1
|
Witzdam L, Garay-Sarmiento M, Gagliardi M, Meurer YL, Rutsch Y, Englert J, Philipsen S, Janem A, Alsheghri R, Jakob F, Molin DGM, Schwaneberg U, van den Akker NMS, Rodriguez-Emmenegger C. Brush-Like Coatings Provide a Cloak of Invisibility to Titanium Implants. Macromol Biosci 2024; 24:e2300434. [PMID: 37994518 DOI: 10.1002/mabi.202300434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Orthopedic implants such as knee and hip implants are one of the most important types of medical devices. Currently, the surface of the most advanced implants consists of titanium or titanium-alloys with high porosity at the bone-contacting surface leading to superior mechanical properties, excellent biocompatibility, and the capability of inducing osseointegration. However, the increased surface area of porous titanium provides a nidus for bacteria colonization leading to implant-related infections, one of the main reasons for implant failure. Here, two readily applicable titanium-coatings based on hydrophilic carboxybetaine polymers that turn the surface stealth thereby preventing bacterial adhesion and colonization are developed. These coatings are biocompatible, do not affect cell functionality, exhibit great antifouling properties, and do not cause additional inflammation during the healing process. In this way, the coatings can prevent implant-related infections, while at the same time being completely innocuous to its biological environment. Thus, these coating strategies are a promising route to enhance the biocompatibility of orthopedic implants and have a high potential for clinical use, while being easy to implement in the implant manufacturing process.
Collapse
Affiliation(s)
- Lena Witzdam
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute for Bioengineering of Catalonia (IBEC), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Manuela Garay-Sarmiento
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute for Bioengineering of Catalonia (IBEC), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- Chair of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Mick Gagliardi
- Cardiovascular Research Institute Maastricht (CARIM), Department of Physiology, Maastricht University, FHML, Universiteitssingel (UNS) 50, Maastricht, 6229ER, The Netherlands
| | - Yannick L Meurer
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Yannik Rutsch
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Jenny Englert
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Chair of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Sandra Philipsen
- Cardiovascular Research Institute Maastricht (CARIM), Department of Physiology, Maastricht University, FHML, Universiteitssingel (UNS) 50, Maastricht, 6229ER, The Netherlands
| | - Anisa Janem
- Cardiovascular Research Institute Maastricht (CARIM), Department of Physiology, Maastricht University, FHML, Universiteitssingel (UNS) 50, Maastricht, 6229ER, The Netherlands
| | - Rawan Alsheghri
- Cardiovascular Research Institute Maastricht (CARIM), Department of Physiology, Maastricht University, FHML, Universiteitssingel (UNS) 50, Maastricht, 6229ER, The Netherlands
| | - Felix Jakob
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Daniël G M Molin
- Cardiovascular Research Institute Maastricht (CARIM), Department of Physiology, Maastricht University, FHML, Universiteitssingel (UNS) 50, Maastricht, 6229ER, The Netherlands
| | - Ulrich Schwaneberg
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Chair of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Nynke M S van den Akker
- Cardiovascular Research Institute Maastricht (CARIM), Department of Physiology, Maastricht University, FHML, Universiteitssingel (UNS) 50, Maastricht, 6229ER, The Netherlands
| | - Cesar Rodriguez-Emmenegger
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute for Bioengineering of Catalonia (IBEC), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, Madrid, 28029, Spain
| |
Collapse
|
2
|
Duanis-Assaf T, Reches M. Factors influencing initial bacterial adhesion to antifouling surfaces studied by single-cell force spectroscopy. iScience 2024; 27:108803. [PMID: 38303698 PMCID: PMC10831873 DOI: 10.1016/j.isci.2024.108803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/29/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Biofilm formation, a major concern for healthcare systems, is initiated when bacteria adhere to surfaces. Escherichia coli adhesion is mediated by appendages, including type-1 fimbriae and curli amyloid fibers. Antifouling surfaces prevent the adhesion of bacteria to combat biofilm formation. Here, we used single-cell force-spectroscopy to study the interaction between E. coli and glass or two antifouling surfaces: the tripeptide DOPA-Phe(4F)-Phe(4F)-OMe and poly(ethylene glycol) polymer-brush. Our results indicate that both antifoulants significantly deter E. coli initial adhesion. By using two mutant strains expressing no type-1 fimbriae or curli amyloids, we studied the adhesion mechanism. Our results suggest that the bacteria adhere to different antifoulants via separate mechanisms. Finally, we show that some bacteria adhere much better than others, illustrating how the variability of bacterial cultures affects biofilm formation. Our results emphasize how additional study at the single-cell level can enhance our understanding of bacterial adhesion, thus leading to novel antifouling technologies.
Collapse
Affiliation(s)
- Tal Duanis-Assaf
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
3
|
Liu Y, Wang L, Zhao L, Zhang Y, Li ZT, Huang F. Multiple hydrogen bonding driven supramolecular architectures and their biomedical applications. Chem Soc Rev 2024; 53:1592-1623. [PMID: 38167687 DOI: 10.1039/d3cs00705g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Supramolecular chemistry combines the strength of molecular assembly via various molecular interactions. Hydrogen bonding facilitated self-assembly with the advantages of directionality, specificity, reversibility, and strength is a promising approach for constructing advanced supramolecules. There are still some challenges in hydrogen bonding based supramolecular polymers, such as complexity originating from tautomerism of the molecular building modules, the assembly process, and structure versatility of building blocks. In this review, examples are selected to give insights into multiple hydrogen bonding driven emerging supramolecular architectures. We focus on chiral supramolecular assemblies, multiple hydrogen bonding modules as stimuli responsive sources, interpenetrating polymer networks, multiple hydrogen bonding assisted organic frameworks, supramolecular adhesives, energy dissipators, and quantitative analysis of nano-adhesion. The applications in biomedical materials are focused with detailed examples including drug design evolution for myotonic dystrophy, molecular assembly for advanced drug delivery, an indicator displacement strategy for DNA detection, tissue engineering, and self-assembly complexes as gene delivery vectors for gene transfection. In addition, insights into the current challenges and future perspectives of this field to propel the development of multiple hydrogen bonding facilitated supramolecular materials are proposed.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Lulu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
4
|
Schulte A, de Los Santos Pereira A, Pola R, Pop-Georgievski O, Jiang S, Romanenko I, Singh M, Sedláková Z, Schönherr H, Poręba R. On-Demand Cell Sheet Release with Low Density Peptide-Functionalized Non-LCST Polymer Brushes. Macromol Biosci 2023; 23:e2200472. [PMID: 36598869 DOI: 10.1002/mabi.202200472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Cell sheet harvesting offers a great potential for the development of new therapies for regenerative medicine. For cells to adhere onto surfaces, proliferate, and to be released on demand, thermoresponsive polymeric coatings are generally considered to be required. Herein, an alternative approach for the cell sheet harvesting and rapid release on demand is reported, circumventing the use of thermoresponsive materials. This approach is based on the end-group biofunctionalization of non-thermoresponsive and antifouling poly(2-hydroxyethyl methacrylate) (p(HEMA)) brushes with cell-adhesive peptide motifs. While the nonfunctionalized p(HEMA) surfaces are cell-repellant, ligation of cell-signaling ligand enables extensive attachment and proliferation of NIH 3T3 fibroblasts until the formation of a confluent cell layer. Remarkably, the formed cell sheets can be released from the surfaces by gentle rinsing with cell-culture medium. The release of the cells is found to be facilitated by low surface density of cell-adhesive peptides, as confirmed by X-ray photoelectron spectroscopy. Additionally, the developed system affords possibility for repeated cell seeding, proliferation, and release on previously used substrates without any additional pretreatment steps. This new approach represents an alternative to thermally triggered cell-sheet harvesting platforms, offering possibility of capture and proliferation of various rare cell lines via appropriate selection of the cell-adhesive ligand.
