1
|
Shang Y, Liu Y, Tian J, Liu C, Zhu X, Wang J, Chen D, Tao W. Heterogeneous kinetics of the OH-initiated degradation of fenthion and parathion. J Environ Sci (China) 2023; 133:161-170. [PMID: 37451785 DOI: 10.1016/j.jes.2022.05.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 07/18/2023]
Abstract
Fenthion and parathion are two representative kinds of organophosphorus pesticides and widely used in agriculture. They are directly or indirectly released into the atmosphere by spraying or volatilization processes. However, their heterogeneous reactivity toward OH radicals has not yet been well understood. Therefore, this work investigated the heterogeneous kinetics of the OH-initiated degradation of surface-bound fenthion and parathion using a flow reactor. The results showed that OH radicals played an important role in the atmospheric degradation of fenthion and parathion. Their average rate constants were (7.20 ± 0.77) × 10-12 and (10.40 ± 0.60) × 10-12 cm3/(mol· sec) at a relative humidity (RH) and temperature of 35% and 20 °C, respectively, suggesting that they have relatively short lifetimes in the atmosphere. In addition, a negative RH dependence and a positive temperature dependence of the rate constants were observed. The Arrhenius expressions of fenthion and parathion were k2 = (1.34 ± 0.48) × 10-9exp[-(1432.59 ± 105.29)/T] and k2 = (1.96 ± 1.38) × 10-9exp[-(1619.98 ± 222.02)/T], respectively, and their overall activation energy was estimated to be (11.88 ± 0.87) and (13.48 ± 1.83) kJ/mol. The experimental results will update the kinetic data of fenthion and parathion in the atmosphere and be helpful to further understand their atmospheric transportation processes.
Collapse
Affiliation(s)
- Yuanhong Shang
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, China
| | - Yongchun Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jinfeng Tian
- Medical College, Panzhihua University, Panzhihua 617000, China
| | - Changgeng Liu
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, China.
| | - Xuejun Zhu
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, China
| | - Jun Wang
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, China
| | - Dandan Chen
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, China
| | - Wei Tao
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong 643000, China
| |
Collapse
|
2
|
Zhang B, Shen Z, He K, Sun J, Huang S, Xu H, Li J, Ho SSH, Cao JJ. Insight into the Primary and Secondary Particle-Bound Methoxyphenols and Nitroaromatic Compound Emissions from Solid Fuel Combustion and the Updated Source Tracers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14280-14288. [PMID: 37706300 DOI: 10.1021/acs.est.3c04370] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Methoxyphenols and nitroaromatic compounds (NACs) have strong atmospheric radiative forcing effects and adverse effects on human health. They are emitted from the incomplete combustion of solid fuels and are secondarily formed through photochemical reactions. Here, an on-site study was conducted to determine the primary emission and secondary formation of particulate phase products from a variety of solid fuels through a potential aerosol mass-oxidation flow reactor. Emission factors for total quantified methoxyphenols and NACs (i.e., EF∑Methoxyphenols and EF∑NACs) varied by 2 orders of magnitude among different fuels, which were greatly influenced by volatile matter, incomplete combustibility, flame intensity, and combustion temperature. Guaiacol and 4-nitro-2-vinylphenol were used as tracers for primary organic aerosol due to the low aged-to-fresh ratios (0.21-0.97), while 4-methyl-guaiacol, 4-ethyl-guaiacol, eugenol, 4-methyl-syringol, isoeugenol, acetovanillone, syringaldehyde, homovanillin acid, vanillin acid, and syringic acid were identified as secondary organic aerosol (SOA) (aged-to-fresh ratios between 1.90 and 4.20). During simulated aging, the -CHO group reacted with the hydroxyl radical (•OH) to form the -COOH group, but there was no correlation between syringol and 4-nitrosyringol, implying that •OH is the main reactant rather than the nitriate radical (•NO3) in the atmospheric aging processes of methoxyphenols. Aging caused substantially different emission profiles due to variable photochemical reaction properties. The fresh EFs for guaiacol emitted from the biomass burning ranged from 3.80 ± 0.44 to 26.2 ± 5.40 mg·kg-1, which were much higher than those in coal combustions (of 0.03 ± 0.01 to 1.42 ± 0.28 mg·kg-1). However, the aged EFs (EFaged) for guaiacol was 1.02 ± 0.06 to 1.61 ± 0.11 mg·kg-1 in most biomass combustions, which were comparable with those of the bituminous chunk (1.20 ± 0.16 mg·kg-1). Therefore, guaiacol, a traditional biomass marker, is not an ideal tracer for aged PM2.5 emitted from biomass burning. Indeed, the syringol/guaiacol and syringol/4-nitrosyringol ratios were found to be more suitable and efficient to be used in source characterization.
