1
|
Zhang L, Chen H, Sun B, Wang T, Zhang Z, Xiong G. Magnetic-responsive sensors based on polydopamine macromolecules for highly sensitive detection of trace food colorant residues. Int J Biol Macromol 2024; 280:135609. [PMID: 39278431 DOI: 10.1016/j.ijbiomac.2024.135609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
As a kind of unique biomimetic macromolecule, polydopamine (PDA) have prominent in-situ reduction ability and interfacial adhesion. In this work, combined with in-situ reduction ability of PDA and excellent magnetic response performance of nickel foam (NF), a strategy was designed to fabricate a series of NF@PDA@AgNPs as magnetic-responsive surface enhancement Raman scattering (SERS) substrates for highly sensitive Rhodamine B (RhB) detection in chili powder. With crystal violet (CV) as probe molecule, the detection limit of SERS substrate could achieve 10-10 M, and the enhancement factor was as high as to 2.22 × 107. In addition, the NF@PDA@AgNPs SERS substrates showed excellent magnetic separation efficiency, good SERS uniformity and storage stability. More importantly, these substrates could achieve highly efficient collection and sensitive detection of RhB residues in chili powder by magnetic adsorption method, and the detection of limit was as low as to be 10-6 g/g. These NF@PDA@AgNPs substrates would be a great prospect for rapid and efficient pernicious contaminant detection in the chemical and biological fields.
Collapse
Affiliation(s)
- Lingzi Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongzhan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Binbin Sun
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Tangchun Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhiliang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Guirong Xiong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
2
|
Gratious S, Afreen, Mahal E, Thomas J, Saha S, Nair AS, Adarsh KV, Pathak B, Mandal S. "Visualizing" the partially reversible conversion of gold nanoclusters via the Au 23(S- c-C 6H 11) 17 intermediate. Chem Sci 2024; 15:9823-9829. [PMID: 38939161 PMCID: PMC11206343 DOI: 10.1039/d4sc01225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
Transformation chemistry of atomically precise metal nanoclusters has emerged as a novel strategy for fundamental research on the structure-property correlations of nanomaterials. However, a thorough understanding of the transformation mechanism is indeed necessary to understand the structural growth patterns and corresponding property evolutions in nanoclusters. Herein, we present the ligand-exchange-induced transformation of the [Au23(SR)16]- (8e-) nanocluster to the [Au25(SR')18]- (8e-) nanocluster, through the Au23(SR)17 (6e-) intermediate species. Identification of this key intermediate through a partially reversible transformation helped in a detailed investigation into the transformation mechanism with atomic precision. Moreover, photophysical studies carried out on this Au23(SR)17 species, which only differs by a single ligand from that of the [Au23(SR)16]- nanocluster reveal the property evolutions at the slightest change in the nanocluster structure.
Collapse
Affiliation(s)
- Saniya Gratious
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Afreen
- Department of Physics, Indian Institute of Science Education and Research Bhopal Madhya Pradesh 462066 India
| | - Eti Mahal
- Department of Chemistry, Indian Institute of Technology Indore Madhya Pradesh 453552 India
| | - Jibin Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Shubhadeep Saha
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Akhil S Nair
- Department of Chemistry, Indian Institute of Technology Indore Madhya Pradesh 453552 India
| | - K V Adarsh
- Department of Physics, Indian Institute of Science Education and Research Bhopal Madhya Pradesh 462066 India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore Madhya Pradesh 453552 India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
3
|
Paganelli S, Massimi N, Di Michele A, Piccolo O, Rampazzo R, Facchin M, Beghetto V. Use of carboxymethyl cellulose as binder for the production of water-soluble catalysts. Int J Biol Macromol 2024; 270:132541. [PMID: 38777012 DOI: 10.1016/j.ijbiomac.2024.132541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/09/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Bio-based polymers are materials of high interest given the harmful environmental impact that involves the use of non-biodegradable fossil products for industrial applications. These materials are also particularly interesting as bio-based ligands for the preparation of metal nanoparticles (MNPs), employed as catalysts for the synthesis of high value chemicals. In the present study, Ru (0) and Rh(0) Metal Nanoparticles supported on Sodium Carboxymethyl cellulose (MNP(0)s-CMCNa) were prepared by simply mixing RhCl3x3H2O or RuCl3 with an aqueous solution of CMCNa, followed by NaBH4 reduction. The formation of MNP(0)s-CMCNa was confirmed by FT-IR and XRD, and their size estimated to be around 1.5 and 2.2 nm by TEM analysis. MNP(0)s-CMCNa were employed for the hydrogenation of (E)-cinnamic aldehyde, furfural and levulinic acid. Hydrogenation experiments revealed that CMCNa is an excellent ligand for the stabilization of Rh(0) and Ru(0) nanoparticles allowing to obtain high conversions (>90 %) and selectivities (>98 %) with all substrates tested. Easy recovery by liquid/liquid extraction allowed to separate the catalyst from the reaction products, and recycling experiments demonstrated that MNPs-CS were highly efficiency up to three times in best hydrogenation conditions.
Collapse
Affiliation(s)
- Stefano Paganelli
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi (CIRCC), Via C. Ulpiani 27, 70126 Bari, Italy.
| | - Nicola Massimi
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172 Mestre, Italy
| | - Alessandro Di Michele
- Università degli Studi di Perugia, Dipartimento Fisica e Geologia, Via Pascoli, 06123 Perugia, Italy
| | - Oreste Piccolo
- Studio di Consulenza Scientifica (SCSOP), Via Bornò 5, 23896 Sirtori, LC, Italy
| | - Rachele Rampazzo
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172 Mestre, Italy
| | - Manuela Facchin
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172 Mestre, Italy
| | - Valentina Beghetto
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi (CIRCC), Via C. Ulpiani 27, 70126 Bari, Italy; Crossing S.r.l., Viale della Repubblica 193/b, 31100 Treviso, Italy.
| |
Collapse
|
4
|
Chen Q, Fang C, Xia F, Wang Q, Li F, Ling D. Metal nanoparticles for cancer therapy: Precision targeting of DNA damage. Acta Pharm Sin B 2024; 14:1132-1149. [PMID: 38486992 PMCID: PMC10934341 DOI: 10.1016/j.apsb.2023.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/30/2023] [Accepted: 08/15/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer, a complex and heterogeneous disease, arises from genomic instability. Currently, DNA damage-based cancer treatments, including radiotherapy and chemotherapy, are employed in clinical practice. However, the efficacy and safety of these therapies are constrained by various factors, limiting their ability to meet current clinical demands. Metal nanoparticles present promising avenues for enhancing each critical aspect of DNA damage-based cancer therapy. Their customizable physicochemical properties enable the development of targeted and personalized treatment platforms. In this review, we delve into the design principles and optimization strategies of metal nanoparticles. We shed light on the limitations of DNA damage-based therapy while highlighting the diverse strategies made possible by metal nanoparticles. These encompass targeted drug delivery, inhibition of DNA repair mechanisms, induction of cell death, and the cascading immune response. Moreover, we explore the pivotal role of physicochemical factors such as nanoparticle size, stimuli-responsiveness, and surface modification in shaping metal nanoparticle platforms. Finally, we present insights into the challenges and future directions of metal nanoparticles in advancing DNA damage-based cancer therapy, paving the way for novel treatment paradigms.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunyan Fang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Xia
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
| | - Daishun Ling
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
| |
Collapse
|
5
|
Pandey P, Pradhan S, Meher K, Lopus M, Vavilala SL. Exploring the efficacy of tryptone-stabilized silver nanoparticles against respiratory tract infection-causing bacteria: a study on planktonic and biofilm forms. Biomed Mater 2024; 19:025047. [PMID: 38364289 DOI: 10.1088/1748-605x/ad2a40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
Respiratory tract infections (RTIs) are a common cause of mortality and morbidity in the human population. The overuse of antibiotics to overcome such infections has led to antibiotic resistance. The emergence of multidrug resistant bacteria is necessitating the development of novel therapeutic techniques in order to avoid a major global clinical threat. Our study aims to investigate the potential of tryptone stabilised silver nanoparticles (Ts-AgNPs) on planktonic and biofilms produced byKlebsiella pneumoniae(K. pneumoniae)and Pseudomonas aeruginosa(P. aeruginosa). The MIC50of Ts-AgNPs was found to be as low as 1.7 μg ml-1and 2.7 μg ml-1forK. pneumoniae and P.aeruginosarespectively. Ts-AgNPs ability to alter redox environment by producing intracellular ROS, time-kill curves showing substantial decrease in the bacterial growth and significantly reduced colony forming units further validate its antimicrobial effect. The biofilm inhibition and eradication ability of Ts-AgNPs was found to be as high as 93% and 97% in both the tested organisms. A significant decrease in the eDNA and EPS quantity in Ts-AgNPs treated cells proved its ability to successfully distort the matrix and matured biofilms. Interestingly Ts-AgNPs also attenuated QS-induced virulence factors production. This study paves way to develop Ts-AgNPs as novel antibiotics against RTIs causing bacterial biofilms.