Collapse
Affiliation(s)
- Anna Schulte
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ), Department of Chemistry and Biology University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| | - Andres de Los Santos Pereira
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Robert Pola
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Siyu Jiang
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ), Department of Chemistry and Biology University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| | - Iryna Romanenko
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Manisha Singh
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Zdeňka Sedláková
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ), Department of Chemistry and Biology University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| | - Rafał Poręba
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| |
Collapse
|
5
|
Yang B, Gordiyenko K, Schäfer A, Dadfar SMM, Yang W, Riehemann K, Kumar R, Niemeyer CM, Hirtz M. Fluorescence Imaging Study of Film Coating Structure and Composition Effects on DNA Hybridization. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Bingquan Yang
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Klavdiya Gordiyenko
- Institute of Biological Interfaces (IBG-1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Andreas Schäfer
- nanoAnalytics GmbH Heisenbergstraße 11 48149 Münster Germany
| | - Seyed Mohammad Mahdi Dadfar
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Wenwu Yang
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Kristina Riehemann
- Physical Institute and Center for Nanotechnology (CeNTech) University of Münster Wilhelm-Klemm-Straße 10 48149 Münster Germany
| | - Ravi Kumar
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christof M. Niemeyer
- Institute of Biological Interfaces (IBG-1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
6
|
Patel T, Mohd Itoo A, Paul M, Purna Kondapaneni L, Ghosh B, Biswas S. Block HPMA-based pH-sensitive Gemcitabine Pro-drug Nanoaggregate for Cancer Treatment. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Eskhan A, Johnson D. Microscale characterization of abiotic surfaces and prediction of their biofouling/anti-biofouling potential using the AFM colloidal probe technique. Adv Colloid Interface Sci 2022; 310:102796. [DOI: 10.1016/j.cis.2022.102796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022]
|
8
|
Riedelová Z, de Los Santos Pereira A, Svoboda J, Pop-Georgievski O, Májek P, Pečánková K, Dyčka F, Rodriguez-Emmenegger C, Riedel T. The Relation Between Protein Adsorption and Hemocompatibility of Antifouling Polymer Brushes. Macromol Biosci 2022; 22:e2200247. [PMID: 35917216 DOI: 10.1002/mabi.202200247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Indexed: 12/25/2022]
Abstract
Whenever an artificial surface comes into contact with blood, proteins are rapidly adsorbed onto its surface. This phenomenon, termed fouling, is then followed by a series of undesired reactions involving activation of complement or the coagulation cascade and adhesion of leukocytes and platelets leading to thrombus formation. Thus, considerable efforts are directed towards the preparation of fouling-resistant surfaces with the best possible hemocompatibility. Herein, a comprehensive hemocompatibility study after heparinized blood contact with seven polymer brushes prepared by surface-initiated atom transfer radical polymerization is reported. The resistance to fouling is quantified and thrombus formation and deposition of blood cellular components on the coatings are analyzed. Moreover, identification of the remaining adsorbed proteins is performed via mass spectroscopy to elucidate their influence on the surface hemocompatibility. Compared with an unmodified glass surface, the grafting of polymer brushes minimizes the adhesion of platelets and leukocytes and prevents the thrombus formation. The fouling from undiluted blood plasma is reduced by up to 99%. Most of the identified proteins are connected with the initial events of foreign body reaction towards biomaterial (coagulation cascade proteins, complement component, and inflammatory proteins). In addition, several proteins that are not previously linked with blood-biomaterial interaction are presented and discussed.
Collapse
Affiliation(s)
- Zuzana Riedelová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| | - Andres de Los Santos Pereira
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| | - Jan Svoboda
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| | - Pavel Májek
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague, 128 00, Czech Republic
| | - Klára Pečánková
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague, 128 00, Czech Republic
| | - Filip Dyčka
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 370 05, Czech Republic
| | - Cesar Rodriguez-Emmenegger
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain.,DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, D-52074, Aachen, Germany
| | - Tomáš Riedel
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| |
Collapse
|
9
|
Shave MK, Zhou Y, Kim J, Kim YC, Hutchison J, Bendejacq D, Goulian M, Choi J, Composto RJ, Lee D. Zwitterionic surface chemistry enhances detachment of bacteria under shear. SOFT MATTER 2022; 18:6618-6628. [PMID: 36000279 PMCID: PMC10838016 DOI: 10.1039/d2sm00065b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ubiquitous nature of microorganisms, especially of biofilm-forming bacteria, makes biofouling a prevalent challenge in many settings, including medical and industrial environments immersed in liquid and subjected to shear forces. Recent studies have shown that zwitterionic groups are effective in suppressing bacteria and protein adhesion as well as biofilm growth. However, the effect of zwitterionic groups on the removal of surface-bound bacteria has not been extensively studied. Here we present a microfluidic approach to evaluate the effectiveness in facilitating bacteria detachment by shear of an antifouling surface treatment using (3-(dimethyl;(3-trimethoxysilyl)propyl)ammonia propane-1-sulfonate), a sulfobetaine silane (SBS). Control studies show that SBS-functionalized surfaces greatly increase protein (bovine serum albumin) removal upon rinsing. On the same surfaces, enhanced bacteria (Pseudomonas aeruginosa) removal is observed under shear. To quantify this enhancement a microfluidic shear device is employed to investigate how SBS-functionalized surfaces promote bacteria detachment under shear. By using a microfluidic channel with five shear zones, we compare the removal of bacteria from zwitterionic and glass surfaces under different shear rates. At times of 15 min, 30 min, and 60 min, bacteria adhesion on SBS-functionalized surfaces is reduced relative to the control surface (glass) under quiescent conditions. However, surface-associated bacteria on the SBS-functionalized glass and control show similar percentages of live cells, suggesting minimal intrinsic biocidal effect from the SBS-functionalized surface. Notably, when exposed to shear rates ranging from 104 to 105 s-1, significantly fewer bacteria remain on the SBS-functionalized surfaces. These results demonstrate the potential of zwitterionic sulfobetaine as effective antifouling coatings that facilitate the removal of bacteria under shear.
Collapse
Affiliation(s)
- Molly K Shave
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yitian Zhou
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jiwon Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ye Chan Kim
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jonghoon Choi
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Russell J Composto
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Wang YM, Kálosi A, Halahovets Y, Romanenko I, Slabý J, Homola J, Svoboda J, de los Santos Pereira A, Pop-Georgievski O. Grafting density and antifouling properties of poly[ N-(2-hydroxypropyl) methacrylamide] brushes prepared by “grafting to” and “grafting from”. Polym Chem 2022. [DOI: 10.1039/d2py00478j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(HPMA) brushes prepared by a grafting-from method suppress fouling from blood plasma by an order of magnitude better than the polymer brushes of the same molecular weight prepared by a grafting-to method.
Collapse
Affiliation(s)
- Yu-Min Wang
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 16206 Prague, Czech Republic
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 12800 Prague, Czech Republic
| | - Anna Kálosi
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
- Department of Multilayers and Nanostructures, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
| | - Yuriy Halahovets
- Department of Multilayers and Nanostructures, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
| | - Iryna Romanenko
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 16206 Prague, Czech Republic
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 12800 Prague, Czech Republic
| | - Jiří Slabý
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 18251 Prague, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 18251 Prague, Czech Republic
| | - Jan Svoboda
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 16206 Prague, Czech Republic
| | | | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 16206 Prague, Czech Republic
| |
Collapse
|
11
|
Söder D, Garay-Sarmiento M, Rahimi K, Obstals F, Dedisch S, Haraszti T, Davari MD, Jakob F, Heß C, Schwaneberg U, Rodriguez-Emmenegger C. Unraveling the Mechanism and Kinetics of Binding of an LCI-eGFP-Polymer for Antifouling Coatings. Macromol Biosci 2021; 21:e2100158. [PMID: 34145970 DOI: 10.1002/mabi.202100158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/15/2021] [Indexed: 11/07/2022]
Abstract
The ability of proteins to adsorb irreversibly onto surfaces opens new possibilities to functionalize biological interfaces. Herein, the mechanism and kinetics of adsorption of protein-polymer macromolecules with the ability to equip surfaces with antifouling properties are investigated. These macromolecules consist of the liquid chromatography peak I peptide from which antifouling polymer brushes are grafted using single electron transfer-living radical polymerization. Surface plasmon resonance spectroscopy reveals an adsorption mechanism that follows a Langmuir-type of binding with a strong binding affinity to gold. X-ray reflectivity supports this by proving that the binding occurs exclusively by the peptide. However, the lateral organization at the surface is directed by the cylindrical eGFP. The antifouling functionality of the unimolecular coatings is confirmed by contact with blood plasma. All coatings reduce the fouling from blood plasma by 8894% with only minor effect of the degree of polymerization for the studied range (DP between 101 and 932). The excellent antifouling properties, combined with the ease of polymerization and the straightforward coating procedure make this a very promising antifouling concept for a multiplicity of applications.
Collapse
Affiliation(s)
- Dominik Söder
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Manuela Garay-Sarmiento
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Khosrow Rahimi
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany
| | - Fabian Obstals
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Sarah Dedisch
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Tamás Haraszti
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Felix Jakob
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Christoph Heß
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Sciences, 47533, Kleve, Germany
| | - Ulrich Schwaneberg
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | | |
Collapse
|
12
|
DeFlorio W, Liu S, White AR, Taylor TM, Cisneros-Zevallos L, Min Y, Scholar EMA. Recent developments in antimicrobial and antifouling coatings to reduce or prevent contamination and cross-contamination of food contact surfaces by bacteria. Compr Rev Food Sci Food Saf 2021; 20:3093-3134. [PMID: 33949079 DOI: 10.1111/1541-4337.12750] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 12/29/2022]
Abstract
Illness as the result of ingesting bacterially contaminated foodstuffs represents a significant annual loss of human quality of life and economic impact globally. Significant research investment has recently been made in developing new materials that can be used to construct food contacting tools and surfaces that might minimize the risk of cross-contamination of bacteria from one food item to another. This is done to mitigate the spread of bacterial contamination and resultant foodborne illness. Internet-based literature search tools such as Web of Science, Google Scholar, and Scopus were utilized to investigate publishing trends within the last 10 years related to the development of antimicrobial and antifouling surfaces with potential use in food processing applications. Technologies investigated were categorized into four major groups: antimicrobial agent-releasing coatings, contact-based antimicrobial coatings, superhydrophobic antifouling coatings, and repulsion-based antifouling coatings. The advantages for each group and technical challenges remaining before wide-scale implementation were compared. A diverse array of emerging antimicrobial and antifouling technologies were identified, designed to suit a wide range of food contact applications. Although each poses distinct and promising advantages, significant further research investment will likely be required to reliably produce effective materials economically and safely enough to equip large-scale operations such as farms, food processing facilities, and kitchens.
