1
|
Chaudhary S, Jain S, Ghosal D, Kumar S. Harnessing Theraoenergetics for Cartilage Regeneration: Development of a Therapeutic and Bioenergetic Loaded Janus Nanofiber Reinforced Hydrogel Composite for Cartilage Regeneration. ACS Biomater Sci Eng 2025. [PMID: 39900505 DOI: 10.1021/acsbiomaterials.4c01600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Advancements in tissue engineering and regenerative medicine have highlighted different strategies of engineering and designing hydrogels to replicate the intricate structure of cartilage extracellular matrix (ECM) for effective cartilage regeneration. However, despite efforts to meet the elevated structural and mechanical demands of cartilage repair, researchers often overlook the challenging environmental conditions at damaged cartilage sites such as inflammation, hypoxia, and the limited availability of nutrients and energy, which are critical for supporting tissue regeneration. The insufficient oxygen, nutrient availability, and oxidative stress in avascular cartilage limit the oxidative phosphorylation-mediated bioenergetics in cells needed for energy demands required for anabolic biosynthesis, cell division, and migration during tissue repair. Thus, there is a need to develop an advanced approach to engineer a unique hydrogel system that not only provides intricate structural properties but also integrates therapeutics (like anti-inflammatory, reactive oxygen species (ROS) scavenging) and bioenergetics (like oxygen, energy demand) into the hydrogel, which may offer a holistic and effective solution for repairing cartilage defects under a harsh microenvironment. In this study, we engineered an innovative approach to develop a new class of theraoenergetic hydrogel system by reinforcing a Janus nanofiber (JNF) carrying therapeutic (MgO) and bioenergetic (polyglutamic acid), PGA) components into a dual network photo-crosslinkable hydrogel. Reinforcement of JNF microfragments and the photo-crosslinking dual network of synthesized gelatin methacryloyl (GelMA) and carboxymethyl chitosan (CMCh) not only enhances the hydrogel's mechanical properties by 800% to withstand mechanical load but also ensures a controlled release of magnesium, oxygen, and PGA over 30 days. Co-delivery of magnesium and bioenergetic PGA with oxygen helped synergistically to reduce intracellular ROS and inflammatory markers IL-6 and TNF-α, providing a supportive environment for enhancing cell mitochondrial oxidative metabolism leading to active proliferation and chondrogenic differentiation of stem cells to deposit glycosaminoglycan (GAG)-rich extracellular matrix to regenerate cartilage. The developed theraoenergetic hydrogel system represents a promising solution for regenerating cartilage under a harsh microenvironment to treat osteoarthritis, a rising global health burden.
Collapse
Affiliation(s)
- Shivani Chaudhary
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sakshi Jain
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Doyel Ghosal
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sachin Kumar
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
2
|
Vanukuru S, Steele F, Porfiryeva NN, Sosnik A, Khutoryanskiy VV. Functionalisation of chitosan with methacryloyl and crotonoyl groups as a strategy to enhance its mucoadhesive properties. Eur J Pharm Biopharm 2024; 205:114575. [PMID: 39510198 DOI: 10.1016/j.ejpb.2024.114575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Mucoadhesive polymers are crucial for prolonging drug retention on mucosal surfaces. This study focuses on synthesising and characterising novel derivatives by reacting chitosan with crotonic and methacrylic anhydrides. The structure of the resulting derivatives was confirmed using proton-nuclear magnetic resonance spectroscopy and Fourier-transform infrared spectroscopy. It was established that the degree of substitution plays a crucial role in the pH-dependent solubility profiles and electrophoretic mobility of the chitosan derivatives. Spray-drying chitosan solutions enabled preparation of microparticles, whose mucoadhesive properties were evaluated using fluorescence flow-through studies and tensile test, demonstrating improved retention on sheep nasal mucosa for modified derivatives. Acute toxicity studies conducted in vivo using planaria and in vitro using MTT assay with the Caco-2 cell line, a model of the mucosal epithelium in vitro, showed that the novel derivatives are not cytotoxic. These findings emphasise the potential of tailored chitosan chemical modifications for enhancing transmucosal drug delivery.
Collapse
Affiliation(s)
- Shiva Vanukuru
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Fraser Steele
- MC2 Therapeutics, 1A Guildford Business Park Road, Guildford GU2 8XG, United Kingdom
| | - Natalia N Porfiryeva
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom.
| |
Collapse
|
3
|
Alkazemi H, Mitchell GM, Lokmic-Tomkins Z, Heath DE, O'Connor AJ. Hierarchically vascularized and suturable tissue constructs created through angiogenesis from tissue-engineered vascular grafts. Acta Biomater 2024; 189:168-178. [PMID: 39368723 DOI: 10.1016/j.actbio.2024.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
A major roadblock in implementing engineered tissues clinically lies in their limited vascularization. After implantation, such tissues do not integrate with the host's circulation as quickly as needed, commonly resulting in loss of viability and functionality. This study presents a solution to the vascularization problem that could enable the survival and function of large, transplantable, and vascularized engineered tissues. The technique allows vascularization of a cell laden hydrogel through angiogenesis from a suturable tissue-engineered vascular graft (TEVG) constructed from electrospun polycaprolactone with macropores. The graft is surrounded by a layer of cell-laden gelatin-methacryloyl hydrogel. The constructs are suturable and possess mechanical properties like native vessels. Angiogenesis occurs through the pores in the graft, resulting in a hydrogel containing an extensive vascular network that is connected to an implantable TEVG. The size of the engineered tissue and the degree of vascularization can be increased by adding multiple TEVGs into a single construct. The engineered tissue has the potential to be immediately perfused by the patient's blood upon surgical anastomosis to host vessels, enabling survival of implanted cells. These findings provide a meaningful step to address the longstanding problem of fabricating suturable pre-vascularized tissues which could survive upon implantation in vivo. STATEMENT OF SIGNIFICANCE: Creating vascularized engineered tissues that can be transplanted and rapidly perfused by the host blood supply is a major challenge which has limited the clinical impact of tissue engineering. In this study we demonstrate a technique to fabricate vascularized tissue constructs via angiogenesis from a suturable tissue-engineered vascular graft. The macroporous graft is surrounded with hydrogel, allowing endothelial cells to migrate from the lumen and vascularize the hydrogel layer with capillary-like structures connected to the macrovessel. The graft has comparable mechanical properties to native blood vessels and larger constructs can be fabricated by incorporating multiple grafts. These constructs could potentially be connected surgically to the circulation at an implantation site to support their immediate perfusion and survival.
Collapse
Affiliation(s)
- Hazem Alkazemi
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Victoria 3010, Australia
| | - Geraldine M Mitchell
- O'Brien Institute Department of Vincent's Institute of Medical Research, Victoria 3065, Australia; Faculty of Health Sciences, Australian Catholic University, Victoria 3065, Australia; Department of Surgery at St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | | | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Victoria 3010, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Victoria 3010, Australia; Aikenhead Centre for Medical Discovery (ACMD), Fitzroy, Victoria 3065, Australia.
| |
Collapse
|
4
|
Chen J, Xu R, Meng L, Yan F, Wang L, Xu Y, Zhang Q, Zhai W, Pan C. Biomimetic hydrogel coatings for improving the corrosion resistance, hemocompatibility, and endothelial cell growth of the magnesium alloy. Colloids Surf B Biointerfaces 2024; 245:114204. [PMID: 39236361 DOI: 10.1016/j.colsurfb.2024.114204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The fast biodegradation and poor biocompatibility of Mg alloys in physiological environments are still the main problems restricting their application in cardiovascular stents. In this study, the hydrogel coatings (SBMA-AAM) with different proportions of methacryloyl ethyl sulfobetaine (SBMA) and acrylamide (AAM) were built on the surface of AZ31B magnesium alloy through ultraviolet (UV) polymerization. The corrosion degradation behavior, hemocompatibility, and endothelial cell (EC) growth performance of the samples were studied in detail. The findings revealed that the uniform and dense SBMA-AAM coatings could significantly enhance the corrosion resistance. In addition, the hydrogel coatings showed excellent hydrophilicity, which increased the albumin adsorption while inhibiting the fibrinogen adsorption, and thus reduced the platelet adhesion and activation and hemolysis rate, accordingly significantly enhancing their anticoagulant performance. Furthermore, SBMA-AAM hydrogel coating promoted the EC adhesion and proliferation and the vascular endothelial growth factor (VEGF) and nitric oxide (NO) secretion of ECs, which is conducive to promoting endothelialization. When the concentration ratio of SBMA and AAM was 1: 2, the modified magnesium alloy showed the best corrosion resistance and biocompatibility. Therefore, the SBMA-AAM hydrogel coating could effectively regulate the corrosion degradation performance and biocompatibility of Mg alloys, laying a foundation for the application of Mg alloys in cardiovascular stents.