Collapse
Affiliation(s)
- Pooja Pandey
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| | - Sristi Pradhan
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| | - Kimaya Meher
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| | - Sirisha L Vavilala
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| |
Collapse
|
6
|
Sharifabad ME, Soucaille R, Wang X, Rotherham M, Loughran T, Everett J, Cabrera D, Yang Y, Hicken R, Telling N. Optical Microscopy Using the Faraday Effect Reveals in Situ Magnetization Dynamics of Magnetic Nanoparticles in Biological Samples. ACS NANO 2024. [PMID: 38315113 PMCID: PMC10883041 DOI: 10.1021/acsnano.3c08955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The study of exogenous and endogenous nanoscale magnetic material in biology is important for developing biomedical nanotechnology as well as for understanding fundamental biological processes such as iron metabolism and biomineralization. Here, we exploit the magneto-optical Faraday effect to probe intracellular magnetic properties and perform magnetic imaging, revealing the location-specific magnetization dynamics of exogenous magnetic nanoparticles within cells. The opportunities enabled by this method are shown in the context of magnetic hyperthermia; an effect where local heating is generated in magnetic nanoparticles exposed to high-frequency AC magnetic fields. Magnetic hyperthermia has the potential to be used as a cellular-level thermotherapy for cancer, as well as for other biomedical applications that target heat-sensitive cellular function. However, previous experiments have suggested that the cellular environment modifies the magnetization dynamics of nanoparticles, thus dramatically altering their heating efficiency. By combining magneto-optical and fluorescence measurements, we demonstrate a form of biological microscopy that we used here to study the magnetization dynamics of nanoparticles in situ, in both histological samples and living cancer cells. Correlative magnetic and fluorescence imaging identified aggregated magnetic nanoparticles colocalized with cellular lysosomes. Nanoparticles aggregated within these lysosomes displayed reduced AC magnetic coercivity compared to the same particles measured in an aqueous suspension or aggregated in other areas of the cells. Such measurements reveal the power of this approach, enabling investigations of how cellular location, nanoparticle aggregation, and interparticle magnetic interactions affect the magnetization dynamics and consequently the heating response of nanoparticles in the biological milieu.
Collapse
Affiliation(s)
- Maneea Eizadi Sharifabad
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Rémy Soucaille
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| | - Xuyiling Wang
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Michael Rotherham
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Heritage Building, Mindelsohn Way, Edgbaston, Birmingham B15 2TH, United Kingdom
| | - Tom Loughran
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| | - James Everett
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - David Cabrera
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Ying Yang
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Robert Hicken
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| | - Neil Telling
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| |
Collapse
|
7
|
Kang Y, Xu L, Dong J, Yuan X, Ye J, Fan Y, Liu B, Xie J, Ji X. Programmed microalgae-gel promotes chronic wound healing in diabetes. Nat Commun 2024; 15:1042. [PMID: 38310127 PMCID: PMC10838327 DOI: 10.1038/s41467-024-45101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
Chronic diabetic wounds are at lifelong risk of developing diabetic foot ulcers owing to severe hypoxia, excessive reactive oxygen species (ROS), a complex inflammatory microenvironment, and the potential for bacterial infection. Here we develop a programmed treatment strategy employing live Haematococcus (HEA). By modulating light intensity, HEA can be programmed to perform a variety of functions, such as antibacterial activity, oxygen supply, ROS scavenging, and immune regulation, suggesting its potential for use in programmed therapy. Under high light intensity (658 nm, 0.5 W/cm2), green HEA (GHEA) with efficient photothermal conversion mediate wound surface disinfection. By decreasing the light intensity (658 nm, 0.1 W/cm2), the photosynthetic system of GHEA can continuously produce oxygen, effectively resolving the problems of hypoxia and promoting vascular regeneration. Continuous light irradiation induces astaxanthin (AST) accumulation in HEA cells, resulting in a gradual transformation from a green to red hue (RHEA). RHEA effectively scavenges excess ROS, enhances the expression of intracellular antioxidant enzymes, and directs polarization to M2 macrophages by secreting AST vesicles via exosomes. The living HEA hydrogel can sterilize and enhance cell proliferation and migration and promote neoangiogenesis, which could improve infected diabetic wound healing in female mice.
Collapse
Affiliation(s)
- Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Lingling Xu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jinrui Dong
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Xue Yuan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jiamin Ye
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yueyue Fan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Bing Liu
- Department of Disease Control and Prevention, Rocket Force Characteristic Medical Center, Beijing, 10088, China.
| | - Julin Xie
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China.
- Medical College, Linyi University, Linyi, 276000, China.
| |
Collapse
|
8
|
Sundararajan N, Habeebsheriff HS, Dhanabalan K, Cong VH, Wong LS, Rajamani R, Dhar BK. Mitigating Global Challenges: Harnessing Green Synthesized Nanomaterials for Sustainable Crop Production Systems. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300187. [PMID: 38223890 PMCID: PMC10784203 DOI: 10.1002/gch2.202300187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/07/2023] [Indexed: 01/16/2024]
Abstract
Green nanotechnology, an emerging field, offers economic and social benefits while minimizing environmental impact. Nanoparticles, pivotal in medicine, pharmaceuticals, and agriculture, are now sourced from green plants and microorganisms, overcoming limitations of chemically synthesized ones. In agriculture, these green-made nanoparticles find use in fertilizers, insecticides, pesticides, and fungicides. Nanofertilizers curtail mineral losses, bolster yields, and foster agricultural progress. Their biological production, preferred for environmental friendliness and high purity, is cost-effective and efficient. Biosensors aid early disease detection, ensuring food security and sustainable farming by reducing excessive pesticide use. This eco-friendly approach harnesses natural phytochemicals to boost crop productivity. This review highlights recent strides in green nanotechnology, showcasing how green-synthesized nanomaterials elevate crop quality, combat plant pathogens, and manage diseases and stress. These advancements pave the way for sustainable crop production systems in the future.
Collapse
Affiliation(s)
| | | | | | - Vo Huu Cong
- Faculty of Natural Resources and EnvironmentVietnam National University of AgricultureTrau QuyGia LamHanoi10766Vietnam
| | - Ling Shing Wong
- Faculty of Health and Life SciencesINTI International UniversityPersiaran Perdana BBNPutra NilaiNilaiNegeri Sembilan71800Malaysia
| | | | - Bablu Kumar Dhar
- Business Administration DivisionMahidol University International CollegeMohidol UniversitySalaaya73170Thailand
- Faculty of Business AdministrationDaffodil International UniversityDhaka1216Bangladesh
| |
Collapse
|
9
|
Puri A, Mohite P, Maitra S, Subramaniyan V, Kumarasamy V, Uti DE, Sayed AA, El-Demerdash FM, Algahtani M, El-Kott AF, Shati AA, Albaik M, Abdel-Daim MM, Atangwho IJ. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomed Pharmacother 2024; 170:116083. [PMID: 38163395 DOI: 10.1016/j.biopha.2023.116083] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
As we navigate the modern era, the intersection of time-honoured natural remedies and contemporary scientific approaches forms a burgeoning frontier in global healthcare. For generations, natural products have been foundational to health solutions, serving as the primary healthcare choice for 80% to 85% of the world's population. These herbal-based, nature-derived substances, significant across diverse geographies, necessitate a renewed emphasis on enhancing their quality, efficacy, and safety. In the current century, the advent of biogenic phytonanoparticles has emerged as an innovative therapeutic conduit, perfectly aligning with principles of environmental safety and scientific ingenuity. Utilizing green chemistry techniques, a spectrum of metallic nanoparticles including elements such as copper, silver, iron, zinc, and titanium oxide can be produced with attributes of non-toxicity, sustainability, and economic efficiency. Sophisticated herb-mediated processes yield an array of plant-originated nanomaterials, each demonstrating unique physical, chemical, and biological characteristics. These attributes herald new therapeutic potentials, encompassing antioxidants, anti-aging applications, and more. Modern technology further accelerates the synthesis of natural products within laboratory settings, providing an efficient alternative to conventional isolation methods. The collaboration between traditional wisdom and advanced methodologies now signals a new epoch in healthcare. Here, the augmentation of traditional medicine is realized through rigorous scientific examination. By intertwining ethical considerations, cutting-edge technology, and natural philosophy, the realms of biogenic phytonanoparticles and traditional medicine forge promising pathways for research, development, and healing. The narrative of this seamless integration marks an exciting evolution in healthcare, where the fusion of sustainability and innovation crafts a future filled with endless possibilities for human well-being. The research in the development of metallic nanoparticles is crucial for unlocking their potential in revolutionizing fields such as medicine, catalysis, and electronics, promising groundbreaking applications with enhanced efficiency and tailored functionalities in future technologies. This exploration is essential for harnessing the unique properties of metallic nanoparticles to address pressing challenges and advance innovations across diverse scientific and industrial domains.
Collapse
Affiliation(s)
- Abhijeet Puri
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India
| | - Popat Mohite
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India.
| | - Swastika Maitra
- Centre for Global Health Research, Saveetha Medical College and Hospital, Chennai, India; Department of Science and Engineering, Novel Global Community and Educational Foundation, Hebasham, Australia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, 600077, India..
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Daniel E Uti
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, College of Science, Damounhour University, Egypt
| | - Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mai Albaik
- Chemistry Department, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Item J Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
10
|
Liu L, Yu C, Ahmad S, Ri C, Tang J. Preferential role of distinct phytochemicals in biosynthesis and antibacterial activity of silver nanoparticles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118546. [PMID: 37418916 DOI: 10.1016/j.jenvman.2023.118546] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
Biosynthesis of silver nanoparticles (AgNPs) by plant extracts and its antibacterial utilization has attracted great attention due to the spontaneous reducing and capping capacities of phytochemicals. However, the preferential role and mechanisms of the functional phytochemicals from different plants on AgNPs synthesis, and its catalytic and antibacterial performance remain largely unknown. This study used three widespread arbor species, including Eriobotrya japonica (EJ), Cupressus funebris (CF) and Populus (PL), as the precursors and their leaf extracts as reducing and stabilizing agents for the biosynthesis of AgNPs. A total of 18 phytochemicals in leaf extracts were identified by ultra-high liquid-phase mass spectrometer. For EJ extracts, most kinds of flavonoids participated in the generation of AgNPs by a reduced content of 5∼10%, while for CF extracts, about 15∼40% of the polyphenols were consumed to reduce Ag+ to Ag0. Notably, the more stable and homogeneous spherical AgNPs with smaller size (≈38 nm) and high catalytic capacity on Methylene blue were obtained from EJ extracts rather than CF extracts, and no AgNPs were synthesized from PL extracts, indicating that flavonoids are superior than polyphenols to act as reducer and stabilizer in AgNPs biosynthesis. The antibacterial activities against Gram-positive (Staphylococcus aureus and Bacillus mycoides) and Gram-negative bacteria (Pseudomonas putida and Escherichia coli) were higher in EJ-AgNPs than that in CF-AgNPs, which confirmed the synergistic antibacterial effects of flavonoids combined with AgNPs in EJ-AgNPs. This study provides a significant reference on the biosynthesis of AgNPs with efficient antibacterial utilization underlying effect of abundant flavonoids in plant extracts.
