1
|
Bayer Kömüşdoğan E, Batool S, Şahin E, Yildirim E, Işık M, Tanyeli C. Multicomponent synthesis of stereogenic-at-boron fluorophores (BOSPYR) from boronic acids, salicylaldehydes, and 2-formylpyrrole hydrazones. Chem Commun (Camb) 2025; 61:576-579. [PMID: 39656116 DOI: 10.1039/d4cc03956d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This work describes one-step syntheses of various stereogenic-at-boron fluorochromes (BOSPYR) via multicomponent reactions involving readily accessible boronic acids, salicylaldehydes, and 2-formylpyrrole hydrazones. The dyes absorb and emit in the visible region of the electromagnetic radiation, and are characterized by large Stokes shifts (2850-4930 cm-1) with weak fluorescence emissions (Φfl: 1.5-9.1%). Notably, the dimmed fluorescence of BOSPYRs recovers upon transition to viscous media (21-fold for 1a). The representative compound 1a exhibits clear Cotton effects with dissymmetry factors of ca. |gabs| ∼ 1.9 × 10-3 in the visible region, indicating efficient asymmetry induction to the chromophore. The X-ray molecular structure of 1a shows that the chromophore deviates from planarity by 17.2°, which may contribute significantly to the inherent chirality of the fluorophore. A computational examination of excited states by time-dependent density functional theory (TD-DFT) identifies the emission mechanism as arising from a locally-excited (LE) state.
Collapse
Affiliation(s)
| | - Sania Batool
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey.
| | - Ertan Şahin
- Department of Chemistry, Atatürk University, Erzurum, 25240, Turkey
| | - Erol Yildirim
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey.
| | - Murat Işık
- Department of Food Engineering, Bingöl University, Bingöl, 12000, Turkey.
| | - Cihangir Tanyeli
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey.
| |
Collapse
|
2
|
Chowdhury SR, Kim HY, Oh K. Visible Light-Induced Three-Component Alkoxyalkylation of Alkenes with α-Halocarbonyls and Alcohols. J Org Chem 2024; 89:17621-17634. [PMID: 39526650 DOI: 10.1021/acs.joc.4c02374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A visible-light-induced three-component alkoxyalkylation of alkenes has been developed under the photocatalysis of fac-Ir(ppy)3. The alkene substrate scope included aryl and aliphatic alkenes as well as electron-rich and electron-deficient alkenes, allowing the facile coupling with a diverse array of α-halocarbonyl compounds. The redox potential-guided orchestration of radical processes with precision allows rapid access to highly functionalized products that are useful building blocks in organic synthesis.
Collapse
Affiliation(s)
- Soumyadeep Roy Chowdhury
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
3
|
Ravasco JMJM, Felicidade J, Pinto MV, Santos FMF, Campos-González R, Arteaga JF, Mehraz M, Langevin C, Fernandes A, Nguyen HC, Ng DYW, Coelho JAS, Pischel U, Gois PMP. Data-Driven Discovery of a New Fluorescent BASHY Dye for Bioimaging. JACS AU 2024; 4:4212-4222. [PMID: 39610736 PMCID: PMC11600176 DOI: 10.1021/jacsau.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 11/30/2024]
Abstract
Fluorescent molecules play a crucial role in biomedicine by facilitating the visualization and tracking of biological processes with sensitivity and specificity. However, tailoring their structure to meet the demands of live cell and in vivo imaging presents a significant challenge due to the intricate interplay of factors governing their structural and photophysical properties. In this study, we explored the potential of using multivariate linear free-energy relationships (mLFER) to optimize a multicomponent fluorescent platform. We prepared a small library of 20 fluorescent boronic-acid-derived salicylidenehydrazone (BASHY) complexes using a versatile reaction protocol and characterized their chemical stability in water-containing media. The obtained data served as input for the development of an mLFER model, enabling the prediction of a new BASHY dye and unraveling previously unknown mechanisms governing the stability of this unique platform of fluorescent dyes. The optimized dye was successfully employed in live cell experiments and in zebrafish larvae.
Collapse
Affiliation(s)
- João M J M Ravasco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - João Felicidade
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Maria V Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Fábio M F Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - René Campos-González
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, Huelva 21071, Spain
| | - Jesús F Arteaga
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, Huelva 21071, Spain
| | - Manon Mehraz
- INRAE National Research Institute for Agriculture, Food and Environment, Université Paris-Saclay, IERP, Jouy-en-Josas 78350, France
| | - Christelle Langevin
- INRAE National Research Institute for Agriculture, Food and Environment, Université Paris-Saclay, IERP, Jouy-en-Josas 78350, France
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Ha-Chi Nguyen
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - David Y W Ng
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Jaime A S Coelho
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculty of Sciences, Universidade de Lisboa, Campo Grande, Lisbon 1749-016, Portugal
| | - Uwe Pischel
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, Huelva 21071, Spain
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| |
Collapse
|
4
|
Zhang L, Wang C, Li Y, Wang H, Sun K, Lu S, Wang Y, Jing S, Cordes T. Modular Design and Scaffold-Synthesis of Multi-Functional Fluorophores for Targeted Cellular Imaging and Pyroptosis. Angew Chem Int Ed Engl 2024:e202415627. [PMID: 39555698 DOI: 10.1002/anie.202415627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Indexed: 11/19/2024]
Abstract
Fluorophores are essential tools for optical imaging and biomedical research. Their synthetic modification to incorporate new functions, however, remains a challenging task. Conventional strategies rely on linear synthesis in which a parent framework is gradually extended. We here designed and synthesized a versatile library of multi-functional fluorophores via a scaffold-based Ugi four-component reaction (U-4CR). The adaptability of the scaffold is achieved through modification of starting materials. This allows to use a small range of starting materials for the creation of fluorogenic probes that can detect reactive-oxygen species and where the localization into subcellular organelles or membranes can be controlled. We present reaction yields ranging from 60 % to 90 % and discovered that some compounds can even function as imaging and therapeutic agents via Fenton chemistry inducing pyroptosis in living cancer cells. Our study underlines the potential of scaffold-based synthesis for versatile creation of functional fluorophores and their applications.
Collapse
Affiliation(s)
- Lei Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
- Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Chunhui Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
| | - Yuanyuan Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
| | - Haiyang Wang
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Kunhui Sun
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
| | - Siyu Lu
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
- Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Yahui Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
- Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| |
Collapse
|
5
|
Flores-Reyes JC, Galano A, Rojas-Montoya SM, Blancarte-Carrazco L, Xochitiotzi-Flores E, García-Ortega H, Farfán N, Islas-Jácome A, González-Zamora E. Synthesis of BODIPY-pyrrolo[3,4- b]pyridin-5-ones via Ugi-Zhu/cascade reactions and studies of fluorescence response toward viscosity. Front Chem 2024; 12:1488933. [PMID: 39494394 PMCID: PMC11527740 DOI: 10.3389/fchem.2024.1488933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
A series of seven new meso-phenyl BODIPY-pyrrolo[3,4-b]pyridin-5-one conjugates were synthesized in one experimental step by using a Sc(III)-catalyzed Ugi-Zhu three-component reaction coupled to a cascade sequence (aza Diels-Alder/N-acylation/aromatization) as post-MCR functionalization process. Further experimental studies were performed behind understanding the fluorescence response toward viscosity. All compounds exhibited a linear response between increasing viscosity (DMSO and glycerol mixtures) and fluorescence intensity. The different substituents also influenced the photophysical properties. Furthermore, in DMSO all compounds exhibited dual emission. Each band is attributed to the pyrrolo[3,4-b]pyridin-5-one and BODIPY moieties, respectively. The electronic structure of all compounds was computed by DFT and TD-DFT calculations, allowing to determine the molecular orbitals involved in the electronic transitions.