Collapse
Affiliation(s)
- Jie Chen
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Ruiting Xu
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Lingjie Meng
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Fei Yan
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Lingtao Wang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yi Xu
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qiuyang Zhang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Wanli Zhai
- Huaigang Special Steel Co., Ltd. of Jiangsu Shagang Group, Huai'an 223002, China
| | - Changjiang Pan
- School of Medical and Health Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
5
|
Klak M, Kosowska K, Czajka M, Dec M, Domański S, Zakrzewska A, Korycka P, Jankowska K, Romanik-Chruścielewska A, Wszoła M. The Impact of the Methacrylation Process on the Usefulness of Chitosan as a Biomaterial Component for 3D Printing. J Funct Biomater 2024; 15:251. [PMID: 39330227 PMCID: PMC11433516 DOI: 10.3390/jfb15090251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Chitosan is a very promising material for tissue model printing. It is also known that the introduction of chemical modifications to the structure of the material in the form of methacrylate groups makes it very attractive for application in the bioprinting of tissue models. The aim of this work is to study the characteristics of biomaterials containing chitosan (BCH) and its methacrylated equivalent (BCM) in order to identify differences in their usefulness in 3D bioprinting technology. It has been shown that the BCM material containing methacrylic chitosan is three times more viscous than its non-methacrylated BCH counterpart. Additionally, the BCM material is characterized by stability in a larger range of stresses, as well as better printability, resolution, and fiber stability. The BCM material has higher mechanical parameters, both mechanical strength and Young's modulus, than the BCH material. Both materials are ideal for bioprinting, but BCM has unique rheological properties and significant mechanical resistance. In addition, biological tests have shown that the addition of chitosan to biomaterials increases cell proliferation, particularly in 3D-printed models. Moreover, modification in the form of methacrylation encourages reduced toxicity of the biomaterial in 3D constructs. Our investigation demonstrates the suitability of a chitosan-enhanced biomaterial, specifically methacrylate-treated, for application in tissue engineering, and particularly for tissues requiring resistance to high stress, i.e., vascular or cartilage models.
Collapse
Affiliation(s)
- Marta Klak
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
- Polbionica Ltd., 01-793 Warsaw, Poland
| | - Katarzyna Kosowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
- Polbionica Ltd., 01-793 Warsaw, Poland
| | - Milena Czajka
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
- Polbionica Ltd., 01-793 Warsaw, Poland
| | - Magdalena Dec
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
- Polbionica Ltd., 01-793 Warsaw, Poland
| | | | | | - Paulina Korycka
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
| | - Kamila Jankowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
| | | | - Michał Wszoła
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
- Polbionica Ltd., 01-793 Warsaw, Poland
| |
Collapse
|
6
|
Park S, Sharma H, Safdar M, Lee J, Kim W, Park S, Jeong HE, Kim J. Micro/nanoengineered agricultural by-products for biomedical and environmental applications. ENVIRONMENTAL RESEARCH 2024; 250:118490. [PMID: 38365052 DOI: 10.1016/j.envres.2024.118490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Agriculturally derived by-products generated during the growth cycles of living organisms as secondary products have attracted increasing interest due to their wide range of biomedical and environmental applications. These by-products are considered promising candidates because of their unique characteristics including chemical stability, profound biocompatibility and offering a green approach by producing the least impact on the environment. Recently, micro/nanoengineering based techniques play a significant role in upgrading their utility, by controlling their structural integrity and promoting their functions at a micro and nano scale. Specifically, they can be used for biomedical applications such as tissue regeneration, drug delivery, disease diagnosis, as well as environmental applications such as filtration, bioenergy production, and the detection of environmental pollutants. This review highlights the diverse role of micro/nano-engineering techniques when applied on agricultural by-products with intriguing properties and upscaling their wide range of applications across the biomedical and environmental fields. Finally, we outline the future prospects and remarkable potential that these agricultural by-products hold in establishing a new era in the realms of biomedical science and environmental research.
Collapse
Affiliation(s)
- Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang, 50463, Republic of Korea
| | - Harshita Sharma
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Mahpara Safdar
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeongryun Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sangbae Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Biosystems Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
7
|
Noohi P, Abdekhodaie MJ, Saadatmand M, Nekoofar MH, Dummer PMH. The development of a dental light curable PRFe-loaded hydrogel as a potential scaffold for pulp-dentine complex regeneration: An in vitro study. Int Endod J 2023; 56:447-464. [PMID: 36546662 DOI: 10.1111/iej.13882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
AIM The study aimed to develop a bicomponent bioactive hydrogel formed in situ and enriched with an extract of platelet-rich fibrin (PRFe) and to assess its potential for use in pulp-dentine complex tissue engineering via cell homing. METHODOLOGY A bicomponent hydrogel based on photo-activated naturally derived polymers, methacrylated chitosan (ChitMA) and methacrylated collagen (ColMA), plus PRFe was fabricated. The optimized formulation of PRFe-loaded bicomponent hydrogel was determined by analysing the mechanical strength, swelling ratio and cell viability simultaneously. The physical, mechanical, rheological and morphological properties of the optimal hydrogel with and without PRFe were determined. Additionally, MTT, phalloidin/DAPI and live/dead assays were carried out to compare the viability, cytoskeletal morphology and migration ability of stem cells from the apical papilla (SCAP) within the developed hydrogels with and without PRFe, respectively. To further investigate the effect of PRFe on the differentiation of encapsulated SCAP, alizarin red S staining, RT-PCR analysis and immunohistochemical detection were performed. Statistical significance was established at p < .05. RESULTS The optimized formulation of PRFe-loaded bicomponent hydrogel can be rapidly photocrosslinked using available dental light curing units. Compared to bicomponent hydrogels without PRFe, the PRFe-loaded hydrogel exhibited greater viscoelasticity and higher cytocompatibility to SCAP. Moreover, it promoted cell proliferation and migration in vitro. It also supported the odontogenic differentiation of SCAP as evidenced by its promotion of biomineralization and upregulating the gene expression for ALP, COL I, DSPP and DMP1 as well as facilitated angiogenesis by enhancing VEGFA gene expression. CONCLUSIONS The new PRFe-loaded ChitMA/ColMA hydrogel developed within this study fulfils the criteria of injectability, cytocompatibility, chemoattractivity and bioactivity to promote odontogenic differentiation, which are fundamental requirements for scaffolds used in pulp-dentine complex regeneration via cell-homing approaches.
Collapse
Affiliation(s)
- Parisa Noohi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.,Environmental and Applied Science Management, Yeates School of Graduate Studies, Toronto Metropolitan University, Toronto, Canada
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad H Nekoofar
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Endodontics, Bahçeşehir University School of Dentistry, Istanbul, Turkey
| | - Paul M H Dummer
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
8
|
Ganguly K, Dutta SD, Randhawa A, Patel DK, Patil TV, Lim KT. Transcriptomic Changes toward Osteogenic Differentiation of Mesenchymal Stem Cells on 3D-Printed GelMA/CNC Hydrogel under Pulsatile Pressure Environment. Adv Healthc Mater 2023; 12:e2202163. [PMID: 36637340 DOI: 10.1002/adhm.202202163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/20/2022] [Indexed: 01/14/2023]
Abstract
Biomimetic soft hydrogels used in bone tissue engineering frequently produce unsatisfactory outcomes. Here, it is investigated how human bone-marrow-derived mesenchymal stem cells (hBMSCs) differentiated into early osteoblasts on remarkably soft 3D hydrogel (70 ± 0.00049 Pa). Specifically, hBMSCs seeded onto cellulose nanocrystals incorporated methacrylate gelatin hydrogels are subjected to pulsatile pressure stimulation (PPS) of 5-20 kPa for 7 days. The PPS stimulates cellular processes such as mechanotransduction, cytoskeletal distribution, prohibition of oxidative stress, calcium homeostasis, osteogenic marker gene expression, and osteo-specific cytokine secretions in hBMSCs on soft substrates. The involvement of Piezo 1 is the main ion channel involved in mechanotransduction. Additionally, RNA-sequencing results reveal differential gene expression concerning osteogenic differentiation, bone mineralization, ion channel activity, and focal adhesion. These findings suggest a practical and highly scalable method for promoting stem cell commitment to osteogenesis on soft matrices for clinical reconstruction.
