1
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Peng H, Zhao M, Liu X, Tong T, Zhang W, Gong C, Chowdhury R, Wang Q. Biomimetic Materials to Fabricate Artificial Cells. Chem Rev 2024; 124:13178-13215. [PMID: 39591535 PMCID: PMC11671219 DOI: 10.1021/acs.chemrev.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
As the foundation of life, a cell is generally considered an advanced microreactor with a complicated structure and function. Undeniably, this fascinating complexity motivates scientists to try to extricate themselves from natural living matter and work toward rebuilding artificial cells in vitro. Driven by synthetic biology and bionic technology, the research of artificial cells has gradually become a subclass. It is not only held import in many disciplines but also of great interest in its synthesis. Therefore, in this review, we have reviewed the development of cell and bionic strategies and focused on the efforts of bottom-up strategies in artificial cell construction. Different from starting with existing living organisms, we have also discussed the construction of artificial cells based on biomimetic materials, from simple cell scaffolds to multiple compartment systems, from the construction of functional modules to the simulation of crucial metabolism behaviors, or even to the biomimetic of communication networks. All of them could represent an exciting advance in the field. In addition, we will make a rough analysis of the bottlenecks in this field. Meanwhile, the future development of this field has been prospecting. This review may bridge the gap between materials engineering and life sciences, forming a theoretical basis for developing various life-inspired assembly materials.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College of Shaoxing University, 508 Huancheng Western Road, Shaoxing 312099, China
| | - Man Zhao
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Xiaoying Liu
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Wenyuan Zhang
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Chen Gong
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
3
|
Valente S, Galanti A, Maghin E, Najdi N, Piccoli M, Gobbo P. Matching Together Living Cells and Prototissues: Will There Be Chemistry? Chembiochem 2024; 25:e202400378. [PMID: 39031571 DOI: 10.1002/cbic.202400378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Scientific advancements in bottom-up synthetic biology have led to the development of numerous models of synthetic cells, or protocells. To date, research has mainly focused on increasing the (bio)chemical complexity of these bioinspired micro-compartmentalized systems, yet the successful integration of protocells with living cells remains one of the major challenges in bottom-up synthetic biology. In this review, we aim to summarize the current state of the art in hybrid protocell/living cell and prototissue/living cell systems. Inspired by recent breakthroughs in tissue engineering, we review the chemical, bio-chemical, and mechano-chemical aspects that hold promise for achieving an effective integration of non-living and living matter. The future production of fully integrated protocell/living cell systems and increasingly complex prototissue/living tissue systems not only has the potential to revolutionize the field of tissue engineering, but also paves the way for new technologies in (bio)sensing, personalized therapy, and drug delivery.
Collapse
Affiliation(s)
- Stefano Valente
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Agostino Galanti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Edoardo Maghin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Nahid Najdi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Martina Piccoli
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Pierangelo Gobbo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- National Interuniversity Consortium of Materials Science and Technology, Unit of Trieste, Via G. Giusti 9, 50121, Firenze, Italy
| |
Collapse
|
4
|
Tang Y, Cao X, Kong R, Li X, Wang J, Wu J, Wang X. Trajectory analysis of Bacillus subtilis in micro-droplets. BIOMICROFLUIDICS 2024; 18:054111. [PMID: 39397892 PMCID: PMC11466507 DOI: 10.1063/5.0211134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
In order to study Bacillus subtilis biofilm formation in microdroplets, we use microfluidics technology to make the droplets and confocal microscopy to capture bacterial movement and biofilm formation in the droplets. We develop a multi-target tracking methodology, using a YOLOv5 detector to identify cells and a DeepSORT algorithm to track cell movements. We find that Bacillus subtilis bacteria with autonomous migration and biofilm-forming ability prefer to cluster and swarm near the microdroplet surface, rather than in the droplet interior. Bacterial mobility depends on phenotype and spatial location within the droplet. The motile cells move about 3.5 times faster than the matrix-producing cells. When the cells are near the wall of the droplet, the direction of the motion of motile cells is along that wall. When the cells are inside the droplet, the direction of the motion of motile cells is disordered, i.e., there is no clear directional or goal-oriented movement. This contrast increases the cell contact probability and facilitates the formation of a Bacillus subtilis biofilm in the droplet. Furthermore, we develop a mathematical model to describe the motion behavior of Bacillus subtilis in microdroplets, which is useful for exploring the influence of motility on biofilm formation.
Collapse
Affiliation(s)
- Yangyang Tang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaolei Cao
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rui Kong
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xianyong Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiankun Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jin Wu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | |
Collapse
|
5
|
Xu Q, Zhang Z, Lui PPY, Lu L, Li X, Zhang X. Preparation and biomedical applications of artificial cells. Mater Today Bio 2023; 23:100877. [PMID: 38075249 PMCID: PMC10701372 DOI: 10.1016/j.mtbio.2023.100877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 10/16/2024] Open
Abstract
Artificial cells have received much attention in recent years as cell mimics with typical biological functions that can be adapted for therapeutic and diagnostic applications, as well as having an unlimited supply. Although remarkable progress has been made to construct complex multifunctional artificial cells, there are still significant differences between artificial cells and natural cells. It is therefore important to understand the techniques and challenges for the fabrication of artificial cells and their applications for further technological advancement. The key concepts of top-down and bottom-up methods for preparing artificial cells are summarized, and the advantages and disadvantages of the bottom-up methods are compared and critically discussed in this review. Potential applications of artificial cells as drug carriers (microcapsules), as signaling regulators for coordinating cellular communication and as bioreactors for biomolecule fabrication, are further discussed. The challenges and future trends for the development of artificial cells simulating the real activities of natural cells are finally described.
Collapse
Affiliation(s)
- Qian Xu
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, 110819, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Zeping Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Liang Lu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaowu Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
6
|
Walczak M, Mancini L, Xu J, Raguseo F, Kotar J, Cicuta P, Di Michele L. A Synthetic Signaling Network Imitating the Action of Immune Cells in Response to Bacterial Metabolism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301562. [PMID: 37156014 PMCID: PMC11475590 DOI: 10.1002/adma.202301562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/16/2023] [Indexed: 05/10/2023]
Abstract
State-of-the-art bottom-up synthetic biology allows to replicate many basic biological functions in artificial-cell-like devices. To mimic more complex behaviors, however, artificial cells would need to perform many of these functions in a synergistic and coordinated fashion, which remains elusive. Here, a sophisticated biological response is considered, namely the capture and deactivation of pathogens by neutrophil immune cells, through the process of netosis. A consortium consisting of two synthetic agents is designed-responsive DNA-based particles and antibiotic-loaded lipid vesicles-whose coordinated action mimics the sought immune-like response when triggered by bacterial metabolism. The artificial netosis-like response emerges from a series of interlinked sensing and communication pathways between the live and synthetic agents, and translates into both physical and chemical antimicrobial actions, namely bacteria immobilization and exposure to antibiotics. The results demonstrate how advanced life-like responses can be prescribed with a relatively small number of synthetic molecular components, and outlines a new strategy for artificial-cell-based antimicrobial solutions.