Collapse
Affiliation(s)
- William DeFlorio
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Shuhao Liu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Andrew R White
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | | | - Luis Cisneros-Zevallos
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA.,Department of Horticultural Sciences, Texas A&M University, College Station, Texas, USA
| | - Younjin Min
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Ethan M A Scholar
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
13
|
Obstals F, Witzdam L, Garay-Sarmiento M, Kostina NY, Quandt J, Rossaint R, Singh S, Grottke O, Rodriguez-Emmenegger C. Improving Hemocompatibility: How Can Smart Surfaces Direct Blood To Fight against Thrombi. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11696-11707. [PMID: 33656864 DOI: 10.1021/acsami.1c01079] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nature utilizes endothelium as a blood interface that perfectly controls hemostasis, preventing the uncontrolled formation of thrombi. The management of positive and negative feedback that finely tunes thrombosis and fibrinolysis is essential for human life, especially for patients who undergo extracorporeal circulation (ECC) after a severe respiratory or cardiac failure. The exposure of blood to a surface different from healthy endothelium inevitably initiates coagulation, drastically increasing the mortality rate by thromboembolic complications. In the present study, an ultrathin antifouling fibrinolytic coating capable of disintegrating thrombi in a self-regulated manner is reported. The coating system is composed of a polymer brush layer that can prevent any unspecific interaction with blood. The brushes are functionalized with a tissue plasminogen activator (tPA) to establish localized fibrinolysis that solely and exclusively is active when it is required. This interactive switching between the dormant and active state is realized through an amplification mechanism that increases (positive feedback) or restores (negative feedback) the activity of tPA depending on whether a thrombus is detected and captured or not. Thus, only a low surface density of tPA is necessary to lyse real thrombi. Our work demonstrates the first report of a coating that self-regulates its fibrinolytic activity depending on the conditions of blood.
Collapse
Affiliation(s)
- Fabian Obstals
- DWI - Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen D-52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, Aachen D-52074, Germany
| | - Lena Witzdam
- DWI - Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen D-52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, Aachen D-52074, Germany
| | - Manuela Garay-Sarmiento
- DWI - Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen D-52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, Aachen D-52074, Germany
| | - Nina Yu Kostina
- DWI - Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen D-52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, Aachen D-52074, Germany
| | - Jonas Quandt
- DWI - Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen D-52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, Aachen D-52074, Germany
| | - Rolf Rossaint
- University Hospital Aachen, Pauwelsstraße 30, Aachen D-52074, Germany
| | - Smriti Singh
- DWI - Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen D-52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, Aachen D-52074, Germany
| | - Oliver Grottke
- University Hospital Aachen, Pauwelsstraße 30, Aachen D-52074, Germany
| | - Cesar Rodriguez-Emmenegger
- DWI - Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen D-52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, Aachen D-52074, Germany
| |
Collapse
|
14
|
Molecular dynamics model for the antibactericity of textured surfaces. Colloids Surf B Biointerfaces 2021; 199:111504. [PMID: 33418209 DOI: 10.1016/j.colsurfb.2020.111504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022]
Abstract
An original model has been developed for the initial stage of bacterial adhesion on textured surfaces. Based on molecular dynamics, the model describes contact between individual bacterial cells in a planktonic state and a surface, accounting for both the mechanical properties of the cells and the physico-chemical mechanisms governing interaction with the substrate. Feasibility of the model is assessed via comparison with experimental results of bacterial growth on stainless steel substrates textured with ultrashort laser pulses. Simulations are performed for two different bacterial species, Staphylococcus aureus and Escherichia coli, on two distinct surface types characterised by elongated ripples and isolated nanopillars, respectively. Calculated results are in agreement with experiment outcomes and highlight the role of mechanical stresses within the cell wall due to deformation upon interaction with the substrate, creating unfavourable conditions for bacteria during the initial phases of adhesion. Furthermore, the flexibility of the model provides insight into the intricate interplay between topography and the physico-chemical properties of the substrate, pointing to a unified picture of the mechanisms underlying bacterial affinity to a textured surface.
Collapse
|
15
|
Abu Quba AA, Schaumann GE, Karagulyan M, Diehl D. Quality control of direct cell–mineral adhesion measurements in air and liquid using inverse AFM imaging. RSC Adv 2021; 11:5384-5392. [PMID: 35423094 PMCID: PMC8694684 DOI: 10.1039/d1ra00110h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/03/2022] Open
Abstract
The study of interaction forces between biological and non-living systems requires in-house production of probes modified with, e.g., bacterial cells or with minerals, in order to map irregularly shaped natural surfaces. In order to avoid artifacts, it is essential to control the functionality of the modified probes. Current methods for this purpose require removing the modified probe from the liquid-cell, inserting it into another device and/or have a too low resolution to detect local changes within the interacting areas. Therefore, we present a fast and cost-effective method that overcomes the above mentioned problems by the inverse AFM imaging principle. First, the 3-D shape of a fresh sharp AFM tip is modeled by measuring the shape of a standard rough pattern and post blind tip reconstruction analysis. The so calibrated characterizer tip was extracted and upside-down fixed rigidly on a disc together with the sample. Before and after the cell–mineral interaction, the modified probe is then inversely imaged by the fixed characterizer controlling changes in finest 3-D details of the modified probe. The characterization of probes modified with kaolinite and P. fluorescens cells and their interactions with R. erythropolis and montmorillonite samples show that the method allows a fast precise investigation of tip modifications before and after cell–mineral interactions in air and liquid such that artifacts in adhesion between cell and mineral at the single-cell level can be excluded. Setup for a reliable cell-mineral interaction at the single-cell level, (a) study of the mineral by a sharp tip, (b) study of the bacterial modified probe by a characterizer, (c) cell-mineral interaction, (d) subsequent check of the modified probe.![]()
Collapse
Affiliation(s)
- Abd Alaziz Abu Quba
- Environmental and Soil Chemistry Group
- iES Institute for Environmental Sciences
- University of Koblenz-Landau
- 76829 Landau
- Germany
| | - Gabriele E. Schaumann
- Environmental and Soil Chemistry Group
- iES Institute for Environmental Sciences
- University of Koblenz-Landau
- 76829 Landau
- Germany
| | - Mariam Karagulyan
- Department of Environmental Biotechnology
- Helmholtz Centre for Environmental Research – UFZ
- Leipzig
- Germany
| | - Doerte Diehl
- Environmental and Soil Chemistry Group
- iES Institute for Environmental Sciences
- University of Koblenz-Landau
- 76829 Landau
- Germany
| |
Collapse
|
16
|
Striebel J, Vorobii M, Kumar R, Liu HY, Yang B, Weishaupt C, Rodriguez-Emmenegger C, Fuchs H, Hirtz M, Riehemann K. Controlled Surface Adhesion of Macrophages via Patterned Antifouling Polymer Brushes. ADVANCED NANOBIOMED RESEARCH 2020. [DOI: 10.1002/anbr.202000029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Johannes Striebel
- Physical Institute and Center for Nanotechnology (CeNTech) University of Münster Wilhelm-Klemm-Straße 10 48149 Münster Germany
| | - Mariia Vorobii
- DWI – Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| | - Ravi Kumar
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein Leopoldshafen Germany
| | - Hui-Yu Liu
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein Leopoldshafen Germany
| | - Bingquan Yang
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein Leopoldshafen Germany
| | - Carsten Weishaupt
- Department of Dermatology University Hospital of Münster Von-Esmarch-Straße 58 48149 Münster Germany
| | - Cesar Rodriguez-Emmenegger
- DWI – Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| | - Harald Fuchs
- Physical Institute and Center for Nanotechnology (CeNTech) University of Münster Wilhelm-Klemm-Straße 10 48149 Münster Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein Leopoldshafen Germany
| | - Kristina Riehemann
- Physical Institute and Center for Nanotechnology (CeNTech) University of Münster Wilhelm-Klemm-Straße 10 48149 Münster Germany
| |
Collapse
|
17
|
Wilms D, Schröer F, Paul TJ, Schmidt S. Switchable Adhesion of E. coli to Thermosensitive Carbohydrate-Presenting Microgel Layers: A Single-Cell Force Spectroscopy Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12555-12562. [PMID: 32975417 DOI: 10.1021/acs.langmuir.0c02040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adhesion processes at the cellular scale are dominated by carbohydrate interactions, including the attachment and invasion of pathogens. Carbohydrate-presenting responsive polymers can bind pathogens and inhibit pathogen invasion by remote stimuli for the development of new antibiotic strategies. In this work, the adhesion forces of E. coli to monolayers composed of mannose-functionalized microgels with thermosensitive poly(N-isopropylacrylamide) (PNIPAM) and poly(oligo(ethylene glycol)) (PEG) networks are quantified using single-cell force spectroscopy (SCFS). When exceeding the microgels' lower critical solution temperature (LCST), the adhesion increases up to 2.5-fold depending on the polymer backbone and the mannose density. For similar mannose densities, the softer PNIPAM microgels show a significantly stronger adhesion increase when crossing the LCST as compared to the stiffer PEG microgels. This is explained by a stronger shift in swelling, mannose density, and surface roughness of the softer gels when crossing the LCST. When using nonbinding galactose instead of mannose, or when inhibiting bacterial receptors, a certain level of adhesion remains, indicating that also polymer-fimbria entanglements contribute to adhesion. The presented quantitative analysis provides insights into carbohydrate-mediated bacterial adhesion and the relation to material properties and shows the prospects and limitations of interactive polymer materials to control the attachment of bacteria.