Collapse
Affiliation(s)
- Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Dinesh K Patel
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Biomechagen Co., Ltd., Chuncheon, 24341, Republic of Korea
| |
Collapse
|
9
|
Kang JI, Park KM. Oxygen-supplying syringe to create hyperoxia-inducible hydrogels for in situ tissue regeneration. Biomaterials 2023; 293:121943. [PMID: 36527790 DOI: 10.1016/j.biomaterials.2022.121943] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Recent trends in the design of regenerative materials include the development of bioactive matrices to harness the innate healing ability of the body using various biophysicochemical stimuli (defined as in situ tissue regeneration). Among these, hyperoxia (>21% pO2) is a well-known therapeutic factor for promoting tissue regeneration, such as immune cell recruitment, cell proliferation, angiogenesis, and fibroblast differentiation into myofibroblast. Although various strategies to induce hyperoxia are reported, developing advanced hyperoxia-inducing biomaterials for tissue regeneration is still challenging. In this study, a catalase-immobilized syringe (defined as an Oxyringe) via calcium peroxide-mediated surface modification is developed as a new type of oxygen-supplying system. Hyperoxia-inducible hydrogels are fabricated utilizing Oxyringe. This hydrogel plays a role as a physical barrier for hemostasis. In addition, hyperoxic matrices induce transient hyperoxia in vivo (up to 46.0% pO2). Interestingly, the hydrogel-induced hyperoxia boost the initial macrophage recruitment and rapid inflammation resolution. Furthermore, hyperoxic oxygen release of hydrogels facilitates neovascularization and cell proliferation involved in the proliferation phase, expediting tissue maturation related to the remodeling phase in wound healing. In summary, Oxyringe has excellent potential as an advanced oxygen-supplying platform to create hyperoxia-inducing hydrogels for in situ tissue regeneration.
Collapse
Affiliation(s)
- Jeon Il Kang
- Department of Bioengineering and Nano-Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Kyung Min Park
- Department of Bioengineering and Nano-Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea; Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| |
Collapse
|
10
|
Yadav N, Kumar U, Roopmani P, Krishnan UM, Sethuraman S, Chauhan MK, Chauhan VS. Ultrashort Peptide-Based Hydrogel for the Healing of Critical Bone Defects in Rabbits. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54111-54126. [PMID: 36401830 DOI: 10.1021/acsami.2c18733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The use of hydrogels as scaffolds for three-dimensional (3D) cell growth is an active area of research in tissue engineering. Herein, we report the self-assembly of an ultrashort peptide, a tetrapeptide, Asp-Leu-IIe-IIe, the shortest peptide sequence from a highly fibrillogenic protein TDP-43, into the hydrogel. The hydrogel was mechanically strong and highly stable, with storage modulus values in MPa ranges. The hydrogel supported the proliferation and successful differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) in its matrix as assessed by cell viability, calcium deposition, alkaline phosphatase (ALP) activity, and the expression of osteogenic marker gene studies. To check whether the hydrogel supports 3D growth and regeneration in in vivo conditions, a rabbit critical bone defect model was used. Micro-computed tomography (CT) and X-ray analysis demonstrated the formation of mineralized neobone in the defect areas, with significantly higher bone mineralization and relative bone densities in animals treated with the peptide hydrogel compared to nontreated and matrigel treatment groups. The ultrashort peptide-based hydrogel developed in this work holds great potential for its further development as tissue regeneration and/or engineering scaffolds.
Collapse
Affiliation(s)
- Nitin Yadav
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi110067, India
- Delhi Institute of Pharmaceutical Sciences and Research, Mehrauli-Badarpur Road, Sector-3, Pushpvihar, New Delhi110017, India
| | - Utkarsh Kumar
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi110067, India
| | - Purandhi Roopmani
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA's Hub for Research & Innovation (SHRI), School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur613401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA's Hub for Research & Innovation (SHRI), School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur613401, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA's Hub for Research & Innovation (SHRI), School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur613401, India
| | - Meenakshi K Chauhan
- Delhi Institute of Pharmaceutical Sciences and Research, Mehrauli-Badarpur Road, Sector-3, Pushpvihar, New Delhi110017, India
| | - Virander S Chauhan
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi110067, India
| |
Collapse
|
11
|
Bharathi R, Ganesh SS, Harini G, Vatsala K, Anushikaa R, Aravind S, Abinaya S, Selvamurugan N. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. Int J Biol Macromol 2022; 222:132-153. [PMID: 36108752 DOI: 10.1016/j.ijbiomac.2022.09.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
The bone tissue engineering approach for treating large bone defects becomes necessary when the tissue damage surpasses the threshold of the inherent regenerative ability of the human body. A myriad of natural biodegradable polymers and scaffold fabrication techniques have emerged in the last decade. Chitosan (CS) is especially attractive as a bone scaffold material to support cell attachment and proliferation and mineralization of the bone matrix. The primary amino groups in CS are responsible for properties such as controlled drug release, mucoadhesion, in situ gelation, and transfection. CS-based smart drug delivery scaffolds that respond to environmental stimuli have been reported to have a localized sustained delivery of drugs in the large bone defect area. This review outlines the recent advances in the fabrication of CS-based scaffolds as a pharmaceutical carrier to deliver drugs such as antibiotics, growth factors, nucleic acids, and phenolic compounds for bone tissue regeneration.
Collapse
Affiliation(s)
- R Bharathi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Shree Ganesh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - G Harini
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kumari Vatsala
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - R Anushikaa
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Aravind
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Abinaya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
12
|
Ambrósio JAR, Pinto BCS, Marmo VLM, Santos KWD, Junior MB, Pinto JG, Ferreira-Strixino J, Raniero LJ, Simioni AR. Synthesis and characterization of photosensitive gelatin-based hydrogels for photodynamic therapy in HeLa-CCL2 cell line. Photodiagnosis Photodyn Ther 2022; 38:102818. [PMID: 35331952 DOI: 10.1016/j.pdpdt.2022.102818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Hydrogel systems are increasingly gaining visibility involving biomedicine, tissue engineering, environmental treatments, and drug delivery systems. These systems have a three-dimensional network composition and high-water absorption capacity, are biocompatible, allowing them to become an option as photosensitizer carriers (PS) for applications in Photodynamic Therapy (PDT) protocols. METHODS A nanohydrogel system (NAHI), encapsulated with chloroaluminium phthalocyanine (ClAlPc) was synthesized for drug delivery.. NAHI was synthesized using gelatin as based polymer by the chemical cross-linking technique. The drug was encapsulated by immersing the hydrogel in a 1.0 mg.mL-1 ClAlPc solution. The external morphology of NAHI was examined by scanning electron microscopy (SEM). The degree of swelling of the synthesized system was evaluated to determine the water absorption potential. The produced nanohydrogel system was characterized by photochemical, photophysical and photobiologial studies. RESULTS The images from the SEM analysis showed the presence of three-dimensional networks in the formulation. The swelling test demonstrated that the nanohydrogel freeze-drying process increases its water holding capacity. All spectroscopic results showed excellent photophysical parameters of the drug studied when served in the NAHI system. The incorporation efficiency was 70%. The results of trypan blue exclusion test have shown significant reduction (p < 0.05) in the cell viability for all groups treated with PDT, in all concentrations tested. In HeLa cells, PDT mediated by 0,5 mg.mL-1 ClAlPc encapsulated in NAHI showed a decrease in survival close to 95%. In the internalization cell study was possible to observe the internalization of phthalocyanine after one hour of incubation, at 37 °C, with the the accumulation of PS in the cytoplasm and inside the nucleus at both concentrations tested. CONCLUSIONS Given the peculiar performance of the selected system, the resulting nanohydrogel is a versatile platform and display potential applications as controlled delivery systems of photosensitizer for photodynamic therapy application.
