1
|
Luo J, Cao W, Guo W, Fang S, Huang W, Wang F, Cheng X, Du W, Cao J, Feng Q, Wu Y. Antagonistic effects of surfactants and CeO 2 nanoparticles co-occurrence on the sludge fermentation process: Novel insights of interaction mechanisms and microbial networks. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129556. [PMID: 35999746 DOI: 10.1016/j.jhazmat.2022.129556] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Various pollutants commonly co-exist in the waste active sludge (WAS), but the interactive effects and mechanisms of co-occurrence pollutants on the WAS treatment remain unclear. This work mainly investigated the impacts of different surfactants (i.e., HTAB and SDBS) and CeO2 nanoparticles (NPs) co-occurrence on the WAS fermentation for short-chain fatty acids (SCFAs) production, and found that the CeO2 NPs coexisting with surfactants caused antagonistic effects on the SCFAs generation (10.7% and 33.9% inhibition by HTAB and SDBS, respectively). The surfactants and CeO2 NPs co-occurrence restrained the solubilization, hydrolysis, and acidification steps simultaneously. Moreover, the functional hydrolytic-acidogenic bacterial (e.g., Haliangium and Bacteroidetes sp.) and the microbial metabolic networks involved in extracellular hydrolysis (e.g., pepd and NEU1), substrate metabolism (e.g., ALDO and asdA), and fatty acid biosynthesis (e.g., aarC and pct) were all downregulated by 4.3-53.8% in the reactors with surfactants and CeO2 NPs co-occurrence. The presence of surfactants enhanced the dispersibility and stability of CeO2 NPs and the Ce dissolution (1.5-3.0 times higher). Also, surfactants contributed to the WAS disintegration, which could improve the interactive chances of microorganisms entrapped in WAS and CeO2 NPs by promoting the transportation channels, and therefore aggravated the toxicity towards anaerobic species.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Wangbei Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Wen Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China; Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing 210024, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Wei Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China.
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
2
|
Khan SZ, Zaidi AA, Naseer MN, AlMohamadi H. Nanomaterials for biogas augmentation towards renewable and sustainable energy production: A critical review. Front Bioeng Biotechnol 2022; 10:868454. [PMID: 36118570 PMCID: PMC9478561 DOI: 10.3389/fbioe.2022.868454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Nanotechnology is considered one of the most significant advancements in science and technology over the last few decades. However, the contemporary use of nanomaterials in bioenergy production is very deficient. This study evaluates the application of nanomaterials for biogas production from different kinds of waste. A state-of-the-art comprehensive review is carried out to elaborate on the deployment of different categories of nano-additives (metal oxides, zero-valent metals, various compounds, carbon-based nanomaterials, nano-composites, and nano-ash) in several kinds of biodegradable waste, including cattle manure, wastewater sludge, municipal solid waste, lake sediments, and sanitary landfills. This study discusses the pros and cons of nano-additives on biogas production from the anaerobic digestion process. Several all-inclusive tables are presented to appraise the literature on different nanomaterials used for biogas production from biomass. Future perspectives to increase biogas production via nano-additives are presented, and the conclusion is drawn on the productivity of biogas based on various nanomaterials. A qualitative review of relevant literature published in the last 50 years is conducted using the bibliometric technique for the first time in literature. About 14,000 research articles are included in this analysis, indexed on the Web of Science. The analysis revealed that the last decade (2010–20) was the golden era for biogas literature, as 84.4% of total publications were published in this timeline. Moreover, it was observed that nanomaterials had revolutionized the field of anaerobic digestion, methane production, and waste activated sludge; and are currently the central pivot of the research community. The toxicity of nanomaterials adversely affects anaerobic bacteria; therefore, using bioactive nanomaterials is emerging as the best alternative. Conducting optimization studies by varying substrate and nanomaterials’ size, concentration and shape is still a field. Furthermore, collecting and disposing nanomaterials at the end of the anaerobic process is a critical environmental challenge to technology implementation that needs to be addressed before the nanomaterials assisted anaerobic process could pave its path to the large-scale industrial sector.