Collapse
Affiliation(s)
- Dimitri Wilms
- Institute for Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Fabian Schröer
- Institute for Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tanja J Paul
- Institute for Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Stephan Schmidt
- Institute for Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
18
|
Sivkova R, Táborská J, Reparaz A, de los Santos Pereira A, Kotelnikov I, Proks V, Kučka J, Svoboda J, Riedel T, Pop-Georgievski O. Surface Design of Antifouling Vascular Constructs Bearing Biofunctional Peptides for Tissue Regeneration Applications. Int J Mol Sci 2020; 21:ijms21186800. [PMID: 32947982 PMCID: PMC7554689 DOI: 10.3390/ijms21186800] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 01/12/2023] Open
Abstract
Antifouling polymer layers containing extracellular matrix-derived peptide motifs offer promising new options for biomimetic surface engineering. In this contribution, we report the design of antifouling vascular grafts bearing biofunctional peptide motifs for tissue regeneration applications based on hierarchical polymer brushes. Hierarchical diblock poly(methyl ether oligo(ethylene glycol) methacrylate-block-glycidyl methacrylate) brushes bearing azide groups (poly(MeOEGMA-block-GMA-N3)) were grown by surface-initiated atom transfer radical polymerization (SI-ATRP) and functionalized with biomimetic RGD peptide sequences. Varying the conditions of copper-catalyzed alkyne-azide “click” reaction allowed for the immobilization of RGD peptides in a wide surface concentration range. The synthesized hierarchical polymer brushes bearing peptide motifs were characterized in detail using various surface sensitive physicochemical methods. The hierarchical brushes presenting the RGD sequences provided excellent cell adhesion properties and at the same time remained resistant to fouling from blood plasma. The synthesis of anti-fouling hierarchical brushes bearing 1.2 × 103 nmol/cm2 RGD biomimetic sequences has been adapted for the surface modification of commercially available grafts of woven polyethylene terephthalate (PET) fibers. The fiber mesh was endowed with polymerization initiator groups via aminolysis and acylation reactions optimized for the material. The obtained bioactive antifouling vascular grafts promoted the specific adhesion and growth of endothelial cells, thus providing a potential avenue for endothelialization of artificial conduits.
Collapse
|
19
|
Li S, Huang P, Ye Z, Wang Y, Wang W, Kong D, Zhang J, Deng L, Dong A. Layer-by-layer zwitterionic modification of diverse substrates with durable anti-corrosion and anti-fouling properties. J Mater Chem B 2020; 7:6024-6034. [PMID: 31545333 DOI: 10.1039/c9tb01337g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A versatile coating strategy, which is suitable for the anti-corrosion and anti-fouling modification of chemically distinct substrates, is crucial in many industries. The immobilization of zwitterionic polymers onto the surface has been proven to be an excellent approach for the improvement of antibiofouling potency. However, the anti-corrosion property has not always been considered simultaneously. Herein, a layer-by-layer (LBL) zwitterionic surface modification strategy was proposed: the surface was first coated with a polydopamine (PDA) layer for anti-corrosion; then, by self-assembling a monolayer of 3-aminopropyl triethoxysilane (APTES), the anti-corrosion ability was further enhanced and the efficiency of grafting was improved; thereafter, by immobilizing the zwitterionic polysulfobetaine (PSB) polymer brush layer, the surface could effectively repel biofouling. The surface chemical composition and morphology characterization was performed by using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and water contact angle measurements, demonstrating that the modification was stepwise introduced onto the surface. The thickness of coating was observed and measured by SEM cross-sectional analysis. In vitro studies revealed that the PSB coated surfaces dramatically reduced the adhesion of bovine serum albumin (BSA), bovine plasma fibrinogen (Fg), bovine γ-globulin (γ-GL), the mixture of these proteins, fibroblasts, E. coli and S. aureus with superior cytocompatibility and hemocompatibility. Moreover, the electrochemical impedance spectroscopy and acidic corrosion studies indicated that an excellent and durable anti-corrosion property was established successfully on the surfaces of stainless steel, cotton textile and wood plates, confirming the feasibility of the LBL surface modification strategy. Significantly, this LBL surface chemistry may be widely applied for the modification of other materials, such as biosensors, biomedical implants and/or devices, and marine equipment.
Collapse
Affiliation(s)
- Shuangyang Li
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
El-Kirat-Chatel S, Beaussart A, Mathelié-Guinlet M, Dufrêne YF. The importance of force in microbial cell adhesion. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Abstract
Microbial adhesion and biofilm formation are usually studied using molecular and cellular biology assays, optical and electron microscopy, or laminar flow chamber experiments. Today, atomic force microscopy (AFM) represents a valuable addition to these approaches, enabling the measurement of forces involved in microbial adhesion at the single-molecule level. In this minireview, we discuss recent discoveries made applying state-of-the-art AFM techniques to microbial specimens in order to understand the strength and dynamics of adhesive interactions. These studies shed new light on the molecular mechanisms of adhesion and demonstrate an intimate relationship between force and function in microbial adhesins.
Collapse
|
22
|
Efficacy of A Poly(MeOEGMA) Brush on the Prevention of Escherichia coli Biofilm Formation and Susceptibility. Antibiotics (Basel) 2020; 9:antibiotics9050216. [PMID: 32365462 PMCID: PMC7277157 DOI: 10.3390/antibiotics9050216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Urinary tract infections are one of the most common hospital-acquired infections, and they are often associated with biofilm formation in indwelling medical devices such as catheters and stents. This study aims to investigate the antibiofilm performance of a polymer brush—poly[oligo(ethylene glycol) methyl ether methacrylate], poly(MeOEGMA)—and evaluate its effect on the antimicrobial susceptibility of Escherichia coli biofilms formed on that surface. Biofilms were formed in a parallel plate flow chamber (PPFC) for 24 h under the hydrodynamic conditions prevailing in urinary catheters and stents and challenged with ampicillin. Results obtained with the brush were compared to those obtained with two control surfaces, polydimethylsiloxane (PDMS) and glass. The polymer brush reduced by 57% the surface area covered by E. coli after 24 h, as well as the number of total adhered cells. The antibiotic treatment potentiated cell death and removal, and the total cell number was reduced by 88%. Biofilms adapted their architecture, and cell morphology changed to a more elongated form during that period. This work suggests that the poly(MeOEGMA) brush has potential to prevent bacterial adhesion in urinary tract devices like ureteral stents and catheters, as well as in eradicating biofilms developed in these biomedical devices.
Collapse
|
23
|
Alves P, Gomes LC, Vorobii M, Rodriguez-Emmenegger C, Mergulhão FJ. The potential advantages of using a poly(HPMA) brush in urinary catheters: effects on biofilm cells and architecture. Colloids Surf B Biointerfaces 2020; 191:110976. [PMID: 32272386 DOI: 10.1016/j.colsurfb.2020.110976] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022]
Abstract
Infections related to bacterial colonization of medical devices are a growing concern given the socio-economical impacts in healthcare systems. Colonization of a device surface with bacteria usually triggers the development of a biofilm, which is more difficult to eradicate than free-floating or adhered bacteria and can act as a reservoir for subsequent infections. Biofilms often harbor Viable but nonculturable (VBNC) cells that are likely to be more resistant to antibiotic treatment and that can become active in more favorable conditions causing infection. Biofilm formation is dependent on different factors, chiefly the properties of the surface and of the surrounding medium, and the hydrodynamic conditions. In this work, the antifouling performance of a poly[N-(2-hydroxypropyl) methacrylamide] (poly(HPMA)) brush was evaluated in vitro in conditions that mimic a urinary catheter using Escherichia coli as a model organism. The results obtained with the brush were compared to those obtained with two control surfaces, polydimethylsiloxane (PDMS) (the most common material for catheters) and glass. A decrease in initial adhesion and surface coverage was observed on the brush. This antifouling behavior was maintained during biofilm maturation and even in a simulated post-bladder infection period when the reduction in total cell number reached 87 %. Biofilms were shown to adapt their architecture during that period and VBNC cells adsorbed weakly on the brushes and were completely washed away. Taken together, these results suggest that the use of the poly(HPMA) brush in urinary tract devices such as catheters and stents may reduce biofilm formation and possibly render the formed biofilms more susceptible to antibiotic treatment and with reduced infectivity potential.
Collapse
Affiliation(s)
- P Alves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - L C Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - M Vorobii
- DWI - Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - C Rodriguez-Emmenegger
- DWI - Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany.