Collapse
Affiliation(s)
- Jéssica A R Ambrósio
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Bruna C S Pinto
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Vitor Luca Moura Marmo
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Kennedy Wallace Dos Santos
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Milton Beltrame Junior
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Juliana G Pinto
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Juliana Ferreira-Strixino
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Leandro José Raniero
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Andreza R Simioni
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil.
| |
Collapse
|
13
|
Alavarse AC, Frachini ECG, da Silva RLCG, Lima VH, Shavandi A, Petri DFS. Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review. Int J Biol Macromol 2022; 202:558-596. [PMID: 35038469 DOI: 10.1016/j.ijbiomac.2022.01.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 01/16/2023]
Abstract
Polysaccharides and proteins are important macromolecules for developing hydrogels devoted to biomedical applications. Chemical hydrogels offer chemical, mechanical, and dimensional stability than physical hydrogels due to the chemical bonds among the chains mediated by crosslinkers. There are many crosslinkers to synthesize polysaccharides and proteins based on hydrogels. In this review, we revisited the crosslinking reaction mechanisms between synthetic or natural crosslinkers and polysaccharides or proteins. The selected synthetic crosslinkers were glutaraldehyde, carbodiimide, boric acid, sodium trimetaphosphate, N,N'-methylene bisacrylamide, and polycarboxylic acid, whereas the selected natural crosslinkers included transglutaminase, tyrosinase, horseradish peroxidase, laccase, sortase A, genipin, vanillin, tannic acid, and phytic acid. No less important are the reactions involving click chemistry and the macromolecular crosslinkers for polysaccharides and proteins. Literature examples of polysaccharides or proteins crosslinked by the different strategies were presented along with the corresponding highlights. The general mechanism involved in chemical crosslinking mediated by gamma and UV radiation was discussed, with particular attention to materials commonly used in digital light processing. The evaluation of crosslinking efficiency by gravimetric measurements, rheology, and spectroscopic techniques was presented. Finally, we presented the challenges and opportunities to create safe chemical hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Alex Carvalho Alavarse
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Emilli Caroline Garcia Frachini
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | | | - Vitoria Hashimoto Lima
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Denise Freitas Siqueira Petri
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
14
|
Noè C, Zanon M, Arencibia A, López-Muñoz MJ, Fernández de Paz N, Calza P, Sangermano M. UV-Cured Chitosan and Gelatin Hydrogels for the Removal of As(V) and Pb(II) from Water. Polymers (Basel) 2022; 14:1268. [PMID: 35335598 PMCID: PMC8949073 DOI: 10.3390/polym14061268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, new photocurable biobased hydrogels deriving from chitosan and gelatin are designed and tested as sorbents for As(V) and Pb(II) removal from water. Those renewable materials were modified by a simple methacrylation reaction in order to make them light processable. The success of the reaction was evaluated by both 1H-NMR and FTIR spectroscopy. The reactivity of those formulations was subsequently investigated by a real-time photorheology test. The obtained hydrogels showed high swelling capability reaching up to 1200% in the case of methacrylated gelatin (GelMA). Subsequently, the Z-potential of the methacrylated chitosan (MCH) and GelMA was measured to correlate their electrostatic surface characteristics with their adsorption properties for As(V) and Pb(II). The pH of the solutions proved to have a huge influence on the As(V) and Pb(II) adsorption capacity of the obtained hydrogels. Furthermore, the effect of As(V) and Pb(II) initial concentration and contact time on the adsorption capability of MCH and GelMA were investigated and discussed. The MCH and GelMA hydrogels demonstrated to be promising sorbents for the removal of heavy metals from polluted waters.
Collapse
Affiliation(s)
- Camilla Noè
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, C.so Duca Degli Abruzzi 24, 10129 Torino, Italy; (C.N.); (M.Z.)
| | - Michael Zanon
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, C.so Duca Degli Abruzzi 24, 10129 Torino, Italy; (C.N.); (M.Z.)
| | - Amaya Arencibia
- Departamento de Tecnología Química, Energética y Mecánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933 Madrid, Spain;
| | - María-José López-Muñoz
- Departamento de Tecnología Química y Ambiental, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933 Madrid, Spain;
| | | | - Paola Calza
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125 Torino, Italy;
| | - Marco Sangermano
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, C.so Duca Degli Abruzzi 24, 10129 Torino, Italy; (C.N.); (M.Z.)
| |
Collapse
|
15
|
Wang L, Cao Y, Shen Z, Li M, Zhang W, Liu Y, Zhang Y, Duan J, Ma Z, Sang S. 3D printed GelMA/carboxymethyl chitosan composite scaffolds for vasculogenesis. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2032702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lijing Wang
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Yanyan Cao
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
- College of Information Science and Engineering, Hebei North University, Zhangjiakou, China
| | - Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Wendong Zhang
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Yu Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yating Zhang
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Jiahui Duan
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Zhuwei Ma
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
16
|
Bostancı NS, Büyüksungur S, Hasirci N, Tezcaner A. pH responsive release of curcumin from photocrosslinked pectin/gelatin hydrogel wound dressings. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112717. [DOI: 10.1016/j.msec.2022.112717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022]
|
17
|
Improving Polysaccharide-Based Chitin/Chitosan-Aerogel Materials by Learning from Genetics and Molecular Biology. MATERIALS 2022; 15:ma15031041. [PMID: 35160985 PMCID: PMC8839503 DOI: 10.3390/ma15031041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/26/2022]
Abstract
Improved wound healing of burnt skin and skin lesions, as well as medical implants and replacement products, requires the support of synthetical matrices. Yet, producing synthetic biocompatible matrices that exhibit specialized flexibility, stability, and biodegradability is challenging. Synthetic chitin/chitosan matrices may provide the desired advantages for producing specialized grafts but must be modified to improve their properties. Synthetic chitin/chitosan hydrogel and aerogel techniques provide the advantages for improvement with a bioinspired view adapted from the natural molecular toolbox. To this end, animal genetics provide deep knowledge into which molecular key factors decisively influence the properties of natural chitin matrices. The genetically identified proteins and enzymes control chitin matrix assembly, architecture, and degradation. Combining synthetic chitin matrices with critical biological factors may point to the future direction with engineering materials of specific properties for biomedical applications such as burned skin or skin blistering and extensive lesions due to genetic diseases.
Collapse
|
18
|
Li J, Zhang T, Pan M, Xue F, Lv F, Ke Q, Xu H. Nanofiber/hydrogel core-shell scaffolds with three-dimensional multilayer patterned structure for accelerating diabetic wound healing. J Nanobiotechnology 2022; 20:28. [PMID: 34998407 PMCID: PMC8742387 DOI: 10.1186/s12951-021-01208-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Impaired angiogenesis is one of the predominant reasons for non-healing diabetic wounds. Herein, a nanofiber/hydrogel core–shell scaffold with three-dimensional (3D) multilayer patterned structure (3D-PT-P/GM) was introduced for promoting diabetic wound healing with improved angiogenesis. The results showed that the 3D-PT-P/GM scaffolds possessed multilayered structure with interlayer spacing of about 15–80 μm, and the hexagonal micropatterned structures were uniformly distributed on the surface of each layer. The nanofibers in the scaffold exhibited distinct core–shell structures with Gelatin methacryloyl (GelMA) hydrogel as the shell and Poly (d, l-lactic acid) (PDLLA) as the core. The results showed that the porosity, water retention time and water vapor permeability of the 3D-PT-P/GM scaffolds increased to 1.6 times, 21 times, and 1.9 times than that of the two-dimensional (2D) PDLLA nanofibrous scaffolds, respectively. The in vitro studies showed that the 3D-PT-P/GM scaffolds could significantly promote cell adhesion, proliferation, infiltration and migration throughout the scaffolds, and the expression of cellular communication protein-related genes, as well as angiogenesis-related genes in the same group, was remarkably upregulated. The in vivo results further demonstrated that the 3D-PT-P/GM scaffolds could not only effectively absorb exudate and provide a moist environment for the wound sites, but also significantly promote the formation of a 3D network of capillaries. As a result, the healing of diabetic wounds was accelerated with enhanced angiogenesis, granulation tissue formation, and collagen deposition. These results indicate that nanofiber/hydrogel core–shell scaffolds with 3D multilayer patterned structures could provide a new strategy for facilitating chronic wound healing. ![]()
Collapse
Affiliation(s)
- Jiankai Li
- College of Chemical and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, People's Republic of China
| | - Tianshuai Zhang
- College of Chemical and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, People's Republic of China
| | - Mingmang Pan
- Department of Orthopedics, Shanghai Fengxian District Central Hospital, No. 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| | - Feng Xue
- Department of Orthopedics, Shanghai Fengxian District Central Hospital, No. 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| | - Fang Lv
- Department of Orthopedics, Shanghai Fengxian District Central Hospital, No. 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China.
| | - Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, Shanghai Institute of Technology, No. 120 Caobao Road, Shanghai, 200235, People's Republic of China. .,College of Chemical and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, People's Republic of China.
| | - He Xu
- College of Chemical and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, People's Republic of China.