Collapse
Affiliation(s)
- Sohaib Z. Khan
- Department of Mechanical Engineering, Faculty of Engineering, Islamic University of Madina, Madinah, Saudi Arabia
- *Correspondence: Sohaib Z. Khan,
| | - Asad A. Zaidi
- Department of Mechanical Engineering, Faculty of Engineering Science and Technology, Hamdard University, Karachi, Pakistan
| | - Muhammad Nihal Naseer
- Department of Engineering Sciences, PN Engineering College, National University of Sciences and Technology, Karachi, Pakistan
| | - Hamad AlMohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah, Saudi Arabia
| |
Collapse
|
3
|
Lu Y, Liu X, Miao Y, Chatzisymeon E, Pang L, Qi L, Yang P, Lu H. Particle size effects in microbial characteristics in thermophilic anaerobic digestion of cattle manure containing copper oxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62994-63004. [PMID: 35449326 DOI: 10.1007/s11356-022-20327-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Roles of bulk-, micron-, and nano-copper oxide (CuO) on methane production, microbial diversity, functions during thermophilic anaerobic digestion (AD) were investigated in this study. Results showed that bulk-, micron-, and nano-CuO promoted methane production by 27.8%, 47.6%. and 83.1% compared to the control group, respectively. Microbial community analysis demonstrated that different particle sizes could cause various shifts on bacteria community, while had little effect on archaeal diversity. Thereinto, bacteria belonging to phylum Firmicutes and Coprothermobacterota dominated in enhanced hydrolysis process in groups with nano-CuO and bulk-CuO, respectively, while micron-CuO had stronger promotion on the abundances of hydrolytic and fermentative bacteria belonging to families Peptostreptococcaceae, Caloramatoraceae, Erysipelotrichaceae, and Clostridiaceae, than other two CuO sizes. Metabolic pathways revealed that energy-related metabolism and material transformation in bacteria were only boosted by micron-CuO, and nano-CuO and bulk-CuO were important to methanogenic activity, stimulating energy consumption and methane metabolism, respectively.
Collapse
Affiliation(s)
- Yuanyuan Lu
- College of Architecture and Environment, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Xuna Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Yanjun Miao
- China SEDIN Ningbo Engineering Co., Ltd, Ningbo, 315048, People's Republic of China
| | - Efthalia Chatzisymeon
- School of Engineering, Institute for Infrastructure and Environment, The University of Edinburgh, Edinburgh, EH9 3JL, UK
| | - Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu, 610000, People's Republic of China.
| | - Luqing Qi
- College of Architecture and Environment, Sichuan University, Chengdu, 610000, People's Republic of China
- Department of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8563, Japan
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Hongyan Lu
- College of Architecture and Environment, Sichuan University, Chengdu, 610000, People's Republic of China
| |
Collapse
|
4
|
Recent Advances and Perspectives of Nanotechnology in Anaerobic Digestion: A New Paradigm towards Sludge Biodegradability. SUSTAINABILITY 2022. [DOI: 10.3390/su14127191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anaerobic digestion (AD) is the strategy of producing environmentally sustainable bioenergy from waste-activated sludge (WAS), but its efficiency was hindered by low biodegradability. Hence, the usage of nanomaterials was found to be essential in enhancing the degradability of sludge due to its nanostructure with specific physiochemical properties. The application of nanomaterials in sludge digestion was thoroughly reviewed. This review focused on the impact of nanomaterials such as metallic nanoparticles, metal oxide nanoparticles, carbon-based nanomaterials, and nanocomposite materials in AD enhancement, along with the pros and cons. Most of the studies detailed that the addition of an adequate dosage of nanomaterial has a good effect on microbial activity. The environmental and economic impact of the AD enhancement process is also detailed, but there are still many existing challenges when it comes to designing an efficient, cost-effective AD digester. Hence, proper investigation is highly necessary to assess the potency of utilizing the nanomaterials in enhancing AD under various conditions.
Collapse
|
5
|
Baniamerian H, Ghofrani-Isfahani P, Tsapekos P, Alvarado-Morales M, Shahrokhi M, Angelidaki I. Multicomponent nanoparticles as means to improve anaerobic digestion performance. CHEMOSPHERE 2021; 283:131277. [PMID: 34182648 DOI: 10.1016/j.chemosphere.2021.131277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Sufficient quantity of trace metals is essential for a well performing anaerobic digestion (AD) process. Among the essential trace elements in active sites of multiple important enzymes for AD are iron and nickel ions. In the present study, iron and nickel in the form of Fe2O3 and NiO were coated on TiO2 nanoparticles to be used in batch and continuous operation mode. The effect of TiO2, Fe2O3-TiO2, and NiO-TiO2 nanoparticles on each step of AD process was assessed utilizing simple substrates (i.e. cellulose, glucose, acetic acid, and mixture of H2-CO2) as well as complex ones (i.e. municipal biopulp). The hydrolysis rate of cellulose substrate increased with higher dosages of the coated TiO2 with both metals. For instance, the hydrolysis rate was increased up to 54% at Fe2O3-TiO2 and at a concentration of 23.5 mg/L for NiO-TiO2 it was increased up to 58%, while higher dosage suppressed the hydrolytic activity. Experimental results revealed that low dosages of NiO-TiO2 increased the accumulated methane production up to 24% probably by increasing the enzymatic activity of acetoclastic methanogenesis. NiO-TiO2 showed positive effect on batch and continuous AD of biopulp and improved methane yield up to 8%.
Collapse
Affiliation(s)
- Hamed Baniamerian
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Parisa Ghofrani-Isfahani
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark; Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11365-9465, Azadi Ave., Tehran, Iran
| | - Panagiotis Tsapekos
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Merlin Alvarado-Morales
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Mohammad Shahrokhi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11365-9465, Azadi Ave., Tehran, Iran.
