sensitivity sensing of 0.136 kPa-1 . Based on weaving technologies, a unique combo textile sensor, which can sense temperature and pressure independently with a position precision of 1 mm2 , is obtained. The application to intelligent gloves endows the position dependent sensing of the weight, and temperature distribution sensing of the temperature.
Collapse
Affiliation(s)
- Ronghui Wu
- Research Institution for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China
- Department of Physics, Faculty of Science, National University of Singapore, Singapore, 117542, Singapore
| | - Liyun Ma
- Research Institution for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China
| | - Chen Hou
- Research Institution for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Zhaohui Meng
- Research Institution for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Wenxi Guo
- Research Institution for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Weidong Yu
- Research Institution for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China
| | - Rui Yu
- Research Institution for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Fan Hu
- Research Institution for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands
| | - Xiang Yang Liu
- Research Institution for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
- Department of Physics, Faculty of Science, National University of Singapore, Singapore, 117542, Singapore
| |
Collapse
|
17
|
Liu Y, Shi B, Wang H, Shangguan L, Li Z, Zhang M, Huang F. Construction of Metallacage-Cored Supramolecular Gel by Hierarchical Self-Assembly of Metal Coordination and Pillar[5]arene-Based Host-Guest Recognition. Macromol Rapid Commun 2018; 39:e1800655. [PMID: 30318827 DOI: 10.1002/marc.201800655] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/20/2018] [Indexed: 12/22/2022]
Abstract
In this work, a Pd2 L4 metallacage 2•([BF4 ]- )4 with four pillar[5]arene units is first prepared and characterized by 1D multinuclear NMR (1 H, 11 B, and 19 F NMR), 2D 1 H-1 H correlation spectra, 1 H-13 C heteronuclear single quantum coherence, and diffusion-ordered NMR spectroscopy, and electrospray ionization time-of-flight mass spectrometry. By the introduction of a ditopic guest molecule 3 into a chloroform solution of 2•([BF4 ]- )4 , a supramolecular polymer network gel is successfully constructed based on the metal coordination interactions and host-guest recognition between the pillar[5]arene units of 2•([BF4 ]- )4 and neutral ditopic guest molecule 3. The temperature and pH responsivenesses of the supramolecular gel are studied, which are further employed for the controlled release of different cargos. As a demonstration, emodin and methylene blue are trapped in the cavities of the metallacage and in the pores of the supramolecular gel, respectively. Methylene blue is first released along with the gel-sol transition while emodin is then released by the further addition of acid to destroy the metallacage. This study explores the use of metallacage-cored supramolecular network gels for sequential controlled release and contributes to the development of smart and adaptive materials.
Collapse
Affiliation(s)
- Yuezhou Liu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Bingbing Shi
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hu Wang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Liqing Shangguan
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhengtao Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
18
|
Taqieddin A, Allshouse MR, Alshawabkeh AN. Review-Mathematical Formulations of Electrochemically Gas-Evolving Systems. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2018; 165:E694-E711. [PMID: 30542215 PMCID: PMC6287757 DOI: 10.1149/2.0791813jes] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrochemically gas-evolving systems are utilized in alkaline water electrolysis, hydrogen production, and many other applications. To design and optimize these systems, high-fidelity models must account for electron-transfer, chemical reactions, thermodynamics, electrode porosity, and hydrodynamics as well as the interconnectedness of these phenomena. Further complicating these models is the production and presence of bubbles. Bubble nucleation naturally occurs due to the chemical reactions and impacts the reaction rate. Modeling bubble growth requires an accurate accounting of interfacial mass transfer. When the bubble becomes large, detachment occurs and the system is modeled as a two-phase flow where the bubbles can then impact material transport in the bulk. In this paper, we review the governing mathematical models of the physicochemical life cycle of a bubble in an electrolytic medium from a multiscale, multiphysics viewpoint. For each phase of the bubble life cycle, the prevailing mathematical formulations are reviewed and compared with particular attention paid to physicochemical processes and the impact the bubble. Through the review of a broad range of models, we provide a compilation of the current state of bubble modeling in electrochemically gas-evolving systems.