| |
Collapse
|
19
|
Yuce-Erarslan E, Tutar R, İzbudak B, Alarçin E, Kocaaga B, Guner FS, Emik S, Bal-Ozturk A. Photo-crosslinkable chitosan and gelatin-based nanohybrid bioinks for extrusion-based 3D-bioprinting. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1981322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Elif Yuce-Erarslan
- Faculty of Engineering, Chemical Engineering Department, Istanbul University—Cerrahpasa, Avcılar, Turkey
| | - Rumeysa Tutar
- Faculty of Engineering, Department of Chemistry, Istanbul University—Cerrahpasa, Avcılar, Turkey
| | - Burçin İzbudak
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey
| | - Emine Alarçin
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Marmara University, Istanbul, Turkey
| | - Banu Kocaaga
- Department of Chemical Engineering, Istanbul Technical University, Maslak, Turkey
| | - F. Seniha Guner
- Department of Chemical Engineering, Istanbul Technical University, Maslak, Turkey
| | - Serkan Emik
- Faculty of Engineering, Chemical Engineering Department, Istanbul University—Cerrahpasa, Avcılar, Turkey
| | - Ayca Bal-Ozturk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey
- Faculty of Pharmacy, Department of Analytical Chemistry, Istinye University, Istanbul, Turkey
- 3D Bioprinting Design & Prototyping R&D Center, Istinye University, Zeytinburnu, Turkey
| |
Collapse
|
20
|
Osi AR, Zhang H, Chen J, Zhou Y, Wang R, Fu J, Müller-Buschbaum P, Zhong Q. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22902-22913. [PMID: 33960765 DOI: 10.1021/acsami.1c01321] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biomimetic constructs imitating the functions, structures, and compositions of normal tissues are of great importance for tissue repair and regeneration. Three-dimensional (3D) printing is an innovative method to construct intricate biomimetic 3D tissue engineering scaffolds with spatiotemporal deposition of materials to control the intrinsic architectural organization and functional performance of the scaffold. However, due to the lack of bioinks with suitable printability, high structural integrity, and biological compatibility, producing constructs that mimic the anisotropic 3D extracellular environments remains a challenge. Here, we present a printable hydrogel ink based on methylacrylate-modified chitosan (ChMA) and gelatin (GelMA) embedding nanohydroxyapatite (nano-Hap). This polymer composite is first physically cross-linked by thermal gelation for postprinting structural stability, followed by covalent photo-cross-linking of ChMA and GelMA to form a long-term stable structure. The rheological behavior of the hydrogels and the mechanical strengths of the printed constructs are tuned by adjusting the content of GelMA, which in turn enhances the shape retention after printing and enables the precise deposition of multilayered 3D scaffolds. Moreover, the formulated biomaterial inks exhibit biological characteristics that effectively support the spreading and proliferation of stem cells seeded on the scaffolds after 7 days of in vitro culture. Adding Hap has minor influences on the mechanical rigidity and cytocompatibility of the hydrogels compared with the group free of Hap. Together, the printable biomaterial inks with shear thinning and good structural integrity, along with biological cues, are promising for tissue engineering application.
Collapse
Affiliation(s)
- Amarachi Rosemary Osi
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Science, No. 19 (A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Hua Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jing Chen
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yang Zhou
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Rong Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jun Fu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Peter Müller-Buschbaum
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Qi Zhong
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| |
Collapse
|
21
|
Joshi P, Ahmed MSU, Vig K, Vega Erramuspe IB, Auad ML. Synthesis and characterization of chemically crosslinked gelatin and chitosan to produce hydrogels for biomedical applications. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Prutha Joshi
- Department of Chemical Engineering Auburn University Auburn Alabama USA
- Center of Polymers and Advanced Composites Auburn University Auburn Alabama USA
| | | | - Komal Vig
- Department of Biological Sciences Alabama State University Montgomery Alabama USA
| | - Iris Beatriz Vega Erramuspe
- Forest Products Development Center, School of Forestry and Wildlife Science Auburn University Auburn Alabama USA
| | - Maria L. Auad
- Department of Chemical Engineering Auburn University Auburn Alabama USA
- Center of Polymers and Advanced Composites Auburn University Auburn Alabama USA
| |
Collapse
|
22
|
Joshi P, Breaux S, Naro J, Wang Y, Ahmed MSU, Vig K, Auad ML. Synthesis and characterization of photopolymerizable hydrogels based on poly (ethylene glycol) for biomedical applications. J Appl Polym Sci 2021. [DOI: 10.1002/app.50489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Prutha Joshi
- Department of Chemical Engineering Auburn University Auburn Alabama USA
- Center for Polymers and Advanced Composites Auburn University Auburn Alabama USA
| | - Steven Breaux
- Department of Chemical Engineering Auburn University Auburn Alabama USA
- Center for Polymers and Advanced Composites Auburn University Auburn Alabama USA
| | - Joseph Naro
- Department of Chemical Engineering Auburn University Auburn Alabama USA
- Center for Polymers and Advanced Composites Auburn University Auburn Alabama USA
| | - Yuyang Wang
- Department of Chemical Engineering Auburn University Auburn Alabama USA
- Center for Polymers and Advanced Composites Auburn University Auburn Alabama USA
| | | | - Komal Vig
- Department of Biological Sciences Alabama State University Montgomery Alabama USA
| | - Maria L. Auad
- Department of Chemical Engineering Auburn University Auburn Alabama USA
- Center for Polymers and Advanced Composites Auburn University Auburn Alabama USA
| |
Collapse
|
23
|
Lim S, Jeong D, Ki MR, Pack SP, Choi YS. Tyrosinase-mediated rapid and permanent chitosan/gelatin and chitosan/gelatin/nanohydroxyapatite hydrogel. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0672-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Kim S, Jung S. Biocompatible and self-recoverable succinoglycan dialdehyde-crosslinked alginate hydrogels for pH-controlled drug delivery. Carbohydr Polym 2020; 250:116934. [PMID: 33049846 DOI: 10.1016/j.carbpol.2020.116934] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 01/19/2023]
Abstract
We fabricated polysaccharide-based hydrogels, which are biocompatible, self-recoverable and pH-sensitive. Succinoglycan dialdehyde (SGDA) was first synthesized from bacterial succinoglycan directly isolated from Sinorhizobium meliloti and then hydrazine-functionalized alginate (HZ-Alg) was prepared to form SGDA-crosslinked alginate hydrogels (SGDA/HZ-Alg) without any catalyst. Due to structural characteristics of SGDA, SGDA/HZ-Alg were effectively obtained in a short time even at low concentrations (0.94-1.57 wt%) where they exhibited self-recoverable and tunable rheological properties corresponding to efficiency of recovery from 93.2%-97.9%. Moreover, SGDA/HZ-Alg showed the pH-responsive degradation as well as pH-controlled release behavior for 5-fluorouracil. 5-Fluorouracil was released approximately 98 % at pH 2.0 within 12 h, but not completely released even after 24 h at pH 7.4. The WST-8 assay results also demonstrated that SGDA/HZ-Alg did not show any cytotoxicity against HEK-293 cells. Since the suggested hydrogels are biocompatible, rheologically self-recoverable and tunable, and pH-controllable, they would be potential biomaterials for the hydrogel-based drug delivery systems.
Collapse
Affiliation(s)
- Seonmok Kim
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea; Department of Systems Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea.
| |
Collapse
|
25
|
Reinforced gelatin-methacrylate hydrogels containing poly(lactic-co-glycolic acid) nanofiber fragments for 3D bioprinting. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Chitosan-Hydrogel Polymeric Scaffold Acts as an Independent Primary Inducer of Osteogenic Differentiation in Human Mesenchymal Stromal Cells. MATERIALS 2020; 13:ma13163546. [PMID: 32796668 PMCID: PMC7475832 DOI: 10.3390/ma13163546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
Regenerative medicine aims to restore damaged tissues and mainly takes advantage of human mesenchymal stromal cells (hMSCs), either alone or combined with three-dimensional scaffolds. The scaffold is generally considered a support, and its contribution to hMSC proliferation and differentiation is unknown or poorly investigated. The aim of this study was to evaluate the capability of an innovative three-dimensional gelatin–chitosan hybrid hydrogel scaffold (HC) to activate the osteogenic differentiation process in hMSCs. We seeded hMSCs from adipose tissue (AT-hMSCs) and bone marrow (BM-hMSCs) in highly performing HC of varying chitosan content in the presence of growing medium (GM) or osteogenic medium (OM) combined with Fetal Bovine Serum (FBS) or human platelet lysate (hPL). We primarily evaluated the viability and the proliferation of AT-hMSCs and BM-hMSCs under different conditions. Then, in order to analyse the activation of osteogenic differentiation, the osteopontin (OPN) transcript was absolutely quantified at day 21 by digital PCR. OPN was expressed under all conditions, in both BM-hMSCs and AT-hMSCs. Cells seeded in HC cultured with OM+hPL presented the highest OPN transcript levels, as expected. Interestingly, both BM-hMSCs and AT-hMSCs cultured with GM+FBS expressed OPN. In particular, BM-hMSCs cultured with GM+FBS expressed more OPN than those cultured with GM+hPL and OM+FBS; AT-hMSCs cultured with GM+FBS presented a lower expression of OPN when compared with those cultured with GM+hPL, but no significant difference was detected when compared with AT-hMSCs cultured with OM+FBS. No OPN expression was detected in negative controls. These results show the capability of HC to primarily and independently activate osteogenic differentiation pathways in hMCSs. Therefore, these scaffolds may be considered no more as a simple support, rather than active players in the differentiative and regenerative process.
