1
|
Cao MF, Peng XH, Zhao XJ, Bao YF, Xiao YH, Wu SS, Wang J, Lu Y, Wang M, Wang X, Lin KQ, Ren B. Ultralow-Frequency Tip-Enhanced Raman Scattering Discovers Nanoscale Radial Breathing Mode on Strained 2D Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405433. [PMID: 39007283 DOI: 10.1002/adma.202405433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Indexed: 07/16/2024]
Abstract
Collective excitations including plasmons, magnons, and layer-breathing vibration modes emerge at an ultralow frequency (<1 THz) and are crucial for understanding van der Waals materials. Strain at the nanoscale can drastically change the property of van der Waals materials and create localized states like quantum emitters. However, it remains unclear how nanoscale strain changes collective excitations. Herein, ultralow-frequency tip-enhanced Raman spectroscopy (TERS) with sub-10 nm resolution under ambient conditions is developed to explore the localized collective excitation on monolayer semiconductors with nanoscale strains. A new vibrational mode is discovered at around 12 cm-1 (0.36 THz) on monolayer MoSe2 nanobubbles and it is identified as the radial breathing mode (RBM) of the curved monolayer. The correlation is determined between the RBM frequency and the strain by simultaneously performing deterministic nanoindentation and TERS measurement on monolayer MoSe2. The generality of the RBM in nanoscale curved monolayer WSe2 and bilayer MoSe2 is demonstrated. Using the RBM frequency, the strain of the monolayer MoSe2 on the nanoscale can be mapped. Such an ultralow-frequency vibration from curved van der Waals materials provides a new approach to study nanoscale strains and points to more localized collective excitations to be discovered at the nanoscale.
Collapse
Affiliation(s)
- Mao-Feng Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiao-Hui Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiao-Jiao Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yi-Fan Bao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuan-Hui Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Si-Si Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yao Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Miao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
| | - Kai-Qiang Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
| |
Collapse
|
2
|
Sousa FB, Nadas R, Martins R, Barboza APM, Soares JS, Neves BRA, Silvestre I, Jorio A, Malard LM. Disentangling doping and strain effects at defects of grown MoS 2 monolayers with nano-optical spectroscopy. NANOSCALE 2024; 16:12923-12933. [PMID: 38805074 DOI: 10.1039/d4nr00837e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The role of defects in two-dimensional semiconductors and how they affect the intrinsic properties of these materials have been a widely researched topic over the past few decades. Optical characterization techniques such as photoluminescence and Raman spectroscopies are important tools to probe the physical properties of semiconductors and the impact of defects. However, confocal optical techniques present a spatial resolution limitation lying in a μm-scale, which can be overcome by the use of near-field optical measurements. Here, we use tip-enhanced photoluminescence and Raman spectroscopies to unveil the nanoscale optical properties of grown MoS2 monolayers, revealing that the impact of doping and strain can be disentangled by the combination of both techniques. A noticeable enhancement of the exciton peak intensity corresponding to trion emission quenching is observed at narrow regions down to a width of 47 nm at grain boundaries related to doping effects. Besides, localized strain fields inside the sample lead to non-uniformities in the intensity and energy position of photoluminescence peaks. Finally, two distinct MoS2 samples present different nano-optical responses at their edges associated with opposite strains. The edge of the first sample shows a photoluminescence intensity enhancement and energy blueshift corresponding to a frequency blueshift for E2g and 2LA Raman modes. In contrast, the other sample displays a photoluminescence energy redshift and frequency red shifts for E2g and 2LA Raman modes at their edges. Our work highlights the potential of combining tip-enhanced photoluminescence and Raman spectroscopies to probe localized strain fields and doping effects related to defects in two-dimensional materials.
Collapse
Affiliation(s)
- Frederico B Sousa
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| | - Rafael Nadas
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
- FabNS, Belo Horizonte, Minas Gerais 31310-260, Brazil
| | - Rafael Martins
- Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais 35400-000, Brazil
| | - Ana P M Barboza
- Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais 35400-000, Brazil
| | - Jaqueline S Soares
- Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais 35400-000, Brazil
| | - Bernardo R A Neves
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| | - Ive Silvestre
- Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais 35400-000, Brazil
| | - Ado Jorio
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| | - Leandro M Malard
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| |
Collapse
|
3
|
Bienz S, Spaggiari G, Calestani D, Trevisi G, Bersani D, Zenobi R, Kumar N. Nanoscale Chemical Analysis of Thin Film Solar Cell Interfaces Using Tip-Enhanced Raman Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14704-14711. [PMID: 38494603 PMCID: PMC10982994 DOI: 10.1021/acsami.3c17115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/01/2024] [Accepted: 02/25/2024] [Indexed: 03/19/2024]
Abstract
Interfacial regions play a key role in determining the overall power conversion efficiency of thin film solar cells. However, the nanoscale investigation of thin film interfaces using conventional analytical tools is challenging due to a lack of required sensitivity and spatial resolution. Here, we surmount these obstacles using tip-enhanced Raman spectroscopy (TERS) and apply it to investigate the absorber (Sb2Se3) and buffer (CdS) layers interface in a Sb2Se3-based thin film solar cell. Hyperspectral TERS imaging with 10 nm spatial resolution reveals that the investigated interface between the absorber and buffer layers is far from uniform, as TERS analysis detects an intermixing of chemical compounds instead of a sharp demarcation between the CdS and Sb2Se3 layers. Intriguingly, this interface, comprising both Sb2Se3 and CdS compounds, exhibits an unexpectedly large thickness of 295 ± 70 nm attributable to the roughness of the Sb2Se3 layer. Furthermore, TERS measurements provide compelling evidence of CdS penetration into the Sb2Se3 layer, likely resulting from unwanted reactions on the absorber surface during chemical bath deposition. Notably, the coexistence of ZnO, which serves as the uppermost conducting layer, and CdS within the Sb2Se3-rich region has been experimentally confirmed for the first time. This study underscores TERS as a promising nanoscale technique to investigate thin film inorganic solar cell interfaces, offering novel insights into intricate interface structures and compound intermixing.
Collapse
Affiliation(s)
- Siiri Bienz
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Giulia Spaggiari
- Department
of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, I-43124 Parma, Italy
- Institute
of Materials for Electronics and Magnetism, National Research Council, Parco Area delle Scienze 37/A, I-43124 Parma, Italy
| | - Davide Calestani
- Institute
of Materials for Electronics and Magnetism, National Research Council, Parco Area delle Scienze 37/A, I-43124 Parma, Italy
| | - Giovanna Trevisi
- Institute
of Materials for Electronics and Magnetism, National Research Council, Parco Area delle Scienze 37/A, I-43124 Parma, Italy
| | - Danilo Bersani
- Department
of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, I-43124 Parma, Italy
| | - Renato Zenobi
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Naresh Kumar
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| |
Collapse
|
4
|
Huang JT, Bai B, Han YX, Feng PY, Wang XJ, Li XZ, Huang GY, Sun HB. Super-Resolution Exciton Imaging of Nanobubbles in 2D Semiconductors with Near-Field Nanophotoluminescence Microscopy. ACS NANO 2024; 18:272-280. [PMID: 38096138 DOI: 10.1021/acsnano.3c06102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Two-dimensional (2D) semiconductors, such as transition metal dichalcogenides, have emerged as important candidate materials for next-generation chip-scale optoelectronic devices with the development of large-scale production techniques, such as chemical vapor deposition (CVD). However, 2D materials need to be transferred to other target substrates after growth, during which various micro- and nanoscale defects, such as nanobubbles, are inevitably generated. These nanodefects not only influence the uniformity of 2D semiconductors but also may significantly alter the local optoelectronic properties of the composed devices. Hence, super-resolution discrimination and characterization of nanodefects are highly demanded. Here, we report a near-field nanophotoluminescence (nano-PL) microscope that can quickly screen nanobubbles and investigate their impact on local excitonic properties of 2D semiconductors by directly visualize the PL emission distribution with a very high spatial resolution of ∼10 nm, far below the optical diffraction limit, and a high speed of 10 ms/point under ambient conditions. By using nano-PL microscopy to map the exciton and trion emission intensity distributions in transferred CVD-grown monolayer tungsten disulfide (1L-WS2) flakes, it is found that the PL intensity decreases by 13.4% as the height of the nanobubble increases by every nanometer, which is mainly caused by the suppression of trion emission due to the strong doping effect from the substrate. In addition to the nanobubbles, other types of nanodefects, such as cracks, stacks, and grain boundaries, can also be characterized. The nano-PL method is proven to be a powerful tool for the nondestructive quality inspection of nanodefects as well as the super-resolution exploration of local optoelectronic properties of 2D materials.
Collapse
Affiliation(s)
- Jia-Tai Huang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Benfeng Bai
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yu-Xiao Han
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Peng-Yi Feng
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Xiao-Jie Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Xiao-Ze Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Guan-Yao Huang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Hong-Bo Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Mrđenović D, Tang ZX, Pandey Y, Su W, Zhang Y, Kumar N, Zenobi R. Regioselective Tip-Enhanced Raman Spectroscopy of Lipid Membranes with Sub-Nanometer Axial Resolution. NANO LETTERS 2023; 23:3939-3946. [PMID: 37096805 DOI: 10.1021/acs.nanolett.3c00689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Noninvasive and label-free analysis of cell membranes at the nanoscale is essential to comprehend vital cellular processes. However, conventional analytical tools generally fail to meet this challenge due to the lack of required sensitivity and/or spatial resolution. Herein, we demonstrate that tip-enhanced Raman spectroscopy (TERS) is a powerful nanoanalytical tool to analyze dipalmitoylphosphatidylcholine (DPPC) bilayers and human cell membranes with submolecular resolution in the vertical direction. Unlike the far-field Raman measurements, TERS spectra of the DPPC bilayers reproducibly exhibited a uniquely shaped C-H band. These unique spectral features were also reproducibly observed in the TERS spectrum of human pancreatic cancer cells. Spectral deconvolution and DFT simulations confirmed that the TERS signal primarily originated from vibrations of the CH3 groups in the choline headgroup of the lipids. The reproducible TERS results obtained in this study unequivocally demonstrate the ultrahigh sensitivity of TERS for nanoanalysis of lipid membranes under ambient conditions.