Collapse
Affiliation(s)
- Bin Zhang
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenxing Shen
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kun He
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Sun
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shasha Huang
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongmei Xu
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Steven Sai Hang Ho
- Divison of Atmospheric Sciences, Desert Research Institute, Reno NV89512, United States
| | - Jun-Ji Cao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| |
Collapse
|
3
|
Liu C, Chen D, Chen X. Atmospheric Reactivity of Methoxyphenols: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2897-2916. [PMID: 35188384 DOI: 10.1021/acs.est.1c06535] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO3 radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O3 is the cycloaddition of O3 to the benzene ring or unsaturated C═C bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO3 radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed.
Collapse
Affiliation(s)
- Changgeng Liu
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, P.R. China
| | - Dandan Chen
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, P.R. China
| | - Xiao'e Chen
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, P.R. China
| |
Collapse
|
4
|
Axelrod K, Samburova V, Khlystov AY. Relative abundance of saccharides, free amino acids, and other compounds in specific pollen species for source profiling of atmospheric aerosol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149254. [PMID: 34375869 DOI: 10.1016/j.scitotenv.2021.149254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Though studies in bioaerosols are being conducted with increasing frequency over the past decade, the total breadth of knowledge on bioaerosols and their role in atmospheric processes is still minimal. In order to better characterize the chemical composition of fresh biological aerosol for purposes of source apportionment and tracing in the atmosphere, several plant pollen species were selected for detailed chemical analyses. For this purpose, different pollen species were purchased and collected around Reno, Nevada, USA, for further extraction and detailed chemical analysis. These species included aspen, corn, pecan, ragweed, eastern cottonwood, paper mulberry, rabbitbrush, bitterbrush, lodgepole pine, and Jeffrey pine. Saccharides, free amino acids, and various other polar compounds (e.g., anhydrosugars and resin acids) were quantitatively analyzed using gas chromatography and ultra-high performance liquid chromatography coupled with mass spectrometry techniques (GC-MS and UPLC-MS), with the purpose to identify differences and nuances in chemical composition of specific pollen species. The saccharides β-d-fructose, α-d-glucose, and β-d-glucose were ubiquitously found across all pollen samples (10), and sucrose was found in five samples. d-galactose was also found in pine species. Total saccharides were 4.0 to 29% of total dry weight across all samples. Total free amino acids were 0.29% to 15% of total dry weight across all samples, with the most common amino acid being proline. Chemical profiles (including both saccharides and amino acids) of surface-deposited aerosol in the Lake Tahoe area correlated most closely with pine pollen than other analyzed pollen species, indicating that chemical profiles of pollen can be used to infer its contribution to local aerosols.
Collapse
Affiliation(s)
- Kevin Axelrod
- Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
| | - Vera Samburova
- Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
| | - Andrey Y Khlystov
- Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA.
| |
Collapse
|
5
|
Liu C, He Y, Chen X. Kinetic study on the heterogeneous degradation of coniferyl alcohol by OH radicals. CHEMOSPHERE 2020; 241:125088. [PMID: 31629237 DOI: 10.1016/j.chemosphere.2019.125088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Coniferyl alcohol derived from lignin pyrolysis, is a potential tracer for wood burning emissions, but its atmospheric stability toward OH radicals is not well known. In this work, the degradation kinetics of coniferyl alcohol by OH radicals was studied using a flow reactor at different OH concentrations, temperatures, and relative humidity (RH). The results showed that coniferyl alcohol could be degraded effectively by OH radials, and the average second-order rate constant (k2) was (11.6 ± 0.5) × 10-12 cm3 molecule-1 s-1 at the temperature and RH of 25 °C and 40%, respectively. Additionally, increasing temperature facilitated the degradation of coniferyl alcohol and the Arrhenius equation could be expressed as k2 = (1.7 ± 0.3) × 10-9exp [-(1480.2 ± 55.6)/T] at 40% RH. Meanwhile, increasing RH had a negative impact on the degradation of coniferyl alcohol. According to the k2 obtained under different conditions, the atmospheric lifetime of coniferyl alcohol was in the range of 13.5 ± 0.4 h to 22.9 ± 1.4 h. The results suggested that the atmosphere lifetime of coniferyl alcohol was predominantly controlled by OH radicals.