Collapse
Affiliation(s)
- Linan Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; MOE Key Laboratory of Pollution Process and Environmental Criteria, Nankai University, Tianjin, 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Nankai University, Tianjin, 300350, China
| | - Chen Yu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shakeel Ahmad
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; MOE Key Laboratory of Pollution Process and Environmental Criteria, Nankai University, Tianjin, 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Nankai University, Tianjin, 300350, China
| | - Cholnam Ri
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; MOE Key Laboratory of Pollution Process and Environmental Criteria, Nankai University, Tianjin, 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
11
|
Yang Y, Liu LN, Tian H, Cooper AI, Sprick RS. Making the connections: physical and electric interactions in biohybrid photosynthetic systems. ENERGY & ENVIRONMENTAL SCIENCE 2023; 16:4305-4319. [PMID: 38013927 PMCID: PMC10566253 DOI: 10.1039/d3ee01265d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/14/2023] [Indexed: 11/29/2023]
Abstract
Biohybrid photosynthesis systems, which combine biological and non-biological materials, have attracted recent interest in solar-to-chemical energy conversion. However, the solar efficiencies of such systems remain low, despite advances in both artificial photosynthesis and synthetic biology. Here we discuss the potential of conjugated organic materials as photosensitisers for biological hybrid systems compared to traditional inorganic semiconductors. Organic materials offer the ability to tune both photophysical properties and the specific physicochemical interactions between the photosensitiser and biological cells, thus improving stability and charge transfer. We highlight the state-of-the-art and opportunities for new approaches in designing new biohybrid systems. This perspective also summarises the current understanding of the underlying electron transport process and highlights the research areas that need to be pursued to underpin the development of hybrid photosynthesis systems.
Collapse
Affiliation(s)
- Ying Yang
- Materials Innovation Factory and Department of Chemistry, University of Liverpool Liverpool L7 3NY UK
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool L69 7ZB UK
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool L69 7ZB UK
- College of Marine Life Sciences, and Frontiers Science Centre for Deep Ocean Multispheres and Earth System, Ocean University of China 266003 Qingdao P. R. China
| | - Haining Tian
- Department of Chemistry-Ångström Laboratories, Uppsala University Box 523 751 20 Uppsala Sweden
| | - Andrew I Cooper
- Materials Innovation Factory and Department of Chemistry, University of Liverpool Liverpool L7 3NY UK
| | - Reiner Sebastian Sprick
- Department of Pure and Applied Chemistry, University of Strathclyde Thomas Graham Building, 295 Cathedral Street Glasgow G1 1XL UK
| |
Collapse
|
12
|
Lin S, Wu F, Zhang Y, Chen H, Guo H, Chen Y, Liu J. Surface-modified bacteria: synthesis, functionalization and biomedical applications. Chem Soc Rev 2023; 52:6617-6643. [PMID: 37724854 DOI: 10.1039/d3cs00369h] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The past decade has witnessed a great leap forward in bacteria-based living agents, including imageable probes, diagnostic reagents, and therapeutics, by virtue of their unique characteristics, such as genetic manipulation, rapid proliferation, colonization capability, and disease site targeting specificity. However, successful translation of bacterial bioagents to clinical applications remains challenging, due largely to their inherent susceptibility to environmental insults, unavoidable toxic side effects, and limited accumulation at the sites of interest. Cell surface components, which play critical roles in shaping bacterial behaviors, provide an opportunity to chemically modify bacteria and introduce different exogenous functions that are naturally unachievable. With the help of surface modification, a wide range of functionalized bacteria have been prepared over the past years and exhibit great potential in various biomedical applications. In this article, we mainly review the synthesis, functionalization, and biomedical applications of surface-modified bacteria. We first introduce the approaches of chemical modification based on the bacterial surface structure and then highlight several advanced functions achieved by modifying specific components on the surface. We also summarize the advantages as well as limitations of surface chemically modified bacteria in the applications of bioimaging, diagnosis, and therapy and further discuss the current challenges and possible solutions in the future. This work will inspire innovative design thinking for the development of chemical strategies for preparing next-generation biomedical bacterial agents.
Collapse
Affiliation(s)
- Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Feng Wu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yifan Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Huan Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Haiyan Guo
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yanmei Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
13
|
Huang D, Wu M, Kuga S, Huang Y. Size-Controlled Silver Nanoparticles Supported by Pyrolytic Carbon from Microcrystalline Cellulose. Int J Mol Sci 2023; 24:14431. [PMID: 37833880 PMCID: PMC10572184 DOI: 10.3390/ijms241914431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
A facile method was developed for preparing size-controlled silver nanoparticles supported by pyrolytic carbon from microcrystalline cellulose (MCC). The pyrolysis of cellulose-AgNO3 mixture caused the oxidation of cellulose, resulting in carboxyl groups to which silver ions can bind firmly and act as nuclei for the deposition of silver nanoparticles. The structure and properties of the obtained nanocomposite were characterized by using a scanning electron microscope (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) and X-ray diffraction (XRD). The results suggest that silver nanoparticles were integrated successfully and dispersed uniformly in the pyrolytic carbon matrix. The average particle size varied between 20 nm and 100 nm in correlation to the dose of silver nitrate and temperature of pyrolysis. The products showed high electric conductivity and strong antimicrobial activity against Escherichia coli (E. coli).
Collapse
Affiliation(s)
- Dayong Huang
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Xiong'an Institute of Innovation, Xiong'an 071899, China
- Center of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wu
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Xiong'an Institute of Innovation, Xiong'an 071899, China
- Center of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shigenori Kuga
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yong Huang
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
14
|
Harun-Ur-Rashid M, Jahan I, Foyez T, Imran AB. Bio-Inspired Nanomaterials for Micro/Nanodevices: A New Era in Biomedical Applications. MICROMACHINES 2023; 14:1786. [PMID: 37763949 PMCID: PMC10536921 DOI: 10.3390/mi14091786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Exploring bio-inspired nanomaterials (BINMs) and incorporating them into micro/nanodevices represent a significant development in biomedical applications. Nanomaterials, engineered to imitate biological structures and processes, exhibit distinctive attributes such as exceptional biocompatibility, multifunctionality, and unparalleled versatility. The utilization of BINMs demonstrates significant potential in diverse domains of biomedical micro/nanodevices, encompassing biosensors, targeted drug delivery systems, and advanced tissue engineering constructs. This article thoroughly examines the development and distinctive attributes of various BINMs, including those originating from proteins, DNA, and biomimetic polymers. Significant attention is directed toward incorporating these entities into micro/nanodevices and the subsequent biomedical ramifications that arise. This review explores biomimicry's structure-function correlations. Synthesis mosaics include bioprocesses, biomolecules, and natural structures. These nanomaterials' interfaces use biomimetic functionalization and geometric adaptations, transforming drug delivery, nanobiosensing, bio-inspired organ-on-chip systems, cancer-on-chip models, wound healing dressing mats, and antimicrobial surfaces. It provides an in-depth analysis of the existing challenges and proposes prospective strategies to improve the efficiency, performance, and reliability of these devices. Furthermore, this study offers a forward-thinking viewpoint highlighting potential avenues for future exploration and advancement. The objective is to effectively utilize and maximize the application of BINMs in the progression of biomedical micro/nanodevices, thereby propelling this rapidly developing field toward its promising future.
Collapse
Affiliation(s)
- Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh;
| | - Israt Jahan
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan;
| | - Tahmina Foyez
- Department of Pharmacy, United International University, Dhaka 1212, Bangladesh;
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
15
|
Wang B, Fang J, Tang H, Lu S, Chen Y, Yang X, He Y. Dual-functional cellulase-mediated gold nanoclusters for ascorbic acid detection and fluorescence bacterial imaging. Front Bioeng Biotechnol 2023; 11:1258036. [PMID: 37711455 PMCID: PMC10498280 DOI: 10.3389/fbioe.2023.1258036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
Protein-protected metal nanomaterials are becoming the most promising fluorescent nanomaterials for biosensing, bioimaging, and therapeutic applications due to their obvious fluorescent molecular properties, favorable biocompatibility and excellent physicochemical properties. Herein, we pioneeringly prepared a cellulase protected fluorescent gold nanoclusters (Cel-Au NCs) exhibiting red fluorescence under the excitation wavelength of 560 nm via a facile and green one-step method. Based on the fluorescence turn-off mechanism, the Cel-Au NCs were used as a biosensor for specificity determination of ascorbic acid (AA) at the emission of 680 nm, which exhibited satisfactory linearity over the range of 10-400 µM and the detection limit of 2.5 µM. Further, the actual sample application of the Au NCs was successfully established by evaluating AA in serum with good recoveries of 98.76%-104.83%. Additionally, the bacteria, including gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) and gram-negative bacteria (Escherichia coli), were obviously stained by Cel-Au NCs with strong red emission. Thereby, as dual-functional nanoclusters, the prepared Cel-Au NCs have been proven to be an excellent fluorescent bioprobe for the detection of AA and bacterial labeling in medical diagnosis and human health maintenance.