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
6
|
Abstract
Biofuel is one of the best alternatives to petroleum-derived fuels globally especially in the current scenario, where fossil fuels are continuously depleting. Fossil-based fuels cause severe threats to the environment and human health by releasing greenhouse gases on their burning. With the several limitations in currently available technologies and associated higher expenses, producing biofuels on an industrial scale is a time-consuming operation. Moreover, processes adopted for the conversion of various feedstock to the desired product are different depending upon the various techniques and materials utilized. Nanoparticles (NPs) are one of the best solutions to the current challenges on utilization of biomass in terms of their selectivity, energy efficiency, and time management, with reduced cost involvement. Many of these methods have recently been adopted, and several NPs such as metal, magnetic, and metal oxide are now being used in enhancement of biofuel production. The unique properties of NPs, such as their design, stability, greater surface area to volume ratio, catalytic activity, and reusability, make them effective biofuel additives. In addition, nanomaterials such as carbon nanotubes, carbon nanofibers, and nanosheets have been found to be cost effective as well as stable catalysts for enzyme immobilization, thus improving biofuel synthesis. The current study gives a comprehensive overview of the use of various nanomaterials in biofuel production, as well as the major challenges and future opportunities.
Collapse
|
7
|
Dong L, Wu Y, Bian Y, Zheng X, Chen L, Chen Y, Zhang X. Carbon nanotubes mitigate copper-oxide nanoparticles-induced inhibition to acidogenic metabolism of Propionibacterium acidipropionici by regulating carbon source utilization. BIORESOURCE TECHNOLOGY 2021; 330:125003. [PMID: 33770734 DOI: 10.1016/j.biortech.2021.125003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
This study demonstrated that multi-walled carbon nanotubes (MWCNTs) could mitigate copper oxide nanoparticles (CuO NPs)-induced inhibition to acidogenic metabolism of propionic acid bacteria (i.e., Propionibacterium acidipropionici) by regulating carbon source utilization. CuO NPs severely inhibited the growth of P. acidipropionici, damaged its cell membrane, and down-regulated gene expressions and enzyme activities involved in acidogenic metabolism, thereby decreasing propionate production. However, although MWCNTs had a slightly negative impact on the growth and cell membrane, the gene expressions and catalytic activities were enhanced (glycolysis and pyruvate metabolism), resulting in the improved propionate production. Additionally, the gene expressions and catalytic activities of key enzymes (e.g., tpiA, pgk, PK, OTTAC, etc.) related to acidogenic metabolism were also enhanced by the co-existence of both nanomaterials, thereby promoting propionate production towards P. acidipropionici. This work demonstrated that the presence of MWCNTs could affect the inhibition of CuO NPs to fermentation processes via regulating carbon source utilization.
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Municipal Engineering Design Institute (Group) Co., LTD, 901 Zhongshan North Second Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yaozhi Bian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Lang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xin Zhang
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD, 901 Zhongshan North Second Road, Shanghai 200092, China
| |
Collapse
|
8
|
Li J, Li C, Zhao L, Pan X, Cai G, Zhu G. The application status, development and future trend of nano-iron materials in anaerobic digestion system. CHEMOSPHERE 2021; 269:129389. [PMID: 33385673 DOI: 10.1016/j.chemosphere.2020.129389] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Growing environment problem and emphasis of environmental protection motivate intense research efforts in exploring technology to improve treatment efficiency on refractory organic pollutants. Hence, finding a method to make up for the deficiency of anaerobic digestion (AD) is very attractive and challenging tasks. The recent spark in the interest for the usage of some nanomaterials as an additive to strengthen AD system. The adoption of iron compounds can influence the performance and stability in AD system. However, different iron species and compounds can influence AD system in significantly different ways, both positive and negative. Therefore, strengthening mechanism, treatment efficiency, microbial community changes in Nanoscale Zero Valent Iron (nZVI) and Fe3O4 nanoparticles (Fe3O4 NPs) added AD systems were summarized by this review. The strengthening effects of nZVI and Fe3O4 NPs in different pollutants treatment system were analyzed. Previous study on the effects of nZVI and Fe3O4 NPs addition on AD have reported the concentration of nZVI and Fe3O4 NPs, and the types and biodegradability of pollutants might be the key factors that determine the direction and extent of effect in AD system. This review provides a summary on the nZVI and Fe3O4 NPs added AD system to establish experiment systems and conduct follow-up experiments in future study.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Lixin Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Gefu Zhu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
9
|
Zhu X, Blanco E, Bhatti M, Borrion A. Impact of metallic nanoparticles on anaerobic digestion: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143747. [PMID: 33257063 DOI: 10.1016/j.scitotenv.2020.143747] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/30/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is one of the most energy-efficient waste treatment technologies for biodegradable wastes. Owing to the increasing trend of metallic nanoparticle applications in industry, they are ubiquitous to the waste streams, which may lead to remarkable impacts on the performance of the AD process. This review addresses the knowledge gaps and summarises the findings from the academic articles published from 2010 to 2019 focusing on the influences on both AD processes of biochemical hydrogen-generation and methane-production from selected metallic nano-materials. Both qualitative and quantitative analyses were conducted with selected indicators to evaluate the metallic nanoparticles' influences on the AD process. The selected metallic nanoparticles were grouped in the view of their chemical formulations aiming to point out the possible mechanisms behind their effects on AD processes. In summary, most metallic nanoparticles with trace-element-base (e.g. iron, cobalt, nickel) have positive effects on both AD hydrogen-generation and methane-production processes in terms of gas production, effluent quality, as well as process optimisation. Within an optimum concentration, they serve as key nutrients providers, aid key enzymes and co-enzymes synthesis, and thus stimulate anaerobic microorganism activities. As for the nano-additives without trace-element base, their positive influences are relied on providing active sites for the microorganism, as well as absorbing inhibitory factors. Moreover, comparisons of these nano-additives' impacts on the two gas-production phases were conducted, while methane-production phases are found to be more sensitive to additions of these nanoparticles then hydrogen-production phase. Research perspectives and research gaps in this area are discussed.