Collapse
Affiliation(s)
- Julio C. Flores-Reyes
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico
| | - Sandra M. Rojas-Montoya
- Departamento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis Blancarte-Carrazco
- Departamento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elba Xochitiotzi-Flores
- Departamento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Héctor García-Ortega
- Departamento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Norberto Farfán
- Departamento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alejandro Islas-Jácome
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico
| | - Eduardo González-Zamora
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico
| |
Collapse
|
6
|
Patra S, Nandi M, Maurya MR, Sahu G, Mohapatra D, Reuter H, Dinda R. Ni-Unsymmetrical Salen Complex-Catalyzed One-Pot Multicomponent Reactions for Efficient Synthesis of Biologically Active 2-Amino-3-cyano-4 H-pyrans. ACS OMEGA 2024; 9:31910-31924. [PMID: 39072099 PMCID: PMC11270558 DOI: 10.1021/acsomega.4c03528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
In this report, four new Ni(II)-unsymmetrical salen complexes, [NiL1-4], were prepared by refluxing Ni(Ac)2·4H2O with unsymmetrical salen ligands, H2L1-4. All of the synthesized ligands and complexes were characterized by various physicochemical methods. Also, the solid-state structures of [NiL1], [NiL2], and [NiL4] were defined through single-crystal X-ray diffraction methods. The catalytic potential of [NiL1-4] was investigated by economic and environmentally friendly one-pot-three-component reactions (using reagent: 1,3-dicarbonyls, malononitrile, benzaldehyde, or its derivatives) for the synthesis of biologically active 2-amino-3-cyano-4H-pyran derivatives (total 16 derivatives). After optimization of the reaction conditions, this new synthetic protocol by taking Ni(II)-unsymmetrical salen complexes as catalysts shows excellent conversion with a maximum yield of up to 98% of the effective catalytic products within 1 h of reaction time. In addition, it was observed that the aromatic aldehyde containing an electron-withdrawing group as a ring substituent shows better conversion (up to 98%), and the electron-donating group substituent shows similar or less conversion compared to benzaldehyde under the optimized reaction conditions. From the comparison of results between all these Ni complexes, it was found that the efficiency of the catalytic performance follows the order [NiL1] > [NiL3] > [NiL2] > [NiL4]. A possible reaction pathway was predicted and established through UV-vis spectroscopy. Intermediate II proposed in the reaction pathway was also trapped and characterized through 1H and 13C NMR.
Collapse
Affiliation(s)
| | - Monojit Nandi
- Department
of Chemistry, Indian Institute of Technology
Roorkee, Roorkee 247667, India
| | - Mannar R. Maurya
- Department
of Chemistry, Indian Institute of Technology
Roorkee, Roorkee 247667, India
| | - Gurunath Sahu
- Department
of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Deepika Mohapatra
- Department
of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Hans Reuter
- Institute
of Chemistry of New Materials, University
of Osnabrück, Barbarastraße 6, 49069 Osnabruck, Germany
| | - Rupam Dinda
- Department
of Chemistry, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
7
|
Oloo S, Zhang G, Bobadova-Parvanova P, Al Horani S, Al Horani M, Fronczek FR, Smith KM, Vicente MDGH. Synthesis and Regioselective Functionalization of Tetrafluorobenzo-[α]-Fused BOPYPY Dyes. Inorg Chem 2024; 63:9164-9174. [PMID: 38718291 PMCID: PMC11110013 DOI: 10.1021/acs.inorgchem.4c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
The synthesis of a new bis-BF2 tetrafluorobenzo-[α]-fused BOPYPY dye from 4,5,6,7-tetrafluoroisoindole and 2-hydrazinopyrazine is reported. The regioselectivity of nucleophilic substitution reactions at the periphery of the tetrafluorinated BOPYPY and its α-bromo derivative were investigated using N-, O-, S-, and C-based nucleophiles. Among the aromatic fluorine atoms, the F2 atom is consistently regioselectively substituted, except when the α-position contains a thiophenol group; in this case, F4 is substituted instead due to stabilizing π-π-stacking between the two aromatic groups. The α-bromo BOPYPY derivative also reacts under Stille cross-coupling reaction conditions to produce the corresponding α-substituted product. The spectroscopic properties of these new fluorinated BOPYPYs were investigated and compared with nonfluorinated analogs.
Collapse
Affiliation(s)
- Sebastian
O. Oloo
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Guanyu Zhang
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Petia Bobadova-Parvanova
- Department
of Chemistry and Fermentation Sciences, Appalachian State University, Boone, North Carolina 28608, United States
| | - Seleen Al Horani
- Department
of Chemistry and Fermentation Sciences, Appalachian State University, Boone, North Carolina 28608, United States
| | - Masa Al Horani
- Department
of Chemistry and Fermentation Sciences, Appalachian State University, Boone, North Carolina 28608, United States
| | - Frank R. Fronczek
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kevin M. Smith
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | |
Collapse
|
8
|
Kohlbecher R, Müller TJJ. A Rational Design of Electrochemically and Photophysically Tunable Triarylamine Luminophores by Consecutive (Pseudo-)Four-Component Syntheses. Chemistry 2024; 30:e202304119. [PMID: 38227421 DOI: 10.1002/chem.202304119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
The concatenation of Suzuki coupling and two-fold Buchwald-Hartwig amination in sequentially palladium-catalyzed consecutive multicomponent syntheses paves a concise, convergent route to diversely functionalized para-biaryl-substituted triarylamines (p-bTAAs) from simple, readily available starting materials. An extensive library of p-bTAAs permits comprehensive investigations of their electronic properties by absorption and emission spectroscopy, cyclic voltammetry, and quantum chemical calculations, which contribute to a deep understanding of their electronic structure. The synthesized p-bTAAs exhibit tunable fluorescence from blue to yellow upon photonic excitation with quantum yields up to 98 % in solution and 92 % in the solid state. Furthermore, a pronounced bathochromic shift of the emission maxima by increasing solvent polarity indicates positive emission solvatochromism. Aggregation-induced enhanced emission (AIEE) in dimethyl sulfoxide (DMSO)/water mixtures causes the formation of intensely blue fluorescent aggregates. Cyclic voltammetry shows reversible first and second oxidations of p-bTAAs at low potentials, which are tunable by variation of the introduced para substituents. 3D Hammett plots resulting from the correlation of oxidation potentials and emission maxima with electronic substituent parameters emphasize the rational design of tailored p-bTAAs with predictable electrochemical and photophysical properties.
Collapse
Affiliation(s)
- Regina Kohlbecher
- Heinrich-Heine-Universität Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Universitätstrasse 1, 40225, Düsseldorf, Germany
| | - Thomas J J Müller
- Heinrich-Heine-Universität Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Universitätstrasse 1, 40225, Düsseldorf, Germany
| |
Collapse
|
9
|
Yamada M. Perspectives on push-pull chromophores derived from click-type [2 + 2] cycloaddition-retroelectrocyclization reactions of electron-rich alkynes and electron-deficient alkenes. Beilstein J Org Chem 2024; 20:125-154. [PMID: 38292046 PMCID: PMC10825803 DOI: 10.3762/bjoc.20.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Various push-pull chromophores can be synthesized in a single and atom-economical step through [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) reactions involving diverse electron-rich alkynes and electron-deficient alkenes. In this review, a comprehensive investigation of the recent and noteworthy advancements in the research on push-pull chromophores prepared via the [2 + 2] CA-RE reaction is conducted. In particular, an overview of the physicochemical properties of the family of these compounds that have been investigated is provided to clarify their potential for future applications.
Collapse
Affiliation(s)
- Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi 4-1-1, Koganei, Tokyo 184-8501, Japan
| |
Collapse
|
10
|
Neto BAD, Sorto JEP, Lapis AAM, Machado F. Functional chromophores synthesized via multicomponent Reactions: A review on their use as cell-imaging probes. Methods 2023; 220:142-157. [PMID: 37939912 DOI: 10.1016/j.ymeth.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
This review aims to provide a comprehensive overview of recent advancements and applications of fluorescence imaging probes synthesized via MCRs (multicomponent reactions). These probes, also known as functional chromophores, belong to a currently investigated class of fluorophores that are presently being successfully applied in bioimaging experiments, especially in various living cell lineages. We describe some of the MCRs that have been employed in the synthesis of these probes and explore their applications in biological imaging, with an emphasis on cellular imaging. The review also discusses the challenges and future perspectives in the field, particularly considering the potential impact of MCR-based fluorescence imaging probes on advancing this field of research in the coming years. Considering that this area of research is relatively new and nearly a decade has passed since the first publication, this review also provides a historical perspective on this class of fluorophores, highlighting the pioneering works published between 2011 and 2016.