| | - F J Mergulhão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
24
|
Poręba R, los Santos Pereira A, Pola R, Jiang S, Pop‐Georgievski O, Sedláková Z, Schönherr H. “Clickable” and Antifouling Block Copolymer Brushes as a Versatile Platform for Peptide‐Specific Cell Attachment. Macromol Biosci 2020; 20:e1900354. [DOI: 10.1002/mabi.201900354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/16/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Rafał Poręba
- Institute of Macromolecular ChemistryCzech Academy of Sciences Heyrovsky sq. 2 Prague 162 06 Czech Republic
| | - Andres los Santos Pereira
- Institute of Macromolecular ChemistryCzech Academy of Sciences Heyrovsky sq. 2 Prague 162 06 Czech Republic
| | - Robert Pola
- Institute of Macromolecular ChemistryCzech Academy of Sciences Heyrovsky sq. 2 Prague 162 06 Czech Republic
| | - Siyu Jiang
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)Department of Chemistry and Biology, University of Siegen Adolf‐Reichwein‐Str. 2 57076 Siegen Germany
| | - Ognen Pop‐Georgievski
- Institute of Macromolecular ChemistryCzech Academy of Sciences Heyrovsky sq. 2 Prague 162 06 Czech Republic
| | - Zdeňka Sedláková
- Institute of Macromolecular ChemistryCzech Academy of Sciences Heyrovsky sq. 2 Prague 162 06 Czech Republic
| | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)Department of Chemistry and Biology, University of Siegen Adolf‐Reichwein‐Str. 2 57076 Siegen Germany
| |
Collapse
|
25
|
Cozens EJ, Kong D, Roohpour N, Gautrot JE. The physico-chemistry of adhesions of protein resistant and weak polyelectrolyte brushes to cells and tissues. SOFT MATTER 2020; 16:505-522. [PMID: 31804646 DOI: 10.1039/c9sm01403a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The non-specific adhesion of polymers and soft tissues is of great interest to the field of biomedical engineering, as it will shed light on some of the processes that regulate interactions between scaffolds, implants and nanoparticles with surrounding tissues after implantation or delivery. In order to promote adhesion to soft tissues, a greater understanding of the relationship between polymer chemistry and nanoscale adhesion mechanisms is required. In this work, we grew poly(dimethylaminoethyl methacrylate) (PDMAEMA), poly(acrylic acid) (PAA) and poly(oligoethylene glycol methacrylate) (POEGMA) brushes from the surface of silica beads, and investigated their adhesion to a variety of substrates via colloidal probe-based atomic force microscopy (AFM). We first characterised adhesion to a range of substrates with defined surface chemistry (self-assembled monolayers (SAMs) with a range of hydrophilicities, charge and hydrogen bonding), before studying the adhesion of brushes to epithelial cell monolayers (primary keratinocytes and HaCaT cells) and soft tissues (porcine epicardium and keratinized gingiva). Adhesion assays to SAMs reveal the complex balance of interactions (electrostatic, van der Waals interactions and hydrogen bonding) regulating the adhesion of weak polyelectrolyte brushes. This resulted in particularly strong adhesion of PAA brushes to a wide range of surface chemistries. In turn, colloidal probe microscopy on cell monolayers highlighted the importance of the glycocalyx in regulating non-specific adhesions. This was also reflected by the adhesive properties of soft tissues, in combination with their mechanical properties. Overall, this work clearly demonstrates the complex nature of interactions between polymeric biomaterials and biological samples and highlights the need for relatively elaborate models to predict these interactions.
Collapse
Affiliation(s)
- Edward J Cozens
- Institute of Bioengineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | | | | | | |
Collapse
|
26
|
Mathelié-Guinlet M, Viela F, Viljoen A, Dehullu J, Dufrêne YF. Single-molecule atomic force microscopy studies of microbial pathogens. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Jiang L, Zhu W, Qian H, Wang C, Chen Y, Liu P. Fabrication of PMPC/PTM/PEGDA micropatterns onto polypropylene films behaving with dual functions of antifouling and antimicrobial activities. J Mater Chem B 2019; 7:5078-5088. [PMID: 31432877 DOI: 10.1039/c9tb00927b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polymer materials with high biocompatibility and versatile functions are urgently required in the biomedical field. The hydrophobic surface and inert traits of polymer materials usually encounter severe biofouling and bacterial infection which hinder the potential application of polymers as biomedical materials. Although many antifouling or antimicrobial coatings have been developed for modification of biomedical devices/implants, few can simultaneously fulfill the requirements for antimicrobial and antifouling activities. Herein, we constructed bifunctional micropatterns with antifouling and antimicrobial properties onto polypropylene (PP) films using argon plasma activation treatment, photomask technique and UV-initiated graft polymerization method. Different sizes of PMPC/PTM/PEGDA micropatterns were fabricated on PP films to yield patterned PP-PMPC/PTM/PEGDA as evidenced by infrared (IR) spectroscopy, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), where PMPC is poly(2-methacryloyloxyethyl phosphorylcholine) for enhancement of hydrophilicity and biocompatibility, PTM is poly(methacryloyloxyethyltrimethylammonium chloride) for contribution to antimicrobial activity and PEGDA is poly(ethylene glycol diacrylate) as the crosslinker. The surface hydrophilicity of patterned PP-PMPC/PTM/PEGDA was characterized by the static water contact angle test. The results showed that the PP sample with a micropattern with the size of 5 μm exhibited the best hydrophilicity. For biological assays of patterned PP-PMPC/PTM/PEGDA, the micropattern size at 5 μm performed the best for both antiplatelet adhesion and antimicrobial activities. We anticipate that this work could provide a new method for building bifunctional biomedical materials to promote the application of PP in biomedical fields.
Collapse
Affiliation(s)
- Liu Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wancheng Zhu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Huaming Qian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Changhao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yashao Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
28
|
Oh YJ, Khan ES, Campo AD, Hinterdorfer P, Li B. Nanoscale Characteristics and Antimicrobial Properties of (SI-ATRP)-Seeded Polymer Brush Surfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29312-29319. [PMID: 31259525 DOI: 10.1021/acsami.9b09885] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microbial resistant coatings have raised considerable interest in the biotechnological industry and clinical scenarios to combat the spreading of infections, in particular in implanted medical devices. Polymer brushes covalently attached to surfaces represent a useful platform to identify ideal compositions for preventing bacterial settlement by quantifying bacteria-surface interactions. In this work, a series of polymer brushes with different charges, positively charged poly[2-(methacryloyloxy)ethyl trimethylammonium chloride] (PMETAC), negatively charged poly(3-sulfopropyl methacrylate potassium salt) (PSPMA), and neutral poly(2-hydroxyethyl methacrylate) (PHEMA) were grafted onto glass surfaces by surface-initiated atom transfer radical polymerization in aqueous conditions. The antimicrobial activity of the polymer brushes against Gram-negative Escherichia coli was tested at the nano- and microscopic level on different time scales, that is, from nm to 100 μm, and ms to 24 h, respectively. The interaction between the polymer brushes and E. coli was studied by single-cell force spectroscopy (SCFS) and by quantification of the bacterial density on surfaces incubated with bacterial suspensions. E. coli firmly attached to positive PMETAC brushes with high work required for de-adhesion of 28 ± 9 nN·nm, but did not significantly bind to negatively charged PSPMA and neutral PHEMA brushes. Our studies of bacterial adhesion using polymer brushes with controllable chemistry provide essential insights into bacterial surface interactions and the origins of bacterial adhesion.
Collapse
Affiliation(s)
- Yoo Jin Oh
- Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , A-4020 Linz , Austria
| | - Essak S Khan
- INM-Leibniz Institute for New Materials , Campus D2.2 , 66123 Saarbrücken , Germany
- Chemistry Department , Saarland University , 66123 Saarbrücken , Germany
| | - Aránzazu Del Campo
- INM-Leibniz Institute for New Materials , Campus D2.2 , 66123 Saarbrücken , Germany
- Chemistry Department , Saarland University , 66123 Saarbrücken , Germany
| | - Peter Hinterdorfer
- Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , A-4020 Linz , Austria
| | - Bin Li
- INM-Leibniz Institute for New Materials , Campus D2.2 , 66123 Saarbrücken , Germany
| |
Collapse
|
29
|
Svoboda J, Sedláček O, Riedel T, Hrubý M, Pop-Georgievski O. Poly(2-oxazoline)s One-Pot Polymerization and Surface Coating: From Synthesis to Antifouling Properties Out-Performing Poly(ethylene oxide). Biomacromolecules 2019; 20:3453-3463. [DOI: 10.1021/acs.biomac.9b00751] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jan Svoboda
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Ondřej Sedláček
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Tomáš Riedel
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
30
|
Laschewsky A, Rosenhahn A. Molecular Design of Zwitterionic Polymer Interfaces: Searching for the Difference. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1056-1071. [PMID: 30048142 DOI: 10.1021/acs.langmuir.8b01789] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The widespread occurrence of zwitterionic compounds in nature has incited their frequent use in designing biomimetic materials. Therefore, zwitterionic polymers are a thriving field. A particular interest for this particular polymer class has currently focused on their use in establishing neutral, low-fouling surfaces. After highlighting strategies to prepare model zwitterionic surfaces as well as those that are more suitable for practical purposes relying strongly on radical polymerization methods, we present recent efforts to diversify the structure of the hitherto quite limited variety of zwitterionic monomers and of the derived polymers. We identify key structural variables, consider their influence on essential properties such as overall hydrophilicity and long-term stability, and discuss promising targets for the synthesis of new variants.
Collapse
Affiliation(s)
- André Laschewsky
- Institut für Chemie, Universität Potsdam , Karl-Liebknechtstr. 24-25 , 14476 Potsdam-Golm , Germany
- Fraunhofer Institute for Applied Polymer Research IAP , Geiselbergstr. 69 , 14476 Potsdam-Golm , Germany
| | - Axel Rosenhahn
- Analytische Chemie-Biogrenzflächen , Ruhr-Universität Bochum , Universitätsstr. 150 NC , 44801 Bochum , Germany
| |
Collapse
|
31
|
Tang SH, Domino MY, Venault A, Lin HT, Hsieh C, Higuchi A, Chinnathambi A, Alharbi SA, Tayo LL, Chang Y. Bioinert Control of Zwitterionic Poly(ethylene terephtalate) Fibrous Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1727-1739. [PMID: 29925240 DOI: 10.1021/acs.langmuir.8b00634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Poly(ethylene terephtalate) (PET)-based materials face general biofouling issues that we addressed by grafting a copolymer of glycidyl methacrylate and sulfobetaine methacrylate, poly(GMA- r-SBMA). The grafting procedure involved a dip-coating step followed by UV-exposure and led to successful grafting of the copolymer as evidenced by X-ray photoelectron spectroscopy and zeta potential measurements. It did not modify the pore size nor the porosity of the PET membranes. In addition, their surface hydrophilicity was considerably improved, with a water contact angle falling to 30° in less than 20 s and 0° in less than 1 min. The effect of copolymer concentration in the coating bath (dip-coating procedure) and UV exposure time (UV step) were scrutinized during biofouling studies involving several bacteria such as Escherichia coli and Stenotrophomonas maltophilia, but also whole blood and HT1080 fibroblasts cells. The results indicate that if all conditions led to improved biofouling mitigation, due to the efficiency of the zwitterionic copolymer and grafting procedure, a higher concentration (15 mg/mL) and longer UV exposure time (at least 10 min) enhanced the grafting density which reflected on the biofouling results and permitted a better general biofouling control regardless of the nature of the biofoulant (bacteria, blood cells, fibroblasts).