Collapse
Affiliation(s)
- Xiaowen Zhu
- Department of Civil, Environmental and Geomatic Engineering, University College London, UK
| | - Edgar Blanco
- Anaero Technology Limited, Cowley Road, Cambridge, UK
| | - Manni Bhatti
- Department of Civil, Environmental and Geomatic Engineering, University College London, UK
| | - Aiduan Borrion
- Department of Civil, Environmental and Geomatic Engineering, University College London, UK.
| |
Collapse
|
10
|
Wang S, Chen L, Yang H, Liu Z. Influence of zinc oxide nanoparticles on anaerobic digestion of waste activated sludge and microbial communities. RSC Adv 2021; 11:5580-5589. [PMID: 35423104 PMCID: PMC8694740 DOI: 10.1039/d0ra08671a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/04/2021] [Indexed: 11/21/2022] Open
Abstract
The influence of long-term exposure of zinc oxide nanoparticles (ZnO NPs) to waste activated sludge on anaerobic digestion and microbial communities was studied. The exposure concentrations were 0, 30, 60, 90, 120, and 150 mg g-1-volatile suspended solids (VSS) (dry). ZnO NPs inhibit the degradation of macromolecular organic matter and the reduction of VSS in waste activated sludge during anaerobic digestion. Only slight effects on the activities of protease, cellulase, acetated kinase, and coenzyme F420 were found at ZnO-NP concentrations of less than 30 mg g-1-VSS, whereas the activities of these three enzymes were adversely affected in a dose-dependent manner when the ZnO NP concentrations were increased from 30 mg g-1-VSS to 150 mg g-1-VSS. High-throughput sequencing analysis revealed that ZnO NPs had an adverse influence on the archaeal community diversity but increased the bacterial community diversity to some extent. High-throughput sequencing analysis also revealed that ZnO NPs resulted in different shift trends in the archaeal and bacteria community structure at phylum, class, and genus levels. ZnO NPs have negative impacts on the Euryarchaeota community, which plays a significant role as methanogens in the anaerobic digestion. In addition, ZnO NPs could increase the relative abundance of Clostridia and Bacteroidia, playing an important role in hydrolysis during the anaerobic digestion.
Collapse
Affiliation(s)
- Shutao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150090 China
| | - Lingbo Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150090 China
- Hunan Research Academy of Environmental Sciences Changsha 410004 China
| | - Hao Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150090 China
- Beijing Academy of Social Science Beijing 100101 China
| | - Zhisheng Liu
- Changchun Institute of Urban Planning and Design Changchun 130022 China
| |
Collapse
|
11
|
Jin B, Yuan Y, Zhou P, Niu J, Niu J, Dai J, Li N, Tao H, Ma Z, Zhang J, Zhang Z, Li Y. Effects of zinc oxide nanoparticles on sludge anaerobic fermentation: phenomenon and mechanism. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1094-1103. [PMID: 32475216 DOI: 10.1080/10934529.2020.1771120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) production and usage might lead to a large discharge of ZnO NPs into the natural environment, raising concerns of pollution and ecological security. The effects of ZnO NPs on waste activated sludge hydrolytic acidification and microbial communities were studied in semi-continuous fermentation systems. The fermentation performance of eight ZnO NPs concentrations including ZnO NPs normal [0.01, 0.1, 1 and 10 mg/g mixed liquor suspended solids (MLSS)] and ZnO NPs shock (10, 1000, 1000 and 10,000 mg/g MLSS) were discussed, and their biodegradability was also analyzed. The experimental results showed that proteins, polysaccharides and short-chain fatty acids were enhanced by ZnO NPs, particularly by ZnO NPs shock. Low ZnO NPs concentrations inhibited coenzyme 420 (F420) and dehydrogenase activities but enhanced α-glucosidase and protease activities. Illumina MiSeq sequencing revealed that ZnO NPs addition enriched Azospira, Ottowia and Hyphomicrobium but not Anaerolineaceae.