Collapse
Affiliation(s)
- Dušan Mrđenović
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Zi-Xi Tang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, 96 Jinzhai Road, 230026 Hefei, Anhui, People's Republic of China
| | - Yashashwa Pandey
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, 310018 Hangzhou, People's Republic of China
| | - Yao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, 96 Jinzhai Road, 230026 Hefei, Anhui, People's Republic of China
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| |
Collapse
|
6
|
Mrđenović D, Cai ZF, Pandey Y, Bartolomeo GL, Zenobi R, Kumar N. Nanoscale chemical analysis of 2D molecular materials using tip-enhanced Raman spectroscopy. NANOSCALE 2023; 15:963-974. [PMID: 36541047 PMCID: PMC9851175 DOI: 10.1039/d2nr05127c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/01/2022] [Indexed: 05/10/2023]
Abstract
Two-dimensional (2D) molecular materials have attracted immense attention due to their unique properties, promising a wide range of exciting applications. To understand the structure-property relationship of these low-dimensional materials, sensitive analytical tools capable of providing structural and chemical characterisation at the nanoscale are required. However, most conventional analytical techniques fail to meet this challenge, especially in a label-free and non-destructive manner under ambient conditions. In the last two decades, tip-enhanced Raman spectroscopy (TERS) has emerged as a powerful analytical technique for nanoscale chemical characterisation by combining the high spatial resolution of scanning probe microscopy and the chemical sensitivity and specificity of surface-enhanced Raman spectroscopy. In this review article, we provide an overview of the application of TERS for nanoscale chemical analysis of 2D molecular materials, including 2D polymers, biomimetic lipid membranes, biological cell membranes, and 2D reactive systems. The progress in the structural and chemical characterisation of these 2D materials is demonstrated with key examples from our as well as other laboratories. We highlight the unique information that TERS can provide as well as point out the common pitfalls in experimental work and data interpretation and the possible ways of averting them.
Collapse
Affiliation(s)
- Dušan Mrđenović
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Zhen-Feng Cai
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Yashashwa Pandey
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | | | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
7
|
Shao J, Su W. Tip-enhanced nanoscopy of two-dimensional transition metal dichalcogenides: progress and perspectives. NANOSCALE 2022; 14:17119-17133. [PMID: 36394273 DOI: 10.1039/d2nr04864g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The optoelectronic properties of two-dimensional (2D) transition metal dichalcogenide (TMD) thin layers prepared by exfoliation or chemical vapour deposition are strongly modulated by defects at the nanoscale. The mediated electronic and optical properties are expected to be spatially localised in a nanoscale width neighbouring the defects. Characterising such localised properties requires an analytical tool with nanoscale spatial resolution and high optical sensitivity. In recent years, tip-enhanced nanoscopy, represented by tip-enhanced Raman spectroscopy (TERS) and tip-enhanced photoluminescence (TEPL), has emerged as a powerful tool to characterise the localised phonon and exciton behaviours of 2D TMDs and heterojunctions (HJs) at the nanoscale. Herein, we first summarise the recent progress of TERS and TEPL in the characterisation of several typical defects in TMDs, such as edges, wrinkles, grain boundaries and other defects generated in transfer and growth processes. Then the local strain and its dynamic control of phonon and exciton behaviours characterised by TERS and TEPL will be reviewed. The recent progress in characterising TMD HJs using TERS and TEPL will be subsequently summarised. Finally, the progress of TERS and TEPL combined with optoelectronic sensitive electronic scanning probe microscopy (SPM) in the applications of TMDs will be reviewed.
Collapse
Affiliation(s)
- Jiaqi Shao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
8
|
Bienz S, van Vreeswijk SH, Pandey Y, Bartolomeo GL, Weckhuysen BM, Zenobi R, Kumar N. Probing coke formation during the methanol-to-hydrocarbon reaction on zeolite ZSM-5 catalyst at the nanoscale using tip-enhanced fluorescence microscopy. Catal Sci Technol 2022; 12:5795-5801. [PMID: 36324827 PMCID: PMC9528927 DOI: 10.1039/d2cy01348g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022]
Abstract
The deactivation mechanism of the widely used zeolite ZSM-5 catalysts remains unclear to date due to the lack of analytical techniques with sufficient sensitivity and/or spatial resolution. Herein, a combination of hyperspectral confocal fluorescence microscopy (CFM) and tip-enhanced fluorescence (TEFL) microscopy is used to study the formation of different coke (precursor) species involved in the deactivation of zeolite ZSM-5 during the methanol-to-hydrocarbon (MTH) reaction. CFM submicron-scale imaging shows a preferential formation of graphite-like coke species at the edges of zeolite ZSM-5 crystals within 10 min of the MTH reaction (i.e., working catalyst), whilst the amount of graphite-like coke species uniformly increased over the entire zeolite ZSM-5 surface after 90 min (i.e., deactivated catalyst). Furthermore, TEFL nanoscale imaging with ∼35 nm spatial resolution revealed that formation of coke species on the zeolite ZSM-5 surface is non-uniform and a relatively larger amount of coke is formed at the crystal steps, indicating a higher initial catalytic activity.
Collapse
Affiliation(s)
- Siiri Bienz
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Sophie H van Vreeswijk
- Inorganic Chemistry and Catalysis group, Department of Chemistry, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Yashashwa Pandey
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Giovanni Luca Bartolomeo
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis group, Department of Chemistry, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
9
|
Umakoshi T, Kawashima K, Moriyama T, Kato R, Verma P. Tip-enhanced Raman spectroscopy with amplitude-controlled tapping-mode AFM. Sci Rep 2022; 12:12776. [PMID: 35896604 PMCID: PMC9329313 DOI: 10.1038/s41598-022-17170-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for analyzing chemical compositions at the nanoscale owing to near-field light localized at a metallic tip. In TERS, atomic force microscopy (AFM) is commonly used for tip position control. AFM is often controlled under the contact mode for TERS, whereas the tapping mode, which is another major operation mode, has not often been employed despite several advantages, such as low sample damage. One of the reasons is the low TERS signal intensity because the tip is mostly away from the sample during the tapping motion. In this study, we quantitatively investigated the effect of the tapping amplitude on the TERS signal. We numerically evaluated the dependence of the TERS signal on tapping amplitude. We found that the tapping amplitude had a significant effect on the TERS signal, and an acceptable level of TERS signal was obtained by reducing the amplitude to a few nanometers. We further demonstrated amplitude-controlled tapping-mode TERS measurement. We observed a strong dependence of the TERS intensity on the tapping amplitude, which is in agreement with our numerical calculations. This practical but essential study encourages the use of the tapping mode for further advancing TERS and related optical techniques.
Collapse
Affiliation(s)
- Takayuki Umakoshi
- Department of Applied Physics, Osaka University, Suita, Osaka, 565-0871, Japan. .,Institute for Advanced Co-creation Studies, Osaka University, Suita, Osaka, 565-0871, Japan. .,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.
| | - Koji Kawashima
- Department of Applied Physics, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Toki Moriyama
- Department of Applied Physics, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ryo Kato
- Institute of Post-LED Photonics, Tokushima University, Tokushima, Tokushima, 770-8506, Japan
| | - Prabhat Verma
- Department of Applied Physics, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
10
|
Kato R, Moriyama T, Umakoshi T, Yano TA, Verma P. Ultrastable tip-enhanced hyperspectral optical nanoimaging for defect analysis of large-sized WS 2 layers. SCIENCE ADVANCES 2022; 8:eabo4021. [PMID: 35857514 PMCID: PMC9286508 DOI: 10.1126/sciadv.abo4021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/03/2022] [Indexed: 05/25/2023]
Abstract
Optical nanoimaging techniques, such as tip-enhanced Raman spectroscopy (TERS), are nowadays indispensable for chemical and optical characterization in the entire field of nanotechnology and have been extensively used for various applications, such as visualization of nanoscale defects in two-dimensional (2D) materials. However, it is still challenging to investigate micrometer-sized sample with nanoscale spatial resolution because of severe limitation of measurement time due to drift of the experimental system. Here, we achieved long-duration TERS imaging of a micrometer-sized WS2 sample for 6 hours in a reproducible manner. Our ultrastable TERS system enabled to reveal the defect density on the surface of tungsten disulfide layers in large area equivalent to the device scale. It also helped us to detect rare defect-related optical signals from the sample. The present study paves ways to evaluate nanoscale defects of 2D materials in large area and to unveil remarkable optical and chemical properties of large-sized nanostructured materials.
Collapse
Affiliation(s)
- Ryo Kato
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima, Tokushima, Tokushima 770-8506, Japan
| | - Toki Moriyama
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takayuki Umakoshi
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka 565-0871, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Taka-aki Yano
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima, Tokushima, Tokushima 770-8506, Japan
| | - Prabhat Verma
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Rahaman M, Zahn DRT. Plasmon-enhanced Raman spectroscopy of two-dimensional semiconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:333001. [PMID: 35671747 DOI: 10.1088/1361-648x/ac7689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) semiconductors have grown fast into an extraordinary research field due to their unique physical properties compared to other semiconducting materials. The class of materials proved extremely fertile for both fundamental studies and a wide range of applications from electronics/spintronics/optoelectronics to photocatalysis and CO2reduction. 2D materials are highly confined in the out-of-plane direction and often possess very good environmental stability. Therefore, they have also become a popular material system for the manipulation of optoelectronic properties via numerous external parameters. Being a versatile characterization technique, Raman spectroscopy is used extensively to study and characterize various physical properties of 2D materials. However, weak signals and low spatial resolution hinder its application in more advanced systems where decoding local information plays an important role in advancing our understanding of these materials for nanotechnology applications. In this regard, plasmon-enhanced Raman spectroscopy has been introduced in recent time to investigate local heterogeneous information of 2D semiconductors. In this review, we summarize the recent progress of plasmon-enhanced Raman spectroscopy of 2D semiconductors. We discuss the current state-of-art and provide future perspectives on this specific branch of Raman spectroscopy applied to 2D semiconductors.
Collapse
Affiliation(s)
- Mahfujur Rahaman
- Semiconductor Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, 19104 Pennsilvania, United States of America
| | - Dietrich R T Zahn
- Semiconductor Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), 09126 Chemnitz, Germany
| |
Collapse
|
12
|
Ambardar S, Kamh R, Withers ZH, Sahoo PK, Voronine DV. Coupling nanobubbles in 2D lateral heterostructures. NANOSCALE 2022; 14:8050-8059. [PMID: 35587784 DOI: 10.1039/d2nr00512c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional transition metal dichalcogenides provide flexible platforms for nanophotonic engineering due to their exceptional mechanical and optoelectronic properties. For example, continuous band gap tunability has been achieved in 2D TMDs by elastic strain engineering. Localized elastic deformations in nanobubbles behave as "artificial atoms" with a spatially varying band gap resulting in funnelling of excitons and photocarriers. Here we present a new method of nanobubble fabrication in monolayer 2D lateral heterostructures using high temperature superacid treatment. We fabricated MoS2 and WS2 nanobubbles and performed near-field imaging with nanoscale resolution using tip-enhanced photoluminescence (TEPL) spectroscopy. TEPL nanoimaging revealed the coupling between MoS2 and WS2 nanobubbles with a large synergistic PL enhancement due to the plasmonic tip, hot electrons, and exciton funnelling. We investigated the contributions of different enhancement mechanisms, and developed a quantum plasmonic model, in good agreement with the experiments. Our work opens new avenues in exploration of novel nanophotonic coupling schemes.