Collapse
Affiliation(s)
- Michal Walczak
- Biological and Soft SystemsCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Leonardo Mancini
- Biological and Soft SystemsCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Jiayi Xu
- Biological and Soft SystemsCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Federica Raguseo
- Department of ChemistryMolecular Sciences Research HubImperial College LondonWood LaneLondonW12 0BZUK
- fabriCELLMolecular Sciences Research HubImperial College LondonWood LaneLondonW12 0BZUK
| | - Jurij Kotar
- Biological and Soft SystemsCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Pietro Cicuta
- Biological and Soft SystemsCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Lorenzo Di Michele
- Biological and Soft SystemsCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
- Department of ChemistryMolecular Sciences Research HubImperial College LondonWood LaneLondonW12 0BZUK
- fabriCELLMolecular Sciences Research HubImperial College LondonWood LaneLondonW12 0BZUK
| |
Collapse
|
7
|
Yin Z, Gao N, Xu C, Li M, Mann S. Autonomic Integration in Nested Protocell Communities. J Am Chem Soc 2023. [PMID: 37369121 DOI: 10.1021/jacs.3c02816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The self-driven organization of model protocells into higher-order nested cytomimetic systems with coordinated structural and functional relationships offers a step toward the autonomic implementation of artificial multicellularity. Here, we describe an endosymbiotic-like pathway in which proteinosomes are captured within membranized alginate/silk fibroin coacervate vesicles by guest-mediated reconfiguration of the host protocells. We demonstrate that interchange of coacervate vesicle and droplet morphologies through proteinosome-mediated urease/glucose oxidase activity produces discrete nested communities capable of integrated catalytic activity and selective disintegration. The self-driving capacity is modulated by an internalized fuel-driven process using starch hydrolases sequestered within the host coacervate phase, and structural stabilization of the integrated protocell populations can be achieved by on-site enzyme-mediated matrix reinforcement involving dipeptide supramolecular assembly or tyramine-alginate covalent cross-linking. Our work highlights a semi-autonomous mechanism for constructing symbiotic cell-like nested communities and provides opportunities for the development of reconfigurable cytomimetic materials with structural, functional, and organizational complexity.
Collapse
Affiliation(s)
- Zhuping Yin
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Ning Gao
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Can Xu
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Mei Li
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Stephen Mann
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, P. R. China
| |
Collapse
|
8
|
Liu L, Wang C, Liu F, Zhao H. Polymerization-Induced Proteinosome Formation Initiated by Artificial Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4456-4465. [PMID: 36926885 DOI: 10.1021/acs.langmuir.3c00121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cellular communication is essential for living cells to coordinate the individual cellular responses and make collective behaviors. In the past decade, the communications between artificial cells have aroused great interest due to the potential applications of the structures in bioscience and biotechnology. To mimic the cellular communication, artificial cell assisted synthesis of proteinosomes was studied in this research. Multienzyme proteinosomes with glucose oxidase (GOx) and horseradish peroxidase (HRP) decorated on the membranes were synthesized by the thermally triggered self-assembly approach. Free radicals produced in a cascade reaction taking place on the surfaces of the multienzyme proteinosomes initiated reversible addition-fragmentation chain transfer (RAFT) polymerization of NIPAM at a temperature above LCST of PNIPAM in the presence of bovine serum albumin (BSA) or alcohol dehydrogenase (ADH)/acetaldehyde dehydrogenase (ALDH), and daughter proteinosomes with BSA or ADH/ALDH on the surfaces were fabricated. The structures of the GOx/HRP initiator proteinosomes, and the synthesized daughter proteinosomes were characterized with transmission electron microscopy, atomic force microscopy, fluorescence microscopy, dynamic light scattering, and micro-DSC. Enzyme activity assays demonstrate the high bioactivities of the enzymes on the surfaces of the initiator and the synthesized daughter proteinosomes.
Collapse
Affiliation(s)
- Luyang Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Chen Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Fang Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| |
Collapse
|
9
|
Yue K, Li Y, Cao M, Shen L, Gu J, Kai L. Bottom-Up Synthetic Biology Using Cell-Free Protein Synthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 185:1-20. [PMID: 37526707 DOI: 10.1007/10_2023_232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Technical advances in biotechnology have greatly accelerated the development of bottom-up synthetic biology. Unlike top-down approaches, bottom-up synthetic biology focuses on the construction of a minimal cell from scratch and the application of these principles to solve challenges. Cell-free protein synthesis (CFPS) systems provide minimal machinery for transcription and translation, from either a fractionated cell lysate or individual purified protein elements, thus speeding up the development of synthetic cell projects. In this review, we trace the history of the cell-free technique back to the first in vitro fermentation experiment using yeast cell lysate. Furthermore, we summarized progresses of individual cell mimicry modules, such as compartmentalization, gene expression regulation, energy regeneration and metabolism, growth and division, communication, and motility. Finally, current challenges and future perspectives on the field are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Mengjiao Cao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lulu Shen
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jingsheng Gu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
10
|
Dai J, Huang C, Zhang H, Samuel R, Li Y, Jayaraman A, de Figueiredo P, Han A. Microfluidic Dielectrophoretic Method Enables On-Demand Spatial Arrangement of Bacteria-Encapsulated Agarose Gel Microparticles. Anal Chem 2022; 94:13197-13204. [DOI: 10.1021/acs.analchem.2c02724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Dai
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Han Zhang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Ryan Samuel
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Yuwen Li
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Arul Jayaraman
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Paul de Figueiredo
- Department of Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas 77807, United States
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843, United States
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
11
|
Tabuchi T, Yokobayashi Y. High-throughput screening of cell-free riboswitches by fluorescence-activated droplet sorting. Nucleic Acids Res 2022; 50:3535-3550. [PMID: 35253887 PMCID: PMC8989549 DOI: 10.1093/nar/gkac152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 11/14/2022] Open
Abstract
Cell-free systems that display complex functions without using living cells are emerging as new platforms to test our understanding of biological systems as well as for practical applications such as biosensors and biomanufacturing. Those that use cell-free protein synthesis (CFPS) systems to enable genetically programmed protein synthesis have relied on genetic regulatory components found or engineered in living cells. However, biological constraints such as cell permeability, metabolic stability, and toxicity of signaling molecules prevent development of cell-free devices using living cells even if cell-free systems are not subject to such constraints. Efforts to engineer regulatory components directly in CFPS systems thus far have been based on low-throughput experimental approaches, limiting the availability of basic components to build cell-free systems with diverse functions. Here, we report a high-throughput screening method to engineer cell-free riboswitches that respond to small molecules. Droplet-sorting of riboswitch variants in a CFPS system rapidly identified cell-free riboswitches that respond to compounds that are not amenable to bacterial screening methods. Finally, we used a histamine riboswitch to demonstrate chemical communication between cell-sized droplets.