Collapse
Affiliation(s)
- Shuo-Hsi Tang
- Department of Chemical Engineering and R&D Center for Membrane Technology , Chung Yuan Christian University , Chungli District, Taoyuan 320 , Taiwan R.O.C
| | - Maria Ysabel Domino
- School of Chemical Engineering and Chemistry, Mapúa Institute of Technology , Mapúa University , Muralla St , Intramuros, Manila , 1002 Metro Manila , Philippines
| | - Antoine Venault
- Department of Chemical Engineering and R&D Center for Membrane Technology , Chung Yuan Christian University , Chungli District, Taoyuan 320 , Taiwan R.O.C
| | - Hao-Tung Lin
- Department of Chemical Engineering and R&D Center for Membrane Technology , Chung Yuan Christian University , Chungli District, Taoyuan 320 , Taiwan R.O.C
| | - Chun Hsieh
- Department of Chemical Engineering and R&D Center for Membrane Technology , Chung Yuan Christian University , Chungli District, Taoyuan 320 , Taiwan R.O.C
| | - Akon Higuchi
- Department of Chemical and Materials Engineering , National Central University , Jhong-Li, Taoyuan 320 , Taiwan ROC
- Department of Botany and Microbiology, College of Science , King Saud University , P.O. Box 2455, Riyadh 11451 , Saudi Arabia
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science , King Saud University , P.O. Box 2455, Riyadh 11451 , Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science , King Saud University , P.O. Box 2455, Riyadh 11451 , Saudi Arabia
| | - Lemmuel L Tayo
- School of Chemical Engineering and Chemistry, Mapúa Institute of Technology , Mapúa University , Muralla St , Intramuros, Manila , 1002 Metro Manila , Philippines
| | - Yung Chang
- Department of Chemical Engineering and R&D Center for Membrane Technology , Chung Yuan Christian University , Chungli District, Taoyuan 320 , Taiwan R.O.C
- Department of Botany and Microbiology, College of Science , King Saud University , P.O. Box 2455, Riyadh 11451 , Saudi Arabia
| |
Collapse
|
32
|
Mihara S, Yamaguchi K, Kobayashi M. Intermolecular Interaction of Polymer Brushes Containing Phosphorylcholine and Inverse-Phosphorylcholine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1172-1180. [PMID: 30056718 DOI: 10.1021/acs.langmuir.8b01764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Choline phosphate (CP) is a phosphobetaine-type zwitterionic functional group, referred to as inverse phosphorylcholine (PC) due to the reverse orientation of a positively charged quaternary amine and anionic phosphate in contrast to PC lipids in nature. The A unique dipole paring between CP and PC groups has attracted much attention in the biointerface research field. Herein, to evaluate the molecular interaction between the CP and PC groups in water, force-distance curve measurements using scanning probe microscopy (SPM) with a PC-group-functionalized cantilever was carried out on the surface of polymer brushes bearing the CP groups. Three types of methacrylate monomers bearing CP with ethyl (Et), methoxyethyl (MOE), and isopropyl (iPr) phosphates were synthesized in 42-71% yields, and polymerized by surface-initiated atom transfer radical polymerization to form polymer brushes on silicon wafers. The surface free energy of CP-polymer brushes with Et, MOE, and iPr was estimated to be 64.0, 61.4, and 57.4 mN m-1, respectively, based on contact angle measurements. Force-distance curve measurements of polymer brushes having a CP group was conducted in water at 25 °C by SPM using a spherical probe produced by attaching a silica particle (SiP; d = 25 μm) covered with PC or CP groups to a tipless cantilever. Adhesion force larger than 14 nN was observed between the CP-polymer brushes and PC-SiP, whereas PC-polymer brushes revealed extremely low adhesion force of less than 0.6 nN with PC-SiP and propylsilane-modified SiP. The specific attractive molecular interaction between CP and PC groups was quantitatively evaluated.
Collapse
|
33
|
Kostina NY, Blanquer S, Pop‐Georgievski O, Rahimi K, Dittrich B, Höcherl A, Michálek J, Grijpma DW, Rodriguez‐Emmenegger C. Zwitterionic Functionalizable Scaffolds with Gyroid Pore Architecture for Tissue Engineering. Macromol Biosci 2019; 19:e1800403. [DOI: 10.1002/mabi.201800403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/17/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Nina Yu. Kostina
- DWI—Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular ChemistryRWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| | - Sebastien Blanquer
- Institute Charles Gerhardt MontpellierCNRS—University of Montpellier—ENSCM 34095 Montpellier Cedex 5 France
| | - Ognen Pop‐Georgievski
- Institute of Macromolecular ChemistryAcademy of Sciences of the Czech Republic v.v.i. Heyrovsky sq. 2 Prague 162 06 Czech Republic
| | - Khosrow Rahimi
- DWI—Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular ChemistryRWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| | - Barbara Dittrich
- DWI—Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular ChemistryRWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| | - Anita Höcherl
- Institute of Macromolecular ChemistryAcademy of Sciences of the Czech Republic v.v.i. Heyrovsky sq. 2 Prague 162 06 Czech Republic
| | - Jiří Michálek
- Institute of Macromolecular ChemistryAcademy of Sciences of the Czech Republic v.v.i. Heyrovsky sq. 2 Prague 162 06 Czech Republic
| | - Dirk W. Grijpma
- Department of Biomaterials Science and Technology GroupTechnical Medical CentreUniversity of Twente P.O. Box 217 7500 AE Enschede The Netherlands
- W.J. Kolff InstituteDepartment of Biomedical EngineeringUniversity Medical Center GroningenUniversity of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Cesar Rodriguez‐Emmenegger
- DWI—Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular ChemistryRWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| |
Collapse
|
34
|
Ji X, Ahmed M, Long L, Khashab NM, Huang F, Sessler JL. Adhesive supramolecular polymeric materials constructed from macrocycle-based host–guest interactions. Chem Soc Rev 2019; 48:2682-2697. [DOI: 10.1039/c8cs00955d] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review describes recent progress in adhesive supramolecular polymeric materials constructed from macrocycle-based host–guest interactions.
Collapse
Affiliation(s)
- Xiaofan Ji
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Mehroz Ahmed
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Lingliang Long
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
- School of Chemistry and Chemical Engineering
| | - Niveen M. Khashab
- King Abdullah University of Science and Technology (KAUST)
- 4700 King Abdullah University of Science and Technology
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Yuquan Campus
- Zhejiang University
| | - Jonathan L. Sessler
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
- Center for Supramolecular Chemistry and Catalysis
| |
Collapse
|
35
|
Lopez-Mila B, Alves P, Riedel T, Dittrich B, Mergulhão F, Rodriguez-Emmenegger C. Effect of shear stress on the reduction of bacterial adhesion to antifouling polymers. BIOINSPIRATION & BIOMIMETICS 2018; 13:065001. [PMID: 30141414 DOI: 10.1088/1748-3190/aadcc2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, two antifouling polymer brushes were tested at different shear stress conditions to evaluate their performance in reducing the initial adhesion of Escherichia coli. Assays were performed using a parallel plate flow chamber and a shear stress range between 0.005 and 0.056 Pa. These shear stress values are found in different locations in the human body where biomedical devices are placed. The poly(MeOEGMA) and poly(HPMA) brushes were characterized and it was shown that they can reduce initial adhesion up to 90% when compared to glass. Importantly, the performance of these surfaces was not affected by the shear stress, which is an indication that they do not collapse under this shear stress range. The brushes displayed a similar behavior despite the differences in their chemical composition and surface energy. Both surfaces have shown ultra-low adsorption of macromolecules from the medium when tested with relevant biological fluids (urine and serum). This indicates that these surfaces can potentially be used in biomedical devices to reduce initial bacterial colonization and eventually reduce biofilm formation on these devices.