Collapse
Affiliation(s)
- Sharad Ambardar
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA.
| | - Rana Kamh
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Zachary H Withers
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Prasana K Sahoo
- Materials Science Centre, India Institute of Technology, Kharagpur, India
| | - Dmitri V Voronine
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA.
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
13
|
Mrđenović D, Abbott D, Mougel V, Su W, Kumar N, Zenobi R. Visualizing Surface Phase Separation in PS-PMMA Polymer Blends at the Nanoscale. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24938-24945. [PMID: 35590476 DOI: 10.1021/acsami.2c03857] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phase-separated polymer blend films are an important class of functional materials with numerous technological applications in solar cells, catalysis, and biotechnology. These technologies are underpinned by the precise control of phase separation at the nanometer length-scales, which is highly challenging to visualize using conventional analytical tools. Herein, we introduce tip-enhanced Raman spectroscopy (TERS), in combination with atomic force microscopy (AFM), confocal Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS), as a sensitive nanoanalytical method to determine lateral and vertical phase-separation in polystyrene (PS)-poly(methyl methacrylate) (PMMA) polymer blend films. Correlative topographical, molecular, and elemental information reveals a vertical phase separation of the polymers within the top ca. 20 nm of the blend surface in addition to the lateral phase separation in the bulk. Furthermore, complementary TERS and XPS measurements reveal the presence of PMMA within 9.2 nm of the surface and PS at the subsurface of the polymer blend. This fundamental work establishes TERS as a powerful analytical tool for surface characterization of this important class of polymers at nanometer length scales.
Collapse
Affiliation(s)
- Dušan Mrđenović
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Daniel Abbott
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, 310018 Hangzhou, China
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
14
|
Shao J, Chen F, Su W, Kumar N, Zeng Y, Wu L, Lu HW. Probing Nanoscale Exciton Funneling at Wrinkles of Twisted Bilayer MoS 2 Using Tip-Enhanced Photoluminescence Microscopy. J Phys Chem Lett 2022; 13:3304-3309. [PMID: 35389654 DOI: 10.1021/acs.jpclett.2c00815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In twisted bilayer (t2L) two-dimensional (2D) transition metal dichalcogenides, local strain at wrinkles strongly modulates the local exciton density and PL energy resulting in an exciton funneling effect. Probing such exciton behaviors especially at nanometer length scales is beyond the limit of conventional analytical tools due to the limited spatial resolution and low sensitivity. To address this challenge, herein we applied high-resolution tip-enhanced photoluminescence (TEPL) microscopy to investigate exciton funneling at a wrinkle in a t2L MoS2 sample with a small twist angle of 0.5°. Owing to a spatial resolution of <10 nm, excitonic behavior at nanoscale sized wrinkles could be visualized using TEPL imaging. Detailed investigation of nanoscale exciton funneling at the wrinkles revealed a deformation potential of -54 meV/%. The obtained results provide novel insights into the inhomogeneities of excitonic behaviors at nanoscale and would be helpful in facilitating the rational design of 2D material-based twistronic devices.
Collapse
Affiliation(s)
- Jiaqi Shao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Fei Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Weitao Su
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Yijie Zeng
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Ling Wu
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hong-Wei Lu
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
15
|
Albagami A, Ambardar S, Hrim H, Sahoo PK, Emirov Y, Gutiérrez HR, Voronine DV. Tip-Enhanced Photoluminescence of Freestanding Lateral Heterobubbles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11006-11015. [PMID: 35170302 DOI: 10.1021/acsami.1c24486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Two-dimensional (2D) semiconducting materials have promising applications in flexible optoelectronics, nanophotonics, and sensing based on the broad tunability of their optical and electronic properties. 2D nanobubbles form exciton funnels due to localized strain that can be used as local emitters for information processing. Their nanoscale optical characterization requires the use of near-field scanning probe microscopy (SPM). However, previous near-field studies of 2D materials were performed on SiO2/Si and metallic substrates using the plasmonic gap mode to increase the signal-to-noise ratio. Another challenge is the deterministic control of bubble size and location. We addressed these challenges by investigating the photoluminescence (PL) signals of freestanding monolayer lateral WSe2-MoSe2 heterostructures under the influence of strain exerted by a plasmonic SPM tip. For first time, we performed tip-enhanced PL imaging of freestanding 2D materials and studied the competition between the PL enhancement mechanisms by nanoindentation as a function of the tip-sample distance. We observed the tunability of PL as a function of bubble size, which opens new possibilities to design optoelectronic nanodevices.
Collapse
Affiliation(s)
- Abdullah Albagami
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
- Department of Physics, King Saud University, Riyadh 11362, Kingdom of Saudi Arabia
| | - Sharad Ambardar
- Department of Medical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Hana Hrim
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Prasana K Sahoo
- Materials Science Centre, India Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Yusuf Emirov
- Nanotechnology Research and Education Center, University of South Florida, Tampa, Florida 33620, United States
| | - Humberto R Gutiérrez
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Dmitri V Voronine
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
- Department of Medical Engineering, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
16
|
Garg S, Fix JP, Krayev AV, Flanery C, Colgrove M, Sulkanen AR, Wang M, Liu GY, Borys NJ, Kung P. Nanoscale Raman Characterization of a 2D Semiconductor Lateral Heterostructure Interface. ACS NANO 2022; 16:340-350. [PMID: 34936762 DOI: 10.1021/acsnano.1c06595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The nature of the interface in lateral heterostructures of 2D monolayer semiconductors including its composition, size, and heterogeneity critically impacts the functionalities it engenders on the 2D system for next-generation optoelectronics. Here, we use tip-enhanced Raman scattering (TERS) to characterize the interface in a single-layer MoS2/WS2 lateral heterostructure with a spatial resolution of 50 nm. Resonant and nonresonant TERS spectroscopies reveal that the interface is alloyed with a size that varies over an order of magnitude─from 50 to 600 nm─within a single crystallite. Nanoscale imaging of the continuous interfacial evolution of the resonant and nonresonant Raman spectra enables the deconvolution of defect activation, resonant enhancement, and material composition for several vibrational modes in single-layer MoS2, MoxW1-xS2, and WS2. The results demonstrate the capabilities of nanoscale TERS spectroscopy to elucidate macroscopic structure-property relationships in 2D materials and to characterize lateral interfaces of 2D systems on length scales that are imperative for devices.
Collapse
Affiliation(s)
- Sourav Garg
- Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - J Pierce Fix
- Department of Physics, Montana State University, Bozeman, Montana 59717, United States
| | | | - Connor Flanery
- Department of Physics, Montana State University, Bozeman, Montana 59717, United States
| | - Michael Colgrove
- Department of Physics, Montana State University, Bozeman, Montana 59717, United States
| | - Audrey R Sulkanen
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Minyuan Wang
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Gang-Yu Liu
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Nicholas J Borys
- Department of Physics, Montana State University, Bozeman, Montana 59717, United States
| | - Patrick Kung
- Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
17
|
Romanelli M, Dall'Osto G, Corni S. Role of metal-nanostructure features on tip-enhanced photoluminescence of single molecules. J Chem Phys 2021; 155:214304. [PMID: 34879682 DOI: 10.1063/5.0066758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tip-enhanced photoluminescence (TEPL) experiments have recently reached the ability to investigate single molecules exploiting resolution at the submolecular level. Localized surface plasmon resonances of metallic nanostructures have the capability of enhancing an impinging electromagnetic radiation in the proximity of their surface, with evident consequences both on absorption and emission of molecules placed in the same region. We propose a theoretical analysis of these phenomena in order to interpret TEPL experiments on single molecules, including a quantum mechanical description of the target molecule equilibrated with the presence of two nanostructures representative of the nanocavity usually employed in STMs. The approach has been applied to the zinc phthalocyanine molecule, previously considered in recent TEPL experiments [Yang et al., Nat. Photonics 14, 693-699 (2020)]. This work has the aim of providing a comprehensive theoretical understanding of the experimental results, particularly focusing on the investigation of the tip features that majorly influence the excitation and fluorescence processes of the molecule, such as the geometry, the dielectric function, and the tip-molecule distance.
Collapse
Affiliation(s)
- Marco Romanelli
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, Italy
| | - Giulia Dall'Osto
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, Italy
| |
Collapse
|
18
|
Malard LM, Lafeta L, Cunha RS, Nadas R, Gadelha A, Cançado LG, Jorio A. Studying 2D materials with advanced Raman spectroscopy: CARS, SRS and TERS. Phys Chem Chem Phys 2021; 23:23428-23444. [PMID: 34651627 DOI: 10.1039/d1cp03240b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman spectroscopy has been established as a valuable tool to study and characterize two-dimensional (2D) systems, but it exhibits two drawbacks: a relatively weak signal response and a limited spatial resolution. Recently, advanced Raman spectroscopy techniques, such as coherent anti-Stokes spectroscopy (CARS), stimulated Raman scattering (SRS) and tip-enhanced Raman spectroscopy (TERS), have been shown to overcome these two limitations. In this article, we review how useful physical information can be retrieved from different 2D materials using these three advanced Raman spectroscopy and imaging techniques, discussing results on graphene, hexagonal boron-nitride, and transition metal di- and mono-chalcogenides, thus providing perspectives for future work in this early-stage field of research, including similar studies on unexplored 2D systems and open questions.