Collapse
Affiliation(s)
- Baojuan Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jinxin Fang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Huiliang Tang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Shan Lu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Yan Chen
- Anhui Key Laboratory of Chemo-Biosensing, Ministry of Education, Anhui Normal University, Wuhu, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, China
- Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Xiaoqi Yang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Yuezhen He
- Anhui Key Laboratory of Chemo-Biosensing, Ministry of Education, Anhui Normal University, Wuhu, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, China
- Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
16
|
Kamal Z, Said AH, Ebnalwaled AA, Rehan IF, Zigo F, Farkašová Z, Allam M. Genetic effects of chemically and biosynthesized titanium dioxide nanoparticles in vitro and in vivo of female rats and their fetuses. Front Vet Sci 2023; 10:1142305. [PMID: 37614463 PMCID: PMC10442826 DOI: 10.3389/fvets.2023.1142305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/13/2023] [Indexed: 08/25/2023] Open
Abstract
With the increase in nanoparticles (NPs) products on the market, the possibility of animal and human exposure to these materials will increase. The smaller size of NPs facilitates their entrance through placental barriers and allows them to accumulate in embryonic tissue, where they can then be a source of different developmental malformations. Several toxicity studies with chemically synthesized titanium dioxide NPs (CTiO2 NPs) have been recently carried out; although there is insufficient data on exposure to biosynthesized titanium dioxide NPs (BTiO2 NPs) during pregnancy, the study aimed to evaluate the ability of an eco-friendly biosynthesis technique using garlic extract against maternal and fetal genotoxicities, which could result from repeated exposure to TiO2 NPs during gestation days (GD) 6-19. A total of fifty pregnant rats were divided into five groups (n = 10) and gavaged CTiO2 NPs and BTiO2 NPs at 100 and 300 mg/kg/day concentrations. Pregnant rats on GD 20 were anesthetized, uterine horns were removed, and then embryotoxicity was performed. The kidneys of the mothers and fetuses in each group were collected and then maintained in a frozen condition. Our results showed that garlic extract can be used as a reducing agent for the formation of TiO2 NPs. Moreover, BTiO2 NPs showed less toxic potential than CTiO2 NPs in HepG2 cells. Both chemically and biosynthesized TiO2 NP-induced genetic variation in the 16S rRNA sequences of mother groups compared to the control group. In conclusion, the genetic effects of the 16S rRNA sequence induced by chemically synthesized TiO2 NPs were greater than those of biosynthesized TiO2 NPs. However, there were no differences between the control group and the embryo-treated groups with chemically and biologically synthesized TiO2 NPs.
Collapse
Affiliation(s)
- Zeinab Kamal
- Department of Zoology, Faculty of Science, South Valley University, Qena, Egypt
| | - Alaa H. Said
- Electronic and Nano Devises Lab, Faculty of Science, South Valley University, Qena, Egypt
| | - A. A. Ebnalwaled
- Electronic and Nano Devises Lab, Faculty of Science, South Valley University, Qena, Egypt
| | - Ibrahim F. Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Egypt
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - František Zigo
- Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Zuzana Farkašová
- Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Mohammad Allam
- Department of Zoology, Faculty of Science, Luxor University, Luxor, Egypt
| |
Collapse
|
17
|
Lin X, Fan L, Wang L, Filppula AM, Yu Y, Zhang H. Fabricating biomimetic materials with ice-templating for biomedical applications. SMART MEDICINE 2023; 2:e20230017. [PMID: 39188345 PMCID: PMC11236069 DOI: 10.1002/smmd.20230017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 08/28/2024]
Abstract
The proper organization of cells and tissues is essential for their functionalization in living organisms. To create materials that mimic natural structures, researchers have developed techniques such as patterning, templating, and printing. Although these techniques own several advantages, these processes still involve complexity, are time-consuming, and have high cost. To better simulate natural materials with micro/nanostructures that have evolved for millions of years, the use of ice templates has emerged as a promising method for producing biomimetic materials more efficiently. This article explores the historical approaches taken to produce traditional biomimetic structural biomaterials and delves into the principles underlying the ice-template method and their various applications in the creation of biomimetic materials. It also discusses the most recent biomedical uses of biomimetic materials created via ice templates, including porous microcarriers, tissue engineering scaffolds, and smart materials. Finally, the challenges and potential of current ice-template technology are analyzed.
Collapse
Affiliation(s)
- Xiang Lin
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Lu Fan
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Li Wang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Anne M. Filppula
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Yunru Yu
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| |
Collapse
|
18
|
Ruíz-Baltazar ÁDJ, Böhnel HN, Larrañaga Ordaz D, Cervantes-Chávez JA, Méndez-Lozano N, Reyes-López SY. Green Ultrasound-Assisted Synthesis of Surface-Decorated Nanoparticles of Fe 3O 4 with Au and Ag: Study of the Antifungal and Antibacterial Activity. J Funct Biomater 2023; 14:304. [PMID: 37367269 DOI: 10.3390/jfb14060304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
This work proposes a sonochemical biosynthesis of magnetoplasmonic nanostructures of Fe3O4 decorated with Au and Ag. The magnetoplasmonic systems, such as Fe3O4 and Fe3O4-Ag, were characterized structurally and magnetically. The structural characterizations reveal the magnetite structures as the primary phase. Noble metals, such as Au and Ag, are present in the sample, resulting in a structure-decorated type. The magnetic measurements indicate the superparamagnetic behavior of the Fe3O4-Ag and Fe3O4-Au nanostructures. The characterizations were carried out by X-ray diffraction and scanning electron microscopy. Complementarily, antibacterial and antifungal assays were carried out to evaluate the potential properties and future applications in biomedicine.
Collapse
Affiliation(s)
- Álvaro de Jesús Ruíz-Baltazar
- CONAHCYT-Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Mexico
| | - Harald Norbert Böhnel
- Centro de Geociencias, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Mexico
| | - Daniel Larrañaga Ordaz
- Minnesota Dental Research Center for Biomaterials and Biomechanical, School of Dentistry of Minnesota, Minneapolis, MN 55455, USA
| | - José Antonio Cervantes-Chávez
- Unidad de Microbiología Básica y Aplicada, Facultad de Ciencias Naturales, UAQ Campus Aeropuerto, Santiago de Querétaro 76140, Mexico
| | - Néstor Méndez-Lozano
- Campus Querétaro, Universidad del Valle de México, Blvd. Juriquilla no. 1000 A. Del. Santa Rosa Jáuregui, Querétaro 76230, Mexico
| | - Simón Yobanny Reyes-López
- Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, Zona Pronaf, Ciudad Juárez 32310, Mexico
| |
Collapse
|
19
|
Salem SS. A mini review on green nanotechnology and its development in biological effects. Arch Microbiol 2023; 205:128. [PMID: 36944830 PMCID: PMC10030434 DOI: 10.1007/s00203-023-03467-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/23/2023]
Abstract
The utilization of living organisms for the creation of inorganic nanoscale particles is a potential new development in the realm of biotechnology. An essential milestone in the realm of nanotechnology is the process of creating dependable and environmentally acceptable metallic nanoparticles. Due to its increasing popularity and ease, use of ambient biological resources is quickly becoming more significant in this field of study. The phrase "green nanotechnology" has gained a lot of attention and refers to a variety of procedures that eliminate or do away with hazardous compounds to repair the environment. Green nanomaterials can be used in a variety of biotechnological sectors such as medicine and biology, as well as in the food and textile industries, wastewater treatment and agriculture field. The construction of an updated level of knowledge with utilization and a study of the ambient biological systems that might support and revolutionize the creation of nanoparticles (NPs) are presented in this article.
Collapse
Affiliation(s)
- Salem S Salem
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
20
|
Chen T, Peng Y, Qiu M, Yi C, Xu Z. Protein-supported transition metal catalysts: Preparation, catalytic applications, and prospects. Int J Biol Macromol 2023; 230:123206. [PMID: 36638614 DOI: 10.1016/j.ijbiomac.2023.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
The immobilization of transition metal catalysts onto supports enables their easier recycling and improves catalytic performance. Protein supports not only support and stabilize transition metal catalysts but also enable the incorporation of biocompatibility and enzymatic catalysis into these catalysts. Consequently, the engineering of protein-supported transition metal catalysts (PTMCs) has emerged as an effective approach to improving their catalytic performance and widening their catalytic applications. Here, we review the recent development of the preparation and applications of PTMCs. The preparation of PTMCs will be summarized and discussed in terms of the types of protein supports, including proteins, protein assemblies, protein-polymer conjugates, and cross-linked proteins. Then, their catalytic applications including organic synthesis, photocatalysis, polymerization, and biomedicine, will be surveyed and compared. Meanwhile, the established catalytic structures-function relationships will be summarized. Lastly, the remaining issues and prospects will be discussed. By surveying a wide range of PTMCs, we believe that this review will attract a broad readership and stimulate the development of PTMCs.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Changfeng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
21
|
Prakashkumar N, Pugazhendhi A, Brindhadevi K, Garalleh HA, Garaleh M, Suganthy N. Comparative study of zinc oxide nanoparticles synthesized through biogenic and chemical route with reference to antibacterial, antibiofilm and anticancer activities. ENVIRONMENTAL RESEARCH 2023; 220:115136. [PMID: 36584851 DOI: 10.1016/j.envres.2022.115136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/27/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The present focused on comparative study on synthesis of ZnO nanoparticles (ZnO NPs) using chemical method via alkaline precipitation method (ZnO(A) NPs) using NaOH and biogenic method using termite mound extract (ZnO(B) NPs). GC-MS analysis revealed that D-limonene present in termite mound extract might be responsible for the synthesis of ZnO(B) NPs. XRD patterns confirmed hexagonal crystalline structure of ZnO(A) and (B) NPs. Results of antibacterial activity illustrated that ZnO(B) NPs showed its potential against Pseudomonas aeruginosa, ESBL-1, ESBL-2 and EBSL-3. Antibiofilm studies revealed that ZnO(B) NPs exhibited optimum decline in MRSA biofilm formation than ZnO(A) NPs. In addition, ZnO(B) NPs showed potent cytotoxic effect against lung cancer cell lines A549 with IC50 of 35.16 ± 0.10 μg/mL in comparison with ZnO(A) NPs (IC50- 55.09 ± 0.30 μg/mL). Overall, the results revealed that biogenic synthesis of ZnO NPs ensures its biosafety level and enhanced biological activity when compared to chemical synthesis method.