Collapse
Affiliation(s)
- Baodan Jin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yue Yuan
- Shanghai Municipal Engineering Design Institute(Group) Co., LTD, Shanghai, China
| | - Ping Zhou
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jiahui Niu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jintao Niu
- He Nan Hengan Environmental protection technology co. LTD, Zhengzhou, China
| | - Jingwen Dai
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Nuonan Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Hongfan Tao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Zhigang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Ju Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Zhongfang Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yu Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
12
|
Perendeci NA, Ciggin AS, Kökdemir Ünşar E, Orhon D. Optimization of alkaline hydrothermal pretreatment of biological sludge for enhanced methane generation under anaerobic conditions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 107:9-19. [PMID: 32248068 DOI: 10.1016/j.wasman.2020.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
This paper investigated the effect of alkaline hydrothermal pretreatment (HTP) on the hydrolysis, biodegradation and methane generation potential of waste activated sludge (WAS). A multi-variable experimental approach was designed, where initial solids content (1-5%), reaction temperature (130-190 °C), reaction time (10-30 min.) and caustic concentration (0-0.2 mgNaOH/mgVS) were varied in different combinations to assess the impact of alkaline HTP. This process significantly enhanced the hydrolysis of organic compounds in sludge into soluble fractions, whereby increasing the chemical oxygen demand (COD) leakage up to 200-900% with the 17-99% solubility. It boosted volatile solids (VS) biodegradation up to 40%, which resulted in a parallel increase in methane generation from 216 mLCH4/gVS to as high a 456 mLCH4/gVS methane generation basically relied on the conversion of solubilized COD. Alkaline HTP process was optimized for the maximum methane production. Optimum conditions were obtained at 190 °C reaction temperature, 10 min. reaction time, 0.2 mgNaOH/mgVS and 5% dry matter content. Under these conditions, 453.8 mLCH4/gVS was predicted. Biochemical methane potential (BMP) value was determined as 464 mLCH4/gVS supporting predictive power of the BMP model. The biodegradability compared to the untreated raw WAS was enhanced 78.2%.
Collapse
Affiliation(s)
- N A Perendeci
- Environmental Engineering Department, Akdeniz University, 07058 Antalya, Turkey.
| | - A S Ciggin
- Environmental Engineering Department, Akdeniz University, 07058 Antalya, Turkey
| | - E Kökdemir Ünşar
- Environmental Engineering Department, Akdeniz University, 07058 Antalya, Turkey
| | - D Orhon
- Environmental Engineering Department, Near East University, 99138 Nicosia/TRNC Mersin 10, Turkey
| |
Collapse
|
13
|
Kedves A, Sánta L, Balázs M, Kesserű P, Kiss I, Rónavári A, Kónya Z. Chronic responses of aerobic granules to the presence of graphene oxide in sequencing batch reactors. JOURNAL OF HAZARDOUS MATERIALS 2019; 389:121905. [PMID: 31874760 DOI: 10.1016/j.jhazmat.2019.121905] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023]
Abstract
The chronic responses of aerobic granular sludge (AGS) to the presence of graphene oxide nanoparticles (GO NPs) (5, 15, 25, 35, 45, 55, 65, 75, 85, and 95 mg/L of GO NPs for 7 days) during biological wastewater treatment processes were investigated. Bioreactor performance, extracellular polymeric substance (EPS) secretion, and microbial community characteristics were assessed. The results showed that the effects of GO NPs on bioreactor performances were dependent on the dose applied and the duration for which it was applied. At concentrations of 55, 75, and 95 mg/L, GO NPs considerably inhibited the efficiency of organic matter and ammonia removal; however, nitrite and nitrate removal rates were unchanged. Biological phosphorus removal decreased even when only low concentrations of GO NPs were used. The secretion of EPS, which could alleviate the toxicity of GO NPs, also changed. The increased amount of nanoparticles also resulted in significant changes to the bacterial community structure. Based on the amplicon sequencing of 16S rRNA genes, Paracoccus sp., Klebsiella sp., and Acidovorax species were identified as the most tolerant strains.
Collapse
Affiliation(s)
- Alfonz Kedves
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Levente Sánta
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Margit Balázs
- Bay Zoltán Nonprofit Ltd. for Applied Research, BAY-BIO Division for Biotechnology, Szeged, Hungary
| | - Péter Kesserű
- Bay Zoltán Nonprofit Ltd. for Applied Research, BAY-BIO Division for Biotechnology, Szeged, Hungary
| | - István Kiss
- Bay Zoltán Nonprofit Ltd. for Applied Research, BAY-BIO Division for Biotechnology, Szeged, Hungary
| | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary; MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary.