Collapse
Affiliation(s)
- Takeshi Tabuchi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
12
|
Sato W, Zajkowski T, Moser F, Adamala KP. Synthetic cells in biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1761. [PMID: 34725945 PMCID: PMC8918002 DOI: 10.1002/wnan.1761] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Synthetic cells are engineered vesicles that can mimic one or more salient features of life. These features include directed localization, sense-and-respond behavior, gene expression, metabolism, and high stability. In nanomedicine, many of these features are desirable capabilities of drug delivery vehicles but are difficult to engineer. In this focus article, we discuss where synthetic cells offer unique advantages over nanoparticle and living cell therapies. We review progress in the engineering of the above life-like behaviors and how they are deployed in nanomedicine. Finally, we assess key challenges synthetic cells face before being deployed as drugs and suggest ways to overcome these challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Wakana Sato
- 1 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN US
| | - Tomasz Zajkowski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
- USRA at NASA Ames Research Center, Mountain View, CA 94035
- Blue Marble Space Institute of Science, 600 1st Avenue, Seattle WA 98104
| | - Felix Moser
- Synlife, Inc., One Kendall Square Suite B4401, Cambridge, MA 20139
| | - Katarzyna P. Adamala
- 1 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN US
| |
Collapse
|
13
|
Smith JM, Chowdhry R, Booth MJ. Controlling Synthetic Cell-Cell Communication. Front Mol Biosci 2022; 8:809945. [PMID: 35071327 PMCID: PMC8766733 DOI: 10.3389/fmolb.2021.809945] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022] Open
Abstract
Synthetic cells, which mimic cellular function within a minimal compartment, are finding wide application, for instance in studying cellular communication and as delivery devices to living cells. However, to fully realise the potential of synthetic cells, control of their function is vital. An array of tools has already been developed to control the communication of synthetic cells to neighbouring synthetic cells or living cells. These tools use either chemical inputs, such as small molecules, or physical inputs, such as light. Here, we examine these current methods of controlling synthetic cell communication and consider alternative mechanisms for future use.
Collapse
Affiliation(s)
| | | | - Michael J. Booth
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Zhang P, Fischer A, Ouyang Y, Wang J, Sohn YS, Karmi O, Nechushtai R, Willner I. Biocatalytic cascades and intercommunicated biocatalytic cascades in microcapsule systems. Chem Sci 2022; 13:7437-7448. [PMID: 35872834 PMCID: PMC9241983 DOI: 10.1039/d2sc01542k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
Dynamic dimerization of GOx-loaded microcapsules with β-gal//hemin/G-quadruplex-bridged T1/T2-loaded microcapsules guides the bi-directional intercommunication of the three catalysts cascade.
Collapse
Affiliation(s)
- Pu Zhang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Amit Fischer
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yu Ouyang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jianbang Wang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yang Sung Sohn
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ola Karmi
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rachel Nechushtai
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
15
|
Chen C, Wang X, Wang Y, Tian L, Cao J. Construction of protocell-based artificial signal transduction pathways. Chem Commun (Camb) 2021; 57:12754-12763. [PMID: 34755716 DOI: 10.1039/d1cc03775g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The maintenance of an orderly and controllable multicellular society depends on the communication and signal regulation between various types of biological cells. How to replicate complicated signal transduction pathways in synthetic protocellular communities remains a key challenge in bottom-up synthetic biology. Herein, we review recent advances in the design and construction of interactive protocell communities, or protocell communities and biological communities, and explore the ways of designing and constructing artificial paracrine-like signaling pathways and juxtacrine-like signaling pathways. Key molecules involved in the signaling pathways that can be used to connect two or more spatially separated communities, and diverse signal outputs generated by the communication are summarized. We also propose the limitations, challenges and opportunities in this field.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| | - Xuejing Wang
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Ying Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China. .,Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Binjiang Institute of Zhejiang University, 66 Dongxin Road, Hangzhou, 310053, China
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
16
|
Chemical communication at the synthetic cell/living cell interface. Commun Chem 2021; 4:161. [PMID: 36697795 PMCID: PMC9814394 DOI: 10.1038/s42004-021-00597-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 01/28/2023] Open
Abstract
Although the complexity of synthetic cells has continued to increase in recent years, chemical communication between protocell models and living organisms remains a key challenge in bottom-up synthetic biology and bioengineering. In this Review, we discuss how communication channels and modes of signal processing can be established between living cells and cytomimetic agents such as giant unilamellar lipid vesicles, proteinosomes, polysaccharidosomes, polymer-based giant vesicles and membrane-less coacervate micro-droplets. We describe three potential modes of chemical communication in consortia of synthetic and living cells based on mechanisms of distributed communication and signal processing, physical embodiment and nested communication, and network-based contact-dependent communication. We survey the potential for applying synthetic cell/living cell communication systems in biomedicine, including the in situ production of therapeutics and development of new bioreactors. Finally, we present a short summary of our findings.
Collapse
|
17
|
Sharma B, Moghimianavval H, Hwang SW, Liu AP. Synthetic Cell as a Platform for Understanding Membrane-Membrane Interactions. MEMBRANES 2021; 11:912. [PMID: 34940413 PMCID: PMC8706075 DOI: 10.3390/membranes11120912] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 01/27/2023]
Abstract
In the pursuit of understanding life, model membranes made of phospholipids were envisaged decades ago as a platform for the bottom-up study of biological processes. Micron-sized lipid vesicles have gained great acceptance as their bilayer membrane resembles the natural cell membrane. Important biological events involving membranes, such as membrane protein insertion, membrane fusion, and intercellular communication, will be highlighted in this review with recent research updates. We will first review different lipid bilayer platforms used for incorporation of integral membrane proteins and challenges associated with their functional reconstitution. We next discuss different methods for reconstitution of membrane fusion and compare their fusion efficiency. Lastly, we will highlight the importance and challenges of intercellular communication between synthetic cells and synthetic cells-to-natural cells. We will summarize the review by highlighting the challenges and opportunities associated with studying membrane-membrane interactions and possible future research directions.
Collapse
Affiliation(s)
- Bineet Sharma
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.S.); (H.M.)
| | - Hossein Moghimianavval
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.S.); (H.M.)
| | - Sung-Won Hwang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.S.); (H.M.)
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
18
|
de Luis B, Llopis-Lorente A, Sancenón F, Martínez-Máñez R. Engineering chemical communication between micro/nanosystems. Chem Soc Rev 2021; 50:8829-8856. [PMID: 34109333 DOI: 10.1039/d0cs01048k] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical communication, based on the exchange of molecules as messengers, allows different entities to share information, cooperate and orchestrate collective behaviors. In recent years, the development of strategies of chemical communication between micro/nanosystems is becoming a key emergent topic in micro/nanotechnology, biomimicry and related areas. In this tutorial review, we provide a general perspective of the concepts used on the topic of chemical communication, and the advances made using different approaches that include nanomaterials, synthetic biology and information-processing tools. Although studies in this direction are very recent, they can be divided in two main categories: (i) communication between abiotic systems and (ii) communication between living and abiotic systems. Using illustrative examples, we give an overview of the ongoing progress, potential applications in different areas and current challenges. The engineering of chemical communication between micro/nanosystems represents a paradigm shift and may open a myriad of new concepts, applications and new technological possibilities in the near future in a number of research fields.