Collapse
|
27
|
Magli S, Rossi GB, Risi G, Bertini S, Cosentino C, Crippa L, Ballarini E, Cavaletti G, Piazza L, Masseroni E, Nicotra F, Russo L. Design and Synthesis of Chitosan-Gelatin Hybrid Hydrogels for 3D Printable in vitro Models. Front Chem 2020; 8:524. [PMID: 32760695 PMCID: PMC7373092 DOI: 10.3389/fchem.2020.00524] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
The development of 3D printable hydrogels based on the crosslinking between chitosan and gelatin is proposed. Chitosan and gelatin were both functionalized with methyl furan groups. Chemical modification was performed by reductive amination with methyl furfural involving the lysine residues of gelatin and the amino groups of chitosan to generate hydrogels with tailored properties. The methyl furan residues present in both polymers were exploited for efficient crosslinking via Diels-Alder ligation with PEG-Star-maleimide under cell-compatible conditions. The obtained chitosan-gelatin hybrid was employed to formulate hydrogels and 3D printable biopolymers and its processability and biocompatibility were preliminarily investigated.
Collapse
Affiliation(s)
- Sofia Magli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Giulia Beatrice Rossi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Giulia Risi
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy
| | - Sabrina Bertini
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy
| | - Cesare Cosentino
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy
| | - Luca Crippa
- Department of Medical and Surgical Science, University of Milano-Bicocca, Milan, Italy
| | - Elisa Ballarini
- Department of Medical and Surgical Science, University of Milano-Bicocca, Milan, Italy
| | - Guido Cavaletti
- Department of Medical and Surgical Science, University of Milano-Bicocca, Milan, Italy
| | - Laura Piazza
- Department of Environmental Science and Policy (ESP), University of Milan, Milan, Italy
| | - Elisa Masseroni
- Department of Environmental Science and Policy (ESP), University of Milan, Milan, Italy
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
28
|
He X, Liu X, Yang J, Du H, Chai N, Sha Z, Geng M, Zhou X, He C. Tannic acid-reinforced methacrylated chitosan/methacrylated silk fibroin hydrogels with multifunctionality for accelerating wound healing. Carbohydr Polym 2020; 247:116689. [PMID: 32829817 DOI: 10.1016/j.carbpol.2020.116689] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022]
Abstract
Natural polymeric hydrogel featuring multifunctional properties is more attractive as wound dressing. Herein, Tannic acid (TA)-reinforced methacrylated chitosan (CSMA)/methacrylated silk fibroin (SFMA) hydrogels were fabricated by two-step method of photopolymerization and TA solution incubating treatment. The TA in hydrogels not only served as second crosslinker improving the mechanical performance of up to a 5-fold increase (5 % TA treatment) than the pristine one, but also as functional molecule that endowed the hydrogels with enhanced adhesiveness and antioxidative properties. Besides, the introduction of TA into hydrogels further improved the antimicrobial activities against both Escherichia coli (E. coli) and Staphylococcus Aureus (S. aureus), as well as the cytocompatibility on fibroblasts. Moreover, it was demonstrated that the TA-treated CSMA/SFMA hydrogels could significantly promote wound healing in a full-thickness skin defect model. Collectively, these results showed that TA-reinforced CSMA/SFMA hydrogels could be a promising candidate as wound dressing.
Collapse
Affiliation(s)
- Xi He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Xuezhe Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Jin Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Haibo Du
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Ningwen Chai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Zhou Sha
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Mengru Geng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China.
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China.
| |
Collapse
|
29
|
Mussel-inspired antimicrobial gelatin/chitosan tissue adhesive rapidly activated in situ by H 2O 2/ascorbic acid for infected wound closure. Carbohydr Polym 2020; 247:116692. [PMID: 32829820 DOI: 10.1016/j.carbpol.2020.116692] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/16/2020] [Accepted: 06/24/2020] [Indexed: 02/05/2023]
Abstract
The development of minimally invasive surgery has created a demand for ideal medical adhesives exhibiting biocompatibility, biodegradability, antimicrobial activity, and strong adhesion to tissues in wet environments. However, as clinically approved surgical tissue glues suffer from poor adhesion activation, limited adhesion strength, and toxicity, novel tissue glues are highly sought after. Herein, a mussel-inspired injectable hydrogel was prepared from catechol- and methacrylate-modified chitosan/gelatin and shown to exhibit biocompatibility, inherent antimicrobial activity, and good adhesion to wet tissues. Moreover, as this gel could be applied onto tissue surfaces and cured in situ within seconds of body contact by a biocompatible and multifunctional redox initiator (H2O2-ascorbic acid), it was concluded to be a promising surgical sealant and wound dressing (even for infected wounds) accelerating wound healing.
Collapse
|
30
|
S P, Jaiswal AK. Effect of interpolymer complex formation between chondroitin sulfate and chitosan-gelatin hydrogel on physico-chemical and rheological properties. Carbohydr Polym 2020; 238:116179. [DOI: 10.1016/j.carbpol.2020.116179] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 01/03/2023]
|
31
|
Tonello S, Bianchetti A, Braga S, Almici C, Marini M, Piovani G, Guindani M, Dey K, Sartore L, Re F, Russo D, Cantù E, Francesco Lopomo N, Serpelloni M, Sardini E. Impedance-Based Monitoring of Mesenchymal Stromal Cell Three-Dimensional Proliferation Using Aerosol Jet Printed Sensors: A Tissue Engineering Application. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2231. [PMID: 32413993 PMCID: PMC7287852 DOI: 10.3390/ma13102231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
One of the main hurdles to improving scaffolds for regenerative medicine is the development of non-invasive methods to monitor cell proliferation within three-dimensional environments. Recently, an electrical impedance-based approach has been identified as promising for three-dimensional proliferation assays. A low-cost impedance-based solution, easily integrable with multi-well plates, is here presented. Sensors were developed using biocompatible carbon-based ink on foldable polyimide substrates by means of a novel aerosol jet printing technique. The setup was tested to monitor the proliferation of human mesenchymal stromal cells into previously validated gelatin-chitosan hybrid hydrogel scaffolds. Reliability of the methodology was assessed comparing variations of the electrical impedance parameters with the outcomes of enzymatic proliferation assay. Results obtained showed a magnitude increase and a phase angle decrease at 4 kHz (maximum of 2.5 kΩ and -9 degrees) and an exponential increase of the modeled resistance and capacitance components due to the cell proliferation (maximum of 1.5 kΩ and 200 nF). A statistically significant relationship with enzymatic assay outcomes could be detected for both phase angle and electric model parameters. Overall, these findings support the potentiality of this non-invasive approach for continuous monitoring of scaffold-based cultures, being also promising in the perspective of optimizing the scaffold-culture system.