| |
Collapse
|
14
|
Baniamerian H, Isfahani PG, Tsapekos P, Alvarado-Morales M, Shahrokhi M, Vossoughi M, Angelidaki I. Application of nano-structured materials in anaerobic digestion: Current status and perspectives. CHEMOSPHERE 2019; 229:188-199. [PMID: 31078033 DOI: 10.1016/j.chemosphere.2019.04.193] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 05/18/2023]
Abstract
Nanotechnology is gaining more attention in biotechnological applications as a research area with a huge potential. Nanoparticles (NPs) can influence the rate of anaerobic digestion (AD) as the nano-sized structures, with specific physicochemical properties, interact with substrate and microorganisms. The present work has classified the various types of additives used to improve the AD processes. Nanomaterials as new additives in AD process are classified into four categories: Zero-valent metallic NPs, Metal oxide NPs, Carbon based nanomaterials, and Multi-compound NPs. In the following, application of nanomaterials in AD process is reviewed and negative and positive effects of these materials on the AD process and subsequently biogas production rate are discussed. This study confirms that design and development of new nano-sized compounds can improve the performances of the AD processes.
Collapse
Affiliation(s)
- Hamed Baniamerian
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK, 2800, Denmark; Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Parisa Ghofrani Isfahani
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK, 2800, Denmark; Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11365-9465, Azadi Ave., Tehran, Iran
| | - Panagiotis Tsapekos
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK, 2800, Denmark
| | - Merlin Alvarado-Morales
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK, 2800, Denmark
| | - Mohammad Shahrokhi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11365-9465, Azadi Ave., Tehran, Iran.
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11365-9465, Azadi Ave., Tehran, Iran
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK, 2800, Denmark.
| |
Collapse
|
15
|
Zheng L, Zhang Z, Tian L, Zhang L, Cheng S, Li Z, Cang D. Mechanistic investigation of toxicological change in ZnO and TiO2 multi-nanomaterial systems during anaerobic digestion and the microorganism response. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Zhang X, Chen Z, Zhou Y, Ma Y, Zhang H, Zhou L, Fang S. Comparisons of Nitrogen Removal and Microbial Communities in Anammox Systems upon Addition of Copper-Based Nanoparticles and Copper Ion. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaojing Zhang
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Zhao Chen
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Yue Zhou
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Yongpeng Ma
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Hongzhong Zhang
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Liming Zhou
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Shaoming Fang
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| |
Collapse
|
17
|
Kökdemir Ünşar E, Perendeci NA. What kind of effects do Fe 2O 3 and Al 2O 3 nanoparticles have on anaerobic digestion, inhibition or enhancement? CHEMOSPHERE 2018; 211:726-735. [PMID: 30099157 DOI: 10.1016/j.chemosphere.2018.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/10/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Fe2O3 and Al2O3 nanoparticles are widely used in products and find their way to wastewater treatment plants through the contact of water with these products. In this study, impacts of Fe2O3 and Al2O3 nanoparticles on methane potential of waste activated sludge (WAS) were investigated by comparing long and short term toxicity test results, modelling and FISH analysis. Methane production from the samples treated with the maximum concentration of Fe2O3 nanoparticles decreased 28.9% at the end of the long term BMP test. EC50 value for BMP test of the Fe2O3 nanoparticles was calculated as 901.94 mg/gTS with high coefficient of determination. Methane production from the samples treated with Al2O3 nanoparticles increased up to 14.8% (p > 0.05) at the end of the BMP test. However, short term toxicity tests for Fe2O3 and Al2O3 nanoparticles showed no impact on anaerobic digestion of WAS. Kinetic parameters obtained from models and captured FISH images were consistent with these results. Different impacts of nanoparticles on methane production suggested that anaerobic microorganisms can be affected from nanoparticles in various mechanisms. Hydrolysis (kH) and overall reaction rates (kR) values were determined as 0.0277 and 0.1441 d-1, respectively for each concentration of Al2O3 nanoparticles and raw WAS. Similarly, methane production from WAS containing 5, 50, 150 and 250 mgFe2O3/gTS were modeled with same kinetic values. However, kH constant was calculated as 0.0149 d-1 for 500 mgFe2O3/gTS. This means that Fe2O3 nanoparticles starting from this concentration inhibited the methanogenic consortium and caused decreased biogas production and spesific methane production rate.
Collapse
Affiliation(s)
- Elçin Kökdemir Ünşar
- Department of Environmental Engineering, Akdeniz University, 07058, Antalya, Turkey.