Collapse
Affiliation(s)
- Beatriz de Luis
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain, Camino de Vera s/n, 46022 València, Spain.
| | | | | | | |
Collapse
|
19
|
Jahnke K, Ritzmann N, Fichtler J, Nitschke A, Dreher Y, Abele T, Hofhaus G, Platzman I, Schröder RR, Müller DJ, Spatz JP, Göpfrich K. Proton gradients from light-harvesting E. coli control DNA assemblies for synthetic cells. Nat Commun 2021; 12:3967. [PMID: 34172734 PMCID: PMC8233306 DOI: 10.1038/s41467-021-24103-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Bottom-up and top-down approaches to synthetic biology each employ distinct methodologies with the common aim to harness living systems. Here, we realize a strategic merger of both approaches to convert light into proton gradients for the actuation of synthetic cellular systems. We genetically engineer E. coli to overexpress the light-driven inward-directed proton pump xenorhodopsin and encapsulate them in artificial cell-sized compartments. Exposing the compartments to light-dark cycles, we reversibly switch the pH by almost one pH unit and employ these pH gradients to trigger the attachment of DNA structures to the compartment periphery. For this purpose, a DNA triplex motif serves as a nanomechanical switch responding to the pH-trigger of the E. coli. When DNA origami plates are modified with the pH-sensitive triplex motif, the proton-pumping E. coli can trigger their attachment to giant unilamellar lipid vesicles (GUVs) upon illumination. A DNA cortex is formed upon DNA origami polymerization, which sculpts and deforms the GUVs. We foresee that the combination of bottom-up and top down approaches is an efficient way to engineer synthetic cells.
Collapse
Affiliation(s)
- Kevin Jahnke
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Noah Ritzmann
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Julius Fichtler
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Anna Nitschke
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Yannik Dreher
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Tobias Abele
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Götz Hofhaus
- Centre for Advanced Materials, Heidelberg, Germany
| | - Ilia Platzman
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Heidelberg, Germany
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Heidelberg, Germany
| | | | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Joachim P Spatz
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Heidelberg, Germany
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Heidelberg, Germany
- Max Planck School Matter to Life, Heidelberg, Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany.
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
20
|
Zhao C, Li J, Wang S, Xu Z, Wang X, Liu X, Wang L, Huang X. Membranization of Coacervates into Artificial Phagocytes with Predation toward Bacteria. ACS NANO 2021; 15:10048-10057. [PMID: 34047543 DOI: 10.1021/acsnano.1c01694] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coacervate-based membraneless organelles with diverse functionality as well as the capability of mimicking intracellular physiological environments are attracting researchers' great interest. However, the further studies focusing on functionalized membranization of coacervate as a step toward an advanced membrane-bound protocell are still rare. In this study, we develop a way to compartmentalize coacervate based on reconstitution with a natural cellular wall, which could then serve as a promising chassis for the development of protocells with selective sequestration of various biomacromolecules. Significantly, the compartmentalized protocell could behave like a phagocyte and selectively capture, engulf, and then kill Escherichia coli efficiently. Taken together, our studies present a strategy for advancing coacervate-based protocell design as well as the development of smart materials with on-demand functionalization.
Collapse
Affiliation(s)
- Chunyu Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Junbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Shengliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Zhijun Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
21
|
Stevendaal MHME, Hest JCM, Mason AF. Functional Interactions Between Bottom‐Up Synthetic Cells and Living Matter for Biomedical Applications. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Marleen H. M. E. Stevendaal
- Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 (STO 3.41) 5600MB Eindhoven (The Netherlands
| | - Jan C. M. Hest
- Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 (STO 3.41) 5600MB Eindhoven (The Netherlands
| | - Alexander F. Mason
- Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 (STO 3.41) 5600MB Eindhoven (The Netherlands
| |
Collapse
|
22
|
Elani Y. Interfacing Living and Synthetic Cells as an Emerging Frontier in Synthetic Biology. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:5662-5671. [PMID: 38505493 PMCID: PMC10946473 DOI: 10.1002/ange.202006941] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 12/15/2022]
Abstract
The construction of artificial cells from inanimate molecular building blocks is one of the grand challenges of our time. In addition to being used as simplified cell models to decipher the rules of life, artificial cells have the potential to be designed as micromachines deployed in a host of clinical and industrial applications. The attractions of engineering artificial cells from scratch, as opposed to re-engineering living biological cells, are varied. However, it is clear that artificial cells cannot currently match the power and behavioural sophistication of their biological counterparts. Given this, many in the synthetic biology community have started to ask: is it possible to interface biological and artificial cells together to create hybrid living/synthetic systems that leverage the advantages of both? This article will discuss the motivation behind this cellular bionics approach, in which the boundaries between living and non-living matter are blurred by bridging top-down and bottom-up synthetic biology. It details the state of play of this nascent field and introduces three generalised hybridisation modes that have emerged.
Collapse
Affiliation(s)
- Yuval Elani
- Department of Chemical EngineeringImperial College LondonExhibition RoadLondonUK
| |
Collapse
|
23
|
Elani Y. Interfacing Living and Synthetic Cells as an Emerging Frontier in Synthetic Biology. Angew Chem Int Ed Engl 2021; 60:5602-5611. [PMID: 32909663 PMCID: PMC7983915 DOI: 10.1002/anie.202006941] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 12/11/2022]
Abstract
The construction of artificial cells from inanimate molecular building blocks is one of the grand challenges of our time. In addition to being used as simplified cell models to decipher the rules of life, artificial cells have the potential to be designed as micromachines deployed in a host of clinical and industrial applications. The attractions of engineering artificial cells from scratch, as opposed to re-engineering living biological cells, are varied. However, it is clear that artificial cells cannot currently match the power and behavioural sophistication of their biological counterparts. Given this, many in the synthetic biology community have started to ask: is it possible to interface biological and artificial cells together to create hybrid living/synthetic systems that leverage the advantages of both? This article will discuss the motivation behind this cellular bionics approach, in which the boundaries between living and non-living matter are blurred by bridging top-down and bottom-up synthetic biology. It details the state of play of this nascent field and introduces three generalised hybridisation modes that have emerged.
Collapse
Affiliation(s)
- Yuval Elani
- Department of Chemical EngineeringImperial College LondonExhibition RoadLondonUK
| |
Collapse
|
24
|
Van Der Hofstadt M, Galas JC, Estevez-Torres A. Spatiotemporal Patterning of Living Cells with Extracellular DNA Programs. ACS NANO 2021; 15:1741-1752. [PMID: 33356142 DOI: 10.1021/acsnano.0c09422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reactive extracellular media focus on engineering reaction networks outside the cell to control intracellular chemical composition across time and space. However, current implementations lack the feedback loops and out-of-equilibrium molecular dynamics for encoding spatiotemporal control. Here, we demonstrate that enzyme-DNA molecular programs combining these qualities are functional in an extracellular medium where human cells can grow. With this approach, we construct an internalization program that delivers fluorescent DNA inside living cells and remains functional for at least 48 h. Its nonequilibrium dynamics allows us to control both the time and position of cell internalization. In particular, a spatially inhomogeneous version of this program generates a tunable reaction-diffusion two-band pattern of cell internalization. This demonstrates that a synthetic extracellular program can provide temporal and positional information to living cells, emulating archetypal mechanisms observed during embryo development. We foresee that nonequilibrium reactive extracellular media could be advantageously applied to in vitro biomolecular tracking, tissue engineering, or smart bandages.