Collapse
Affiliation(s)
- Sarah Tonello
- Department of Information Engineering, University of Padova, 35131 Padua, Italy
| | - Andrea Bianchetti
- Laboratory for Stem Cells Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili, 25123 Brescia, Italy; (A.B.); (S.B.); (C.A.); (M.M.)
| | - Simona Braga
- Laboratory for Stem Cells Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili, 25123 Brescia, Italy; (A.B.); (S.B.); (C.A.); (M.M.)
| | - Camillo Almici
- Laboratory for Stem Cells Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili, 25123 Brescia, Italy; (A.B.); (S.B.); (C.A.); (M.M.)
| | - Mirella Marini
- Laboratory for Stem Cells Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili, 25123 Brescia, Italy; (A.B.); (S.B.); (C.A.); (M.M.)
| | - Giovanna Piovani
- Biology and Genetics Division, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Michele Guindani
- Department of Statistics, University of California, Irvine, CA 92697-1250, USA;
| | - Kamol Dey
- Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy; (K.D.); (L.S.)
| | - Luciana Sartore
- Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy; (K.D.); (L.S.)
| | - Federica Re
- Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy; (F.R.); (D.R.)
| | - Domenico Russo
- Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy; (F.R.); (D.R.)
| | - Edoardo Cantù
- Department of Information Engineering, University of Brescia, 25123 Brescia, Italy; (E.C.); (N.F.L.); (M.S.); (E.S.)
| | - Nicola Francesco Lopomo
- Department of Information Engineering, University of Brescia, 25123 Brescia, Italy; (E.C.); (N.F.L.); (M.S.); (E.S.)
| | - Mauro Serpelloni
- Department of Information Engineering, University of Brescia, 25123 Brescia, Italy; (E.C.); (N.F.L.); (M.S.); (E.S.)
| | - Emilio Sardini
- Department of Information Engineering, University of Brescia, 25123 Brescia, Italy; (E.C.); (N.F.L.); (M.S.); (E.S.)
| |
Collapse
|
32
|
Luo X, Liu Y, Pang J, Bi S, Zhou Z, Lu Z, Feng C, Chen X, Kong M. Thermo/photo dual-crosslinking chitosan-gelatin methacrylate hydrogel with controlled shrinking property for contraction fabrication. Carbohydr Polym 2020; 236:116067. [DOI: 10.1016/j.carbpol.2020.116067] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/04/2020] [Accepted: 02/23/2020] [Indexed: 01/01/2023]
|
33
|
Development of reinforced chitosan/pectin scaffold by using the cellulose nanocrystals as nanofillers: An injectable hydrogel for tissue engineering. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109697] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Injectable thermoresponsive hydrogel/nanofiber hybrid scaffolds inducing human adipose-derived stem cell chemotaxis. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.09.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
35
|
Alves A, Miguel SP, Araujo AR, de Jesús Valle MJ, Sánchez Navarro A, Correia IJ, Ribeiro MP, Coutinho P. Xanthan Gum-Konjac Glucomannan Blend Hydrogel for Wound Healing. Polymers (Basel) 2020; 12:E99. [PMID: 31947937 PMCID: PMC7023620 DOI: 10.3390/polym12010099] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/21/2019] [Indexed: 02/08/2023] Open
Abstract
Hydrogels are considered to be the most ideal materials for the production of wound dressings since they display a three-dimensional structure that mimics the native extracellular matrix of skin as well as a high-water content, which confers a moist environment at the wound site. Until now, different polymers have been used, alone or blended, for the production of hydrogels aimed for this biomedical application. From the best of our knowledge, the application of a xanthan gum-konjac glucomannan blend has not been used for the production of wound dressings. Herein, a thermo-reversible hydrogel composed of xanthan gum-konjac glucomannan (at different concentrations (1% and 2% w/v) and ratios (50/50 and 60/40)) was produced and characterized. The obtained data emphasize the excellent physicochemical and biological properties of the produced hydrogels, which are suitable for their future application as wound dressings.
Collapse
Affiliation(s)
- Andreia Alves
- CPIRN-IPG- Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain
| | - Sónia P. Miguel
- CICS-UBI- Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - André R.T.S. Araujo
- CPIRN-IPG- Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - María José de Jesús Valle
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain
- Institute of Biopharmaceutical Sciences of University of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Amparo Sánchez Navarro
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain
- Institute of Biopharmaceutical Sciences of University of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Ilídio J. Correia
- CICS-UBI- Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, P-3030 790 Coimbra, Portugal
| | - Maximiano P. Ribeiro
- CPIRN-IPG- Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal
- CICS-UBI- Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Paula Coutinho
- CPIRN-IPG- Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal
- CICS-UBI- Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
36
|
Cebe T, Ahuja N, Monte F, Awad K, Vyavhare K, Aswath P, Huang J, Brotto M, Varanasi V. Novel 3D-printed methacrylated chitosan-laponite nanosilicate composite scaffolds enhance cell growth and biomineral formation in MC3T3 pre-osteoblasts. JOURNAL OF MATERIALS RESEARCH 2020; 35:58-75. [PMID: 35844898 PMCID: PMC9285673 DOI: 10.1557/jmr.2018.260] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This study compared the effect of gelatin- and chitosan-based scaffolds on osteoblast biomineralization. These scaffolds have been modified using methacrylate and laponite nanosilicates to improve their mechanical strength and support osteoblast function. Scaffold materials were prepared to have the same compressive strength (14-15 MPa) such that differences in cell response would be isolated to differences in biopolymer chemistry. The materials were tested for rheological properties to optimize the bio-ink for successful 3D printing using a robocast-assisted deposition system. Osteoblasts were cultured on the surface of 3D-printed methacrylated chitosan-laponite (MAC-Lp), methacrylated gelatin-laponite (MAG-Lp), MAC, and MAG scaffolds. MAC-Lp scaffolds showed increased cell viability, cell growth, and biomineral formation as compared to MAG-Lp scaffolds. FTIR results showed the presence of higher biomineral phosphate and extracellular matrix (ECM) collagen-like amide formation on MAC-Lp scaffolds as compared to MAG-Lp scaffolds. MAC-Lp scaffolds showed increased density of ECM-like tissue from SEM analysis, stained mineral nodules from Alizarin staining, and the existence of Ca─P species evident by X-ray absorbance near edge structure analysis. In conclusion, MAC-Lp scaffolds enhanced osteoblast growth and biomineral formation as compared to MAG-Lp scaffolds.
Collapse
Affiliation(s)
- Tugba Cebe
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Neelam Ahuja
- Department of Graduate Nursing, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Felipe Monte
- Department of Graduate Nursing, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Kamal Awad
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, USA; and Department of Refractories and Ceramics, National Research Centre, Giza 12622, Egypt
| | - Kimaya Vyavhare
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Pranesh Aswath
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Jian Huang
- Department of Graduate Nursing, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Marco Brotto
- Department of Graduate Nursing, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Venu Varanasi
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, USA; and Department of Graduate Nursing, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas 76019, USA
| |
Collapse
|
37
|
Karimi AR, Nikravesh G, Bayat F, Khodadadi A, Tarighatjoo M. Tunable Thermo‐ and pH‐Responsive Hydrogels and MWCNTs/Hydrogel Containing 2‐Aminobenzamide Units in Their Crosslink Chains. ChemistrySelect 2019. [DOI: 10.1002/slct.201902045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ali R. Karimi
- Department of ChemistryFaculty of ScienceArak University Arak 38156-8-8349 Iran
| | - Golara Nikravesh
- Department of ChemistryFaculty of ScienceArak University Arak 38156-8-8349 Iran
| | - Fahimeh Bayat
- Department of ChemistryFaculty of ScienceArak University Arak 38156-8-8349 Iran
| | - Azam Khodadadi
- Department of ChemistryFaculty of ScienceArak University Arak 38156-8-8349 Iran
| | - Mahsa Tarighatjoo
- Department of ChemistryFaculty of ScienceArak University Arak 38156-8-8349 Iran
| |
Collapse
|
38
|
Production and characterization of a novel asymmetric 3D printed construct aimed for skin tissue regeneration. Colloids Surf B Biointerfaces 2019; 181:994-1003. [DOI: 10.1016/j.colsurfb.2019.06.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/29/2019] [Accepted: 06/26/2019] [Indexed: 01/16/2023]
|
39
|
Feng Z, Hakkarainen M, Grützmacher H, Chiappone A, Sangermano M. Photocrosslinked Chitosan Hydrogels Reinforced with Chitosan‐Derived Nano‐Graphene Oxide. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900174] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhaoxuan Feng
- The Royal Institute of Technology (KTH)Department of Fibre and Polymer Technology Teknikringen 56–58 10044 Stockholm Sweden
| | - Minna Hakkarainen
- The Royal Institute of Technology (KTH)Department of Fibre and Polymer Technology Teknikringen 56–58 10044 Stockholm Sweden
| | - Hansjörg Grützmacher
- ETH ZürichDepartment for Chemistry and Applied Biosciences Vladimir‐Prelog‐Weg 1 CH 8093 Zürich Switzerland
| | - Annalisa Chiappone
- Dipartimento di Scienza Applicata e TecnologiaPolitecnico di Torino C.so Duca degli Abruzzi 24 10129 Torino Italy
| | - Marco Sangermano
- Dipartimento di Scienza Applicata e TecnologiaPolitecnico di Torino C.so Duca degli Abruzzi 24 10129 Torino Italy
| |
Collapse
|
40
|
Re F, Sartore L, Moulisova V, Cantini M, Almici C, Bianchetti A, Chinello C, Dey K, Agnelli S, Manferdini C, Bernardi S, Lopomo NF, Sardini E, Borsani E, Rodella LF, Savoldi F, Paganelli C, Guizzi P, Lisignoli G, Magni F, Salmeron-Sanchez M, Russo D. 3D gelatin-chitosan hybrid hydrogels combined with human platelet lysate highly support human mesenchymal stem cell proliferation and osteogenic differentiation. J Tissue Eng 2019; 10:2041731419845852. [PMID: 31105928 PMCID: PMC6507314 DOI: 10.1177/2041731419845852] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/02/2019] [Indexed: 01/25/2023] Open
Abstract
Bone marrow and adipose tissue human mesenchymal stem cells were seeded in highly performing 3D gelatin–chitosan hybrid hydrogels of varying chitosan content in the presence of human platelet lysate and evaluated for their proliferation and osteogenic differentiation. Both bone marrow and adipose tissue human mesenchymal stem cells in gelatin–chitosan hybrid hydrogel 1 (chitosan content 8.1%) or gelatin–chitosan hybrid hydrogel 2 (chitosan 14.9%) showed high levels of viability (80%–90%), and their proliferation and osteogenic differentiation was significantly higher with human platelet lysate compared to fetal bovine serum, particularly in gelatin–chitosan hybrid hydrogel 1. Mineralization was detected early, after 21 days of culture, when human platelet lysate was used in the presence of osteogenic stimuli. Proteomic characterization of human platelet lysate highlighted 59 proteins mainly involved in functions related to cell adhesion, cellular repairing mechanisms, and regulation of cell differentiation. In conclusion, the combination of our gelatin–chitosan hybrid hydrogels with hPL represents a promising strategy for bone regenerative medicine using human mesenchymal stem cells.