| | | |
Collapse
|
18
|
Zeng L, Wan B, Huang R, Yan Y, Wang X, Tan W, Liu F, Feng X. Catalytic oxidation of arsenite and reaction pathways on the surface of CuO nanoparticles at a wide range of pHs. GEOCHEMICAL TRANSACTIONS 2018; 19:12. [PMID: 29934914 PMCID: PMC6014938 DOI: 10.1186/s12932-018-0058-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Recently, the wide application of CuO nanoparticles (NPs) in engineering field inevitably leads to its release into various geologic settings, which has aroused great concern about the geochemical behaviors of CuO NPs due to its high surface reactivity and impact on the fate of co-existing contaminants. However, the redox transformation of pollutants mediated by CuO NPs and the underlying mechanism still remain poorly understood. Here, we studied the interaction of CuO NPs with As(III), and explored the reaction pathways using batch experiments and multiple spectroscopic techniques. The results of in situ quick scanning X-ray absorption spectroscopy (Q-XAS) analysis verified that CuO NPs is capable of catalytically oxidize As(III) under dark conditions efficiently at a wide range of pHs. As(III) was firstly adsorbed on CuO NPs surface and then gradually oxidized to As(V) with dissolved O2 as the terminal electron acceptor. As(III) adsorption increased to the maximum at a pH close to PZC of CuO NPs (~ pH 9.2), and then sharply decreased with increasing pH, while the oxidation capacity monotonically increased with pH. X-ray photoelectron spectroscopy and electron paramagnetic resonance characterization of samples from batch experiments indicated that two pathways may be involved in As(III) catalytic oxidation: (1) direct electron transfer from As(III) to Cu(II), followed by concomitant re-oxidation of the produced Cu(I) by dissolved O2 back to Cu(II) on CuO NPs surface, and (2) As(III) oxidation by reactive oxygen species (ROS) produced from the above Cu(I) oxygenation process. These observations facilitate a better understanding of the surface catalytic property of CuO NPs and its interaction with As(III) and other elements with variable valence in geochemical environments.
Collapse
Affiliation(s)
- Lingqun Zeng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Biao Wan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rixiang Huang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr, Atlanta, GA, 30324-0340, USA
| | - Yupeng Yan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoming Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
19
|
He Q, Gao S, Zhang S, Zhang W, Wang H. Chronic responses of aerobic granules to zinc oxide nanoparticles in a sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. BIORESOURCE TECHNOLOGY 2017; 238:95-101. [PMID: 28433918 DOI: 10.1016/j.biortech.2017.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
The reactor performance, granules characteristics and microbial population dynamics were investigated to assess the chronic responses of aerobic granules to zinc oxide nanoparticles (ZnO NPs) of 0, 5, 10 and 20mg/L for a period of 180days. The results showed that ZnO NPs stimulated COD removal, whereas caused inhibition to both nitrification and denitrification. However, biological phosphorus removal remained effective and stable. Introduction of ZnO NPs sharply decreased the respiration of granules, while did not change the settleability. Both content of extracellular polymeric substances (EPS) and the ratio of protein to polysaccharides (PN/PS) rose significantly. MiSeq pyrosequencing was employed to explore the microbial population dynamics. Results demonstrated that up to 20mg/L reduced the alpha-diversity of bacterial communities. Finally, phylogenetic classification of the dominant functional species involved in biological nutrients removal were identified to assess the effects of ZnO NPs to aerobic granules from the molecular level.
Collapse
Affiliation(s)
- Qiulai He
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Shuxian Gao
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Shilu Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Wei Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
20
|
Bicho RC, Santos FCF, Scott-Fordsmand JJ, Amorim MJB. Effects of copper oxide nanomaterials (CuONMs) are life stage dependent - full life cycle in Enchytraeus crypticus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:117-124. [PMID: 28216133 DOI: 10.1016/j.envpol.2017.01.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 05/26/2023]
Abstract
Copper oxide nanomaterials (CuONMs) have various applications in industry and enter the terrestrial environment, e.g. via sewage sludge. The effects of CuONMs and copper chloride (CuCl2) were studied comparing the standard enchytraeid reproduction test (ERT) and the full life cycle test (FLCt) with Enchytraeus crypticus. CuONMs mainly affected growth or juveniles' development, whereas CuCl2 mainly affected embryo development and/or hatching success and adults survival. Compared to the ERT, the FLCt allowed discrimination of effects between life stages and provided indication of the underlying mechanisms; further, the FLCt showed increased sensitivity, e.g. reproductive effects for CuONMs: EC10 = 8 mg Cu/kg and EC10 = 421 mg Cu/kg for the FLCt and the ERT respectively. The performance of the FLCt is preferred to the ERT and we recommend it as a good alternative to assess hazard of NMs. Effects of CuONMs and CuCl2 are life stage dependent and are different between Cu forms.
Collapse
Affiliation(s)
- Rita C Bicho
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Fátima C F Santos
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO BOX 314, DK-8600, Silkeborg, Denmark
| | - Mónica J B Amorim
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
21
|
He Q, Yuan Z, Zhang J, Zhang S, Zhang W, Zou Z, Wang H. Insight into the impact of ZnO nanoparticles on aerobic granular sludge under shock loading. CHEMOSPHERE 2017; 173:411-416. [PMID: 28129619 DOI: 10.1016/j.chemosphere.2017.01.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 01/12/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
The increasing use of zinc oxide nanoparticles (ZnO NPs) has raised concerns about the environmental threats to the wastewater treatment systems. Shock loading of 10, 50 and 100 mg/L ZnO NPs was conducted to evaluate impacts on reactor performance, microbial activities and extracellular polymeric substances (EPS) in parent aerobic/oxic/anoxic (A/O/A) granular sequencing batch reactors (SBRs). The results showed that ZnO NPs caused inhibition to nitrogen transformations due to acute toxicity to nitrification and denitrification. However, phosphorus removal remained unaffected by the exposure to ZnO NPs. Besides, ZnO NPs significantly enhanced the oxygen respiration rate and caused acute toxicity to ammonia oxidizing rate (10.40-35.21%), phosphorus release rate (37.79-19.80%), aerobic phosphorus uptake rate (36.95-20.69%) and total phosphorus uptake rate (32.77-16.91%) of aerobic granules. ZnO NPs stimulated the secretion of EPS, especially the content of protein (PN), which could relieve the toxicity of ZnO NPs.