Collapse
Affiliation(s)
- Marc Van Der Hofstadt
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France
| | - Jean-Christophe Galas
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France
| | - André Estevez-Torres
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France
| |
Collapse
|
25
|
Boyd MA, Kamat NP. Designing Artificial Cells towards a New Generation of Biosensors. Trends Biotechnol 2020; 39:927-939. [PMID: 33388162 DOI: 10.1016/j.tibtech.2020.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 01/31/2023]
Abstract
The combination of biological and synthetic materials has great potential to generate new types of biosensors. Toward this goal, recent advances in artificial cell development have demonstrated the capacity to detect a variety of analytes and environmental changes by encapsulating genetically encoded sensors within bilayer membranes, expanding the contexts within which biologically based sensing can operate. This chassis not only acts as a container for cell-free sensors, but can also play an active role in artificial cell sensing by serving as an additional gate mediating the transfer of environmental information. Here, we focus on recent progress toward stimuli-responsive artificial cells and discuss strategies for membrane functionalization in order to expand cell-free biosensing capabilities and applications.
Collapse
Affiliation(s)
- Margrethe A Boyd
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Neha P Kamat
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
26
|
de Luis B, Morellá-Aucejo Á, Llopis-Lorente A, Godoy-Reyes TM, Villalonga R, Aznar E, Sancenón F, Martínez-Máñez R. A chemical circular communication network at the nanoscale. Chem Sci 2020; 12:1551-1559. [PMID: 34163918 PMCID: PMC8179104 DOI: 10.1039/d0sc04743k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022] Open
Abstract
In nature, coordinated communication between different entities enables a group to accomplish sophisticated functionalities that go beyond those carried out by individual agents. The possibility of programming and developing coordinated communication networks at the nanoscale-based on the exchange of chemical messengers-may open new approaches in biomedical and communication areas. Here, a stimulus-responsive circular model of communication between three nanodevices based on enzyme-functionalized Janus Au-mesoporous silica capped nanoparticles is presented. The output in the community of nanoparticles is only observed after a hierarchically programmed flow of chemical information between the members.
Collapse
Affiliation(s)
- Beatriz de Luis
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Ángela Morellá-Aucejo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Tania M Godoy-Reyes
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Reynaldo Villalonga
- Nanosensors & Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid Madrid Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe Valencia Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe Valencia Spain
| |
Collapse
|
27
|
Enzyme-mediated nitric oxide production in vasoactive erythrocyte membrane-enclosed coacervate protocells. Nat Chem 2020; 12:1165-1173. [DOI: 10.1038/s41557-020-00585-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/29/2020] [Indexed: 12/26/2022]
|
28
|
Zhang L, Guo W, Lu Y. Advances in Cell‐Free Biosensors: Principle, Mechanism, and Applications. Biotechnol J 2020; 15:e2000187. [DOI: 10.1002/biot.202000187] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/22/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Liyuan Zhang
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
- Department of Ecology Shenyang Agricultural University Shenyang Liaoning Province 110866 China
| | - Wei Guo
- Department of Ecology Shenyang Agricultural University Shenyang Liaoning Province 110866 China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
29
|
Zhang Y, Liu S, Yao Y, Chen Y, Zhou S, Yang X, Wang K, Liu J. Invasion and Defense Interactions between Enzyme-Active Liquid Coacervate Protocells and Living Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002073. [PMID: 32452628 DOI: 10.1002/smll.202002073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/19/2020] [Indexed: 06/11/2023]
Abstract
The design and construction of mutual interaction models between artificial microsystems and living cells have the potential to open a wide range of novel applications in biomedical and biomimetic technologies. In this study, an artificial form of invasion-defense mutual interactions is established in a community of glucose oxidase (GOx)-containing liquid coacervate microdroplets and living cells, which interact via enzyme-mediated reactive oxygen species (ROS) damage. The enzyme-containing coacervate microdroplets, formed via liquid-liquid phase separation, act as invader protocells to electrostatically bind with the host HepG2 cell, resulting in assimilation. Subsequently, the glucose oxidation in the liquid coacervates initiates the generation of H2 O2 , which serves as an ROS resource to block cell proliferation. As a defense strategy, introduction of catalase (CAT) into the host cells is exploited to resist the ROS damage. CAT-mediated decomposition of H2 O2 leads to the ROS scavenging and results in the recovery of cell viability. The results obtained in the current study highlight the remarkable opportunities for the development of mutual interacting communities on the interface of artificial protocells/living cells. They also provide a new approach for engineering cellular behaviors through exploiting artificial nonliving microsystems.
Collapse
Affiliation(s)
- Yanwen Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Songyang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Yu Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Yufeng Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Shaohong Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
30
|
Wang L, Song S, van Hest J, Abdelmohsen LKEA, Huang X, Sánchez S. Biomimicry of Cellular Motility and Communication Based on Synthetic Soft-Architectures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907680. [PMID: 32250035 DOI: 10.1002/smll.201907680] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
Cells, sophisticated membrane-bound units that contain the fundamental molecules of life, provide a precious library for inspiration and motivation for both society and academia. Scientists from various disciplines have made great endeavors toward the understanding of the cellular evolution by engineering artificial counterparts (protocells) that mimic or initiate structural or functional cellular aspects. In this regard, several works have discussed possible building blocks, designs, functions, or dynamics that can be applied to achieve this goal. Although great progress has been made, fundamental-yet complex-behaviors such as cellular communication, responsiveness to environmental cues, and motility remain a challenge, yet to be resolved. Herein, recent efforts toward utilizing soft systems for cellular mimicry are summarized-following the main outline of cellular evolution, from basic compartmentalization, and biological reactions for energy production, to motility and communicative behaviors between artificial cell communities or between artificial and natural cell communities. Finally, the current challenges and future perspectives in the field are discussed, hoping to inspire more future research and to help the further advancement of this field.
Collapse
Affiliation(s)
- Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, China
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
| | - Shidong Song
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Jan van Hest
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Loai K E A Abdelmohsen
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, China
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
- Institucio Catalana de Recerca i Estudis Avancats (ICREA), Pg. Lluis Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
31
|
Buddingh' BC, Elzinga J, van Hest JCM. Intercellular communication between artificial cells by allosteric amplification of a molecular signal. Nat Commun 2020; 11:1652. [PMID: 32246068 PMCID: PMC7125153 DOI: 10.1038/s41467-020-15482-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/13/2020] [Indexed: 11/13/2022] Open
Abstract
Multicellular organisms rely on intercellular communication to coordinate the behaviour of individual cells, which enables their differentiation and hierarchical organization. Various cell mimics have been developed to establish fundamental engineering principles for the construction of artificial cells displaying cell-like organization, behaviour and complexity. However, collective phenomena, although of great importance for a better understanding of life-like behaviour, are underexplored. Here, we construct collectives of giant vesicles that can communicate with each other through diffusing chemical signals that are recognized and processed by synthetic enzymatic cascades. Similar to biological cells, the Receiver vesicles can transduce a weak signal originating from Sender vesicles into a strong response by virtue of a signal amplification step, which facilitates the propagation of signals over long distances within the artificial cell consortia. This design advances the development of interconnected artificial cells that can exchange metabolic and positional information to coordinate their higher-order organization.
Collapse
Affiliation(s)
- Bastiaan C Buddingh'
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Janneke Elzinga
- Radboud University, PO Box 9102, 6500 HC, Nijmegen, the Netherlands
| | - Jan C M van Hest
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, the Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, the Netherlands.