Collapse
Affiliation(s)
- Nallasamy Prakashkumar
- Department of Nanoscience and Technology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Mazen Garaleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia; Department of Applied Chemistry, Faculty of Science, Tafila Technical University, Tafila, 66141, Jordan
| | - Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
22
|
Ma J, Jin B, Guye KN, Chowdhury ME, Naser NY, Chen CL, De Yoreo JJ, Baneyx F. Controlling Mineralization with Protein-Functionalized Peptoid Nanotubes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207543. [PMID: 36281797 DOI: 10.1002/adma.202207543] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Sequence-defined foldamers that self-assemble into well-defined architectures are promising scaffolds to template inorganic mineralization. However, it has been challenging to achieve robust control of nucleation and growth without sequence redesign or extensive experimentation. Here, peptoid nanotubes functionalized with a panel of solid-binding proteins are used to mineralize homogeneously distributed and monodisperse anatase nanocrystals from the water-soluble TiBALDH precursor. Crystallite size is systematically tuned between 1.4 and 4.4 nm by changing protein coverage and the identity and valency of the genetically engineered solid-binding segments. The approach is extended to the synthesis of gold nanoparticles and, using a protein encoding both material-binding specificities, to the fabrication of titania/gold nanocomposites capable of photocatalysis under visible-light illumination. Beyond uncovering critical roles for hierarchical organization and denticity on solid-binding protein mineralization outcomes, the strategy described herein should prove valuable for the fabrication of hierarchical hybrid materials incorporating a broad range of inorganic components.
Collapse
Affiliation(s)
- Jinrong Ma
- Molecular Engineering and Science Institute, University of Washington, Seattle, WA, 98115, USA
| | - Biao Jin
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Kathryn N Guye
- Department of Chemistry, University of Washington, Seattle, WA, 98115, USA
| | - Md Emtias Chowdhury
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Nada Y Naser
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98115, USA
| | - Chun-Long Chen
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98115, USA
| | - James J De Yoreo
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98115, USA
| | - François Baneyx
- Molecular Engineering and Science Institute, University of Washington, Seattle, WA, 98115, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98115, USA
| |
Collapse
|
23
|
Yadav SA, Suvathika G, Alghuthaymi MA, Abd-Elsalam KA. Fungal-derived nanoparticles for the control of plant pathogens and pests. FUNGAL CELL FACTORIES FOR SUSTAINABLE NANOMATERIALS PRODUCTIONS AND AGRICULTURAL APPLICATIONS 2023:755-784. [DOI: 10.1016/b978-0-323-99922-9.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
24
|
Tryptone-stabilized silver nanoparticles' potential to mitigate planktonic and biofilm growth forms of Serratia marcescens. J Biol Inorg Chem 2023; 28:139-152. [PMID: 36484825 PMCID: PMC9734995 DOI: 10.1007/s00775-022-01977-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022]
Abstract
Several microbial pathogens are capable of forming biofilms. These microbial communities pose a serious challenge to the healthcare sector as they are quite difficult to combat. Given the challenges associated with the antibiotic-based management of biofilms, the research focus has now been shifted towards finding alternate treatment strategies that can replace or complement the antibacterial properties of antibiotics. The field of nanotechnology offers several novel and revolutionary approaches to eradicate biofilm-forming microbes. In this study, we evaluated the antibacterial and antibiofilm efficacy of in-house synthesized, tryptone-stabilized silver nanoparticles (Ts-AgNPs) against the superbug Serratia marcescens. The nanoparticles were of spherical morphology with an average hydrodynamic diameter of 170 nm and considerable colloidal stability with a Zeta potential of - 24 ± 6.15 mV. Ts-AgNPs showed strong antibacterial activities with a minimum inhibitory concentration (MIC50) of 2.5 µg/mL and minimum bactericidal concentration (MBC) of 12.5 µg/mL against S. marcescens. The nanoparticles altered the cell surface hydrophobicity and inhibited biofilm formation. The Ts-AgNPs were also effective in distorting pre-existing biofilms by degrading the extracellular DNA (eDNA) component of the extracellular polymeric substance (EPS) layer. Furthermore, reduction in quorum-sensing (QS)-induced virulence factors produced by S. marcescens indicated that Ts-AgNPs attenuated the QS pathway. Together, these findings suggest that Ts-AgNPs are an important anti-planktonic and antibiofilm agent that can be explored for both the prevention and treatment of infections caused by S. marcescens.
Collapse
|
25
|
Abdali Z, Aminzare M, Chow A, Dorval Courchesne NM. Bacterial collagen-templated synthesis and assembly of inorganic particles. Biomed Mater 2022; 18. [PMID: 36301706 DOI: 10.1088/1748-605x/ac9d7b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022]
Abstract
Collagen has been used as a common template for mineralization and assembly of inorganic particles, because of the special arrangement of its fibrils and the presence of charged residues. Streptococcal bacterial collagen, which is inherently secreted on the surface ofStreptococcus pyogenes, has been progressively used as an alternative for type I animal collagen. Bacterial collagen is rich in charged amino acids, which can act as a substrate for the nucleation and growth of inorganic particles. Here, we show that bacterial collagen can be used to nucleate three different inorganic materials: hydroxyapatite crystals, silver nanoparticles, and silica nanoparticles. Collagen/mineral composites show an even distribution of inorganic particles along the collagen fibers, and the particles have a more homogenous size compared with minerals that are formed in the absence of the collagen scaffold. Furthermore, the gelation of silica occurring during mineralization represents a means to produce processable self-standing collagen composites, which is challenging to achieve with bacterial collagen alone. Overall, we highlight the advantage of simply combining bacterial collagen with minerals to expand their applications in the fields of biomaterials and tissue engineering, especially for bone regenerative scaffolds.
Collapse
Affiliation(s)
- Zahra Abdali
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Masoud Aminzare
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Amy Chow
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
26
|
Ma X, Wei X, Wang M, Zhang N, Chen P, Hua J. A hexa-Cu cluster sandwiched silicotungstate with reactive oxygen species catalytic ability and anti-tumor activity in PC12 cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Luo M, Chen X, Gao H, Yang F, Chen J, Qiao Y. Bacteria-mediated cancer therapy: A versatile bio-sapper with translational potential. Front Oncol 2022; 12:980111. [PMID: 36276157 PMCID: PMC9585267 DOI: 10.3389/fonc.2022.980111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria are important symbionts for humans, which sustain substantial influences on our health. Interestingly, some bastrains have been identified to have therapeutic applications, notably for antitumor activity. Thereby, oncologists have developed various therapeutic models and investigated the potential antitumor mechanisms for bacteria-mediated cancer therapy (BCT). Even though BCT has a long history and exhibits remarkable therapeutic efficacy in pre-clinical animal models, its clinical translation still lags and requires further breakthroughs. This review aims to focus on the established strains of therapeutic bacteria and their antitumor mechanisms, including the stimulation of host immune responses, direct cytotoxicity, the interference on cellular signal transduction, extracellular matrix remodeling, neoangiogenesis, and metabolism, as well as vehicles for drug delivery and gene therapy. Moreover, a brief discussion is proposed regarding the important future directions for this fantastic research field of BCT at the end of this review.
Collapse
Affiliation(s)
- Miao Luo
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Xiaoyu Chen
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Haojin Gao
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Fan Yang
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Jianxiang Chen
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Yiting Qiao, ; Jianxiang Chen,
| | - Yiting Qiao
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Yiting Qiao, ; Jianxiang Chen,
| |
Collapse
|
28
|
Hua J, Wei X, Li Y, Li L, Zhang H, Wang F, Zhang C, Ma X. A Cyclen-Functionalized Cobalt-Substituted Sandwich-Type Tungstoarsenate with Versatility in Removal of Methylene Blue and Anti-ROS-Sensitive Tumor Cells. Molecules 2022; 27:molecules27196451. [PMID: 36234988 PMCID: PMC9573041 DOI: 10.3390/molecules27196451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Oxidative degradation by using reactive oxygen species (ROS) is an effective method to treat pollutants. The synthesis of artificial oxidase for the degradation of dyes is a hot spot in molecular science. In this study, a nanoscale sandwich-type polyoxometalate (POM) on the basis of a tetra-nuclear cobalt cluster and trivacant B-α-Keggin-type tungstoarsenate {[Co(C8H20N4)]4}{Co4(H2O)2[HAsW9O34]2}∙4H2O (abbreviated as CAW, C8H20N4 = cyclen) has been synthesized and structurally examined by infrared (IR) spectrum, ultraviolet–visible (UV–Vis) spectrum, X-ray photoelectron spectrum (XPS), single-crystal X-ray diffraction (SXRD), and bond valence sum (Σs) calculation. According to the structural analysis, the principal element of the CAW is derived from modifying sandwich-type polyanion {Co4(H2O)2 [HAsW9O34]2}8– with four [Co(Cyclen)]2+, in which 1,4,7,10-tetraazacyclododecane (cyclen) is firstly applied to modify POM. It is also demonstrated that CAW is capable of efficiently catalyzing the production of ROS by the synergistic effects of POM fragments and Co–cyclen complexes. Moreover, CAW can interfere with the morphology and proliferation of sensitive cells by producing ROS and exhibits ability in specifically eliminating methylene blue (MB) dyes from the solution system by both adsorption and catalytic oxidation.