Collapse
Affiliation(s)
- Leandro M Malard
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| | - Lucas Lafeta
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| | - Renan S Cunha
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| | - Rafael Nadas
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| | - Andreij Gadelha
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| | - Luiz Gustavo Cançado
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| | - Ado Jorio
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| |
Collapse
|
19
|
Kroth K, Klement P, Chen L, Chatterjee S, Klar PJ. Microscopic origin of near- and far-field contributions to tip-enhanced optical spectra of few-layer MoS 2. NANOSCALE 2021; 13:17116-17124. [PMID: 34633010 DOI: 10.1039/d1nr02987h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tip-induced optical spectroscopy overcomes the inherent resolution limits of conventional optical techniques enabling studies of sub-nm sized objects due to the tip's near-field antenna action. This statement is true for individual molecules on surfaces or in the gas phase, but does not hold without restrictions for spatially extended samples. The reason is that the perturbations caused by the tip extend into the sample volume. The tip may induce strain, heating or hot-carrier injection locally in the material. These effects add additional degrees of complexity by changing near-field and far-field optical response. The far-field response varies because strain relaxation, heat and carrier diffusion possess areas of influence exceeding the sample area influenced by the short-range near-field effects. Tip-in spectra are not simply enhanced compared to tip-out spectra, they will also vary in spectral appearance, i.e., peak positions, relative peak intensities, and linewidths. Detailed studies of MoS2 samples ranging from a single layer to bulk-like multi-layer MoS2 also reveal that the spectra are sensitive to variations of phonon and band structure with increasing layer number. These variations have a direct impact on the signals detected, but also clearly modify the relative magnitudes of the contributions of the tip-induced effects to the tip-in spectra. In addition, the optical response is affected by the kind of tip and substrate used. Hence, the presented results provide further insight into the underlying microscopic mechanisms of tip-enhanced spectroscopy and demonstrate that 2D materials are an ideal playground for obtaining a fundamental understanding of these spectroscopic techniques.
Collapse
Affiliation(s)
- Kathrin Kroth
- I. Physikalisches Institut und Zentrum für Materialforschung (ZfM/LaMa), Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.
| | - Philip Klement
- I. Physikalisches Institut und Zentrum für Materialforschung (ZfM/LaMa), Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.
| | - Limei Chen
- I. Physikalisches Institut und Zentrum für Materialforschung (ZfM/LaMa), Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.
| | - Sangam Chatterjee
- I. Physikalisches Institut und Zentrum für Materialforschung (ZfM/LaMa), Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.
| | - Peter J Klar
- I. Physikalisches Institut und Zentrum für Materialforschung (ZfM/LaMa), Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.
| |
Collapse
|
20
|
Itasaka H, Liu M, Kojima R, Yoshikawa T, Nishikawa M, Nishi M, Hamamoto K. Single-particle Observation of Detonation Nanodiamonds by Tip-enhanced Raman Spectroscopy. CHEM LETT 2021. [DOI: 10.1246/cl.210042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroki Itasaka
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, Aichi 463-8560, Japan
| | - Ming Liu
- Incubation Research Center, Innovation and Business Development Headquarters, Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Ryota Kojima
- Incubation Research Center, Innovation and Business Development Headquarters, Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Taro Yoshikawa
- Incubation Research Center, Innovation and Business Development Headquarters, Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Masahiro Nishikawa
- Incubation Research Center, Innovation and Business Development Headquarters, Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Masayuki Nishi
- Department of Mechanical and Electrical System Engineering, Faculty of Engineering, Kyoto University of Advanced Science, 18 Yamanouchi Gotanda-cho, Ukyo-ku, Kyoto 615-8577, Japan
| | - Koichi Hamamoto
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, Aichi 463-8560, Japan
| |
Collapse
|
21
|
Shao J, Chen F, Su W, Zeng Y, Lu HW. Multimodal Nanoscopic Study of Atomic Diffusion and Related Localized Optoelectronic Response of WS 2/MoS 2 Lateral Heterojunctions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20361-20370. [PMID: 33890458 DOI: 10.1021/acsami.1c03061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The atomic diffusion in transition metal dichalcogenides (TMDs) van der Waals heterojunctions (HJs) strongly modifies their optoelectronic properties in the nanoscale. However, probing such localized properties challenges the spatial resolution and the sensitivity of a variety of analytic tools. Herein, a multimodal nanoscopy (based on tip enhanced Raman spectroscopy (TERS) and photoluminescence (TEPL)) combined with the Kelvin probe force microscopy (KPFM) method was used to probe such nanoscale localized optoelectronic properties induced by atomic diffusion. Chemical vapor deposition (CVD)-grown lateral bilayer (2L) WS2/MoS2 HJs were imaged with a spatial resolution better than 40 nm via TERS and TEPL mapping by using intrinsic Raman and photoluminescence (PL) peaks. The contact potential difference (CPD), capacitance, and PL variation in a nanoscale vicinity of the HJ interface can be correlated to the local stoichiometry variation determined by TERS. The diffusion coefficients of W and Mo were obtained to be ∼0.5 × 10-12 and ∼1 × 10-12 cm2/s, respectively, by using Fick's second law. The obtained results would be useful to further understand the localized optoelectronic response of the TMDs HJs.
Collapse
Affiliation(s)
- Jiaqi Shao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, 310018 Hangzhou, P. R. China
| | - Fei Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, 310018 Hangzhou, P. R. China
| | - Weitao Su
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, 310018 Hangzhou, P. R. China
- School of Sciences, Hangzhou Dianzi University, 310018 Hangzhou, P. R. China
| | - Yijie Zeng
- School of Sciences, Hangzhou Dianzi University, 310018 Hangzhou, P. R. China
| | - Hong-Wei Lu
- School of Sciences, Hangzhou Dianzi University, 310018 Hangzhou, P. R. China
| |
Collapse
|
22
|
Fali A, Zhang T, Terry JP, Kahn E, Fujisawa K, Kabius B, Koirala S, Ghafouri Y, Zhou D, Song W, Yang L, Terrones M, Abate Y. Photodegradation Protection in 2D In-Plane Heterostructures Revealed by Hyperspectral Nanoimaging: The Role of Nanointerface 2D Alloys. ACS NANO 2021; 15:2447-2457. [PMID: 33464036 DOI: 10.1021/acsnano.0c06148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Single-layer heterostructures exhibit striking quasiparticle properties and many-body interaction effects that hold promise for a range of applications. However, their properties can be altered by intrinsic and extrinsic defects, thus diminishing their applicability. Therefore, it is of paramount importance to identify defects and understand 2D materials' degradation over time using advanced multimodal imaging techniques. Here we implemented a liquid-phase precursor approach to synthesize 2D in-plane MoS2-WS2 heterostructures exhibiting nanoscale alloyed interfaces and map exotic interface effects during photodegradation using a combination of hyperspectral tip-enhanced photoluminescence and Raman and near-field nanoscopy. Surprisingly, 2D alloyed regions exhibit thermal and photodegradation stability providing protection against oxidation. Coupled with surface and interface strain, 2D alloy regions create stable localized potential wells that concentrate excitonic species via a charge carrier funneling effect. These results demonstrate that 2D alloys can withstand extreme degradation effects over time and could enable stable 2D device engineering.
Collapse
Affiliation(s)
- Alireza Fali
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, United States
| | - Tianyi Zhang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jason Patrick Terry
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, United States
| | - Ethan Kahn
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kazunori Fujisawa
- Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bernd Kabius
- Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sandhaya Koirala
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, United States
| | - Yassamin Ghafouri
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, United States
| | - Da Zhou
- Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Wenshen Song
- Department of Physics and Institute of Materials Science & Engineering, Washington University in St Louis, St. Louis, Missouri 63130, United States
| | - Li Yang
- Department of Physics and Institute of Materials Science & Engineering, Washington University in St Louis, St. Louis, Missouri 63130, United States
| | - Mauricio Terrones
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yohannes Abate
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
23
|
Kumar N, Marchesini S, Howe T, Edwards L, Brennan B, Pollard AJ. Nanoscale characterization of plasma functionalized graphitic flakes using tip-enhanced Raman spectroscopy. J Chem Phys 2020; 153:184708. [PMID: 33187417 DOI: 10.1063/5.0024370] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The chemical functionalization of graphene nanomaterials allows for the enhancement of their properties for novel functional applications. However, a better understanding of the functionalization process by determining the amount and location of functional groups within individual graphene nanoplatelets remains challenging. In this work, we demonstrate the capability of tip-enhanced Raman spectroscopy (TERS) to investigate the degree and spatial variability of the appearance of disorder in graphitic nanomaterials on the nanoscale with three different levels of nitrogen functionalization. TERS results are in excellent agreement with those of confocal Raman spectroscopy and chemical analysis, determined using x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry, of the functionalized materials. This work paves the way for a better understanding of the functionalization of graphene and graphitic nanomaterials at the nano-scale, micro-scale, and macro-scale and the relationship between the techniques and how they relate to the changes in material properties of industrial importance.
Collapse
Affiliation(s)
- Naresh Kumar
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
| | - Sofia Marchesini
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
| | - Thomas Howe
- Haydale Limited, Clos Fferws, Parc Hendre, Ammanford SA18 3BL, United Kingdom
| | - Lee Edwards
- Haydale Limited, Clos Fferws, Parc Hendre, Ammanford SA18 3BL, United Kingdom
| | - Barry Brennan
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
| | - Andrew J Pollard
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
| |
Collapse
|
24
|
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Present and Future of Surface-Enhanced Raman Scattering. ACS NANO 2020; 14:28-117. [PMID: 31478375 PMCID: PMC6990571 DOI: 10.1021/acsnano.9b04224] [Citation(s) in RCA: 1441] [Impact Index Per Article: 360.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 04/14/2023]
Abstract
The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.