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, the Netherlands.
| |
Collapse
|
32
|
Laohakunakorn N, Grasemann L, Lavickova B, Michielin G, Shahein A, Swank Z, Maerkl SJ. Bottom-Up Construction of Complex Biomolecular Systems With Cell-Free Synthetic Biology. Front Bioeng Biotechnol 2020; 8:213. [PMID: 32266240 PMCID: PMC7105575 DOI: 10.3389/fbioe.2020.00213] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
Cell-free systems offer a promising approach to engineer biology since their open nature allows for well-controlled and characterized reaction conditions. In this review, we discuss the history and recent developments in engineering recombinant and crude extract systems, as well as breakthroughs in enabling technologies, that have facilitated increased throughput, compartmentalization, and spatial control of cell-free protein synthesis reactions. Combined with a deeper understanding of the cell-free systems themselves, these advances improve our ability to address a range of scientific questions. By mastering control of the cell-free platform, we will be in a position to construct increasingly complex biomolecular systems, and approach natural biological complexity in a bottom-up manner.
Collapse
Affiliation(s)
- Nadanai Laohakunakorn
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry, and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Grasemann
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Barbora Lavickova
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Grégoire Michielin
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Amir Shahein
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Zoe Swank
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sebastian J. Maerkl
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
33
|
Prangemeier T, Lehr FX, Schoeman RM, Koeppl H. Microfluidic platforms for the dynamic characterisation of synthetic circuitry. Curr Opin Biotechnol 2020; 63:167-176. [PMID: 32172160 DOI: 10.1016/j.copbio.2020.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 01/28/2023]
Abstract
Generating novel functionality from well characterised synthetic parts and modules lies at the heart of synthetic biology. Ideally, circuitry is rationally designed in silico with quantitatively predictive models to predetermined design specifications. Synthetic circuits are intrinsically stochastic, often dynamically modulated and set in a dynamic fluctuating environment within a living cell. To build more complex circuits and to gain insight into context effects, intrinsic noise and transient performance, characterisation techniques that resolve both heterogeneity and dynamics are required. Here we review recent advances in both in vitro and in vivo microfluidic technologies that are suitable for the characterisation of synthetic circuitry, modules and parts.
Collapse
Affiliation(s)
- Tim Prangemeier
- Centre for Synthetic Biology, Department of Electrical Engineering and Information Technology, Department of Biology, Technische Universität Darmstadt, Germany
| | - François-Xavier Lehr
- Centre for Synthetic Biology, Department of Electrical Engineering and Information Technology, Department of Biology, Technische Universität Darmstadt, Germany
| | - Rogier M Schoeman
- Centre for Synthetic Biology, Department of Electrical Engineering and Information Technology, Department of Biology, Technische Universität Darmstadt, Germany
| | - Heinz Koeppl
- Centre for Synthetic Biology, Department of Electrical Engineering and Information Technology, Department of Biology, Technische Universität Darmstadt, Germany.
| |
Collapse
|
34
|
Voyvodic PL, Bonnet J. Cell-free biosensors for biomedical applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2019.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Yeh Martín N, Valer L, Mansy SS. Toward long-lasting artificial cells that better mimic natural living cells. Emerg Top Life Sci 2019; 3:597-607. [PMID: 33523164 PMCID: PMC7288992 DOI: 10.1042/etls20190026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 01/01/2023]
Abstract
Chemical communication is ubiquitous in biology, and so efforts in building convincing cellular mimics must consider how cells behave on a population level. Simple model systems have been built in the laboratory that show communication between different artificial cells and artificial cells with natural, living cells. Examples include artificial cells that depend on purely abiological components and artificial cells built from biological components and are driven by biological mechanisms. However, an artificial cell solely built to communicate chemically without carrying the machinery needed for self-preservation cannot remain active for long periods of time. What is needed is to begin integrating the pathways required for chemical communication with metabolic-like chemistry so that robust artificial systems can be built that better inform biology and aid in the generation of new technologies.
Collapse
Affiliation(s)
- Noël Yeh Martín
- Systems Biophysics, Physics Department, Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 München, Germany
| | - Luca Valer
- Department CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Italy
| | - Sheref S Mansy
- Department CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Italy
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB, Canada T6G 2G2
| |
Collapse
|
36
|
Qiao Y, Li M, Qiu D, Mann S. Response‐Retaliation Behavior in Synthetic Protocell Communities. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yan Qiao
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Polymer Physics and ChemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Polymer Physics and ChemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| |
Collapse
|
37
|
Qiao Y, Li M, Qiu D, Mann S. Response-Retaliation Behavior in Synthetic Protocell Communities. Angew Chem Int Ed Engl 2019; 58:17758-17763. [PMID: 31584748 DOI: 10.1002/anie.201909313] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Indexed: 01/12/2023]
Abstract
Two different artificial predation strategies are spatially and temporally coupled to generate a simple tit-for-tat mechanism in a ternary protocell network capable of antagonistic enzyme-mediated interactions. The consortium initially consists of protease-sensitive glucose-oxidase-containing proteinosomes (1), non-interacting pH-sensitive polypeptide/mononucleotide coacervate droplets containing proteinase K (2), and proteinosome-adhered pH-resistant polymer/polysaccharide coacervate droplets (3). On receiving a glucose signal, secretion of protons from 1 triggers the disassembly of 2 and the released protease is transferred to 3 to initiate a delayed contact-dependent killing of the proteinosomes and cessation of glucose oxidase activity. Our results provide a step towards complex mesoscale dynamics based on programmable response-retaliation behavior in artificial protocell consortia.
Collapse
Affiliation(s)
- Yan Qiao
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.,Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| |
Collapse
|
38
|
de Luis B, Llopis-Lorente A, Rincón P, Gadea J, Sancenón F, Aznar E, Villalonga R, Murguía JR, Martínez-Máñez R. An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angew Chem Int Ed Engl 2019; 58:14986-14990. [PMID: 31424153 DOI: 10.1002/anie.201908867] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 11/06/2022]
Abstract
The construction of communication models at the micro-/nanoscale involving abiotic nanodevices and living organisms has the potential to open a wide range of applications in biomedical and communication technologies. However, this area remains almost unexplored. Herein, we report, as a proof of concept, a stimuli-responsive interactive paradigm of communication between yeasts (as a model microorganism) and enzyme-controlled Janus Au-mesoporous silica nanoparticles. In the presence of the stimulus, the information flows from the microorganism to the nanodevice, and then returns from the nanodevice to the microorganism as a feedback.