Collapse
Affiliation(s)
- Jiai Hua
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan 030008, China
- Laboratory of Biochemistry and Pharmacy, Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Xueman Wei
- Department of Geriatrics, First Affiliated Hospital of Naval Medical University, Shanghai 200081, China
| | - Yifeng Li
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Lingzhi Li
- Laboratory of Biochemistry and Pharmacy, Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Hui Zhang
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Feng Wang
- Laboratory of Biochemistry and Pharmacy, Taiyuan Institute of Technology, Taiyuan 030008, China
- Correspondence: (F.W.); (C.Z.); (X.M.); Tel.: +86-351-356-9476 (X.M.)
| | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
- Correspondence: (F.W.); (C.Z.); (X.M.); Tel.: +86-351-356-9476 (X.M.)
| | - Xiang Ma
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan 030008, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Correspondence: (F.W.); (C.Z.); (X.M.); Tel.: +86-351-356-9476 (X.M.)
| |
Collapse
|
29
|
Metal Cluster Triggered-Assembling Heterogeneous Au-Ag Nanoclusters with Highly Loading Performance and Biocompatible Capability. Int J Mol Sci 2022; 23:ijms231911197. [PMID: 36232494 PMCID: PMC9569858 DOI: 10.3390/ijms231911197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, we firstly report the preparation of heterogeneously assembled structures Au-Ag nanoclusters (NCs) as good drug carriers with high loading performance and biocompatible capability. As glutathione-protected Au and Ag clusters self-assembled into porous Au-Ag NCs, the size value is about 1.358 (±0.05) nm. The morphology characterization revealed that the diameter of Au-Ag NCs is approximately 120 nm, as well as the corresponding potential ability in loading performance of the metal cluster triggered-assembling process. Compared with individual components, the stability and loading performance of heterogeneous Au-Ag NCs were improved and exhibit that the relative biocompatibility was enhanced. The exact information about this is that cell viability was approximately to 98% when cells were incubated with 100 µg mL−1 particle solution for 3 days. The drug release of Adriamycin from Au-Ag NCs was carried out in PBS at pH = 7.4 and 5.8, respectively. By simulating in vivo and tumor microenvironment, the release efficiency could reach over 65% at pH = 5.8 but less than 30% at pH = 7.2. Using an ultrasound field as external environment can accelerate the assembling process while metal clusters triggered assembling Au-Ag NCs. The size and morphology of the assembled Au-Ag NCs can be controlled by using different power parameters (8 W, 13 W, 18 W) under ambient atmosphere. Overall, a novel approach is exhibited, which conveys assembling work for metal clusters triggers into heterogeneous structures with porous characteristic. Its existing properties such as water-solubility, stability, low toxicity and capsulation can be considered as dependable agents in various biomedical applications and drug carriers in immunotherapies.
Collapse
|
30
|
Pansare AV, Pansare SV, Pansare PV, More BP, Nagarkar AA, Barbezat M, Donde KJ, Patil VR, Terrasi GP. Economical gold recovery cycle from bio-sensing AuNPs: an application for nanowaste and COVID-19 testing kits. Dalton Trans 2022; 51:14686-14699. [PMID: 36098266 DOI: 10.1039/d2dt01405j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report the controlled growth of biologically active compounds: gold nanoparticles (AuNPs) in various shapes, including their green synthesis, characterization, and studies of their applications towards biological, degradation and recycling. Using spectroscopic methods, studies on responsive binding mechanisms of AuNPs with biopolymers herring sperm deoxyribonucleic acid (hsDNA), bovine serum albumin (BSA), dyes degradation study, and exquisitely gold separation studies/recovery from nanowaste, COVID-19 testing kits, and pregnancy testing kits are discussed. The sensing ability of the AuNPs with biopolymers was investigated via various analytical techniques. The rate of degradation of various dyes in the presence and absence of AuNPs was studied by deploying stirring, IR, solar, and UV-Vis methods. AuNPs were found to be the most active cytotoxic agent against human breast cancer cell lines such as MCF-7 and MDAMB-468. Furthermore, an economical process for the recovery of gold traces from nanowaste, COVID-19 detection kits, and pregnancy testing kits was developed using inexpensive and eco-friendly α-cyclodextrin sugar. This method was found to be easy and safest in comparison with the universally accepted cyanidation process. In the future, small gold jewelry makers and related industries would benefit from the proposed gold-recycling process and it might contribute to their socio-economic growth. The methodologies proposed are also beneficial for trace-level forensic investigation.
Collapse
Affiliation(s)
- Amol V Pansare
- Composite group, Mechanical Systems Engineering, Swiss Federal Laboratories for Materials Science and Technology-Empa, 8600 Dübendorf, Switzerland.
| | - Shubham V Pansare
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400098, India.
| | - Priyanka V Pansare
- Ramnarain Ruia Autonomous College, University of Mumbai, Matunga (E), India.
| | - Bhausaheb P More
- Directorate of Forensic Science Laboratories Mumbai, Home Department, Government of Maharashtra-98, India
| | - Amit A Nagarkar
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138 USA
| | - Michel Barbezat
- Composite group, Mechanical Systems Engineering, Swiss Federal Laboratories for Materials Science and Technology-Empa, 8600 Dübendorf, Switzerland.
| | - Kamini J Donde
- Ramnarain Ruia Autonomous College, University of Mumbai, Matunga (E), India.
| | - Vishwanath R Patil
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400098, India.
| | - Giovanni P Terrasi
- Composite group, Mechanical Systems Engineering, Swiss Federal Laboratories for Materials Science and Technology-Empa, 8600 Dübendorf, Switzerland.
| |
Collapse
|
31
|
Singh A, Basnal N, Shukla G, Chaudhary N, Singh S, Gaurav SS. Evaluation of efficacy of Phyto-synthesized iron oxide nanoparticles in contributing drought resilience in wheat ( Triticum aestivumL.). NANOTECHNOLOGY 2022; 33:485101. [PMID: 36001941 DOI: 10.1088/1361-6528/ac8c48] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Wheat is the majorly cultivated staple crop worldwide. The world witnesses a great percentage of yield loss of wheat due to drought stress. The present study aimed at evaluating the efficacy of phytosynthesized iron oxide nanoparticles (FeONPs) in contributing to drought resilience in wheat (Triticum aestivumL.) under rain-fed conditions. FeONPs were biosynthesized by using leaf extract ofProsopis cinerariaas a reducing and capping agent. The synthesized nanoparticles were characterized to evaluate the structural and biochemical aspects. The FeONPs were found to be irregularly spherical in shape with a mean size of 42.6 nm. The concentration of nanoparticles in the sample was found to be 164.01 mg l-1. An experimental setup was laid out in a randomized-plot design with 3 replications for Rabi season 2020-2021. Five dosages of nanoparticles were prepared as 12.5, 25, 50, 75 and 100 ppm from the stock solution. The wheat crop varieties grown in the field were subjected to a total of 3 treatments; Nanopriming, foliar application of FeONPs at seedling development stage (20 DAS), and tillering stage (30 DAS). Plants that were not treated with NPs were considered as control. No irrigation regime was followed as the effect of NPs on the crop was to be assessed under rain-fed conditions only. Plant growth parameters were recorded. The obtained results revealed that the application of FeONPs positively affected all the morphological and yield attributes in the wheat crop. The highest concentrations used were found to be most effective and showed a significantly pronounced effect as compared to the control atp≤ 0.05. The study concluded that the FeONPs can contribute to drought resilience in wheat.
Collapse
Affiliation(s)
- Amardeep Singh
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut (UP), India
| | - Namita Basnal
- Department of Biotechnology, Chaudhary Charan Singh University, Meerut (UP), India
| | - Gyanika Shukla
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut (UP), India
| | - Neha Chaudhary
- Department of Biotechnology, Chaudhary Charan Singh University, Meerut (UP), India
| | - Swati Singh
- Department of Biotechnology, Chaudhary Charan Singh University, Meerut (UP), India
| | - Shailendra Singh Gaurav
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut (UP), India
| |
Collapse
|
32
|
A. AF, K. M, Yadav RK, Narayanan S. BAGS (Bio-source assisted green synthesis) strategy for preparing nanostructures; the case of MgO mesotubes for wastewater reclamation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Prerna, Agarwal H, Goyal D. Photocatalytic degradation of textile dyes using phycosynthesised ZnO nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Zhang W, Cai F, Xu H, Wu Y, Yu XA, Sun L, Zhang T, Yu BY, Zheng X, Tian J. Small-Molecule Photoacoustic Imaging Probe with Aggregation-Enhanced Amplitude for Real-Time Visualization of Acute Kidney Injury. Anal Chem 2022; 94:9697-9705. [PMID: 35767885 DOI: 10.1021/acs.analchem.2c01106] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acute kidney injury (AKI) has become a growing issue for patients with the extensive use of all kinds of drugs in clinic. Photoacoustic (PA) imaging provides a noninvasive and real-time imaging method for studying kidney injury, but it has inherent shortages in terms of high background signal and low detection sensitivity for exogenous imaging agents. Intriguingly, J-aggregation offers to tune the optical properties of the dyes, thus providing a platform for developing new PA probes with desired performance. In this study, a small-molecule PA probe (BDP-3) was designed and synthesized. We serendipitously discovered that BDP-3 can transform into renal clearable nanoaggregates under physiological conditions. The hydrodynamic diameter of the BDP-3 increased from 0.64 ± 0.11 to 3.74 ± 0.39 nm when the content of H2O increased from 40 to 90%. In addition, it was surprising that such a transforming process can significantly enhance its PA amplitude (2.06-fold). On this basis, PA imaging with BDP-3 was applied as a new method for the noninvasive detection of AKI induced by anticancer drugs, traditional Chinese medicine, and clinical contrast agents in animal models and exhibited higher sensitivity than the conventional serum index test, demonstrating great potential for further clinical diagnostic applications.
Collapse
Affiliation(s)
- Wangning Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fangjian Cai
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453002, China
| | - Yan Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xie-An Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Sun
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Tiange Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xianchuang Zheng
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
35
|
A Novel Tri-Coordination Zinc Complex Functionalized Silicotungstate with ROS Catalytic Ability and Anti-Tumor Cells Activity. Catalysts 2022. [DOI: 10.3390/catal12070695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species (ROS) can be used as an effective method to treat tumors. Artificial oxidase has received increasing attention as a catalyst for ROS generation in fields ranging from bioinorganic chemistry to pharmaceutical chemistry. In this study, an artificial oxidase based on a binuclear zinc complex and Keggin-type silicotungstate [Zn2(4,4′-bpy)(Phen)2][SiW12O40] (ZSW) (4,4′-bpy = 4,4′-bipyridine; Phen = 1,10-phenanthroline) was synthesized and structurally featured in terms of its X-ray photoelectron spectrum (XPS), bond valence sum (Σs) calculation, IR spectra, and single-crystal X-ray diffraction (SXRD). ZSW is an ionic compound in which the cation is a binuclear zinc complex [Zn2(4,4′-bpy)(Phen)2]4+ and the anion is a α-Keggin-type silicotungstate [SiW12O40]4– cluster. Notably, the Zn ions in the [Zn2(4,4′-bpy)(Phen)2] exist in tri-coordination, which was first obtained in polyoxometalate (POM) chemistry. It was also demonstrated that ZSW is capable of efficiently catalyzing the production of ROS, which, according to the computational calculations, may be due to the synergistic action of zinc complexes and POM building blocks. Furthermore, ZSW exhibited inhibition ability toward ROS-sensitive tumor cells, such as PC12 cells.