Collapse
Affiliation(s)
- Judith Langer
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | | | - Javier Aizpurua
- Materials
Physics Center (CSIC-UPV/EHU), and Donostia
International Physics Center, Paseo Manuel de Lardizabal 5, Donostia-San
Sebastián 20018, Spain
| | - Ramon A. Alvarez-Puebla
- Departamento
de Química Física e Inorgánica and EMaS, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Baptiste Auguié
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Guillermo C. Bazan
- Department
of Materials and Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106-9510, United States
| | - Steven E. J. Bell
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, The Danish National Research Foundation
and Villum Foundation’s Center for Intelligent Drug Delivery
and Sensing Using Microcontainers and Nanomechanics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Alexandre G. Brolo
- Department
of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3 V6, Canada
- Center
for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jaebum Choo
- Department
of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Dana Cialla-May
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Volker Deckert
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Laura Fabris
- Department
of Materials Science and Engineering, Rutgers
University, 607 Taylor Road, Piscataway New Jersey 08854, United States
| | - Karen Faulds
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - F. Javier García de Abajo
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
- The Barcelona
Institute of Science and Technology, Institut
de Ciencies Fotoniques, Castelldefels (Barcelona) 08860, Spain
| | - Royston Goodacre
- Department
of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Amanda J. Haes
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christian Huck
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Tamitake Itoh
- Nano-Bioanalysis
Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Mikael Käll
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Janina Kneipp
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str. 2, Berlin-Adlershof 12489, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hua Kuang
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Eric C. Le Ru
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Hiang Kwee Lee
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jian-Feng Li
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Yi Ling
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Stefan A. Maier
- Chair in
Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Thomas Mayerhöfer
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Martin Moskovits
- Department
of Chemistry & Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North 10 West 8, Kita-ku, Sapporo,
Hokkaido 060-0810, Japan
| | - Jwa-Min Nam
- Department
of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Yukihiro Ozaki
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | - Jorge Perez-Juste
- Departamento
de Química Física and CINBIO, University of Vigo, Vigo 36310, Spain
| | - Juergen Popp
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Annemarie Pucci
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Bin Ren
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Timur Shegai
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Sebastian Schlücker
- Physical
Chemistry I, Department of Chemistry and Center for Nanointegration
Duisburg-Essen, University of Duisburg-Essen, Essen 45141, Germany
| | - Li-Lin Tay
- National
Research Council Canada, Metrology Research
Centre, Ottawa K1A0R6, Canada
| | - K. George Thomas
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Vithura Thiruvananthapuram 695551, India
| | - Zhong-Qun Tian
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Richard P. Van Duyne
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Department of Biomedical Engineering, and
Department of Chemistry, Duke University, 101 Science Drive, Box 90281, Durham, North Carolina 27708, United States
| | - Yue Wang
- Department
of Chemistry, College of Sciences, Northeastern
University, Shenyang 110819, China
| | - Katherine A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Chuanlai Xu
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Hongxing Xu
- School
of Physics and Technology and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yikai Xu
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Bing Zhao
- State Key
Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
25
|
Negri M, Francaviglia L, Dumcenco D, Bosi M, Kaplan D, Swaminathan V, Salviati G, Kis A, Fabbri F, Fontcuberta I Morral A. Quantitative Nanoscale Absorption Mapping: A Novel Technique To Probe Optical Absorption of Two-Dimensional Materials. NANO LETTERS 2020; 20:567-576. [PMID: 31874041 DOI: 10.1021/acs.nanolett.9b04304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional semiconductors, in particular transition metal dichalcogenides and related heterostructures, have gained increasing interest as they constitute potential new building blocks for the next generation of electronic and optoelectronic applications. In this work, we develop a novel nondestructive and noncontact technique for mapping the absorption properties of 2D materials, by taking advantage of the underlying substrate cathodoluminescence emission. We map the quantitative absorption of MoS2 and MoSe2 monolayers, obtained on sapphire and oxidized silicon, with nanoscale resolution. We extend our technique to the characterization of the absorption properties of MoS2/MoSe2 van der Waals heterostructures. We demonstrate that interlayer excitonic phenomena enhance the absorption in the UV range. Our technique also highlights the presence of defects such as grain boundaries and ad-layers. We provide measurements on the absorption of grain boundaries in monolayer MoS2 at different merging angles. We observe a higher absorption yield of randomly oriented monolayers with respect to 60° rotated monolayers. This work opens up a new possibility for characterizing the functional properties two-dimensional semiconductors at the nanoscale.
Collapse
Affiliation(s)
- Marco Negri
- Institute of Materials, Faculty of Engineering , École Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| | - Luca Francaviglia
- Institute of Materials, Faculty of Engineering , École Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| | - Dumitru Dumcenco
- Institute of Materials, Faculty of Engineering , École Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
- Electrical Engineering Institute , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Matteo Bosi
- Institute for Materials for Electronics and Magnetism (IMEM-CNR) , Parco Area delle Scienze 37/A , 43124 Parma , Italy
| | - Daniel Kaplan
- Fuze Precision Armaments and Technology Directorate , U.S. Army RDECOM-ARDEC , Picatinny Arsenal , New Jersey 07806 , United States
| | - Venkataraman Swaminathan
- Fuze Precision Armaments and Technology Directorate , U.S. Army RDECOM-ARDEC , Picatinny Arsenal , New Jersey 07806 , United States
| | - Giancarlo Salviati
- Institute for Materials for Electronics and Magnetism (IMEM-CNR) , Parco Area delle Scienze 37/A , 43124 Parma , Italy
| | - Andras Kis
- Electrical Engineering Institute , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Filippo Fabbri
- NEST , Istituto Nanoscienze-CNR, Scuola Normale Superiore , Piazza San Silvestro 12 , 56127 Pisa , Italy
| | - Anna Fontcuberta I Morral
- Institute of Materials, Faculty of Engineering , École Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
- Institute of Physics, Faculty of Basic Sciences , École Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| |
Collapse
|
26
|
Alencar RS, Rabelo C, Miranda HLS, Vasconcelos TL, Oliveira BS, Ribeiro A, Públio BC, Ribeiro-Soares J, Filho AGS, Cançado LG, Jorio A. Probing Spatial Phonon Correlation Length in Post-Transition Metal Monochalcogenide GaS Using Tip-Enhanced Raman Spectroscopy. NANO LETTERS 2019; 19:7357-7364. [PMID: 31469281 DOI: 10.1021/acs.nanolett.9b02974] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The knowledge of the phonon coherence length is of great importance for two-dimensional-based materials since phonons can limit the lifetime of charge carriers and heat dissipation. Here we use tip-enhanced Raman spectroscopy (TERS) to measure the spatial correlation length Lc of the A1g1 and A1g2 phonons of monolayer and few-layer gallium sulfide (GaS). The differences in Lc values are responsible for different enhancements of the A1g modes, with A1g1 always enhancing more than the A1g2, independently of the number of GaS layers. For five layers, the results show an Lc of 64 and 47 nm for A1g1 and A1g2, respectively, and the coherence lengths decrease when decreasing the number of layers, indicating that scattering with the surface roughness plays an important role.
Collapse
Affiliation(s)
- R S Alencar
- Faculdade de Física , Universidade Federal do Pará , 66075-110 Belém-PA , Brazil
- Departamento de Física , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais 30270-901 , Brazil
- Departamento de Física , Centro de Ciências, Universidade Federal do Ceará , P. O. Box 6030, Fortaleza , Ceará 60455-900 , Brazil
| | - Cassiano Rabelo
- Programa de Pós-Graduação em Engenharia Elétrica , Universidade Federal de Minas Gerais , Av. Antônio Carlos 6627 , 31270-901 Belo Horizonte , MG , Brazil
| | - Hudson L S Miranda
- Programa de Pós-Graduação em Engenharia Elétrica , Universidade Federal de Minas Gerais , Av. Antônio Carlos 6627 , 31270-901 Belo Horizonte , MG , Brazil
| | - Thiago L Vasconcelos
- Divisão de Metrologia de Materiais , Instituto Nacional de Metrologia Qualidade e Tecnologia (INMETRO) , Duque de Caxias, Rio de Janeiro 25250-020 , Brazil
| | - Bruno S Oliveira
- Divisão de Metrologia de Materiais , Instituto Nacional de Metrologia Qualidade e Tecnologia (INMETRO) , Duque de Caxias, Rio de Janeiro 25250-020 , Brazil
| | - Aroldo Ribeiro
- Departamento de Física , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais 30270-901 , Brazil
| | - Bruno C Públio
- Departamento de Física , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais 30270-901 , Brazil
| | - Jenaina Ribeiro-Soares
- Departamento de Física , Universidade Federal de Lavras , Lavras , Minas Gerais 37200-000 , Brazil
| | - A G Souza Filho
- Departamento de Física , Centro de Ciências, Universidade Federal do Ceará , P. O. Box 6030, Fortaleza , Ceará 60455-900 , Brazil
| | - Luiz Gustavo Cançado
- Departamento de Física , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais 30270-901 , Brazil
| | - Ado Jorio
- Departamento de Física , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais 30270-901 , Brazil
| |
Collapse
|
27
|
He Z, Han Z, Yuan J, Sinyukov AM, Eleuch H, Niu C, Zhang Z, Lou J, Hu J, Voronine DV, Scully MO. Quantum plasmonic control of trions in a picocavity with monolayer WS 2. SCIENCE ADVANCES 2019; 5:eaau8763. [PMID: 31646171 PMCID: PMC6788863 DOI: 10.1126/sciadv.aau8763] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/14/2019] [Indexed: 05/30/2023]
Abstract
Monitoring and controlling the neutral and charged excitons (trions) in two-dimensional (2D) materials are essential for the development of high-performance devices. However, nanoscale control is challenging because of diffraction-limited spatial resolution of conventional far-field techniques. Here, we extend the classical tip-enhanced photoluminescence based on tip-substrate nanocavity to quantum regime and demonstrate controlled nano-optical imaging, namely, tip-enhanced quantum plasmonics. In addition to improving the spatial resolution, we use the scanning probe to control the optoelectronic response of monolayer WS2 by varying the neutral/charged exciton ratio via charge tunneling in Au-Ag picocavity. We observe trion "hot spots" generated by varying the picometer-scale probe-sample distance and show the effects of weak and strong coupling, which depend on the spatial location. Our experimental results are in agreement with simulations and open an unprecedented view of a new range of quantum plasmonic phenomena with 2D materials that will help to design new quantum optoelectronic devices.
Collapse
Affiliation(s)
- Zhe He
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Zehua Han
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jiangtan Yuan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
| | - Alexander M. Sinyukov
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Hichem Eleuch
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Applied Sciences and Mathematics, College of Arts and Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Chao Niu
- Baylor Research and Innovation Collaborative, Baylor University, Waco, TX 76798, USA
- Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76798, USA
| | - Zhenrong Zhang
- Baylor Research and Innovation Collaborative, Baylor University, Waco, TX 76798, USA
- Department of Physics, Baylor University, Waco, TX 76798, USA
| | - Jun Lou
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
| | - Jonathan Hu
- Baylor Research and Innovation Collaborative, Baylor University, Waco, TX 76798, USA
- Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76798, USA
| | - Dmitri V. Voronine
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Marlan O. Scully
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX 77843, USA
- Baylor Research and Innovation Collaborative, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
28
|
Kumar N, Wondergem CS, Wain AJ, Weckhuysen BM. In Situ Nanoscale Investigation of Catalytic Reactions in the Liquid Phase Using Zirconia-Protected Tip-Enhanced Raman Spectroscopy Probes. J Phys Chem Lett 2019; 10:1669-1675. [PMID: 30916970 PMCID: PMC6477806 DOI: 10.1021/acs.jpclett.8b02496] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) is a promising technique that enables nondestructive and label-free topographical and chemical imaging at the nanoscale. However, its scope for in situ characterization of catalytic reactions in the liquid phase has remained limited due to the lack of durable and chemically inert plasmonically active TERS probes. Herein, we present novel zirconia-protected TERS probes with 3 orders of magnitude increase in lifetime under ambient conditions compared to unprotected silver-coated probes, together with high stability in liquid media. Employing the plasmon-assisted oxidation of p-aminothiophenol as a model reaction, we demonstrate that the highly robust, durable, and chemically inert zirconia-protected TERS probes can be successfully used for nanoscale spatially resolved characterization of a photocatalytic reaction within an aqueous environment. The reported improved lifetime and stability of probes in a liquid environment extend the potential scope of TERS as a nanoanalytical tool not only to heterogeneous catalysis but also to a range of scientific disciplines in which dynamic solid-liquid interfaces play a defining role.