Collapse
Affiliation(s)
- Beatriz de Luis
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Spain
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Spain
| | - Paola Rincón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - José Gadea
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Spain
| | - Reynaldo Villalonga
- Nanosensors & Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - José Ramón Murguía
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
39
|
Luis B, Llopis‐Lorente A, Rincón P, Gadea J, Sancenón F, Aznar E, Villalonga R, Murguía JR, Martínez‐Máñez R. An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Beatriz Luis
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN) Spain
| | - Antoni Llopis‐Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN) Spain
| | - Paola Rincón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Universitat de València Camino de Vera s/n 46022 Valencia Spain
| | - José Gadea
- Instituto de Biología Molecular y Celular de Plantas (IBMCP) Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC) Valencia Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN) Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN) Spain
| | - Reynaldo Villalonga
- Nanosensors & Nanomachines Group Department of Analytical Chemistry Faculty of Chemistry Complutense University of Madrid Madrid Spain
| | - José Ramón Murguía
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN) Spain
| | - Ramón Martínez‐Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN) Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina Universitat Politècnica de València Centro de Investigación Príncipe Felipe Valencia Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores Universitat Politècnica de València Instituto de Investigación Sanitaria La Fe Valencia Spain
| |
Collapse
|
40
|
Aufinger L, Simmel FC. Establishing Communication Between Artificial Cells. Chemistry 2019; 25:12659-12670. [DOI: 10.1002/chem.201901726] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/23/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Lukas Aufinger
- Physics Department and ZNNTechnische Universität München Am Coulombwall 4a 85748 Garching Germany
| | - Friedrich C. Simmel
- Physics Department and ZNNTechnische Universität München Am Coulombwall 4a 85748 Garching Germany
| |
Collapse
|
41
|
Tian L, Li M, Patil AJ, Drinkwater BW, Mann S. Artificial morphogen-mediated differentiation in synthetic protocells. Nat Commun 2019; 10:3321. [PMID: 31346180 PMCID: PMC6658542 DOI: 10.1038/s41467-019-11316-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/02/2019] [Indexed: 11/09/2022] Open
Abstract
The design and assembly of artificial protocell consortia displaying dynamical behaviours and systems-based properties are emerging challenges in bottom-up synthetic biology. Cellular processes such as morphogenesis and differentiation rely in part on reaction-diffusion gradients, and the ability to mimic rudimentary aspects of these non-equilibrium processes in communities of artificial cells could provide a step to life-like systems capable of complex spatiotemporal transformations. Here we expose acoustically formed arrays of initially identical coacervate micro-droplets to uni-directional or counter-directional reaction-diffusion gradients of artificial morphogens to induce morphological differentiation and spatial patterning in single populations of model protocells. Dynamic reconfiguration of the droplets in the morphogen gradients produces a diversity of membrane-bounded vesicles that are spontaneously segregated into multimodal populations with differentiated enzyme activities. Our results highlight the opportunities for constructing protocell arrays with graded structure and functionality and provide a step towards the development of artificial cell platforms capable of multiple operations. The ability to mimic aspects of cellular process that rely on reaction-diffusion gradients could provide a step to building life-like systems capable of complex behaviour. Here the authors demonstrate morphological differentiation in coacervate micro-droplets.
Collapse
Affiliation(s)
- Liangfei Tian
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Avinash J Patil
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Bruce W Drinkwater
- Faculty of Engineering, Queens Building, University of Bristol, Bristol, BS8 1TR, UK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| |
Collapse
|
42
|
Menon G, Krishnan J. Design Principles for Compartmentalization and Spatial Organization of Synthetic Genetic Circuits. ACS Synth Biol 2019; 8:1601-1619. [PMID: 31257861 DOI: 10.1021/acssynbio.8b00522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Compartmentalization is a hallmark of cellular systems and an ingredient actively exploited in evolution. It is also being engineered and exploited in synthetic biology, in multiple ways. While these have demonstrated important experimental capabilities, understanding design principles underpinning compartmentalization of genetic circuits has been elusive. We develop a systems framework to elucidate the interplay between the nature of the genetic circuit, the spatial organization of compartments, and their operational state (well-mixed or otherwise). In so doing, we reveal a number of unexpected features associated with compartmentalizing synthetic and template-based circuits. These include (i) the consequences of distributing circuits including trade-offs and how they may be circumvented, (ii) hidden constraints in realizing a distributed circuit, and (iii) appealing new features of compartmentalized circuits. We build on this to examine exemplar applications, which consolidate and extend the design principles we have obtained. Our insights, which emerge from the most basic and general considerations of compartmentalizing genetic circuits, are relevant in a broad range of settings.
Collapse
Affiliation(s)
- Govind Menon
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London SW72AZ, United Kingdom
| | - J. Krishnan
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London SW72AZ, United Kingdom
- Institute for Systems and Synthetic Biology, Imperial College London, London SW72AZ, United Kingdom
| |
Collapse
|
43
|
Rodríguez‐Arco L, Kumar BVVSP, Li M, Patil AJ, Mann S. Modulation of Higher-order Behaviour in Model Protocell Communities by Artificial Phagocytosis. Angew Chem Int Ed Engl 2019; 58:6333-6337. [PMID: 30861271 PMCID: PMC6519160 DOI: 10.1002/anie.201901469] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Indexed: 11/08/2022]
Abstract
Collective behaviour in mixed populations of synthetic protocells is an unexplored area of bottom-up synthetic biology. The dynamics of a model protocell community is exploited to modulate the function and higher-order behaviour of mixed populations of bioinorganic protocells in response to a process of artificial phagocytosis. Enzyme-loaded silica colloidosomes are spontaneously engulfed by magnetic Pickering emulsion (MPE) droplets containing complementary enzyme substrates to initiate a range of processes within the host/guest protocells. Specifically, catalase, lipase, or alkaline phosphatase-filled colloidosomes are used to trigger phagocytosis-induced buoyancy, membrane reconstruction, or hydrogelation, respectively, within the MPE droplets. The results highlight the potential for exploiting surface-contact interactions between different membrane-bounded droplets to transfer and co-locate discrete chemical packages (artificial organelles) in communities of synthetic protocells.
Collapse
Affiliation(s)
- Laura Rodríguez‐Arco
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - B. V. V. S. Pavan Kumar
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - Avinash J. Patil
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of BristolBristolBS8 1TSUK
| |
Collapse
|
44
|
Rodríguez‐Arco L, Kumar BVVSP, Li M, Patil AJ, Mann S. Modulation of Higher‐order Behaviour in Model Protocell Communities by Artificial Phagocytosis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Laura Rodríguez‐Arco
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - B. V. V. S. Pavan Kumar
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Avinash J. Patil
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| |
Collapse
|
45
|
Sato Y, Takinoue M. Creation of Artificial Cell-Like Structures Promoted by Microfluidics Technologies. MICROMACHINES 2019; 10:E216. [PMID: 30934758 PMCID: PMC6523379 DOI: 10.3390/mi10040216] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023]
Abstract
The creation of artificial cells is an immensely challenging task in science. Artificial cells contribute to revealing the mechanisms of biological systems and deepening our understanding of them. The progress of versatile biological research fields has clarified many biological phenomena, and various artificial cell models have been proposed in these fields. Microfluidics provides useful technologies for the study of artificial cells because it allows the fabrication of cell-like compartments, including water-in-oil emulsions and giant unilamellar vesicles. Furthermore, microfluidics also allows the mimicry of cellular functions with chip devices based on sophisticated chamber design. In this review, we describe contributions of microfluidics to the study of artificial cells. Although typical microfluidic methods are useful for the creation of artificial-cell compartments, recent methods provide further benefits, including low-cost fabrication and a reduction of the sample volume. Microfluidics also allows us to create multi-compartments, compartments with artificial organelles, and on-chip artificial cells. We discuss these topics and the future perspective of microfluidics for the study of artificial cells and molecular robotics.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Computer Science, Tokyo Institute of Technology, Kanagawa 226-8502, Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, Kanagawa 226-8502, Japan
| |
Collapse
|
46
|
Rampioni G, D'Angelo F, Leoni L, Stano P. Gene-Expressing Liposomes as Synthetic Cells for Molecular Communication Studies. Front Bioeng Biotechnol 2019; 7:1. [PMID: 30705882 PMCID: PMC6344414 DOI: 10.3389/fbioe.2019.00001] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/02/2019] [Indexed: 11/13/2022] Open
Abstract
The bottom-up branch of synthetic biology includes-among others-innovative studies that combine cell-free protein synthesis with liposome technology to generate cell-like systems of minimal complexity, often referred to as synthetic cells. The functions of this type of synthetic cell derive from gene expression, hence they can be programmed in a modular, progressive and customizable manner by means of ad hoc designed genetic circuits. This experimental scenario is rapidly expanding and synthetic cell research already counts numerous successes. Here, we present a review focused on the exchange of chemical signals between liposome-based synthetic cells (operating by gene expression) and biological cells, as well as between two populations of synthetic cells. The review includes a short presentation of the "molecular communication technologies," briefly discussing their promises and challenges.