Collapse
Affiliation(s)
- Betina Lopez-Mila
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, ASCR, v.v.i., Heyrovsky Sq. 2, 16206 Prague, Czechia. Both authors equally contributed to this work
| | | | | | | | | | | |
Collapse
|
36
|
Obstals F, Vorobii M, Riedel T, de los Santos Pereira A, Bruns M, Singh S, Rodriguez-Emmenegger C. Improving Hemocompatibility of Membranes for Extracorporeal Membrane Oxygenators by Grafting Nonthrombogenic Polymer Brushes. Macromol Biosci 2018; 18. [DOI: 10.1002/mabi.201700359] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Fabian Obstals
- DWI−Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Forckenbeckstraße 50 52074 Aachen Germany
| | - Mariia Vorobii
- DWI−Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Forckenbeckstraße 50 52074 Aachen Germany
| | - Tomáš Riedel
- Department of Chemistry and Physics of Surfaces and Biointerfaces; Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; v.v.i., Heyrovsky Square 2 162 06 Prague Czech Republic
| | - Andres de los Santos Pereira
- Department of Chemistry and Physics of Surfaces and Biointerfaces; Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; v.v.i., Heyrovsky Square 2 162 06 Prague Czech Republic
| | - Michael Bruns
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Smriti Singh
- DWI−Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Forckenbeckstraße 50 52074 Aachen Germany
| | - Cesar Rodriguez-Emmenegger
- DWI−Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Forckenbeckstraße 50 52074 Aachen Germany
| |
Collapse
|
37
|
Gardi I, Mishael YG. Designing a regenerable stimuli-responsive grafted polymer-clay sorbent for filtration of water pollutants. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2018; 19:588-598. [PMID: 30151061 PMCID: PMC6104616 DOI: 10.1080/14686996.2018.1499381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 05/22/2023]
Abstract
A novel, stimuli-responsive composite, based on poly(4-vinylpyridine) (PVP) brushes, end-grafted to montmorillonite clay (GPC), was designed as a regenerable sorbent for efficient removal of pollutants from water. We characterized the novel composite sorbent and its response to pH, employing Fourier transform infrared, X-ray photoelectron spectroscopy, X-ray diffraction, thermogravimetry analysis and zeta potential measurements. In comparison with conventional, electrostatically adsorbed PVP composites (APC), the GPC presented superior characteristics: higher polymer loading without polymer release, higher zeta potential and lower pH/charge dependency. These superior characteristics explained the significantly higher removal of organic and inorganic anionic pollutants by this composite, in comparison with the removal by APC and by many reported sorbents. For example, the filtration (20 pore volumes) of selenate by GPC, APC and a commercial resin column was complete (100%), negligible (0%) and reached 90% removal, respectively. At low-moderate pH, the grafted polymer undergoes protonation, promoting pollutant adsorption, whereas at high pH, the polymer deprotonates, promoting pollutant desorption. Indeed, 'in-column' regeneration of the GPC sorbents was achieved by increasing pH, and upon a second filtration cycle, no reduction in filter capacity was observed. These findings suggest the possible applicability of this stimuli-responsive sorbent for water treatment.
Collapse
Affiliation(s)
- Ido Gardi
- Department of Soil and Water Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Yael G. Mishael
- Department of Soil and Water Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
- CONTACT Yael G. Mishael Department of Soil and Water Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot76100, Israel
| |
Collapse
|
38
|
McCoy CP, Irwin NJ, Donnelly L, Jones DS, Hardy JG, Carson L. Anti-Adherent Biomaterials for Prevention of Catheter Biofouling. Int J Pharm 2017; 535:420-427. [PMID: 29170113 DOI: 10.1016/j.ijpharm.2017.11.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/13/2017] [Accepted: 11/20/2017] [Indexed: 01/12/2023]
Abstract
Medical device-associated infections present a leading global healthcare challenge, and effective strategies to prevent infections are urgently required. Herein, we present an innovative anti-adherent hydrogel copolymer as a candidate catheter coating with complementary hydrophobic drug-carrying and eluting capacities. The amphiphilic block copolymer, Poloxamer 188, was chemically-derivatized with methacryloyl moieties and copolymerized with the hydrogel monomer, 2-hydroxyethyl methacrylate. Performance of the synthesized copolymers was evaluated in terms of equilibrium swelling, surface water wettability, mechanical integrity, resistance to encrustation and bacterial adherence, and ability to control release of the loaded fluoroquinolone antibiotic, ofloxacin. The developed matrices were able to provide significant protection from fouling, with observed reductions of over 90% in both adherence of the common urinary pathogen Escherichia coli and encrusting crystalline deposits of calcium and magnesium salts relative to the commonly employed hydrogel, poly (hydroxyethyl methacrylate). Additionally, the release kinetics of a loaded hydrophobic drug could be readily tuned through facile manipulation of polymer composition. This combinatorial approach shows significant promise in the development of suitable systems for prevention of catheter-associated infections.
Collapse
Affiliation(s)
- Colin P McCoy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| | - Nicola J Irwin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - Louise Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - David S Jones
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - John G Hardy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - Louise Carson
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
39
|
Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem Rev 2017; 117:12942-13038. [DOI: 10.1021/acs.chemrev.7b00088] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuaidi Zhang
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Ren Geryak
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Jeffrey Geldmeier
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Sunghan Kim
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Vladimir V. Tsukruk
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
40
|
Catalyst-free “click” functionalization of polymer brushes preserves antifouling properties enabling detection in blood plasma. Anal Chim Acta 2017; 971:78-87. [DOI: 10.1016/j.aca.2017.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/26/2017] [Accepted: 03/01/2017] [Indexed: 11/22/2022]
|
41
|
Buzzacchera I, Vorobii M, Kostina NY, de Los Santos Pereira A, Riedel T, Bruns M, Ogieglo W, Möller M, Wilson CJ, Rodriguez-Emmenegger C. Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings. Biomacromolecules 2017; 18:1983-1992. [PMID: 28475307 DOI: 10.1021/acs.biomac.7b00516] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.
Collapse
Affiliation(s)
| | - Mariia Vorobii
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Nina Yu Kostina
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Andres de Los Santos Pereira
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , v.v.i., Heyrovsky Square 2, 16206 Prague, Czech Republic
| | - Tomáš Riedel
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , v.v.i., Heyrovsky Square 2, 16206 Prague, Czech Republic
| | - Michael Bruns
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Wojciech Ogieglo
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| | | | - Cesar Rodriguez-Emmenegger
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| |
Collapse
|
42
|
James SA, Hilal N, Wright CJ. Atomic force microscopy studies of bioprocess engineering surfaces - imaging, interactions and mechanical properties mediating bacterial adhesion. Biotechnol J 2017; 12. [PMID: 28488793 DOI: 10.1002/biot.201600698] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
The detrimental effect of bacterial biofilms on process engineering surfaces is well documented. Thus, interest in the early stages of bacterial biofilm formation; in particular bacterial adhesion and the production of anti-fouling coatings has grown exponentially as a field. During this time, Atomic force microscopy (AFM) has emerged as a critical tool for the evaluation of bacterial adhesion. Due to its versatility AFM offers not only insight into the topographical landscape and mechanical properties of the engineering surfaces, but elucidates, through direct quantification the topographical and biomechnical properties of the foulants The aim of this review is to collate the current research on bacterial adhesion, both theoretical and practical, and outline how AFM as a technique is uniquely equipped to provide further insight into the nanoscale world at the bioprocess engineering surface.
Collapse
Affiliation(s)
- Sean A James
- Biomaterials, Biofouling and Biofilms Engineering Laboratory (B3EL, System and Process Engineering Center, College of Engineering, Swansea University, Fabian Way, Swansea, SA1 8EN, UK
| | - Nidal Hilal
- Centre for Water Advanced Technologies and Environmental Research (CWATER), College of Engineering, Swansea University, Fabian Way, Swansea, SA1 8EN, UK
| | - Chris J Wright
- Biomaterials, Biofouling and Biofilms Engineering Laboratory (B3EL, System and Process Engineering Center, College of Engineering, Swansea University, Fabian Way, Swansea, SA1 8EN, UK
| |
Collapse
|
43
|
Wang J, Chen Y, An J, Xu K, Chen T, Müller-Buschbaum P, Zhong Q. Intelligent Textiles with Comfort Regulation and Inhibition of Bacterial Adhesion Realized by Cross-Linking Poly(n-isopropylacrylamide-co-ethylene glycol methacrylate) to Cotton Fabrics. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13647-13656. [PMID: 28358475 DOI: 10.1021/acsami.7b01922] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Comfort regulation and inhibition of bacterial adhesion to textiles is realized by cross-linking thermoresponsive random copolymer to the cotton fabrics. By introduction of ethylene glycol methacrylate (EGMA) monomers into n-isopropylacrylamide (NIPAM) with a molar ratio of 2:18, the obtained random copolymer poly(n-isopropylacrylamide-co-ethylene glycol methacrylate), abbreviated as P(NIPAM-co-EGMA), presents a transition temperature (TT) of 40 °C in an aqueous solution with a concentration of 1 mg/mL. Because of the additional EGMA in the copolymer, the obtained P(NIPAM-co-EGMA) shows a glass transition temperature (Tg) of 0 °C, which is much lower than that of pure PNIPAM (Tg = 140 °C). Therefore, the introduction of P(NIPAM-co-EGMA) into the cotton fabrics will have little influence on the softness of the fabrics. Due to the cross-linked P(NIPAM-co-EGMA) layer on the cotton fabrics, the porosity of the polymer layer can be adjusted by varying the external temperature below or above TT, showing that regulation of the air and moisture permeability as well as the body comfort are feasible in the cotton fabrics cross-linked with P(NIPAM-co-EGMA). In addition, the cross-linked P(NIPAM-co-EGMA) layer is capable of absorbing moisture in the ambient atmosphere to form a hydrated layer on top, which can inhibit bacterial adhesion to the textiles.