Collapse
Affiliation(s)
- Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil.
| | - Jenny E P Sorto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil; Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | | | - Fabricio Machado
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil
| |
Collapse
|
11
|
Biesen L, Müller TJJ. Aroyl-S,N-Ketene Acetals: Luminous Renaissance of a Class of Heterocyclic Compounds. Chemistry 2023; 29:e202302067. [PMID: 37638792 DOI: 10.1002/chem.202302067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
Aroyl-S,N-ketene acetals represent a peculiar class of heterocyclic merocyanines, compounds bearing pronounced and rather short dipoles with great push-pull characteristics that define their rich properties. They are accessible via a wide array of synthetic concepts and procedures, ranging from addition-elimination and condensation procedures up to rearrangement and metal-mediated reactions. With our work from 2020, aroyl-S,N-ketene acetals have been identified as powerful and promising dyes with pronounced and vastly tunable solid-state emission and aggregation-induced emission properties. One characteristic trademark of this class of dye molecules is the level of control that could be exerted, and which was thoroughly explored. Based on these results, the field was opened to extend the system to bi- and multichromophoric systems by the full toolkit of synthetic organic chemistry thus giving access to even more exciting properties and manifolded substance libraries capitalizing on the AIE properties. This review aims at outlining the reaction-based principles that allow for a swift and facile access to aroyl-S,N-ketene acetals, their methodical and structural evolution and the plethora of fluorescence and aggregation properties.
Collapse
Affiliation(s)
- Lukas Biesen
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
12
|
Bedard N, Coen AG, Pekarske S, Sennett A, Davis GJ, Chavez T, Lichtenberger DL, Hulme C. The full spectrum tuning of fluorescent molecules via a one-pot multicomponent reaction. Tetrahedron Lett 2023; 130:154748. [PMID: 38371912 PMCID: PMC10871707 DOI: 10.1016/j.tetlet.2023.154748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Fluorogenic probes for imaging enable visualization and analysis of difficult-to-reach cells and organelles. However, there are limited efficient examples of tuning these fluorescent molecules to higher wavelengths. This is vital since different tissues are sensitive to varying wavelength emissions. To address this need, we report the discovery, tuning, structure-photophysical property relationships (SPPR), and time-dependent DFT (TD-DFT) computations of 400-700+ nm fluorescent pyrido[2',1':2,3]imidazo[4,5-c]isoquinolines and substituted imidazo[1,2-a]pyridin-3-amines. The syntheses involve the trimethylsilylcyanide (TMSCN) modified Groebke-Blackburn-Bienaymé (GBB) multicomponent reaction as well as the TMSCN modified GBB combined with subsequent condensation of an aldehyde, and Aza-Friedel-Crafts-Intramolecular Cyclization-Oxidation all in one pot. The SPPR reveals that electron-withdrawing strength in the para-position of the aminopyridine starting material has direct control over the absorption and fluorescence emission wavelengths of these molecules. The TD-DFT computations show the changes in the natural transition orbitals (NTOs) with differing substitutions to the parent molecule that dictate the observed excitations, emissions, and fluorescence intensities. These findings give insights and directions for tuning the fluorescent properties of these motifs for various uses as probes and imaging agents.
Collapse
Affiliation(s)
- Nathan Bedard
- Department of Chemistry & Biochemistry, College of Science, The University of Arizona, Tucson, AZ, 85721, USA
| | - Addison G. Coen
- Department of Chemistry & Biochemistry, College of Science, The University of Arizona, Tucson, AZ, 85721, USA
| | | | - Andrew Sennett
- Department of Chemistry & Biochemistry, College of Science, The University of Arizona, Tucson, AZ, 85721, USA
| | - Garrett J. Davis
- Department of Chemistry & Biochemistry, College of Science, The University of Arizona, Tucson, AZ, 85721, USA
| | - Timothy Chavez
- Department of Chemistry & Biochemistry, College of Science, The University of Arizona, Tucson, AZ, 85721, USA
| | - Dennis L. Lichtenberger
- Department of Chemistry & Biochemistry, College of Science, The University of Arizona, Tucson, AZ, 85721, USA
| | - Christopher Hulme
- Department of Chemistry & Biochemistry, College of Science, The University of Arizona, Tucson, AZ, 85721, USA
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
13
|
Biesen L, Hartmann Y, Müller TJJ. Alkynylated and triazole-linked aroyl-S,N-ketene acetals: one-pot synthesis of solid-state emissive dyes with aggregation-induced enhanced emission characteristics. Sci Rep 2023; 13:14399. [PMID: 37658089 PMCID: PMC10474010 DOI: 10.1038/s41598-023-41146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023] Open
Abstract
Alkynylated aroyl-S,N-ketene acetals are readily synthesized in mostly excellent yields by a Sonogashira reaction resulting in a substance library of more than 20 examples. Upon expansion of the reaction sequence by deprotection and concatenating of the copper-click reaction in a one-pot fashion, a library of 11 triazole-ligated aroyl-S,N-ketene acetals is readily accessible. All derivatives show pronounced solid-state emission and aggregation-induced emission properties depending on the nature of the alkynyl or the triazole substituents.
Collapse
Affiliation(s)
- Lukas Biesen
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Yannic Hartmann
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
14
|
Papadopoulos J, Reiss GJ, Mayer B, Müller TJJ. Cyclohexene-Embedded Dicyanomethylene Merocyanines - Consecutive Three-Component Coupling-Addition Synthesis and Chromophore Characteristics. ChemistryOpen 2023; 12:e202300128. [PMID: 37715367 PMCID: PMC10504436 DOI: 10.1002/open.202300128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Indexed: 09/17/2023] Open
Abstract
A concise and efficient consecutive three-component alkynylation-addition synthesis of cyclohexene-embedded dicyanomethylene merocyanines furnishes a small library of dyes in moderate to excellent yield. The dyes possess strong absorption coefficients of the longest wavelength absorption bands. According to the crystal structure, the small bond length alternations account for a highly delocalized electronic ground state. The electronic structure of the absorption bands is qualitatively rationalized by TDDFT calculations, which explain that intense HOMO-LUMO transitions along the merocyanine axis lead to cyanine similar Stokes shifts.
Collapse
Affiliation(s)
- Julian Papadopoulos
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Guido J. Reiss
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Bernhard Mayer
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| |
Collapse
|
15
|
Beşer BM, Yildirim B. Exploring Biological Interactions: A New Pyrazoline as a Versatile Fluorescent Probe for Energy Transfer and Cell Staining Applications. ChemistryOpen 2023; 12:e202300092. [PMID: 37667461 PMCID: PMC10477408 DOI: 10.1002/open.202300092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
Fluorescent dyes are used in biological systems, because they are highly sensitive and selective. In this work, we investigated the fluorescent probe properties of 2-(5-(pyridin-2-yl)-1H-pyrazol-3-yl) phenol (PYDP) in two media [sodium dodecyl sulfate (SDS) and human serum albumin (HSA)]. Energy transfer parameters, photophysical and thermodynamic parameters of probe were determined. We investigated cytotoxicity of PYDP against colorectal adenocarcinoma cell lines (HT-29), breast cancer cell lines (MCF-7) and 3T3-L1 adipocytes (3T3 L1) cells. The cell staining property of PYDP was monitored using a confocal microscope. The results showed that PYDP binds to HSA, bindings are due to electrostatic/ionic interactions, and the binding process is spontaneous. PYDP was found to exhibit negligible cytotoxicity at high concentrations, and confocal microscope images showed that PYDP stained the cytoplasm of MCF-7 cells.