Collapse
Affiliation(s)
- Amir Taqieddin
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Michael R. Allshouse
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Akram N. Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
19
|
Baccile N, Van Renterghem L, Le Griel P, Ducouret G, Brennich M, Cristiglio V, Roelants SLKW, Soetaert W. Bio-based glyco-bolaamphiphile forms a temperature-responsive hydrogel with tunable elastic properties. SOFT MATTER 2018; 14:7859-7872. [PMID: 30211424 DOI: 10.1039/c8sm01167b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A bio-based glycolipid bolaamphiphile (glyco-bolaamphiphile) has recently been produced (Van Renterghem et al., Biotechnol. Bioeng., 2018, 115, 1195-1206) on a gram scale by using the genetically-engineered S. bombicola strain Δat Δsble Δfao1. The glyco-bolaamphiphile bears two symmetrical sophorose headgroups at the extremities of a C16:0 (ω-1 hydroxylated palmitic alcohol) spacer. Its atypical structure has been obtained by redesigning the S. bombicola strain Δat Δsble, producing non-symmetrical glyco-bolaamphiphile, with an additional knock out (Δfao1) and feeding this new strain with fatty alcohols. The molecular structure of the glyco-bolaamphiphile is obtained by feeding the new strain a saturated C16 substrate (palmitic alcohol), which enables the biosynthesis of bolaform glycolipids. In this work, we show that the bio-based glyco-bolaamphiphile readily forms a hydrogel in water at room temperature, and that the hydrogel formation depends on the formation of self-assembled fibers. Above 28 °C, the molecules undergo a gel-to-sol transition, which is due to a fiber-to-micelle phase change. We provide a quantitative description of the Self-Assembled Fibrillar Network (SAFiN) hydrogel formed by the glyco-bolaampiphile. We identify the sol-gel transition temperature, the gelling time, and the minimal gel concentration; additionally, we explore the fibrillation mechanism as a function of time and temperature and determine the activation energy of the micelle-to-fiber phase transition. These parameters allow control of the elastic properties of the glyco-bolaamphiphile hydrogel: at 3 wt% and 25 °C, the elastic modulus G' is above the kPa range, while at 5 °C, G' can be tuned between 100 Pa and 20 kPa, by controlling the undercooling protocol.
Collapse
Affiliation(s)
- Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Schröder A, Sprakel J, Schroën K, Berton-Carabin CC. Tailored microstructure of colloidal lipid particles for Pickering emulsions with tunable properties. SOFT MATTER 2017; 13:3190-3198. [PMID: 28397896 DOI: 10.1039/c6sm02432g] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sub-micron colloidal lipid particles (CLPs) can successfully be used as Pickering stabilizers in oil-in-water (O/W) emulsions, leading to an enhanced physical stability compared to conventional emulsifier-stabilized emulsions. Varying the lipid solid-liquid ratio leads to particles with distinct nanostructure and morphology, resulting in tunable emulsion stabilization performance. Our CLPs are produced by hot high pressure homogenization of high melting point fats in water, and subsequent cooling to induce lipid crystallization. Lath-like tripalmitin and palm stearin CLPs form jammed, cohesive interfacial layers that prevent relaxation of emulsion droplets, and form a three-dimensional network in the continuous aqueous phase. CLPs consisting of a mixture of solid tripalmitin and liquid tricaprylin are polycrystalline platelet-like particles that form O/W emulsions with spherical and bridged droplets covered by a thin particle layer. Our results present a versatile approach to interfacial design that also opens up new perspectives for development of novel delivery systems for active ingredients.
Collapse
Affiliation(s)
- Anja Schröder
- Laboratory of Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Cerqueira MA, Fasolin LH, Picone CSF, Pastrana LM, Cunha RL, Vicente AA. Structural and mechanical properties of organogels: Role of oil and gelator molecular structure. Food Res Int 2017; 96:161-170. [PMID: 28528095 DOI: 10.1016/j.foodres.2017.03.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 10/20/2022]
Abstract
This work aims at evaluating the influence of oil and gelator structure on organogels' properties through rheological measurements, polarized microscopy and small-angle X-ray scattering (SAXS). Four different food-grade gelators (glyceryl tristearate - GT; sorbitan tristearate - ST; sorbitan monostearate - SM and glyceryl monostearate - GM) were tested in medium-chain triglyceride and high oleic sunflower (MCT and LCT, respectively) oil phases. Organogels were prepared by mixing the oil phase and gelator at different concentrations (5, 10, 15, 20 and 25%) at 80°C during 30min. All organogels presented birefringence confirming the formation of a crystalline structure that changed with the increase of the gelator concentration. Through the evaluation of SAXS peaks it has been confirmed that all structures were organized as lamellas but with different d-spacing values. These particularities at micro- and nanoscale level lead to differences in rheological properties of organogels. Results showed that the oil type (i.e. medium- and long-chain triglyceride) and hydrophilic head of gelators (i.e. sorbitan versus glyceryl) exert influence on the organogels physical properties, but the presence of monostearate leads to the formation of stronger organogels. Moreover, gels produced with LCT were stronger and gelled at lower organogelator concentration than MCT.
Collapse
Affiliation(s)
- Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal.
| | - Luiz H Fasolin
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas - UNICAMP, CEP: 13083-862 Campinas, SP, Brazil
| | - Carolina S F Picone
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas - UNICAMP, CEP: 13083-862 Campinas, SP, Brazil
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Rosiane L Cunha
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas - UNICAMP, CEP: 13083-862 Campinas, SP, Brazil
| | - António A Vicente
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|