Collapse
Affiliation(s)
- Jiping Wang
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education; Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education; National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University , 310018 Hangzhou, China
| | - Yangyi Chen
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education; Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education; National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University , 310018 Hangzhou, China
| | - Jie An
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education; Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education; National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University , 310018 Hangzhou, China
| | - Ke Xu
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education; Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education; National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University , 310018 Hangzhou, China
| | - Tao Chen
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education; Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education; National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University , 310018 Hangzhou, China
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München , James-Franck-Strasse 1, D-85748 Garching, Germany
| | - Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education; Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education; National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University , 310018 Hangzhou, China
| |
Collapse
|
44
|
Korolkovas A, Rodriguez-Emmenegger C, de los Santos Pereira A, Chennevière A, Restagno F, Wolff M, Adlmann FA, Dennison AJC, Gutfreund P. Polymer Brush Collapse under Shear Flow. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Airidas Korolkovas
- Institut Laue-Langevin, 71 rue des Martyrs, 38000 Grenoble, France
- Université
Grenoble Alpes, Liphy, 140 Rue de la
Physique, 38402 Saint-Martin-d’Hères, France
| | - Cesar Rodriguez-Emmenegger
- DWI
- Leibniz Institute for Interactive Materials and Institute of Technical
and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße
50, 52074 Aachen, Germany
| | - Andres de los Santos Pereira
- Institute
of Macromolecular Chemistry, Academy of Sciences of the Czech Republic v.v.i., Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Alexis Chennevière
- Laboratoire
Léon Brillouin, CEA, CNRS, Université Paris-Saclay, Saclay, 91191 Gif-sur-Yvette, Cedex, France
| | - Frédéric Restagno
- Laboratoire
de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, Cedex, France
| | - Maximilian Wolff
- Division
for Material Physics, Department for Physics and Astronomy, Uppsala University, Box
516, 75120 Uppsala, Sweden
| | - Franz A. Adlmann
- Division
for Material Physics, Department for Physics and Astronomy, Uppsala University, Box
516, 75120 Uppsala, Sweden
| | - Andrew J. C. Dennison
- Institut Laue-Langevin, 71 rue des Martyrs, 38000 Grenoble, France
- Department
of Chemistry, Technical University Berlin, 10623 Berlin, Germany
- Department
of Physics and Astronomy, University of Sheffield, S10 2TN Sheffield, U.K
| | | |
Collapse
|
45
|
Hepatitis B plasmonic biosensor for the analysis of clinical serum samples. Biosens Bioelectron 2016; 85:272-279. [PMID: 27179568 DOI: 10.1016/j.bios.2016.05.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/31/2022]
Abstract
A plasmonic biosensor for rapid detection of protein biomarkers in complex media is reported. Clinical serum samples were analyzed by using a novel biointerface architecture based on poly[(N-(2-hydroxypropyl) methacrylamide)-co-(carboxybetaine methacrylamide)] brushes functionalized with bioreceptors. This biointerface provided an excellent resistance to fouling even after the functionalization and allowed for the first time the direct detection of antibodies against hepatitis B surface antigen (anti-HBs) in clinical serum samples using surface plasmon resonance (SPR). The fabricated SPR biosensor allowed discrimination of anti-HBs positive and negative clinical samples in 10min. Results are validated by enzyme-linked immunoassays of the sera in a certified laboratory. The sensor could be regenerated by simple treatment with glycine buffer.
Collapse
|
46
|
de los Santos Pereira A, Sheikh S, Blaszykowski C, Pop-Georgievski O, Fedorov K, Thompson M, Rodriguez-Emmenegger C. Antifouling Polymer Brushes Displaying Antithrombogenic Surface Properties. Biomacromolecules 2016; 17:1179-85. [DOI: 10.1021/acs.biomac.6b00019] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Andres de los Santos Pereira
- Department
of Chemistry and Physics of Surfaces and Biointerfaces, Institute
of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Square 2, 162 06 Prague, Czech Republic
| | - Sonia Sheikh
- Department
of Chemistry − St. George Campus, University of Toronto, 80 St. George Street, Toronto, Ontario Canada M5S 3H6
| | | | - Ognen Pop-Georgievski
- Department
of Chemistry and Physics of Surfaces and Biointerfaces, Institute
of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Square 2, 162 06 Prague, Czech Republic
| | - Kiril Fedorov
- Institute of Biomaterials & Biomedical Engineering, 164 College Street, University of Toronto, Toronto, Ontario Canada M5S 3G9
| | - Michael Thompson
- Department
of Chemistry − St. George Campus, University of Toronto, 80 St. George Street, Toronto, Ontario Canada M5S 3H6
| | - Cesar Rodriguez-Emmenegger
- Department
of Chemistry and Physics of Surfaces and Biointerfaces, Institute
of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Square 2, 162 06 Prague, Czech Republic
- DWI
− Leibniz Institute for Interactive Materials and Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
| |
Collapse
|
47
|
Ibanescu SA, Nowakowska J, Khanna N, Landmann R, Klok HA. Effects of Grafting Density and Film Thickness on the Adhesion of Staphylococcus epidermidis to Poly(2-hydroxy ethyl methacrylate) and Poly(poly(ethylene glycol)methacrylate) Brushes. Macromol Biosci 2016; 16:676-85. [PMID: 26757483 DOI: 10.1002/mabi.201500335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/13/2015] [Indexed: 12/21/2022]
Abstract
Thin polymer films that prevent the adhesion of bacteria are of interest as coatings for the development of infection-resistant biomaterials. This study investigates the influence of grafting density and film thickness on the adhesion of Staphylococcus epidermidis to poly(poly(ethylene glycol)methacrylate) (PPEGMA) and poly(2-hydroxyethyl methacrylate) (PHEMA) brushes prepared via surface-initiated atom transfer radical polymerization (SI-ATRP). These brushes are compared with poly(ethylene glycol) (PEG) brushes, which are obtained by grafting PEG onto an epoxide-modified substrate. Except for very low grafting densities (ρ = 1%), crystal violet staining experiments show that the PHEMA and PPEGMA brushes are equally effective as the PEG-modified surfaces in preventing S. epidermis adhesion and do not reveal any significant variations as a function of film thickness or grafting density. These results indicate that brushes generated by SI-ATRP are an attractive alternative to grafted-onto PEG films for the preparation of surface coatings that resist bacterial adhesion.
Collapse
Affiliation(s)
- Sorin-Alexandru Ibanescu
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Ecole Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015, Lausanne, Switzerland
| | - Justyna Nowakowska
- Infection Biology, Department of Biomedicine, University and University Hospital Basel, Hebelstrasse 20, CH-4031, Basel, Switzerland
| | - Nina Khanna
- Infection Biology, Department of Biomedicine, University and University Hospital Basel, Hebelstrasse 20, CH-4031, Basel, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Petersgraben 4, CH-4056, Basel, Switzerland
| | - Regine Landmann
- Infection Biology, Department of Biomedicine, University and University Hospital Basel, Hebelstrasse 20, CH-4031, Basel, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Ecole Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015, Lausanne, Switzerland
| |
Collapse
|
48
|
Vorobii M, Pop-Georgievski O, de los Santos Pereira A, Kostina NY, Jezorek R, Sedláková Z, Percec V, Rodriguez-Emmenegger C. Grafting of functional methacrylate polymer brushes by photoinduced SET-LRP. Polym Chem 2016. [DOI: 10.1039/c6py01730d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The growth of polymer brushes from a variety of methacrylate monomers was accomplished using UV light as a polymerization trigger.
Collapse
Affiliation(s)
- Mariia Vorobii
- DWI - Leibniz-Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ognen Pop-Georgievski
- Department of Chemistry and Physics of Surfaces and Biointerfaces
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague
- Czech Republic
| | - Andres de los Santos Pereira
- Department of Chemistry and Physics of Surfaces and Biointerfaces
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague
- Czech Republic
| | - Nina Yu. Kostina
- DWI - Leibniz-Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ryan Jezorek
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Zdeňka Sedláková
- Department of Chemistry and Physics of Surfaces and Biointerfaces
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague
- Czech Republic
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Cesar Rodriguez-Emmenegger
- DWI - Leibniz-Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
- Roy & Diana Vagelos Laboratories
| |
Collapse
|
49
|
Kostina NY, Pop-Georgievski O, Bachmann M, Neykova N, Bruns M, Michálek J, Bastmeyer M, Rodriguez-Emmenegger C. Non-Fouling Biodegradable Poly(ϵ-caprolactone) Nanofibers for Tissue Engineering. Macromol Biosci 2015; 16:83-94. [DOI: 10.1002/mabi.201500252] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/15/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Nina Yu. Kostina
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; v.v.i., Heyrovsky sq.2 Prague 162 06 Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; v.v.i., Heyrovsky sq.2 Prague 162 06 Czech Republic
| | - Michael Bachmann
- Zoological Institute; Cell and Neurobiology; Karlsruhe Institute of Technology (KIT); Haid-und-Neu-Straße 9 Karlsruhe 76131 Germany
| | - Neda Neykova
- Institute of Physics; Academy of Sciences of the Czech Republic; Cukrovarnicka 10 Prague 16253 Czech Republic
- Faculty of Nuclear Science and Physical Engineering; Czech Technical University in Prague; Trojanova 13 Prague 12000 Czech Republic
| | - Michael Bruns
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 Eggenstein-Leopoldshafen 76344 Germany
| | - Jiří Michálek
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; v.v.i., Heyrovsky sq.2 Prague 162 06 Czech Republic
| | - Martin Bastmeyer
- Zoological Institute; Cell and Neurobiology; Karlsruhe Institute of Technology (KIT); Haid-und-Neu-Straße 9 Karlsruhe 76131 Germany
- Institute for Functional Interfaces (IFG) Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1; Eggenstein-Leopoldshafen 76344 Germany
| | - Cesar Rodriguez-Emmenegger
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; v.v.i., Heyrovsky sq.2 Prague 162 06 Czech Republic
| |
Collapse
|