Collapse
|
36
|
Zheng Z, Cao H, Meng J, Xiao Y, Ulstrup J, Zhang J, Zhao F, Engelbrekt C, Xiao X. Synthesis and Structure of a Two-Dimensional Palladium Oxide Network on Reduced Graphene Oxide. NANO LETTERS 2022; 22:4854-4860. [PMID: 35639869 DOI: 10.1021/acs.nanolett.2c01226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
New nanostructures often reflect new and exciting properties. Here, we present an two-dimensional, hitherto unreported PdO square network with lateral dimensions up to hundreds of nanometers growing on reduced graphene oxide (rGO), forming a hybrid nanofilm. An intermediate state of dissolved Pd(0) in the bacterium S. oneidensis MR-1 is pivotal in the biosynthesis and inspires an abiotic synthesis. The PdO network shows a lattice spacing of 0.5 nm and a thickness of 1.8 nm on both sides of an rGO layer and is proposed to be cubic or tetragonal crystal, as confirmed by structural simulations. A 2D silver oxide analog with a similar structure is also obtained using an analogous abiotic synthesis. Our study thus opens a simple route to a whole new class of 2D metal oxides on rGO as promising candidates for graphene superlattices with unexplored properties and potential applications for example in electronics, sensing, and energy conversion.
Collapse
Affiliation(s)
- Zhiyong Zheng
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, Kongens Lyngby, DK-2800, Denmark
| | - Huili Cao
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, Kongens Lyngby, DK-2800, Denmark
| | - Jie Meng
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, Kongens Lyngby, DK-2800, Denmark
| | - Yong Xiao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Jens Ulstrup
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, Kongens Lyngby, DK-2800, Denmark
| | - Jingdong Zhang
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, Kongens Lyngby, DK-2800, Denmark
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Christian Engelbrekt
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, Kongens Lyngby, DK-2800, Denmark
| | - Xinxin Xiao
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, Kongens Lyngby, DK-2800, Denmark
| |
Collapse
|
37
|
Yaraki MT, Zahed Nasab S, Zare I, Dahri M, Moein Sadeghi M, Koohi M, Tan YN. Biomimetic Metallic Nanostructures for Biomedical Applications, Catalysis, and Beyond. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Mohammad Dahri
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Maedeh Koohi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran
| | - Yen Nee Tan
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, No. 05-04, 609607, Singapore
| |
Collapse
|
38
|
Hu C, Wei G, Zhu F, Wu A, Luo L, Shen S, Zhang J. Platinum-Based Nanocomposite Pt@BSA as an Efficient Electrochemical Biosensing Interface for Rapid and Ultrasensitive Determination of Folate Receptor-Positive Tumor Cells. ACS APPLIED BIO MATERIALS 2022; 5:3038-3048. [PMID: 35544589 DOI: 10.1021/acsabm.2c00332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Developing a cytosensing strategy based on electrochemical approaches has attracted wide interest due to the low cost, rapid response, and simple instrumentation. In this work, an electrochemical cytosensor employing the Pt@BSA nanocomposite as the biosensing substrate along with the covalent cross-linking of targeting molecules folic acid (FA) was constructed for highly sensitive determination of folate receptor (FR)-positive tumor cells. The prepared Pt@BSA nanocomposite revealed excellent biocompatibility for cell adhesion and proliferation, which was confirmed by cell viability evaluation using thiazolyl blue tetrazolium bromide (MTT) colorimetric methods. Due to the satisfactory electrical conductivity originating from Pt@BSA and the high binding affinity of FA to FR on the cell surface, an ultrasensitive and specific cytosensing device was designed for rapid and quantitative determination of HeLa cells (a model system) by differential pulse voltammetry (DPV) tests. This proposed cytosensor resulted in a wide HeLa cell determination range of 2.8 × 101-2.8 × 106 cells mL-1 with a low DPV detection limit of 9 cells mL-1. The developed cytosensing approach exhibited highly specific recognition of FR-positive tumor cells, excellent inter-assay reproducibility with a relative standard deviation (RSD) of 4.7%, acceptable intra-assay precision, and favorable storage stability, expanding the application of electrochemical measurement technology in the biomedical field of early detection and diagnosis of cancers.
Collapse
Affiliation(s)
- Chenyi Hu
- Institute of Fuel Cells, Key Laboratory of Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanghua Wei
- SJTU-Paris Tech Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fengjuan Zhu
- Institute of Fuel Cells, Key Laboratory of Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aiming Wu
- Institute of Fuel Cells, Key Laboratory of Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liuxuan Luo
- Institute of Fuel Cells, Key Laboratory of Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuiyun Shen
- Institute of Fuel Cells, Key Laboratory of Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junliang Zhang
- Institute of Fuel Cells, Key Laboratory of Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
39
|
Enhanced Electrochemical Conductivity of Surface-Coated Gold Nanoparticles/Copper Nanowires onto Screen-Printed Gold Electrode. COATINGS 2022. [DOI: 10.3390/coatings12050622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electrochemical application has been widely used in the study of biosensors. Small biomolecules need a sensitive sensor, as the transducer that can relay the signal produced by biomolecule interactions. Therefore, we are improvising a sensor electrode to enhance electrochemical conductivity for the detection of small DNA molecule interaction. This work describes the enhanced electrochemical conductivity studies of copper nanowires/gold nanoparticles (CuNWs/AuNPs), using the screen-printed gold electrode (SPGE). The AuNPs were synthesized using the Turkevich method as well as characterized by the high-resolution transmission electron microscopy (HRTEM) and ultraviolet-visible (UV-Vis) analysis for the particle size and absorption nature, respectively. Further, the surface morphology and elemental analysis of a series of combinations of different ratios of CuNWs-AuNPs-modified SPGE were analyzed by field emission scanning electron microscopy (FESEM) combined with an energy dispersive X-ray (EDX). The results indicate that the nanocomposites of CuNWs-AuNPs have been randomly distributed and compacted on the surface of SPGE, with AuNPs filling the pores of CuNWs, thereby enhancing its electrochemical conductivity. The cyclic voltammetry (CV) method was used for the evaluation of SPGE performance, while the characterization of the electrochemical conductivity of the electrode modified with various concentrations of AuNPs, CuNWs, and different volumes of dithiopropionic acid (DTPA) has been conducted. Of the various parameters tested, the SPGE modified with a mixture of 5 mg/mL CuNWs and 0.25 mM AuNPs exhibited an efficient electrochemical conductivity of 20.3 µA. The effective surface area for the CuNWs-AuNPs-modified SPGE was enhanced by 2.3-fold compared with the unmodified SPGE, thereby conforming the presence of a large active biomolecule interaction area and enhanced electrochemical activity on the electrode surface, thus make it promising for biosensor application.
Collapse
|
40
|
Yang YJ, Gao ZF. Editorial: Bio-Inspired Nanomaterials in Surface Engineering and Bioapplications. Front Chem 2022; 10:872069. [PMID: 35360536 PMCID: PMC8963913 DOI: 10.3389/fchem.2022.872069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yun Jun Yang
- Advanced Research Institute for Multidisciplinary Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhong Feng Gao
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
- *Correspondence: Zhong Feng Gao,
| |
Collapse
|
41
|
Yesuraj J, Vajravijayan S, Yang R, Nandhagopal N, Gunasekaran K, Selvam NCS, Yoo PJ, Kim K. Self-Assembly of Hausmannite Mn 3O 4 Triangular Structures on Cocosin Protein Scaffolds for High Energy Density Symmetric Supercapacitor Application. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2928-2941. [PMID: 35213159 DOI: 10.1021/acs.langmuir.1c03400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent advances in using biological scaffolds for nanoparticle synthesis have proven to be useful for preparing various nanostructures with uniform shape and size. Proteins are significant scaffolds for generating various nanostructures partly because of the presence of many functional groups to recognize different chemistries. In this endeavor, cocosin protein, an 11S allergen, is prepared from coconut fruit and employed as a potential scaffold for synthesizing Mn3O4 materials. The interaction between protein and manganese ions is studied in detail through isothermal calorimetric titration. At increased scaffold availability, the Mn3O4 material adopts the exact hexamer structure of the cocosin protein. The electrochemical supercapacitive properties of the cocosin-Mn3O4 material are found to have a high specific capacitance of 751.3 F g-1 at 1 A g-1 with cyclic stability (92% of capacitance retention after 5000 CV cycles) in a three-electrode configuration. The Mn3O4//Mn3O4 symmetric supercapacitor device delivers a specific capacitance of 203.8 F g-1 at 1 A g-1 and an outstanding energy and power density of 91.7 W h kg-1 and 899.5 W kg-1, respectively. These results show that cocosin-Mn3O4 could be considered a suitable electrode for energy storage applications. Moreover, the cocosin protein to be utilized as a novel scaffold in protein-nanomaterial chemistry could be useful for protein-assisted inorganic nanostructure synthesis in the future.