Collapse
Affiliation(s)
- Qiulai He
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Zhe Yuan
- School of Food Science and Engineering, Guangzhou 510640, China
| | - Jing Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Shilu Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Wei Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Zhuocheng Zou
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
22
|
Wang S, Li Z, Gao M, She Z, Ma B, Guo L, Zheng D, Zhao Y, Jin C, Wang X, Gao F. Long-term effects of cupric oxide nanoparticles (CuO NPs) on the performance, microbial community and enzymatic activity of activated sludge in a sequencing batch reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 187:330-339. [PMID: 27918973 DOI: 10.1016/j.jenvman.2016.11.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/19/2016] [Accepted: 11/26/2016] [Indexed: 06/06/2023]
Abstract
The long-term effects of cupric oxide nanoparticles (CuO NPs) on the performance, microbial activity and microbial community of activated sludge were investigated in a sequencing batch reactor (SBR). The SBR performance had no evident change at 0-10 mg/L CuO NPs, whereas the CuO NPs concentration at 30-60 mg/L affected the COD, NH4+-N and soluble orthophosphate (SOP) removal, nitrogen and phosphorus removal rate and microbial enzymatic activity of activated sludge. Some CuO NPs might be absorbed on the surface of activated sludge or penetrate the microbial cytomembrane into the microbial cell interior of activated sludge. Compared to 0 mg/L CuO NPs, the reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) release increased by 43.6% and 56.4% at 60 mg/L CuO NPs, respectively. The variations of ROS production and LDH release demonstrated that CuO NPs could induce the toxicity towards the microorganisms and destroy the integrity of microbial cytomembrane in the activated sludge. High throughput sequencing of 16S rDNA indicated that CuO NPs could evidently impact on the microbial richness, diversity and composition of activated sludge in the SBR.
Collapse
Affiliation(s)
- Sen Wang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China; School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhiwei Li
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Bingrui Ma
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Dong Zheng
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xuejiao Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Feng Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
23
|
Simonin M, Richaume A, Guyonnet JP, Dubost A, Martins JMF, Pommier T. Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Sci Rep 2016; 6:33643. [PMID: 27659196 PMCID: PMC5034236 DOI: 10.1038/srep33643] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/31/2016] [Indexed: 11/08/2022] Open
Abstract
Soils are facing new environmental stressors, such as titanium dioxide nanoparticles (TiO2-NPs). While these emerging pollutants are increasingly released into most ecosystems, including agricultural fields, their potential impacts on soil and its function remain to be investigated. Here we report the response of the microbial community of an agricultural soil exposed over 90 days to TiO2-NPs (1 and 500 mg kg-1 dry soil). To assess their impact on soil function, we focused on the nitrogen cycle and measured nitrification and denitrification enzymatic activities and by quantifying specific representative genes (amoA for ammonia-oxidizers, nirK and nirS for denitrifiers). Additionally, diversity shifts were examined in bacteria, archaea, and the ammonia-oxidizing clades of each domain. With strong negative impacts on nitrification enzyme activities and the abundances of ammonia-oxidizing microorganism, TiO2-NPs triggered cascading negative effects on denitrification enzyme activity and a deep modification of the bacterial community structure after just 90 days of exposure to even the lowest, realistic concentration of NPs. These results appeal further research to assess how these emerging pollutants modify the soil health and broader ecosystem function.
Collapse
Affiliation(s)
- Marie Simonin
- Univ Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5557, Laboratoire d’Ecologie Microbienne, UMR INRA 1418, bât G. Mendel, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
- LTHE, UMR 5564 CNRS – Univ. Grenoble Alpes 38041 Grenoble Cedex 9, France
| | - Agnès Richaume
- Univ Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5557, Laboratoire d’Ecologie Microbienne, UMR INRA 1418, bât G. Mendel, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Julien P. Guyonnet
- Univ Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5557, Laboratoire d’Ecologie Microbienne, UMR INRA 1418, bât G. Mendel, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Audrey Dubost
- Univ Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5557, Laboratoire d’Ecologie Microbienne, UMR INRA 1418, bât G. Mendel, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Jean M. F. Martins
- LTHE, UMR 5564 CNRS – Univ. Grenoble Alpes 38041 Grenoble Cedex 9, France
| | - Thomas Pommier
- Univ Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5557, Laboratoire d’Ecologie Microbienne, UMR INRA 1418, bât G. Mendel, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
| |
Collapse
|