Collapse
Affiliation(s)
- Burcu Meryem Beşer
- Faculty of Arts and SciencesDepartment of ChemistryErzincan Binali Yıldırım UniversityErzincanTürkiye
| | - Berat Yildirim
- Faculty of Arts and SciencesDepartment of ChemistryErzincan Binali Yıldırım UniversityErzincanTürkiye
| |
Collapse
|
16
|
Brandner L, Müller TJJ. Multicomponent synthesis of chromophores – The one-pot approach to functional π-systems. Front Chem 2023; 11:1124209. [PMID: 37007054 PMCID: PMC10065161 DOI: 10.3389/fchem.2023.1124209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 03/19/2023] Open
Abstract
Multicomponent reactions, conducted in a domino, sequential or consecutive fashion, have not only considerably enhanced synthetic efficiency as one-pot methodology, but they have also become an enabling tool for interdisciplinary research. The highly diversity-oriented nature of the synthetic concept allows accessing huge structural and functional space. Already some decades ago this has been recognized for life sciences, in particular, lead finding and exploration in pharma and agricultural chemistry. The quest for novel functional materials has also opened the field for diversity-oriented syntheses of functional π-systems, i.e. dyes for photonic and electronic applications based on their electronic properties. This review summarizes recent developments in MCR syntheses of functional chromophores highlighting syntheses following either the framework forming scaffold approach by establishing connectivity between chromophores or the chromogenic chromophore approach by de novo formation of chromophore of interest. Both approaches warrant rapid access to molecular functional π-systems, i.e. chromophores, fluorophores, and electrophores for various applications.
Collapse
|
17
|
Iftikhar R, Kamran M, Iftikhar A, Parveen S, Naeem N, Jamil N. Recent advances in the green synthesis of Betti bases and their applications: a review. Mol Divers 2023; 27:543-569. [PMID: 35449388 DOI: 10.1007/s11030-022-10427-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/30/2022] [Indexed: 12/30/2022]
Abstract
Well-known Betti bases are the products obtained by the one-pot multicomponent reaction of 1-naphthol/2-naphthol, aliphatic/aromatic aldehydes, and secondary amines, and this reaction is known as the Betti reaction. During recent years, due to the unveiling of the pharmacological and synthetic potential of Betti bases, a tremendous increase in the studies reporting novel synthetic methods for the efficient synthesis of Betti bases was observed. This review presents the recent key developments in the green synthesis of the Betti bases and accounts for the significant number of the literature reported during 2019-2022. Both catalyst free as well as the catalyst promoted synthesis (nanocatalyst, biocatalyst, transition metal catalyst, etc.) along with the synthetic applications (catalyst, ligands/chiral auxiliaries, and valuable synthons), optoelectronic applications (fluorescence sensors for phosgene gas, Hg2+, and Cr3+ detection, quasi-reversible redox potential) and biological properties (anticancer agents, antioxidant, anti-inflammatory agents, antitubercular agents, pesticidal agents, anti-Alzheimer agents, Topoisomerase I inhibitors, YAP-TEAD interaction inhibitors, and DNA binding and cleavage activity) are discussed. There is a surge of interest for the development of the green and efficient Betti reaction for the construction of C-C and C-N bond in a single-step reaction accessing Betti bases as products. Along with key methodological developments for the green synthesis of Betti bases, their applications in synthetic organic chemistry, optoelectronic sensors, advanced materials synthesis, agrochemicals and pharmaceutically active scaffolds, during the period of 2019-2022, have been considered.
Collapse
Affiliation(s)
- Ramsha Iftikhar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Muhammad Kamran
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Aleesha Iftikhar
- School of Biochemistry, Punjab Medical College, Faisalabad, 38000, Pakistan
| | - Sadia Parveen
- Department of Chemistry, Government College University Faisalabad (Layyah Campus), Layyah, Pakistan
| | - Naila Naeem
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Nazia Jamil
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
18
|
Mashal N, Azizian J, Larijani K, Nematollahi F, Azizian H. Baker’s Yeast Promoted Facile Synthesis of Spirooxadiazepines Using Multicomponent Reactions of Ninhydrin: Investigation of Biological Activity. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2022.2162552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Neda Mashal
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Javad Azizian
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kambiz Larijani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Alavinia S, Ghorbani-Vaghei R, Ghiai R, Gharehkhani A. Cu( ii) immobilized on poly(guanidine-sulfonamide)-functionalized Bentonite@MgFe 2O 4: a novel magnetic nanocatalyst for the synthesis of 1,4-dihydropyrano[2,3- c]pyrazole †. RSC Adv 2023; 13:10667-10680. [PMID: 37025674 PMCID: PMC10071815 DOI: 10.1039/d3ra00049d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
In this paper, we aim at synthesizing a new nanocomposite material in which bentonite acts as a nucleation site for MgFe2O4 nanoparticles precipitation in the attendance of an external magnetic field (MgFe2O4@Bentonite). Moreover, poly(guanidine-sulfonamide), as a novel kind of polysulfonamide, was immobilized on the surface of the prepared support (MgFe2O4@Bentonite@PGSA). Finally, an efficient and environment-friendly catalyst (containing nontoxic polysulfonamide, copper, and MgFe2O4@Bentonite) was prepared by anchoring a copper ion on the surface of MgFe2O4@Bentonite@PGSAMNPs. The synergic effect of MgFe2O4 magnetic nanoparticles (MNPs), bentonite, PGSA, and copper species was observed while conducting the control reactions. The synthesized Bentonite@MgFe2O4@PGSA/Cu, which was characterized using energy-dispersive X-ray spectroscopy (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy, was applied as a highly efficient heterogeneous catalyst to synthesize 1,4-dihydropyrano[2,3-c] pyrazole yielding up to 98% at 10 minutes. Excessive yield, quick reaction time, using water solvent, turning waste to wealth, and recyclability are the important advantages of the present work. In this paper, we aim at synthesizing a new nanocomposite material in which bentonite acts as a nucleation site for MgFe2O4 nanoparticles precipitation in the attendance of an external magnetic field (MgFe2O4@Bentonite).![]()
Collapse
Affiliation(s)
- Sedigheh Alavinia
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina UniversityHamedan6517838683Iran+98 81 38380647
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina UniversityHamedan6517838683Iran+98 81 38380647
| | - Ramin Ghiai
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina UniversityHamedan6517838683Iran+98 81 38380647
| | - Alireza Gharehkhani
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina UniversityHamedan6517838683Iran+98 81 38380647
| |
Collapse
|
20
|
Khanum G, Fatima A, Siddiqui N, Butcher RJ, Alsaiari NS, Srivastava SK, Javed S. Experimental Spectroscopic (FT-IR, 1H and 13C NMR, ESI-MS, UV) Analysis, Single Crystal X-Ray, Computational, Hirshfeld Analysis, and Molecular Docking of 2-Amino- N-Cyclopropyl-5-Heptylthiophene-3-Carboxamide and Its Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2130372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ghazala Khanum
- The School of Studies in Chemistry, Jiwaji University, Gwalior, India
| | - Aysha Fatima
- The School of Studies in Chemistry, Jiwaji University, Gwalior, India
| | - Nazia Siddiqui
- Department of Chemistry, Dayalbagh Educational Institute Agra, Agra, India
| | - R. J. Butcher
- Department of Chemistry, Howard University, Washington, DC, USA
| | - Norah Salem Alsaiari
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Saleem Javed
- Department of Chemistry, Institute of Home Science, Dr. Bhimrao Ambedkar University, Agra, India
| |
Collapse
|
21
|
Keihanfar M, Mirjalili BBF. One-pot synthesis of naphtho[1,2-e][1,3]oxazines in the presence of FNAOSiPAMP*/Cu II as an almond shell based nanocatalyst. Sci Rep 2022; 12:17713. [PMID: 36271025 PMCID: PMC9587238 DOI: 10.1038/s41598-022-22712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023] Open
Abstract
In the present research work, a novel catalyst based on natural material, namely, Fe3O4@nano-almondshell@OSi(CH2)3/NHCH2pyridine/CuII abbreviated (FNAOSiPAMP/CuII) was designed and prepared. The properties of the catalyst was identified by Fourier-transform infrared spectroscopy (FT-IR), Thermogravimetry ananlysis (TG), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDS), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), and Mapping. Furthermore, the evaluation of catalytic activity was done in the course of naphtho-1,3-oxazines synthesis. Solvent-free conditions, simplicity of operation, easy work-up and use of an eco-friendly catalyst are some of advantages of this protocol.