Collapse
Affiliation(s)
| | | | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| |
Collapse
|
47
|
Dubuc E, Pieters PA, van der Linden AJ, van Hest JC, Huck WT, de Greef TF. Cell-free microcompartmentalised transcription-translation for the prototyping of synthetic communication networks. Curr Opin Biotechnol 2018; 58:72-80. [PMID: 30594098 PMCID: PMC6723619 DOI: 10.1016/j.copbio.2018.10.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 10/14/2018] [Indexed: 12/21/2022]
Abstract
Recent efforts in synthetic biology have shown the possibility of engineering distributed functions in populations of living cells, which requires the development of highly orthogonal, genetically encoded communication pathways. Cell-free transcription-translation (TXTL) reactions encapsulated in microcompartments enable prototyping of molecular communication channels and their integration into engineered genetic circuits by mimicking critical cell features, such as gene expression, cell size, and cell individuality within a community. In this review, we discuss the uses of cell-free transcription-translation reactions for the development of synthetic genetic circuits, with a special focus on the use of microcompartments supporting this reaction. We highlight several studies where molecular communication between non-living microcompartments and living cells have been successfully engineered.
Collapse
Affiliation(s)
- Emilien Dubuc
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Pascal A Pieters
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Ardjan J van der Linden
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Jan Cm van Hest
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Wilhelm Ts Huck
- Department of Physical Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen 6525 HP, The Netherlands
| | - Tom Fa de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
48
|
Aufinger L, Simmel FC. Artificial Gel-Based Organelles for Spatial Organization of Cell-Free Gene Expression Reactions. Angew Chem Int Ed Engl 2018; 57:17245-17248. [PMID: 30394633 PMCID: PMC6640049 DOI: 10.1002/anie.201809374] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/10/2018] [Indexed: 11/11/2022]
Abstract
Gel-based artificial organelles have been developed that enable sequence-specific and programmable localization of cell-free transcription and translation reactions inside an artificial cellular system. To this end, we utilize agarose microgels covalently modified with DNA templates coding for various functions and encapsulate them into emulsion droplets. We show that RNA signals transcribed from transcription organelles can be specifically targeted to capture organelles via hybridization to the corresponding DNA addresses. We also demonstrate that mRNA molecules, produced from transcription organelles and controlled by toehold switch riboregulators, are only translated in translation organelles containing their cognate DNA triggers. Spatial confinement of transcription and translation in separate organelles is thus superficially similar to gene expression in eukaryotic cells. Combining communicating gel spheres with specialized functions opens up new possibilities for programming artificial cellular systems at the organelle level.
Collapse
Affiliation(s)
- Lukas Aufinger
- Physics-Department and ZNN, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany
| | - Friedrich C. Simmel
- Physics-Department and ZNN, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany
| |
Collapse
|
49
|
Beppu K, Izri Z, Maeda YT, Sakamoto R. Geometric Effect for Biological Reactors and Biological Fluids. Bioengineering (Basel) 2018; 5:E110. [PMID: 30551608 PMCID: PMC6316181 DOI: 10.3390/bioengineering5040110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 01/21/2023] Open
Abstract
As expressed "God made the bulk; the surface was invented by the devil" by W. Pauli, the surface has remarkable properties because broken symmetry in surface alters the material properties. In biological systems, the smallest functional and structural unit, which has a functional bulk space enclosed by a thin interface, is a cell. Cells contain inner cytosolic soup in which genetic information stored in DNA can be expressed through transcription (TX) and translation (TL). The exploration of cell-sized confinement has been recently investigated by using micron-scale droplets and microfluidic devices. In the first part of this review article, we describe recent developments of cell-free bioreactors where bacterial TX-TL machinery and DNA are encapsulated in these cell-sized compartments. Since synthetic biology and microfluidics meet toward the bottom-up assembly of cell-free bioreactors, the interplay between cellular geometry and TX-TL advances better control of biological structure and dynamics in vitro system. Furthermore, biological systems that show self-organization in confined space are not limited to a single cell, but are also involved in the collective behavior of motile cells, named active matter. In the second part, we describe recent studies where collectively ordered patterns of active matter, from bacterial suspensions to active cytoskeleton, are self-organized. Since geometry and topology are vital concepts to understand the ordered phase of active matter, a microfluidic device with designed compartments allows one to explore geometric principles behind self-organization across the molecular scale to cellular scale. Finally, we discuss the future perspectives of a microfluidic approach to explore the further understanding of biological systems from geometric and topological aspects.
Collapse
Affiliation(s)
- Kazusa Beppu
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan.
| | - Ziane Izri
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan.
| | - Yusuke T Maeda
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan.
| | - Ryota Sakamoto
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
50
|
Niederholtmeyer H, Chaggan C, Devaraj NK. Communication and quorum sensing in non-living mimics of eukaryotic cells. Nat Commun 2018; 9:5027. [PMID: 30487584 PMCID: PMC6261949 DOI: 10.1038/s41467-018-07473-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/01/2018] [Indexed: 01/22/2023] Open
Abstract
Cells in tissues or biofilms communicate with one another through chemical and mechanical signals to coordinate collective behaviors. Non-living cell mimics provide simplified models of natural systems; however, it has remained challenging to implement communication capabilities comparable to living cells. Here we present a porous artificial cell-mimic containing a nucleus-like DNA-hydrogel compartment that is able to express and display proteins, and communicate with neighboring cell-mimics through diffusive protein signals. We show that communication between cell-mimics allows distribution of tasks, quorum sensing, and cellular differentiation according to local environment. Cell-mimics can be manufactured in large quantities, easily stored, chemically modified, and spatially organized into diffusively connected tissue-like arrangements, offering a means for studying communication in large ensembles of artificial cells. Cells communicate through chemical and mechanical signals but emulating these in non-living mimics has been challenging. Here the authors present a porous mimic with a DNA-hydrogel ‘nucleus’ that can communicate through diffusive protein signals.
Collapse
Affiliation(s)
- Henrike Niederholtmeyer
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Cynthia Chaggan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|