Collapse
Affiliation(s)
- Johnbosco Yesuraj
- Department of Mechanical Engineering, Chungbuk National University, Cheongju 28644, South Korea
| | - Senthilvadivel Vajravijayan
- Department of Crop Improvement (Plant Biochemistry), Don Bosco College of Agriculture (DBCA), Sagayathottam, Takkolam, Tamil Nadu, India 631151
| | - Rui Yang
- Department of Mechanical Engineering, Chungbuk National University, Cheongju 28644, South Korea
| | - Narayanasamy Nandhagopal
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Krishnasamy Gunasekaran
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | - N Clament Sagaya Selvam
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Pil J Yoo
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Kibum Kim
- Department of Mechanical Engineering, Chungbuk National University, Cheongju 28644, South Korea
| |
Collapse
|
42
|
Doan VD, Nguyen VC, Nguyen TLH, Nguyen AT, Nguyen TD. Highly sensitive and low-cost colourimetric detection of glucose and ascorbic acid based on silver nanozyme biosynthesized by Gleditsia australis fruit. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120709. [PMID: 34894570 DOI: 10.1016/j.saa.2021.120709] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
In this study, a simple, eco-friendly and low-cost approach was used to fabricate silver nanoparticles (AgNPs) from an aqueous extract of Gleditsia australis (GA) fruit. The nanoparticles synthesized in the optimal condition have an average size of 14 nm. The peroxidase-like activity of GA-AgNP in the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in combination with hydrogen peroxide (H2O2) was investigated. Further, optimal conditions for the use of peroxidase-like catalytic activity in sensing applications were identified. The colourimetric detection of H2O2 showed a linear range of 1-8 mM with a limit of detection (LOD) of 0.34 mM. The oxidation of TMB (red-TMB) enables the detection of glucose, which is converted into H2O2 and gluconic acid in the presence of the enzyme glucose oxidase. The observations showed linearity from 0.05 to 1.5 mM with a LOD of 0.038 mM. Moreover, the blue colour of oxidized TMB (ox-TMB) was reduced according to ascorbic acid (AA) concentration, with a linear range of 0.03-0.14 mM and a LOD of 3.0 μM. The practical use of the sensing system for the detection of AA was studied using real fruit juice and showed good sensitivity. Hence, the easy-to-use peroxidase-like sensor provides a new platform for the detection of bioactive compounds in biological systems.
Collapse
Affiliation(s)
- Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh City, Vietnam
| | - Van-Cuong Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh City, Vietnam
| | - Thi-Lan-Huong Nguyen
- Institute of Biotechnology and Food Technology, Industrial university of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh City, Vietnam
| | - Anh-Tien Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong, Ho Chi Minh City, Vietnam
| | - Thanh-Danh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam.
| |
Collapse
|
43
|
Calvo V, González‐Domínguez JM, Benito AM, Maser WK. Synthesis and Processing of Nanomaterials Mediated by Living Organisms. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Víctor Calvo
- Group of Carbon Nanostructures and Nanotechnology (G-CNN) Instituto de Carboquímica ICB-CSIC C/ Miguel Luesma Castán 4 50018 Zaragoza Spain
| | - José M. González‐Domínguez
- Group of Carbon Nanostructures and Nanotechnology (G-CNN) Instituto de Carboquímica ICB-CSIC C/ Miguel Luesma Castán 4 50018 Zaragoza Spain
| | - Ana M. Benito
- Group of Carbon Nanostructures and Nanotechnology (G-CNN) Instituto de Carboquímica ICB-CSIC C/ Miguel Luesma Castán 4 50018 Zaragoza Spain
| | - Wolfgang K. Maser
- Group of Carbon Nanostructures and Nanotechnology (G-CNN) Instituto de Carboquímica ICB-CSIC C/ Miguel Luesma Castán 4 50018 Zaragoza Spain
| |
Collapse
|
44
|
Platinum Nanoparticles as Potent Anticancer and Antimicrobial Agent: Green Synthesis, Physical Characterization, and In-Vitro Biological Activity. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Mei J, Liao T, Peng H, Sun Z. Bioinspired Materials for Energy Storage. SMALL METHODS 2022; 6:e2101076. [PMID: 34954906 DOI: 10.1002/smtd.202101076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Nature offers a variety of interesting structures and intriguing functions for researchers to be learnt for advanced materials innovations. Recently, bioinspired materials have received intensive attention in energy storage applications. Inspired by various natural species, many new configurations and components of energy storage devices, such as rechargeable batteries and supercapacitors, have been designed and innovated. The bioinspired designs on energy devices, such as electrodes and electrolytes, have brought about excellent physical, chemical, and mechanical properties compared to the counterparts at their conventional forms. In this review, the design principles for bioinspired materials ranging from structures, synthesis, and functionalization to multi-scale ordering and device integration are first discussed, and then a brief summary is given on the recent progress on bioinspired materials for energy storage systems, particularly the widely studied rechargeable batteries and supercapacitors. Finally, a critical review on the current challenges and brief perspective on the future research focuses are proposed. It is expected that this review can offer some insights into the smart energy storage system design by learning from nature.
Collapse
Affiliation(s)
- Jun Mei
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Ting Liao
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Mechanical Medical and Process Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Hong Peng
- School of Chemical Engineering, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ziqi Sun
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
46
|
Gholami‐Shabani M, Sotoodehnejadnematalahi F, Shams‐Ghahfarokhi M, Eslamifar A, Razzaghi‐Abyaneh M. Physicochemical properties, anticancer and antimicrobial activities of metallic nanoparticles green synthesized by Aspergillus kambarensis. IET Nanobiotechnol 2022; 16:1-13. [PMID: 34813166 PMCID: PMC8806120 DOI: 10.1049/nbt2.12070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022] Open
Abstract
In the present study, metal and metal oxide nanoparticles were successfully synthesized using Aspergillus kambarensis. UV-Vis spectroscopy showed maximum absorbance of 417 nm for silver (AgNPs), 542 nm for gold (AuNPs), 582 nm for copper (CuNPs) and 367 nm for zinc oxide (ZnONPs) nanoparticles. Fourier transform infrared spectroscopy indicated the presence of various mycochemicals with diverse functional groups in the fungal cell-free filtrate. Transmission electron microscopy revealed mono and poly dispersed particles with an estimate size of 50 nm and different shapes for synthesized manufacture metallic nanoparticles (MNPs. Dynamic light scattering confirmed that MNPs were dispersed in the size range less than 50 nm. Zeta potential analysis showed values of -41.32 mV (AgNPs), -41.26 mV (AuNPs), -34.74 mV (CuNPs) and 33.72 mV (ZnONPs). X-ray diffraction analysis demonstrated crystalline nature for MNPs. All the synthesized MNPs except AuNPs showed strong antifungal and antibacterial activity in disc diffusion assay with growth inhibition zones of 13.1-44.2 mm as well as anticancer activity against HepG-2 cancer cell line with IC50 in the range of 62.01-77.03 µg/ml. Taken together, the results show that biologically active MNPs synthesized by A. kambarensis for the first time could be considered as promising antimicrobial and anticancer agents for biomedical applications.
Collapse
Affiliation(s)
| | | | | | - Ali Eslamifar
- Department of Clinical ResearchPasteur Institute of IranTehranIran
| | | |
Collapse
|
47
|
Buglak AA, Kononov AI. Silver Cluster Interactions with Tyrosine: Towards Amino Acid Detection. Int J Mol Sci 2022; 23:634. [PMID: 35054820 PMCID: PMC8775517 DOI: 10.3390/ijms23020634] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/28/2022] Open
Abstract
Tyrosine (Tyr) is involved in the synthesis of neurotransmitters, catecholamines, thyroid hormones, etc. Multiple pathologies are associated with impaired Tyr metabolism. Silver nanoclusters (Ag NCs) can be applied for colorimetric, fluorescent, and surface-enhanced Raman spectroscopy (SERS) detection of Tyr. However, one should understand the theoretical basics of interactions between Tyr and Ag NCs. Thereby, we calculated the binding energy (Eb) between Tyr and Agnq (n = 1-8; q = 0-2) NCs using the density functional theory (DFT) to find the most stable complexes. Since Ag NCs are synthesized on Tyr in an aqueous solution at pH 12.5, we studied Tyr-1, semiquinone (SemiQ-1), and Tyr-2. Ag32+ and Ag5+ had the highest Eb. The absorption spectrum of Tyr-2 significantly red-shifts with the attachment of Ag32+, which is prospective for colorimetric Tyr detection. Ag32+ interacts with all functional groups of SemiQ-1 (phenolate, amino group, and carboxylate), which makes detection of Tyr possible due to band emergence at 1324 cm-1 in the vibrational spectrum. The ground state charge transfer between Ag and carboxylate determines the band emergence at 1661 cm-1 in the Raman spectrum of the SemiQ-1-Ag32+ complex. Thus, the prospects of Tyr detection using silver nanoclusters were demonstrated.
Collapse
Affiliation(s)
- Andrey A. Buglak
- The Faculty of Physics, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | | |
Collapse
|
48
|
Li Z, Shen T, Gu J, Chattha SA. PVP–gold–copper nanocluster based NIR fluorescence probe for sensitive detection of malachite green. NEW J CHEM 2022. [DOI: 10.1039/d1nj04943g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel NIR fluorescent probe based on PVP–Au/CuNCs has been developed, exhibiting good selectivity and stability for detecting malachite green (MG).
Collapse
Affiliation(s)
- Zhiying Li
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, P. R. China
| | - Tian Shen
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, P. R. China
| | - Jianxia Gu
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, P. R. China
| | - Sadaqat Ali Chattha
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- Department of Leather & Fibre Technology, University of Veterinary & Animal Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
49
|
Hua J, Wei X, Ma X, Jiao J, Chai B, Wu C, Zhang C, Niu Y. A {Cd4Cl2O14} cluster functionalized sandwich-type tungsto-arsenate as conformation modulator for misfolding Aβ peptide. CrystEngComm 2022. [DOI: 10.1039/d1ce01637g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nanoscale polyoxometalate {[H2dap]6[Cd4Cl2(B-α-AsW9O34)2]} based on tetra-Cd cluster sandwiched trivacant Keggin-type tungstoarsenate was successfully designed and synthesized. It can modulate the β-sheet-rich fibrils of Aβ peptide efficiently; and thus inhibits...
Collapse
|
50
|
Hua J, Wei X, Bian Y, Ma X, Hao L, Sun J, Fan J, Niu Y, Wang Y. A nanoscale polymolybdate builded by two hexavacant Keggin-type fragments via a novel {Ca6P6O38} cluster with β-sheet conformation modulation ability. CrystEngComm 2022. [DOI: 10.1039/d2ce00215a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel sandwich-type phosphomolybdate based on two hexavacant Keggin-type building block [PMo6O28]15– incorporating a novel hexagonal calcium phosphorus oxygen cluster {Ca6P6O38} was successfully synthesized. It can modulate the β-sheet-rich misfolding...
Collapse
|