Collapse
Affiliation(s)
- Mina Keihanfar
- grid.413021.50000 0004 0612 8240Department of Chemistry, College of Science, Yazd University, Yazd, Iran
| | - Bi Bi Fatemeh Mirjalili
- grid.413021.50000 0004 0612 8240Department of Chemistry, College of Science, Yazd University, Yazd, Iran
| |
Collapse
|
22
|
Hooshmand SE, Yazdani H, Hulme C. Six‐Component Reactions and Beyond: The Nuts and Bolts. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Hossein Yazdani
- Independent researcher Independent Researcher Tehran IRAN (ISLAMIC REPUBLIC OF)
| | - Christopher Hulme
- The University of Arizona Department of Chemistry and Biochemistry Tucson UNITED STATES
| |
Collapse
|
23
|
Kalhor S, Yarie M, Torabi M, Zolfigol MA, Rezaeivala M, Gu Y. Synthesis of 2-Amino-6-(1 H-Indol-3-yl)-4-Phenylnicotinonitriles and Bis(Indolyl) Pyridines Using a Novel Acidic Nanomagnetic Catalyst via a Cooperative Vinylogous Anomeric-Based Oxidation Mechanism. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1887296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sima Kalhor
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedam, Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedam, Iran
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedam, Iran
| | - Mohmmad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedam, Iran
| | - Majid Rezaeivala
- Department of Chemical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Duan X, Zheng N, Liu G, Li M, Wu Q, Sun X, Song W. Copper-Catalyzed One-Step Formation of Four C-N Bonds toward Polyfunctionalized Triazoles via Multicomponent Reaction. Org Lett 2022; 24:6006-6012. [PMID: 35930056 DOI: 10.1021/acs.orglett.2c02273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel four-component reaction of alkynes, amines, azides, and 2H-azirines has been developed for the first time by the efficient formation of four C-N bonds in one step under mild conditions, rapidly preparing polyfunctionalized triazoles with molecular diversity involving three different intermediates of copper-acetylide, copper-allenylidene, and copper-vinyl nitrene. Propargylic ester is disclosed as a "three-in-one" building block possessing triplicate cycloaddition and nucleophilic and electrophilic properties, which could enable such a four-component transformation by high yields, broad substrate scope, and functionalization.
Collapse
Affiliation(s)
- Xuelun Duan
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Nan Zheng
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Gongbo Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ming Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qiming Wu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xinhao Sun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wangze Song
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
25
|
Kouznetsov VV, Hernández JG. Nanostructured silicate catalysts for environmentally benign Strecker-type reactions: status quo and quo vadis. RSC Adv 2022; 12:20807-20828. [PMID: 35919186 PMCID: PMC9299969 DOI: 10.1039/d2ra03102g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 01/26/2023] Open
Abstract
Chemical processes are usually catalytic transformations. The use of catalytic reagents can reduce the reaction temperature, decrease reagent-based waste, and enhance the selectivity of a reaction potentially avoiding unwanted side reactions leading to green technology. Chemical processes are also frequently based on multicomponent reactions (MCRs) that possess evident improvements over multistep processes. Both MCRs and catalysis tools are the most valuable principles of green chemistry. Among diverse MCRs, the three-component Strecker reaction (S-3-CR) is a particular transformation conducive to the formation of valuable bifunctional building blocks (α-amino nitriles) in organic synthesis, medicinal chemistry, drug research, and organic materials science. To be a practical synthetic tool, the S-3-CR must be achieved using alternative energy input systems, safe reaction media, and effective catalysts. These latter reagents are now deeply associated with nanoscience and nanocatalysis. Continuously developed, nanostructured silicate catalysts symbolize green pathways in our quest to attain sustainability. Studying and developing nanocatalyzed S-3-CR condensations as an important model will be suitable for achieving the current green mission. This critical review aims to highlight the advances in the development of nanostructured catalysts for technologically important Strecker-type reactions and to analyze this progress from the viewpoint of green and sustainable chemistry.
Collapse
Affiliation(s)
- Vladimir V Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará Km 2 Vía Refugio, Piedecuesta 681011 Colombia +57 7 634 4000 ext. 3593
| | - José G Hernández
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Calle 70 No. 52-21 Medellín Colombia
| |
Collapse
|
26
|
Dawood KM, Alaasar M. Transition Metals Catalyzed Heteroannulation Reactions in Aqueous Medium. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kamal M. Dawood
- Cairo University Faculty of Science Chemistry Giza street 12613 Giza EGYPT
| | - Mohamed Alaasar
- Martin Luther University Halle-Wittenberg Faculty I of Natural Science - Biological Science: Martin-Luther-Universitat Halle-Wittenberg Naturwissenschaftliche Fakultat I Biowissenschaften Institute of Chemistry Halle GERMANY
| |
Collapse
|
27
|
Balakrishnan V, Ganguly A, Rasappan R. Interception of Nickel Hydride Species and Its Application in Multicomponent Reactions. Org Lett 2022; 24:4804-4809. [PMID: 35758604 DOI: 10.1021/acs.orglett.2c01862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hydrogen borrowing strategy is an economical method for the α-functionalization of ketones. While this strategy is extremely advantageous, it does not lend itself to the synthesis of β,β-disubstituted ketones. This can be achieved, if the in situ generated metal hydride can be intercepted with a nucleophilic coupling partner. We present a multicomponent strategy for the coupling of alcohols, ketones, and boronic acids using only 1 mol % nickel catalyst and without the need for added ligands.
Collapse
Affiliation(s)
- Venkadesh Balakrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Anirban Ganguly
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
28
|
Zhang L, Isselstein M, Köhler J, Eleftheriadis N, Huisjes NM, Guirao-Ortiz M, Narducci A, Smit JH, Stoffels J, Harz H, Leonhardt H, Herrmann A, Cordes T. Linker Molecules Convert Commercial Fluorophores into Tailored Functional Probes during Biolabelling. Angew Chem Int Ed Engl 2022; 61:e202112959. [PMID: 35146855 PMCID: PMC9305292 DOI: 10.1002/anie.202112959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 12/27/2022]
Abstract
Many life‐science techniques and assays rely on selective labeling of biological target structures with commercial fluorophores that have specific yet invariant properties. Consequently, a fluorophore (or dye) is only useful for a limited range of applications, e.g., as a label for cellular compartments, super‐resolution imaging, DNA sequencing or for a specific biomedical assay. Modifications of fluorophores with the goal to alter their bioconjugation chemistry, photophysical or functional properties typically require complex synthesis schemes. We here introduce a general strategy that allows to customize these properties during biolabelling with the goal to introduce the fluorophore in the last step of biolabelling. For this, we present the design and synthesis of ‘linker’ compounds, that bridge biotarget, fluorophore and a functional moiety via well‐established labeling protocols. Linker molecules were synthesized via the Ugi four‐component reaction (Ugi‐4CR) which facilitates a modular design of linkers with diverse functional properties and bioconjugation‐ and fluorophore attachment moieties. To demonstrate the possibilities of different linkers experimentally, we characterized the ability of commercial fluorophores from the classes of cyanines, rhodamines, carbopyronines and silicon‐rhodamines to become functional labels on different biological targets in vitro and in vivo via thiol‐maleimide chemistry. With our strategy, we showed that the same commercial dye can become a photostable self‐healing dye or a sensor for bivalent ions subject to the linker used. Finally, we quantified the photophysical performance of different self‐healing linker–fluorophore conjugates and demonstrated their applications in super‐resolution imaging and single‐molecule spectroscopy.