Collapse
Affiliation(s)
- Changgeng Liu
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, PR China.
| | - Yucan He
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, PR China
| | - Xiao'e Chen
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, PR China
| |
Collapse
|
6
|
Liu Q, Liggio J, Li K, Lee P, Li SM. Understanding the Impact of Relative Humidity and Coexisting Soluble Iron on the OH-Initiated Heterogeneous Oxidation of Organophosphate Flame Retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6794-6803. [PMID: 31117542 DOI: 10.1021/acs.est.9b01758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The current uncertainties in the reactivity and atmospheric persistence of particle-associated chemicals present a challenge for the prediction of long-range transport and deposition of emerging chemicals such as organophosphate flame retardants, which are ubiquitous in the global environment. Here, the OH-initiated heterogeneous oxidation kinetics of organophosphate flame retardants (OPFRs) coated on inert (NH4)2SO4 and redox-active FeSO4 particles were systematically determined as a function of relative humidity (RH). The derived reaction rate constants for the heterogeneous loss of tricresyl phosphate (TCP; kTCP) and tris(2-butoxyethyl) phosphate (TBEP; kTBEP) were in the range of (2.69-3.57) × 10-12 and (3.06-5.55) × 10-12 cm3 molecules-1 s-1, respectively, depending on the RH and coexisting Fe(II) content. The kTCP (coated on (NH4)2SO4) was relatively constant over the investigated RH range while kTBEP was enhanced by up to 19% with increasing RH. For both OPFRs, the presence of Fe(II) enhanced their k by up to 53% over inert (NH4)2SO4. These enhancement effects (RH and Fe(II)) were attributed to fundamental changes in the organic phase state (higher RH lowered particle viscosity) and Fenton-type chemistry which resulted in the formation of reactive oxygen species, respectively. Such findings serve to emphasize the importance of ambient RH, the phase state of particle-bound organics in general, and the presence of coexisting metallic species for an accurate description of the degradation kinetics and aging of particulate OPFRs in models used to evaluate their atmospheric persistence.
Collapse
Affiliation(s)
- Qifan Liu
- Atmospheric Science and Technology Directorate, Science and Technology Branch , Environment Canada , 4905 Dufferin Street , Toronto , Ontario M3H 5T4 , Canada
| | - John Liggio
- Atmospheric Science and Technology Directorate, Science and Technology Branch , Environment Canada , 4905 Dufferin Street , Toronto , Ontario M3H 5T4 , Canada
| | - Kun Li
- Atmospheric Science and Technology Directorate, Science and Technology Branch , Environment Canada , 4905 Dufferin Street , Toronto , Ontario M3H 5T4 , Canada
| | - Patrick Lee
- Atmospheric Science and Technology Directorate, Science and Technology Branch , Environment Canada , 4905 Dufferin Street , Toronto , Ontario M3H 5T4 , Canada
| | - Shao-Meng Li
- Atmospheric Science and Technology Directorate, Science and Technology Branch , Environment Canada , 4905 Dufferin Street , Toronto , Ontario M3H 5T4 , Canada
| |
Collapse
|
7
|
Wan X, Kawamura K, Ram K, Kang S, Loewen M, Gao S, Wu G, Fu P, Zhang Y, Bhattarai H, Cong Z. Aromatic acids as biomass-burning tracers in atmospheric aerosols and ice cores: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:216-228. [PMID: 30677666 DOI: 10.1016/j.envpol.2019.01.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Biomass burning (BB) is one of the largest sources of carbonaceous aerosols with adverse impacts on air quality, visibility, health and climate. BB emits a few specific aromatic acids (p-hydroxybenzoic, vanillic, syringic and dehydroabietic acids) which have been widely used as key indicators for source identification of BB-derived carbonaceous aerosols in various environmental matrices. In addition, measurement of p-hydroxybenzoic and vanillic acids in snow and ice cores have revealed the historical records of the fire emissions. Despite their uniqueness and importance as tracers, our current understanding of analytical methods, concentrations, diagnostic ratios and degradation processes are rather limited and scattered in literature. In this review paper, firstly we have summarized the most established methods and protocols for the measurement of these aromatic acids in aerosols and ice cores. Secondly, we have highlighted the geographical variability in the abundances of these acids, their diagnostic ratios and degradation processes in the environments. The review of the existing data indicates that the concentrations of aromatic acids in aerosols vary greatly with locations worldwide, typically more abundant in urban atmosphere where biomass fuels are commonly used for residential heating and/or cooking purposes. In contrast, their concentrations are lowest in the polar regions which are avoid of localized emissions and largely influenced by long-range transport. The diagnostic ratios among aromatic acids can be used as good indicators for the relative amounts and types of biomass (e.g. hardwood, softwood and herbaceous plants) as well as photochemical oxidation processes. Although studies suggest that the degradation processes of the aromatic acids may be controlled by light, pH and hygroscopicity, a more careful investigation, including closed chamber studies, is highly appreciated.