Collapse
Affiliation(s)
- Naresh Kumar
- Inorganic
Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- National
Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom
| | - Caterina S. Wondergem
- Inorganic
Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Andrew J. Wain
- National
Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom
| | - Bert M. Weckhuysen
- Inorganic
Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- E-mail:
| |
Collapse
|
29
|
Kumar N, Weckhuysen BM, Wain AJ, Pollard AJ. Nanoscale chemical imaging using tip-enhanced Raman spectroscopy. Nat Protoc 2019; 14:1169-1193. [PMID: 30911174 DOI: 10.1038/s41596-019-0132-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/09/2019] [Indexed: 11/09/2022]
Abstract
Confocal and surface-enhanced Raman spectroscopy (SERS) are powerful techniques for molecular characterization; however, they suffer from the drawback of diffraction-limited spatial resolution. Tip-enhanced Raman spectroscopy (TERS) overcomes this limitation and provides chemical information at length scales in the tens of nanometers. In contrast to alternative approaches to nanoscale chemical analysis, TERS is label free, is non-destructive, and can be performed in both air and liquid environments, allowing its use in a diverse range of applications. Atomic force microscopy (AFM)-based TERS is especially versatile, as it can be applied to a broad range of samples on various substrates. Despite its advantages, widespread uptake of this technique for nanoscale chemical imaging has been inhibited by various experimental challenges, such as limited lifetime, and the low stability and yield of TERS probes. This protocol details procedures that will enable researchers to reliably perform TERS imaging using a transmission-mode AFM-TERS configuration on both biological and non-biological samples. The procedure consists of four stages: (i) preparation of plasmonically active TERS probes; (ii) alignment of the TERS system; (iii) experimental procedures for nanoscale imaging using TERS; and (iv) TERS data processing. We provide procedures and example data for a range of different sample types, including polymer thin films, self-assembled monolayers (SAMs) of organic molecules, photocatalyst surfaces, small molecules within biological cells, single-layer graphene and single-walled carbon nanotubes in both air and water. With this protocol, TERS probes can be prepared within ~23 h, and each subsequent TERS experimental procedure requires 3-5 h.
Collapse
Affiliation(s)
- Naresh Kumar
- National Physical Laboratory, Teddington, UK.,Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
| | | | | |
Collapse
|
30
|
Catalán-Gómez S, Garg S, Redondo-Cubero A, Gordillo N, de Andrés A, Nucciarelli F, Kim S, Kung P, Pau JL. Photoluminescence enhancement of monolayer MoS 2 using plasmonic gallium nanoparticles. NANOSCALE ADVANCES 2019; 1:884-893. [PMID: 36132234 PMCID: PMC9473177 DOI: 10.1039/c8na00094h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/18/2018] [Indexed: 05/21/2023]
Abstract
2D monolayer molybdenum disulphide (MoS2) has been the focus of intense research due to its direct bandgap compared with the indirect bandgap of its bulk counterpart; however its photoluminescence (PL) intensity is limited due to its low absorption efficiency. Herein, we use gallium hemispherical nanoparticles (Ga NPs) deposited by thermal evaporation on top of chemical vapour deposited MoS2 monolayers in order to enhance its luminescence. The influence of the NP radius and the laser wavelength is reported in PL and Raman experiments. In addition, the physics behind the PL enhancement factor is investigated. The results indicate that the prominent enhancement is caused by the localized surface plasmon resonance of the Ga NPs induced by a charge transfer phenomenon. This work sheds light on the use of alternative metals, besides silver and gold, for the improvement of MoS2 luminescence.
Collapse
Affiliation(s)
- Sergio Catalán-Gómez
- Grupo de Electrónica y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid Cantoblanco E-28049 Madrid Spain
| | - Sourav Garg
- Electrical and Computer Engineering Department, University of Alabama Tuscaloosa Alabama USA
| | - Andrés Redondo-Cubero
- Grupo de Electrónica y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid Cantoblanco E-28049 Madrid Spain
| | - Nuria Gordillo
- Grupo de Electrónica y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid Cantoblanco E-28049 Madrid Spain
| | - Alicia de Andrés
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC) C/Sor Juana Inés de la Cruz, 4 E-28049 Madrid Spain
| | - Flavio Nucciarelli
- Grupo de Electrónica y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid Cantoblanco E-28049 Madrid Spain
- Physics Department, Lancaster University Lancaster LA1 4YB UK
| | - Seonsing Kim
- Electrical and Computer Engineering Department, University of Alabama Tuscaloosa Alabama USA
| | - Patrick Kung
- Electrical and Computer Engineering Department, University of Alabama Tuscaloosa Alabama USA
| | - Jose Luis Pau
- Grupo de Electrónica y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid Cantoblanco E-28049 Madrid Spain
| |
Collapse
|
31
|
Kumar N, Kalirai S, Wain AJ, Weckhuysen BM. Nanoscale Chemical Imaging of a Single Catalyst Particle with Tip-Enhanced Fluorescence Microscopy. ChemCatChem 2019; 11:417-423. [PMID: 31031870 PMCID: PMC6472685 DOI: 10.1002/cctc.201801023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Indexed: 11/11/2022]
Abstract
Determining the active site in real-life solid catalysts remains an intellectual challenge and is crucial for exploring the road towards their rational design. In recent years various micro-spectroscopic methods have revealed valuable structure-activity data at the level of a single catalyst particle, even under reaction conditions. Herein, we introduce Tip-Enhanced FLuorescence (TEFL) microscopy as a novel and versatile characterization tool for catalysis research. This has been achieved using a Fluid Catalytic Cracking (FCC) catalyst as showcase material. Thin sectioning of industrially used FCC particles together with selective staining of Brønsted acidity has enabled high-resolution TEFL mapping of different catalyst regions. Hyperspectral information gained via TEFL microscopy reveals a spatial distribution of Brønsted acidity within individual zeolite domains in different regions of the FCC catalyst particle. Comparison of TEFL measurements from different FCC particles showed significant intra- and inter-particle heterogeneities both in zeolite domain size and chemical reactivity.
Collapse
Affiliation(s)
- Naresh Kumar
- Inorganic Chemistry and Catalysis Group Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
- National Physical LaboratoryHampton RoadTeddington, TW11 0LWUnited Kingdom
| | - Sam Kalirai
- Inorganic Chemistry and Catalysis Group Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Andrew J. Wain
- National Physical LaboratoryHampton RoadTeddington, TW11 0LWUnited Kingdom
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis Group Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| |
Collapse
|
32
|
Zhang L, Su W, Huang Y, Li H, Fu L, Song K, Huang X, Yu J, Lin CT. In Situ High-Pressure X-ray Diffraction and Raman Spectroscopy Study of Ti 3C 2T x MXene. NANOSCALE RESEARCH LETTERS 2018; 13:343. [PMID: 30374742 PMCID: PMC6206307 DOI: 10.1186/s11671-018-2746-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/10/2018] [Indexed: 06/01/2023]
Abstract
The lattice stability and phonon response of Ti3C2Tx MXene at high pressure are important for understanding its mechanical and thermal properties fully. Here, we use in situ high hydrostatic pressure X-ray diffraction (XRD) and Raman spectroscopy to study the lattice deformation and phonon behavior of Ti3C2Tx MXene. XRD spectra indicate that no phase transformation occurs up to the pressure of 26.7 GPa. The elastic constant along a lattice parameter was calculated to be 378 GPa. In the Raman spectra obtained at high-pressure, the out-of-plane phonon modes (A1g at ~ 210, ~ 504, and ~ 711 cm-1) exhibit monotonic blueshifts with increasing pressure. The Grüneisen parameters of these three modes were calculated to be 1.08, 1.16, and 0.29, respectively. These results enrich the basic property data of Ti3C2Tx MXene and would benefit the further understanding of this novel material.
Collapse
Affiliation(s)
- Luxi Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Weitao Su
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Yanwei Huang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018 China
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203 China
| | - He Li
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203 China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Kaixin Song
- College of electronics and information, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Xiwei Huang
- College of electronics and information, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Jinhong Yu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| |
Collapse
|
33
|
Tip-enhanced Raman spectroscopy: principles, practice, and applications to nanospectroscopic imaging of 2D materials. Anal Bioanal Chem 2018; 411:37-61. [DOI: 10.1007/s00216-018-1392-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
|
34
|
Plathier J, Pignolet A, Ruediger A. Note: Controlling the length of plasmonic tips obtained by pulsed electrochemical etching. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:096107. [PMID: 30278714 DOI: 10.1063/1.5028052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
We present a method to control the length of plasmonic gold tips through pulsed electrochemical etching. This method uses a cut-off circuit to interrupt the etching when the desired length is achieved, paving the way to tune the plasmonic properties of these tips through their shape. The control of the tip length by monitoring the cell voltage is the result of a study of the etching dynamics. The resulting tips possess a low apex radius and a small opening angle, allowing for high spatial resolution both in topography and in near-field imaging. The plasmonic behavior was confirmed in tip-enhanced Raman spectroscopy.
Collapse
Affiliation(s)
- J Plathier
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec J3X 1S2, Canada
| | - A Pignolet
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec J3X 1S2, Canada
| | - A Ruediger
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec J3X 1S2, Canada
| |
Collapse
|
35
|
Abstract
Two-dimensional dichalcogenides (TMDs) and mxene junctions had been predicted to possess distinct tunable electronic properties. However, direct synthesis of WS2 on Ti3C2Tx mxene is still challenging. Herein, we successfully deposited WS2 onto the surface of Ti3C2Tx mxene by employing the vapor transportation (VT) routine. By modulating pressure and source-sample distance, multilayer and monolayer (1 L) WS2 flakes were deposited onto the lateral side and top surface of Ti3C2Tx flakes. The 1 L WS2 flakes growing on lateral side of Ti3C2Tx flake have much higher photoluminescence (PL) intensity than 1 L flakes growing on the top surface. Our study has the potential to benefit the design and preparation of novel electronic and electrochemical devices based on TMDs/mxene junctions.