Collapse
Affiliation(s)
- Lei Zhang
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Michael Isselstein
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Jens Köhler
- (DWI) Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany.,& Institute of Technical and Macromolecular Chemistry, (RWTH) Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Nikolaos Eleftheriadis
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Nadia M Huisjes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany.,Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Miguel Guirao-Ortiz
- Human Biology & Bioimaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Alessandra Narducci
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Jochem H Smit
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Janko Stoffels
- (DWI) Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany.,& Institute of Technical and Macromolecular Chemistry, (RWTH) Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Hartmann Harz
- Human Biology & Bioimaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Heinrich Leonhardt
- Human Biology & Bioimaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Andreas Herrmann
- (DWI) Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany.,& Institute of Technical and Macromolecular Chemistry, (RWTH) Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany.,Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
29
|
Stoerkler T, Pariat T, Laurent AD, Jacquemin D, Ulrich G, Massue J. Excited-State Intramolecular Proton Transfer Dyes with Dual-State Emission Properties: Concept, Examples and Applications. Molecules 2022; 27:molecules27082443. [PMID: 35458640 PMCID: PMC9024454 DOI: 10.3390/molecules27082443] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Dual-state emissive (DSE) fluorophores are organic dyes displaying fluorescence emission both in dilute and concentrated solution and in the solid-state, as amorphous, single crystal, polycrystalline samples or thin films. This comes in contrast to the vast majority of organic fluorescent dyes which typically show intense fluorescence in solution but are quenched in concentrated media and in the solid-state owing to π-stacking interactions; a well-known phenomenon called aggregation-caused quenching (ACQ). On the contrary, molecular rotors with a significant number of free rotations have been engineered to show quenched emission in solution but strong fluorescence in the aggregated-state thanks to restriction of the intramolecular motions. This is the concept of aggregation-induced emission (AIE). DSE fluorophores have been far less explored despite the fact that they are at the crossroad of ACQ and AIE phenomena and allow targeting applications both in solution (bio-conjugation, sensing, imaging) and solid-state (organic electronics, data encryption, lasing, luminescent displays). Excited-State Intramolecular Proton Transfer (ESIPT) fluorescence is particularly suitable to engineer DSE dyes. Indeed, ESIPT fluorescence, which relies on a phototautomerism between normal and tautomeric species, is characterized by a strong emission in the solid-state along with a large Stokes’ shift, an enhanced photostability and a strong sensitivity to the close environment, a feature prone to be used in bio-sensing. A drawback that needs to be overcome is their weak emission intensity in solution, owing to detrimental molecular motions in the excited-state. Several strategies have been proposed in that regard. In the past few years, a growing number of examples of DSE-ESIPT dyes have indeed emerged in the literature, enriching the database of such attractive dyes. This review aims at a brief but concise overview on the exploitation of ESIPT luminescence for the optimization of DSE dyes properties. In that perspective, a synergistic approach between organic synthesis, fluorescence spectroscopy and ab initio calculations has proven to be an efficient tool for the construction and optimization of DSE-ESIPT fluorophores.
Collapse
Affiliation(s)
- Timothée Stoerkler
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
| | - Thibault Pariat
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
| | - Adèle D. Laurent
- Chimie et Interdisciplinarités: Synthèse, Analyse et Modélisation (CEISAM), UMR CNRS 6230, Nantes University, 44322 Nantes, France;
| | - Denis Jacquemin
- Chimie et Interdisciplinarités: Synthèse, Analyse et Modélisation (CEISAM), UMR CNRS 6230, Nantes University, 44322 Nantes, France;
- Correspondence: (D.J.); (J.M.)
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
| | - Julien Massue
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
- Correspondence: (D.J.); (J.M.)
| |
Collapse
|
30
|
Photoactive homomolecular bis(n)-Lophine dyads: Multicomponent synthesis, photophysical properties, theoretical investigation, docking and interaction studies with biomacromolecules. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Zhang L, Isselstein M, Köhler J, Eleftheriadis N, Huisjes N, Guirao M, Narducci A, Smit J, Stoffels J, Harz H, Leonhardt H, Herrmann A, Cordes T. Linker Molecules Convert Commercial Fluorophores into Tailored Functional Probes during Bio‐labeling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lei Zhang
- LMU München: Ludwig-Maximilians-Universitat Munchen Biocenter GERMANY
| | | | - Jens Köhler
- DWI-Leibniz-Institut für Interaktive Materialien: DWI-Leibniz-Institut fur Interaktive Materialien Chemie GERMANY
| | | | - Nadia Huisjes
- RUG: Rijksuniversiteit Groningen Zernike NETHERLANDS
| | - Miguel Guirao
- LMU München: Ludwig-Maximilians-Universitat Munchen Biocenter GERMANY
| | | | - Jochem Smit
- RUG: Rijksuniversiteit Groningen Zernike NETHERLANDS
| | - Janko Stoffels
- DWI-Leibniz-Institut für Interaktive Materialien: DWI-Leibniz-Institut fur Interaktive Materialien Chemistry GERMANY
| | - Hartmann Harz
- LMU München: Ludwig-Maximilians-Universitat Munchen Biocenter GERMANY
| | | | - Andreas Herrmann
- DWI-Leibniz-Institut für Interaktive Materialien: DWI-Leibniz-Institut fur Interaktive Materialien Chemistry GERMANY
| | - Thorben Cordes
- Ludwig-Maximilians-Universitat Munchen Faculty of Biology Großhadernerstr. 2-4 82152 Planegg-Martiensried GERMANY
| |
Collapse
|
32
|
Heterocycles by Consecutive Multicomponent Syntheses via Catalytically Generated Alkynoyl Intermediates. Catalysts 2022. [DOI: 10.3390/catal12010090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multicomponent processes are beneficial tools for the synthesis of heterocycles. As densely substituted bifunctional electrophiles, ynones are essential intermediates by applying cyclocondensations or cycloadditions in numerous heterocycle syntheses. The respective alkynoyl intermediates are generally accessible by palladium-, copper- and palladium/copper-catalyzed alkynylation. In turn, the mild reaction conditions allow for a fast and versatile entry to functional heterocycles in the sense of consecutive multicomponent processes. This review collates and presents recent advances in accessing thirteen heterocycle classes and their applications by virtue of catalytic alkynoyl generation in diversity-oriented multicomponent syntheses in a one-pot fashion.
Collapse
|
33
|
Pariat T, Stoerkler T, Diguet C, Laurent AD, Jacquemin D, Ulrich G, Massue J. Dual Solution-/Solid-State Emissive Excited-State Intramolecular Proton Transfer (ESIPT) Dyes: A Combined Experimental and Theoretical Approach. J Org Chem 2021; 86:17606-17619. [PMID: 34846147 DOI: 10.1021/acs.joc.1c01698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Excited-state intramolecular proton transfer (ESIPT) dyes typically show strong solid-state emission, but faint fluorescence intensity is observed in the solution state owing to detrimental molecular motions. This article investigates the influence of direct (hetero)arylation on the optical properties of 2-(2'-hydroxyphenyl)benzoxazole ESIPT emitters. The synthesis of two series of ESIPT emitters bearing substituted neutral or charged aryl, thiophene, or pyridine rings is reported herein along with full photophysical studies in solution and solid states, demonstrating the dual solution-/solid-state emission behavior. Depending on the nature of substitution, several excited-state dynamics are observed: quantitative or partially frustrated ESIPT process or deprotonation of the excited species. Protonation studies revealed that pyridine substitution triggered a strong increase of quantum yield in the solution state for the protonated species owing to favorable quinoidal stabilization. These attractive features led to the development of a second series of dyes with alkyl or aryl pyridinium moieties showing strong tunable solution/solid fluorescence intensity. For each series, ab initio calculations helped rationalize and ascertain their behavior in the excited state and the nature of the emission observed by the experimental results.