Collapse
Affiliation(s)
- Xin Wan
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, 487-8501, Japan
| | - Kirpa Ram
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou, 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China
| | - Mark Loewen
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Shaopeng Gao
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Guangming Wu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yanlin Zhang
- Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hemraj Bhattarai
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhiyuan Cong
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China.
| |
Collapse
|
8
|
Coufalík P, Čmelík R, Křůmal K, Čapka L, Mikuška P. Determination of short-term changes in levoglucosan and dehydroabietic acid in aerosols with Condensation Growth Unit - Aerosol Counterflow Two-Jets Unit - LC-MS. CHEMOSPHERE 2018; 210:279-286. [PMID: 30005349 DOI: 10.1016/j.chemosphere.2018.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Residential areas in urban agglomerations and also in the countryside are often burdened with high concentrations of aerosol in winter, this originating from local combustion sources. Aerosol sources can be identified by a monitoring of organic markers of biomass burning. Abundant markers of biomass and softwood burning are levoglucosan and dehydroabietic acid, respectively. The aim of this research was to develop an analytical method for the determination of levoglucosan and dehydroabietic acid in aerosol over short time periods involving aerosol sampling into liquid samples, quantitative pre-concentration of analytes, and their determination by liquid chromatography - mass spectrometry. A Condensation Growth Unit - Aerosol Counterflow Two-Jets Unit (CGU-ACTJU) sampler was used for the quantitative collection of aerosol directly into water. Dehydroabietic acid was pre-concentrated from the aqueous phase by solid phase extraction (C-18). Afterwards, levoglucosan in water samples was concentrated on a vacuum evaporator. The detection limits of levoglucosan and dehydroabietic acid were 28 ng m-3 and 5.5 ng m-3, respectively. The results obtained by the developed method were compared with an independent determination of both markers in aerosol by means of the sampling of aerosols on a filter and subsequent analysis by GC-MS. The developed method demonstrated sufficient agreement with the independent determination for generated standard aerosol as well as for urban aerosol over an eight-day winter campaign. The presented method allows the monitoring of concentration changes in biomass burning markers in 2-h intervals.
Collapse
Affiliation(s)
- Pavel Coufalík
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveří 97, 60200 Brno, Czech Republic.
| | - Richard Čmelík
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveří 97, 60200 Brno, Czech Republic
| | - Kamil Křůmal
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveří 97, 60200 Brno, Czech Republic
| | - Lukáš Čapka
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveří 97, 60200 Brno, Czech Republic
| | - Pavel Mikuška
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveří 97, 60200 Brno, Czech Republic
| |
Collapse
|
9
|
Liu C, Zeng C. Heterogeneous kinetics of methoxyphenols in the OH-initiated reactions under different experimental conditions. CHEMOSPHERE 2018; 209:560-567. [PMID: 29945049 DOI: 10.1016/j.chemosphere.2018.06.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Methoxyphenols as the potential tracers for wood smoke emissions, are emitted into the atmosphere in large quantities but their atmospheric chemical behaviors have not been well characterized. In this work, heterogeneous kinetics of methoxyphenols in the OH-initiated reactions was investigated using a flow reactor under different experimental conditions. The average second-order rate constants (k2) of vanillic acid (VA), coniferyl aldehyde (CA), and syringaldehyde (SA) were (4.72 ± 0.51) × 10-12, (10.59 ± 0.50) × 10-12, (12.25 ± 0.60) × 10-12 cm3 molecule-1 s-1, respectively, obtained at relative humidity (RH) and temperature of 40% and 25 °C. In addition, the results showed that high temperature played a positive role in promoting these reactions while high RH had an inhibiting impact. The k2 values of VA, CA, and SA at 40% RH and different temperature followed the Arrhenius expressions, i.e., k2 = (2.45 ± 0.40) × 10-10exp [-(1170.73 ± 47.35)/T], k2 = (6.40 ± 0.26) × 10-10exp [-(1516.16 ± 13.71)/T], and k2 = (1.02 ± 0.13) × 10-9exp [-(1310.79 ± 36.75)/T], respectively. Based on the determined rate constants, the atmospheric lifetimes of these three methoxyphenols ranged from 0.54 to 2.18 d under different conditions. The experimental results indicate that OH radicals might play an important role in controlling the atmospheric lifetimes of methoxyphenols, and also help to further cognize the chemical behaviors of methoxyphenols in the atmosphere.
Collapse
Affiliation(s)
- Changgeng Liu
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, PR China.
| | - Chenghua Zeng
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, PR China
| |
Collapse
|
10
|
Chapleski RC, Zhang Y, Troya D, Morris JR. Heterogeneous chemistry and reaction dynamics of the atmospheric oxidants, O3, NO3, and OH, on organic surfaces. Chem Soc Rev 2016; 45:3731-46. [DOI: 10.1039/c5cs00375j] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Heterogeneous chemistry of the most important atmospheric oxidants, O3, NO3, and OH, plays a central role in regulating atmospheric gas concentrations, processing aerosols, and aging materials.
Collapse
Affiliation(s)
| | - Yafen Zhang
- Department of Chemistry
- Virginia Tech
- Blacksburg
- USA
| | - Diego Troya
- Department of Chemistry
- Virginia Tech
- Blacksburg
- USA
| | | |
Collapse
|