Collapse
|
36
|
Okuno Y, Lancry O, Tempez A, Cairone C, Bosi M, Fabbri F, Chaigneau M. Probing the nanoscale light emission properties of a CVD-grown MoS 2 monolayer by tip-enhanced photoluminescence. NANOSCALE 2018; 10:14055-14059. [PMID: 29999092 DOI: 10.1039/c8nr02421a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Two-dimensional transition metal dichalcogenides are gaining increasing interest due to their promising optical properties. In particular, molybdenum disulfide (MoS2) which displays a band-gap change from indirect at 1.29 eV for bulk materials to direct at 1.8 eV for the material monolayer. This particular effect can lead to a strong light interaction which can pave the way for a new approach to the next generation of visible light emitting devices. In this work we show the nanoscale variation of light emission properties by tip-enhanced photoluminescence microscopy and spectroscopy in the MoS2 monolayer, grown by chemical vapour deposition. The variations of the light emission properties are due to different effects depending on the shape of the MoS2 single layer, for instance, a different concentration of point defect in an irregularly shaped flake and the presence of a nanoscale terrace in a triangular monolayer. Simultaneously, atomic force microscopy reveals indeed the presence of a nanometric terrace, composed of an additional layer of MoS2, and tip-enhanced PL intensity imaging shows a localized intensity decrease.
Collapse
Affiliation(s)
- Yoshito Okuno
- Scientific & Semiconducting Instruments R&D Department, HORIBA Ltd, 2 Kisshouin Miyanohigashi-machi, Kyoto 601-8510, Japan.
| | - Ophélie Lancry
- HORIBA Scientific, Avenue de la Vauve - Passage Jobin Yvon- CS, Palaiseau 45002, France
| | - Agnès Tempez
- HORIBA Scientific, Avenue de la Vauve - Passage Jobin Yvon- CS, Palaiseau 45002, France
| | - Cristina Cairone
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata" via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Matteo Bosi
- IMEM-CNR Institute, Parco Area delle Scienze 37/A, Parma 43124, Italy
| | - Filippo Fabbri
- Center for Nanotechnology Innovation @NEST, Piazza San Silvestro 12, Pisa 56127, Italy
| | - Marc Chaigneau
- HORIBA Scientific, Avenue de la Vauve - Passage Jobin Yvon- CS, Palaiseau 45002, France
| |
Collapse
|
37
|
Su W, Kumar N, Krayev A, Chaigneau M. In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale. Nat Commun 2018; 9:2891. [PMID: 30038358 PMCID: PMC6056528 DOI: 10.1038/s41467-018-05307-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 06/20/2018] [Indexed: 11/30/2022] Open
Abstract
Visualising the distribution of structural defects and functional groups present on the surface of two-dimensional (2D) materials such as graphene oxide challenges the sensitivity and spatial resolution of the most advanced analytical techniques. Here we demonstrate mapping of functional groups on a carboxyl-modified graphene oxide (GO–COOH) surface with a spatial resolution of ≈10 nm using tip-enhanced Raman spectroscopy (TERS). Furthermore, we extend the capability of TERS by measuring local electronic properties in situ, in addition to the surface topography and chemical composition. Our results reveal that the Fermi level at the GO–COOH surface decreases as the ID/IG ratio increases, correlating the local defect density with the Fermi level at nanometre length-scales. The in situ multi-parameter microscopy demonstrated in this work significantly improves the accuracy of nanoscale surface characterisation, eliminates measurement artefacts, and opens up the possibilities for characterising optoelectronic devices based on 2D materials under operational conditions. Mapping the distribution of functional groups on 2D materials with high resolution remains challenging. Here, the authors combine tip-enhanced Raman spectroscopy and Kelvin probe force microscopy to simultaneously examine the topography, chemical composition and electronic nature of graphene oxide surfaces with nanoscale spatial resolution.
Collapse
Affiliation(s)
- Weitao Su
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, 310018, Hangzhou, China. .,Key Laboratory of RF Circuits and Systems (Hangzhou Dianzi University), Ministry of Education, Hangzhou, 310018, China.
| | - Naresh Kumar
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK. .,Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Andrey Krayev
- HORIBA Instruments Incorporated, Novato, CA, 94949, USA
| | - Marc Chaigneau
- HORIBA France, Avenue de la Vauve, Passage Jobin Yvon, 91120, Palaiseau, France.
| |
Collapse
|
38
|
Hermann RJ, Gordon MJ. Nanoscale Optical Microscopy and Spectroscopy Using Near-Field Probes. Annu Rev Chem Biomol Eng 2018; 9:365-387. [DOI: 10.1146/annurev-chembioeng-060817-084150] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Light-matter interactions can provide a wealth of detailed information about the structural, electronic, optical, and chemical properties of materials through various excitation and scattering processes that occur over different length, energy, and timescales. Unfortunately, the wavelike nature of light limits the achievable spatial resolution for interrogation and imaging of materials to roughly λ/2 because of diffraction. Scanning near-field optical microscopy (SNOM) breaks this diffraction limit by coupling light to nanostructures that are specifically designed to manipulate, enhance, and/or extract optical signals from very small regions of space. Progress in the SNOM field over the past 30 years has led to the development of many methods to optically characterize materials at lateral spatial resolutions well below 100 nm. We review these exciting developments and demonstrate how SNOM is truly extending optical imaging and spectroscopy to the nanoscale.
Collapse
Affiliation(s)
- Richard J. Hermann
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA;,
| | - Michael J. Gordon
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA;,
| |
Collapse
|
39
|
Kim Y, Lee Y, Kim H, Roy S, Kim J. Near-field exciton imaging of chemically treated MoS 2 monolayers. NANOSCALE 2018; 10:8851-8858. [PMID: 29714393 DOI: 10.1039/c8nr00606g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The exciton-dominated light emission of two-dimensional (2D) semiconductors is determined largely by the doping state and the formation of defects. Extensive studies have shown that chemical treatment critically modifies the doping state and defect state of chemical vapor deposition (CVD)-grown or exfoliated monolayer MoS2 (1L-MoS2), suggesting a promising possibility for engineering the optoelectronic properties of 2D semiconductors. However, chemical treatment inevitably modifies both the doping state and defect states, and their independent roles in the exciton emission of 1L-MoS2 have been difficult to study, significantly limiting the practical and reliable uses of chemical treatment to improve the optical properties of 1L-TMDs. Herein, we used near-field imaging and spectroscopy to investigate the effects of chemical treatment on the exciton emission of 1L-MoS2. CVD-grown 1L-MoS2 was treated with bis(trifluoromethane)-sulfonimide (TFSI) or 7,7,8,8-tetracyanoquinodimethane (TCNQ), and nanoscale maps of neutral exciton and trion emission before and after chemical treatment were obtained with 80 nm spatial resolution. A comparison of the local spatial and spectral compositions of neutral excitons and trions suggested that the p-doping effect of TFSI was especially strong around local defects, whereas electron depletion by TCNQ was spatially uniform. The specific reaction of TFSI to defect locations observed in our study provides the clue for the reason that TFSI is notably effective at improving the light emission of 1L-MoS2.
Collapse
Affiliation(s)
- Youngbum Kim
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | | | | | | | | |
Collapse
|
40
|
Milekhin AG, Rahaman M, Rodyakina EE, Latyshev AV, Dzhagan VM, Zahn DRT. Giant gap-plasmon tip-enhanced Raman scattering of MoS 2 monolayers on Au nanocluster arrays. NANOSCALE 2018; 10:2755-2763. [PMID: 29308796 DOI: 10.1039/c7nr06640f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this article, we present the results of a gap-plasmon tip-enhanced Raman scattering study of MoS2 monolayers deposited on a periodic array of Au nanostructures on a silicon substrate forming a two dimensional (2D) crystal/plasmonic heterostructure. We observe a giant Raman enhancement of the phonon modes in the MoS2 monolayer located in the plasmonic gap between the Au tip apex and Au nanoclusters. Tip-enhanced Raman mapping allows us to determine the gap-plasmon field distribution responsible for the formation of hot spots. These hot spots provide an unprecedented giant Raman enhancement of 5.6 × 108 and a spatial resolution as small as 2.3 nm under ambient conditions. Moreover, due to strong hot electron doping in the order of 1.8 × 1013 cm-2, we observe a structural change of MoS2 from the 2H to the 1T phase. Owing to the very good spatial resolution, we are able to spatially resolve those doping sites. To the best of our knowledge, this is the first time reporting of such a phenomenon with nm spatial resolution. Our results will open the perspectives of optical diagnostics with nanometer resolution for many other 2D materials.
Collapse
Affiliation(s)
- Alexander G Milekhin
- Rzhanov Institute of Semiconductor Physics RAS, Lavrentiev Ave. 13, 630090, Novosibirsk, Russia.
| | | | | | | | | | | |
Collapse
|
41
|
Kumar N, Su W, Veselý M, Weckhuysen BM, Pollard AJ, Wain AJ. Nanoscale chemical imaging of solid-liquid interfaces using tip-enhanced Raman spectroscopy. NANOSCALE 2018; 10:1815-1824. [PMID: 29308817 DOI: 10.1039/c7nr08257f] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for non-destructive and label-free surface molecular mapping at the nanoscale. However, to date nanoscale resolution chemical imaging in a liquid environment has not been possible, in part due to the lack of robust TERS probes that are stable when immersed in a liquid. In this work, we have addressed this challenge by developing plasmonically-active TERS probes with a multilayer metal coating structure that can be successfully used within a liquid environment. Using these novel TERS probes, we have compared the plasmonic enhancement of TERS signals in air and water environments for both gap mode and non-gap mode configurations and show that in both cases the plasmonic enhancement decreases in water. To better understand the signal attenuation in water, we have performed numerical simulations that revealed a negative correlation between the electric field enhancement at the TERS probe-apex and the refractive index of the surrounding medium. Finally, using these robust probes we demonstrate TERS imaging with nanoscale spatial resolution in a water environment for the first time by employing single-wall carbon nanotubes as a model sample. Our findings are expected to broaden the scope of TERS to a range of scientific disciplines in which nanostructured solid-liquid interfaces play a key role.
Collapse
Affiliation(s)
- Naresh Kumar
- National Physical Laboratory, Teddington, Middlesex TW11 0LW, UK.
| | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Lifu Xiao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
43
|
Rahaman M, Rodriguez RD, Plechinger G, Moras S, Schüller C, Korn T, Zahn DRT. Highly Localized Strain in a MoS 2/Au Heterostructure Revealed by Tip-Enhanced Raman Spectroscopy. NANO LETTERS 2017; 17:6027-6033. [PMID: 28925710 DOI: 10.1021/acs.nanolett.7b02322] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) has been rapidly improved over the past decade and opened up opportunities to study phonon properties of materials at the nanometer scale. In this Letter, we report on TERS of an ultrathin MoS2 flake on a nanostructured Au on silicon surface forming a two-dimensional (2D) crystal/plasmonic heterostructure. Au nanostructures (shaped in triangles) are prepared by nanosphere lithography, and then MoS2 is mechanically exfoliated on top of them. The TERS spectra acquired under resonance conditions at 638 nm excitation wavelength evidence strain changes spatially localized to regions as small as 25 nm in TERS imaging. We observe the highest Raman intensity enhancement for MoS2 on top of Au nanotriangles due to the strong electromagnetic confinement between the tip and a single triangle. Our results enable us to determine the local strain in MoS2 induced during heterostructure formation. The maximum frequency shift of E2g mode is determined to be (4.2 ± 0.8) cm-1, corresponding to 1.4% of biaxial strain induced in the MoS2 layer. We find that the regions of maximum local strain correspond to the regions of maximum topographic curvature as extracted from atomic force microscopy measurements. This tip-enhanced Raman spectroscopy study allows us to determine the built-in strain that arises when 2D materials interact with other nanostructures.