Collapse
Affiliation(s)
- Thibault Pariat
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Timothée Stoerkler
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Clément Diguet
- Laboratoire CEISAM UMR UN-CNRS 6230, Université de Nantes, Nantes F-44000, France
| | - Adèle D Laurent
- Laboratoire CEISAM UMR UN-CNRS 6230, Université de Nantes, Nantes F-44000, France
| | - Denis Jacquemin
- Laboratoire CEISAM UMR UN-CNRS 6230, Université de Nantes, Nantes F-44000, France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Julien Massue
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| |
Collapse
|
34
|
Bedard N, Foley C, Davis GJ, Jewett JC, Hulme C. Sequential Knoevenagel [4+1] Cycloaddition-Condensation-Aza-Friedel-Crafts Intramolecular Cyclization: A 4-Center-3-Component Reaction Toward Tunable Fluorescent Indolizine Tetracycles. J Org Chem 2021; 86:17550-17559. [PMID: 34818017 DOI: 10.1021/acs.joc.1c01280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A two-step multicomponent reaction oxidation protocol is reported herein, which affords novel tunable fluorescent tetracyclic indolizines. The procedure involves a novel 4-center-3-component reaction, which proceeds via a sequential Knoevenagel condensation, [4+1] cycloaddition, and imine condensation to afford imino-indolizines. Products then undergo cyclization and are oxidized in situ to afford fluorescent tetracycles, which are readily tunable through modification of diversity elements.
Collapse
Affiliation(s)
- Nathan Bedard
- Department of Chemistry & Biochemistry, College of Science, The University of Arizona, Tucson, Arizona 85721, United States
| | - Christopher Foley
- Department of Chemistry & Biochemistry, College of Science, The University of Arizona, Tucson, Arizona 85721, United States
| | - Garrett J Davis
- Department of Chemistry & Biochemistry, College of Science, The University of Arizona, Tucson, Arizona 85721, United States
| | - John C Jewett
- Department of Chemistry & Biochemistry, College of Science, The University of Arizona, Tucson, Arizona 85721, United States
| | - Christopher Hulme
- Department of Chemistry & Biochemistry, College of Science, The University of Arizona, Tucson, Arizona 85721, United States.,Department of Pharm./Tox., College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
35
|
Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J. Green Chemistry in the Synthesis of Pharmaceuticals. Chem Rev 2021; 122:3637-3710. [PMID: 34910451 DOI: 10.1021/acs.chemrev.1c00631] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The principles of green chemistry (GC) can be comprehensively implemented in green synthesis of pharmaceuticals by choosing no solvents or green solvents (preferably water), alternative reaction media, and consideration of one-pot synthesis, multicomponent reactions (MCRs), continuous processing, and process intensification approaches for atom economy and final waste reduction. The GC's execution in green synthesis can be performed using a holistic design of the active pharmaceutical ingredient's (API) life cycle, minimizing hazards and pollution, and capitalizing the resource efficiency in the synthesis technique. Thus, the presented review accounts for the comprehensive exploration of GC's principles and metrics, an appropriate implication of those ideas in each step of the reaction schemes, from raw material to an intermediate to the final product's synthesis, and the final execution of the synthesis into scalable industry-based production. For real-life examples, we have discussed the synthesis of a series of established generic pharmaceuticals, starting with the raw materials, and the intermediates of the corresponding pharmaceuticals. Researchers and industries have thoughtfully instigated a green synthesis process to control the atom economy and waste reduction to protect the environment. We have extensively discussed significant reactions relevant for green synthesis, one-pot cascade synthesis, MCRs, continuous processing, and process intensification, which may contribute to the future of green and sustainable synthesis of APIs.
Collapse
Affiliation(s)
- Supratik Kar
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Hans Sanderson
- Department of Environmental Science, Section for Toxicology and Chemistry, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.,Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 19, 20156 Milano, Italy
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 19, 20156 Milano, Italy
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
36
|
Hu X, Bian Q, Wang ZL, Guo LJ, Xu YZ, Wang G, Xu DZ. Four-Component Reaction Access to Nitrile-Substituted All-Carbon Quaternary Centers. J Org Chem 2021; 87:66-75. [PMID: 34905367 DOI: 10.1021/acs.joc.1c01863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A four-component reaction strategy for access to acyclic nitrile-substituted all-carbon quaternary centers is disclosed. In the presence of a DABCO-based ionic liquid catalyst, the reactions proceed smoothly with a wide range of substrates efficiently to deliver nitrile-substituted all-carbon quaternary centers under mild reaction conditions. This protocol is further demonstrated as an efficient method for the construction of contiguous all-carbon quaternary centers. All the reactions are easily operated in a green manner, producing water as the only byproduct. Some of the products show excellent activity against specific fungi.
Collapse
Affiliation(s)
- Xin Hu
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qiang Bian
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zheng-Lin Wang
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lin-Jie Guo
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Ze Xu
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ge Wang
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Da-Zhen Xu
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
37
|
Fadeev AA, Makarov AS, Uchuskin MG. Acid-Catalyzed Cascade Reaction of 2-Alkylfurans with α,β-Unsaturated Ketones: A Shortcut to 2,3,5-Trisubstituted Furans. J Org Chem 2021; 86:17362-17370. [PMID: 34784209 DOI: 10.1021/acs.joc.1c01692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The convergent one-pot method toward trisubstituted furans has been developed. The key transformation behind the synthetic protocol comprises the cascade acid-catalyzed conjugated addition of furans to commercially available or easily accessible α,β-unsaturated ketones followed by the rearrangement of the intermediate Michael adducts into isomeric furans. The prospect of utilizing the target products as building blocks for the preparation of potential functional molecules for organic electronics has been demonstrated.
Collapse
Affiliation(s)
- Alexander A Fadeev
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, 12800, Czech Republic
| | - Anton S Makarov
- Department of Chemistry, Perm State University, Bukireva 15, Perm, 614990, Russia
| | - Maxim G Uchuskin
- Department of Chemistry, Perm State University, Bukireva 15, Perm, 614990, Russia
| |
Collapse
|
38
|
The role of bacterial cellulose loaded with plant phenolics in prevention of UV-induced skin damage. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Qin Q, Liu XL, Ma AJ, Zhang XZ, Peng JB. Unprecedented Multicomponent Reaction of Indoles, CS 2 and Nitroarenes: Stereoselective Synthesis of (Z)-3-((Arylamino)methylene)indoline-2-thiones. Chem Asian J 2021; 16:3890-3894. [PMID: 34605195 DOI: 10.1002/asia.202101008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/18/2021] [Indexed: 12/11/2022]
Abstract
An efficient method for the stereoselective synthesis of (Z)-3-((arylamino)methylene)indoline-2-thiones have been developed via a novel multicomponent reaction of indoles, CS2 and nitroarenes. A range of functionalized indoline-2-thiones were prepared in moderate to good yields from easily available starting materials. The indoline-2-thione products can be easily derivatized to give biologically active thieno[2,3-b]indole and thiopyrano[2,3-b]indole skeletons in high yields.
Collapse
Affiliation(s)
- Qi Qin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, P. R. China
| | - Xin-Lian Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, P. R. China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, P. R. China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, P. R. China
| |
Collapse
|
40
|
Zhou H, Zhang F, Wang R, Lai WM, Xie S, Ren WM, Lu XB. Facile Access to Functionalized Poly(thioether)s via Anionic Ring-Opening Decarboxylative Polymerization of COS-Sourced α-Alkylidene Cyclic Thiocarbonates. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
| | - Fan Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
| | - Rui Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
| | - Wei-Ming Lai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, China
| | - Sheng Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
| |
Collapse
|
41
|
Xing Q, Zhou C, Jiang S, Chen S, Deng GJ. Acid-catalyzed three-component addition of carbonyl compounds with 1,2,3-triazoles and indoles. Org Biomol Chem 2021; 19:7838-7842. [PMID: 34549239 DOI: 10.1039/d1ob01451j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and efficient acid-catalyzed three-component reaction of indoles, 1-tosyl-1,2,3-triazoles and carbonyl compounds has been developed. The use of TsOH with a small amount of water significantly promoted the reaction yield. This method provided a general and one-pot approach for the synthesis of structurally diverse C3-alkylated indole derivatives. The alkylation exclusively occurred at the N2 position of triazoles. Various functional groups were tolerated under the optimized simple reaction conditions.