Collapse
Affiliation(s)
- Mahfujur Rahaman
- Semiconductor Physics, Chemnitz University of Technology , D-09107 Chemnitz, Germany
| | - Raul D Rodriguez
- Semiconductor Physics, Chemnitz University of Technology , D-09107 Chemnitz, Germany
- Tomsk Polytechnic University , 30 Lenin Ave, 634050 Tomsk, Russia
| | - Gerd Plechinger
- Fakultät für Physik, Institut für Experimentelle und Angewandte Physik, Universität Regensburg , D-93040 Regensburg, Germany
| | - Stefan Moras
- Semiconductor Physics, Chemnitz University of Technology , D-09107 Chemnitz, Germany
| | - Christian Schüller
- Fakultät für Physik, Institut für Experimentelle und Angewandte Physik, Universität Regensburg , D-93040 Regensburg, Germany
| | - Tobias Korn
- Fakultät für Physik, Institut für Experimentelle und Angewandte Physik, Universität Regensburg , D-93040 Regensburg, Germany
| | - Dietrich R T Zahn
- Semiconductor Physics, Chemnitz University of Technology , D-09107 Chemnitz, Germany
| |
Collapse
|
44
|
Molas MR, Nogajewski K, Slobodeniuk AO, Binder J, Bartos M, Potemski M. The optical response of monolayer, few-layer and bulk tungsten disulfide. NANOSCALE 2017; 9:13128-13141. [PMID: 28849844 DOI: 10.1039/c7nr04672c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a comprehensive optical study of thin flakes of tungsten disulfide (WS2) with thickness ranging from mono- to octalayer and in the bulk limit. It is shown that the optical band-gap absorption of monolayer WS2 is governed by competing resonances arising from one neutral and two distinct negatively charged excitons whose contributions to the overall absorption of light vary as a function of temperature and carrier concentration. The photoluminescence response of monolayer WS2 is found to be largely dominated by disorder/impurity- and/or phonon-assisted recombination processes. The indirect band-gap luminescence in multilayer WS2 turns out to be a phonon-mediated process whose energy evolution with the number of layers surprisingly follows a simple model of a two-dimensional confinement. The energy position of the direct band-gap response (A and B resonances) is only weakly dependent on the layer thickness, which underlines an approximate compensation of the effect of the reduction of the exciton binding energy by the shrinkage of the apparent band gap. The A-exciton absorption-type spectra in multilayer WS2 display a non-trivial fine structure which results from the specific hybridization of the electronic states in the vicinity of the K-point of the Brillouin zone. The effects of temperature on the absorption-like and photoluminescence spectra of various WS2 layers are also quantified.
Collapse
Affiliation(s)
- Maciej R Molas
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25, avenue des Martyrs, 38042 Grenoble, France.
| | | | | | | | | | | |
Collapse
|
45
|
Manipulation of local optical properties and structures in molybdenum-disulfide monolayers using electric field-assisted near-field techniques. Sci Rep 2017; 7:46004. [PMID: 28378804 PMCID: PMC5380953 DOI: 10.1038/srep46004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/06/2017] [Indexed: 11/30/2022] Open
Abstract
Remarkable optical properties, such as quantum light emission and large optical nonlinearity, have been observed in peculiar local sites of transition metal dichalcogenide monolayers, and the ability to tune such properties is of great importance for their optoelectronic applications. For that purpose, it is crucial to elucidate and tune their local optical properties simultaneously. Here, we develop an electric field-assisted near-field technique. Using this technique we can clarify and tune the local optical properties simultaneously with a spatial resolution of approximately 100 nm due to the electric field from the cantilever. The photoluminescence at local sites in molybdenum-disulfide (MoS2) monolayers is reversibly modulated, and the inhomogeneity of the charge neutral points and quantum yields is suggested. We successfully etch MoS2 crystals and fabricate nanoribbons using near-field techniques in combination with an electric field. This study creates a way to tune the local optical properties and to freely design the structural shapes of atomic monolayers using near-field optics.
Collapse
|
46
|
Kumar N, Zoladek-Lemanczyk A, Guilbert AAY, Su W, Tuladhar SM, Kirchartz T, Schroeder BC, McCulloch I, Nelson J, Roy D, Castro FA. Simultaneous topographical, electrical and optical microscopy of optoelectronic devices at the nanoscale. NANOSCALE 2017; 9:2723-2731. [PMID: 28078339 DOI: 10.1039/c6nr09057e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Novel optoelectronic devices rely on complex nanomaterial systems where the nanoscale morphology and local chemical composition are critical to performance. However, the lack of analytical techniques that can directly probe these structure-property relationships at the nanoscale presents a major obstacle to device development. In this work, we present a novel method for non-destructive, simultaneous mapping of the morphology, chemical composition and photoelectrical properties with <20 nm spatial resolution by combining plasmonic optical signal enhancement with electrical-mode scanning probe microscopy. We demonstrate that this combined approach offers subsurface sensitivity that can be exploited to provide molecular information with a nanoscale resolution in all three spatial dimensions. By applying the technique to an organic solar cell device, we show that the inferred surface and subsurface composition distribution correlates strongly with the local photocurrent generation and explains macroscopic device performance. For instance, the direct measurement of fullerene phase purity can distinguish between high purity aggregates that lead to poor performance and lower purity aggregates (fullerene intercalated with polymer) that result in strong photocurrent generation and collection. We show that the reliable determination of the structure-property relationship at the nanoscale can remove ambiguity from macroscopic device data and support the identification of the best routes for device optimisation. The multi-parameter measurement approach demonstrated herein is expected to play a significant role in guiding the rational design of nanomaterial-based optoelectronic devices, by opening a new realm of possibilities for advanced investigation via the combination of nanoscale optical spectroscopy with a whole range of scanning probe microscopy modes.
Collapse
Affiliation(s)
- Naresh Kumar
- National Physical Laboratory, Teddington, Middlesex, UK TW11 0LW.
| | | | | | - Weitao Su
- College of Materials and Environmental Engineering, Hangzou Dianzi University, 310018 Hangzou, China
| | | | - Thomas Kirchartz
- Department of Physics, Imperial College London, London, UK SW7 2AZ and IEK-5 Photovoltaik, Forschungzentrum Juelich, 52425, Juelich, Germany and Faculty of Engineering and CENIDE, University of Duisburg-Essen, Carl-Benz-Strasse 199, 47057 Duisburg, Germany
| | - Bob C Schroeder
- Department of Chemistry, Imperial College London, London, UK SW7 2AZ
| | - Iain McCulloch
- Department of Chemistry, Imperial College London, London, UK SW7 2AZ and King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jenny Nelson
- Department of Physics, Imperial College London, London, UK SW7 2AZ
| | - Debdulal Roy
- National Physical Laboratory, Teddington, Middlesex, UK TW11 0LW.
| | | |
Collapse
|
47
|
Lee Y, Yun SJ, Kim Y, Kim MS, Han GH, Sood AK, Kim J. Near-field spectral mapping of individual exciton complexes of monolayer WS 2 correlated with local defects and charge population. NANOSCALE 2017; 9:2272-2278. [PMID: 28124703 DOI: 10.1039/c6nr08813a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Exciton transitions are mostly responsible for the optical properties of transition metal dichalcogenide monolayers (1L-TMDs). Extensive studies of optical and structural characterization indicated that the presence of local structural defects and charge population critically influence the exciton emissions of 1L-TMDs. However, due to large variations of sample and experimental conditions, the exact mechanism of the exciton emission influenced by local structural defects and charge population is not clearly understood. In this work by using near-field scanning optical imaging and spectroscopy, we directly visualized spatially- and spectrally-resolved emission profiles of excitons, trions and defect bound excitons in CVD-grown monolayer tungsten disulfide (1L-WS2) with ∼70 nm spatial resolution. We found that exciton emission is spatially uniform while emission of trions and defect bound excitons was strongly modulated by the presence of structural features such as defects and wrinkles. We also visually observe a strong correlation between local charge accumulation and the trion formation upon increased photo-excitation.
Collapse
Affiliation(s)
- Yongjun Lee
- IBS Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon 440-746, Republic of Korea and Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| | - Seok Joon Yun
- IBS Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon 440-746, Republic of Korea and Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| | - Youngbum Kim
- IBS Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon 440-746, Republic of Korea and Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| | - Min Su Kim
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| | - Gang Hee Han
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore-560012, India
| | - Jeongyong Kim
- IBS Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon 440-746, Republic of Korea and Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
48
|
Kumar N, Drozdz MM, Jiang H, Santos DM, Vaux DJ. Nanoscale mapping of newly-synthesised phospholipid molecules in a biological cell using tip-enhanced Raman spectroscopy. Chem Commun (Camb) 2017; 53:2451-2454. [DOI: 10.1039/c6cc10226c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Non-destructive & label-free nanoscale mapping of newly-synthesised phospholipid molecules inside a biological cell is demonstrated using tip-enhanced Raman spectroscopy for the first time.
Collapse
Affiliation(s)
| | | | - Haibo Jiang
- Centre for Microscopy
- Characterisation and Analysis
- The University of Western Australia
- Crawley WA 6009
- Australia
| | | | - David J. Vaux
- Sir William Dunn School of Pathology
- University of Oxford
- UK
| |
Collapse
|
49
|
Su W, Kumar N, Dai N, Roy D. Nanoscale mapping of intrinsic defects in single-layer graphene using tip-enhanced Raman spectroscopy. Chem Commun (Camb) 2016; 52:8227-30. [DOI: 10.1039/c6cc01990k] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-gap TERS with a contrast of 8.5 enables TERS mapping of graphene's intrinsic defect with a spatial resolution of 20 nm.
Collapse
Affiliation(s)
- Weitao Su
- Institute of Materials Physics
- Hangzhou Dianzi University
- Hangzhou
- China
- National Physical Laboratory
| | | | - Ning Dai
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| | | |
Collapse
|