Collapse
Affiliation(s)
- Qiaoyan Xing
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Chunlan Zhou
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Shuxin Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Shanping Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
42
|
Biesen L, May L, Nirmalananthan‐Budau N, Hoffmann K, Resch‐Genger U, Müller TJJ. Communication of Bichromophore Emission upon Aggregation - Aroyl-S,N-ketene Acetals as Multifunctional Sensor Merocyanines. Chemistry 2021; 27:13426-13434. [PMID: 34170045 PMCID: PMC8518837 DOI: 10.1002/chem.202102052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 12/13/2022]
Abstract
Aroyl-S,N-ketene acetal-based bichromophores can be readily synthesized in a consecutive three-component synthesis in good to excellent yields by condensation of aroyl chlorides and an N-(p-bromobenzyl) 2-methyl benzothiazolium salt followed by a Suzuki coupling, yielding a library of 31 bichromophoric fluorophores with substitution pattern-tunable emission properties. Varying both chromophores enables different communication pathways between the chromophores, exploiting aggregation-induced emission (AIE) and energy transfer (ET) properties, and thus, furnishing aggregation-based fluorescence switches. Possible applications range from fluorometric analysis of alcoholic beverages to pH sensors.
Collapse
Affiliation(s)
- Lukas Biesen
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Lars May
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Nithiya Nirmalananthan‐Budau
- Division BiophotonicsBundesanstalt für Materialforschung und -prüfung (BAM), Department 1Richard-Willstätter-Straße 1112489BerlinGermany
| | - Katrin Hoffmann
- Division BiophotonicsBundesanstalt für Materialforschung und -prüfung (BAM), Department 1Richard-Willstätter-Straße 1112489BerlinGermany
| | - Ute Resch‐Genger
- Division BiophotonicsBundesanstalt für Materialforschung und -prüfung (BAM), Department 1Richard-Willstätter-Straße 1112489BerlinGermany
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| |
Collapse
|
43
|
Hou Q, Zhou D. Mechanisms of Ssp
3
–H functionalization of thiolacetic acid: A density functional theory investigation. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qian‐Mei Hou
- Neurology Department Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Da‐Gang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Synthesis and Application of Functional Materials, College of Chemistry and Chemical Engineering China West Normal University Nanchong China
| |
Collapse
|
44
|
Three-Component Suzuki-Knoevenagel Synthesis of Merocyanine Libraries and Correlation Analyses of Their Oxidation Potentials and Optical Band Gaps. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26175149. [PMID: 34500584 PMCID: PMC8433686 DOI: 10.3390/molecules26175149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
The Suzuki coupling Knoevenagel condensation one-pot synthesis of boronic acids/esters, (hetero)aromatic bromo aldehydes and methylene active compounds is a highly practical consecutive three-component process to provide substance libraries with 60 donor-π-bridge-acceptor molecules, i.e., merocyanines in a broader sense, in moderate to excellent yield. As already seen with the naked eye, a broad variation of the optical properties becomes accessible using this practical synthetic tool. More systematically, correlation analyses upon plotting the optical band gaps against the first oxidation potentials of redox active systems of consanguineous series furnishes linear correlations and, by extension, two parameter plots (oxidation potential and emission maximum) planar correlations with the optical band gaps.
Collapse
|
45
|
Mayer L, Müller TJJ. 3,10‐Diaryl Phenothiazines – One‐pot Synthesis and Conformational Tuning of Ground and Excited State Electronics. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Laura Mayer
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| |
Collapse
|
46
|
Shishlikova MA, Ievlev MY, Bardasov IN, Ershov OV. Directed Synthesis of Regioisomeric Monoaryl‐Substituted Pyridines Containing a Tricyanobutadiene Fragment and Study on Their Optical Properties. ChemistrySelect 2021. [DOI: 10.1002/slct.202101440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maria A. Shishlikova
- Department of Organic and Pharmaceutical Chemistry Ulyanov Chuvash State University Moskovsky pr. 15 Cheboksary 428015 Russia
| | - Mikhail Yu Ievlev
- Department of Organic and Pharmaceutical Chemistry Ulyanov Chuvash State University Moskovsky pr. 15 Cheboksary 428015 Russia
| | - Ivan N. Bardasov
- Department of Organic and Pharmaceutical Chemistry Ulyanov Chuvash State University Moskovsky pr. 15 Cheboksary 428015 Russia
| | - Oleg V. Ershov
- Department of Organic and Pharmaceutical Chemistry Ulyanov Chuvash State University Moskovsky pr. 15 Cheboksary 428015 Russia
| |
Collapse
|
47
|
Panja SK. Dipolar state assisted aggregation induced optical behavior of push-pull Salen-type Schiff base (BIHyDE) in solution. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Ganta RK, Kerru N, Maddila S, Jonnalagadda SB. Advances in Pyranopyrazole Scaffolds' Syntheses Using Sustainable Catalysts-A Review. Molecules 2021; 26:3270. [PMID: 34071629 PMCID: PMC8199150 DOI: 10.3390/molecules26113270] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Heterogeneous catalysis plays a crucial role in many chemical processes, including advanced organic preparations and the design and synthesis of new organic moieties. Efficient and sustainable catalysts are vital to ecological and fiscal viability. This is why green multicomponent reaction (MCR) approaches have gained prominence. Owing to a broad range of pharmacological applications, pyranopyrazole syntheses (through the one-pot strategy, employing sustainable heterogeneous catalysts) have received immense attention. This review aimed to emphasise recent developments in synthesising nitrogen-based fused heterocyclic ring frameworks, exploring diverse recyclable catalysts. The article focused on the synthetic protocols used between 2010 and 2020 using different single, bi- and tri-metallic materials and nanocomposites as reusable catalysts. This review designated the catalysts' efficacy and activity in product yields, reaction time, and reusability. The MCR green methodologies (in conjunction with recyclable catalyst materials) proved eco-friendly and ideal, with a broad scope that could feasibly lead to advancements in organic synthesis.
Collapse
Affiliation(s)
- Ravi Kumar Ganta
- Department of Chemistry, GITAM Institute of Sciences, GITAM University, Visakhapatnam 530045, India; (R.K.G.); (S.M.)
| | - Nagaraju Kerru
- Department of Chemistry, GITAM School of Science, Bengaluru Campus, GITAM University, Karnataka 561203, India;
- School of Chemistry & Physics, Westville Campus, University of KwaZulu-Natal, Chiltern Hills, Durban 4000, South Africa
| | - Suresh Maddila
- Department of Chemistry, GITAM Institute of Sciences, GITAM University, Visakhapatnam 530045, India; (R.K.G.); (S.M.)
- School of Chemistry & Physics, Westville Campus, University of KwaZulu-Natal, Chiltern Hills, Durban 4000, South Africa
| | - Sreekantha B. Jonnalagadda
- School of Chemistry & Physics, Westville Campus, University of KwaZulu-Natal, Chiltern Hills, Durban 4000, South Africa
| |
Collapse
|
49
|
Tang Q, Yin X, Kuchukulla RR, Zeng Q. Recent Advances in Multicomponent Reactions with Organic and Inorganic Sulfur Compounds. CHEM REC 2021; 21:893-905. [DOI: 10.1002/tcr.202100026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Qinqin Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
| | - Xianjie Yin
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
| | - Ratnakar Reddy Kuchukulla
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
- College of Environment and Ecology Chengdu University of Technology Chengdu 610059 China
| | - Qingle Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
| |
Collapse
|
50
|
Ding Y, Ma R, Xiao XQ, Wang L, Wang Z, Ma Y. Sustainable Four-Component Annulation for the Synthesis of 2,3,4,6-Tetraarylpyridines. J Org Chem 2021; 86:3897-3906. [PMID: 33595303 DOI: 10.1021/acs.joc.0c02764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A one-pot, four-component annulation of 2,3,4,6-tetraarylpyridines from aromatic aldehydes, methyl ketones, diaryl ethanones, and ammonium acetate is described. The reaction features high functional group compatibility in air under solvent-free conditions without any additive and only water as the nontoxic byproduct, providing a strategy for the facile, economical, and eco-friendly construction of multiaryl-substituted pyridines from simple and readily available reactants.
Collapse
Affiliation(s)
- Yuxin Ding
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China.,School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P R China
| | - Renchao Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China
| | - Xu-Qiong Xiao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318 Yuhangtang Road, Hangzhou 311121, P R China
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China
| | - Zhiming Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China.,School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P R China
| |
Collapse
|