Collapse
Affiliation(s)
- Federica Re
- Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, Brescia, Italy.,Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | - Luciana Sartore
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
| | - Vladimira Moulisova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, UK
| | - Camillo Almici
- Department of Transfusion Medicine, Laboratory for Stem Cells Manipulation and Cryopreservation, ASST Spedali Civili, Brescia, Italy
| | - Andrea Bianchetti
- Department of Transfusion Medicine, Laboratory for Stem Cells Manipulation and Cryopreservation, ASST Spedali Civili, Brescia, Italy
| | - Clizia Chinello
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Kamol Dey
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
| | - Silvia Agnelli
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
| | - Cristina Manferdini
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Simona Bernardi
- Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, Brescia, Italy.,Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | - Nicola F Lopomo
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Emilio Sardini
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Elisa Borsani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdipartimental University Center of Research "Adaptation and Regeneration of Tissues and Organs (ARTO)," University of Brescia, Brescia, Italy
| | - Luigi F Rodella
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdipartimental University Center of Research "Adaptation and Regeneration of Tissues and Organs (ARTO)," University of Brescia, Brescia, Italy
| | - Fabio Savoldi
- Department of Orthodontics, Dental School, University of Brescia, Brescia, Italy.,Dental Materials Science, Discipline of Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Corrado Paganelli
- Department of Orthodontics, Dental School, University of Brescia, Brescia, Italy
| | - Pierangelo Guizzi
- Orthopedics and Traumatology Unit, ASST Spedali Civili, Brescia, Italy
| | - Gina Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, UK
| | - Domenico Russo
- Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, Brescia, Italy
| |
Collapse
|
41
|
Alves P, Santos M, Mendes S, P Miguel S, D de Sá K, S D Cabral C, J Correia I, Ferreira P. Photocrosslinkable Nanofibrous Asymmetric Membrane Designed for Wound Dressing. Polymers (Basel) 2019; 11:E653. [PMID: 30974796 PMCID: PMC6523099 DOI: 10.3390/polym11040653] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/21/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Recently, the biomedical scientists who are working in the skin regeneration area have proposed asymmetric membranes as ideal wound dressings, since they are able to reproduce both layers of skin and improve the healing process as well as make it less painful. Herein, an electrospinning technique was used to produce new asymmetric membranes. The protective layer was composed of a blending solution between polycaprolactone and polylactic acid, whereas the underlying layer was comprised of methacrylated gelatin and chitosan. The chemical/physical properties, the in vitro hemo- and biocompatibility of the nanofibrous membranes were evaluated. The results obtained reveal that the produced membranes exhibited a wettability able to provide a moist environment at wound site. Moreover, the membranes' hemocompatibility and fibroblast cell adhesion, spreading and proliferation at the surface of the membranes were also noticed in the in vitro assays. Such results highlight the suitability of these asymmetric membranes for wound dressing applications.
Collapse
Affiliation(s)
- Patrícia Alves
- CIEPQPF, Department of Chemical Engineering, Universidade de Coimbra, P-3030 790 Coimbra, Portugal.
| | - Marta Santos
- CIEPQPF, Department of Chemical Engineering, Universidade de Coimbra, P-3030 790 Coimbra, Portugal.
| | - Sabrina Mendes
- CIEPQPF, Department of Chemical Engineering, Universidade de Coimbra, P-3030 790 Coimbra, Portugal.
| | - Sónia P Miguel
- CICS-UBI, Health Sciences Research Center, Universidade da Beira Interior, P-6200 506 Covilhã, Portugal.
| | - Kevin D de Sá
- CICS-UBI, Health Sciences Research Center, Universidade da Beira Interior, P-6200 506 Covilhã, Portugal.
| | - Cátia S D Cabral
- CICS-UBI, Health Sciences Research Center, Universidade da Beira Interior, P-6200 506 Covilhã, Portugal.
| | - Ilídio J Correia
- CIEPQPF, Department of Chemical Engineering, Universidade de Coimbra, P-3030 790 Coimbra, Portugal.
- CICS-UBI, Health Sciences Research Center, Universidade da Beira Interior, P-6200 506 Covilhã, Portugal.
| | - Paula Ferreira
- CIEPQPF, Department of Chemical Engineering, Universidade de Coimbra, P-3030 790 Coimbra, Portugal.
| |
Collapse
|
42
|
Mehrali M, Thakur A, Kadumudi FB, Pierchala MK, Cordova JAV, Shahbazi MA, Mehrali M, Pennisi CP, Orive G, Gaharwar AK, Dolatshahi-Pirouz A. Pectin Methacrylate (PEMA) and Gelatin-Based Hydrogels for Cell Delivery: Converting Waste Materials into Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12283-12297. [PMID: 30864429 DOI: 10.1021/acsami.9b00154] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The emergence of nontoxic, eco-friendly, and biocompatible polymers derived from natural sources has added a new and exciting dimension to the development of low-cost and scalable biomaterials for tissue engineering applications. Here, we have developed a mechanically strong and durable hydrogel composed of an eco-friendly biopolymer that exists within the cell walls of fruits and plants. Its trade name is pectin, and it bears many similarities with natural polysaccharides in the native extracellular matrix. Specifically, we have employed a new pathway to transform pectin into a ultraviolet (UV)-cross-linkable pectin methacrylate (PEMA) polymer. To endow this hydrogel matrix with cell differentiation and cell spreading properties, we have also incorporated thiolated gelatin into the system. Notably, we were able to fine-tune the compressive modulus of this hydrogel in the range ∼0.5 to ∼24 kPa: advantageously, our results demonstrated that the hydrogels can support growth and viability for a wide range of three-dimensionally (3D) encapsulated cells that include muscle progenitor (C2C12), neural progenitor (PC12), and human mesenchymal stem cells (hMSCs). Our results also indicate that PEMA-gelatin-encapsulated hMSCs can facilitate the formation of bonelike apatite after 5 weeks in culture. Finally, we have demonstrated that PEMA-gelatin can yield micropatterned cell-laden 3D constructs through UV light-assisted lithography. The simplicity, scalability, processability, tunability, bioactivity, and low-cost features of this new hydrogel system highlight its potential as a stem cell carrier that is capable of bridging the gap between clinic and laboratory.
Collapse
Affiliation(s)
- Mehdi Mehrali
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Ashish Thakur
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Firoz Babu Kadumudi
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Malgorzata Karolina Pierchala
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Julio Alvin Vacacela Cordova
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
- Department of Health Science and Technology, Laboratory for Stem Cell Research , Aalborg University , Fredrik Bajers Vej 3B , 9220 , Aalborg , Denmark
| | - Mohammad-Ali Shahbazi
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Mohammad Mehrali
- Faculty of Engineering Technology, Laboratory of Thermal Engineering , University of Twente , Enschede 7500 AE , The Netherlands
| | - Cristian Pablo Pennisi
- Department of Health Science and Technology, Laboratory for Stem Cell Research , Aalborg University , Fredrik Bajers Vej 3B , 9220 , Aalborg , Denmark
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU , Paseo de la Universidad 7 , 01006 Vitoria-Gasteiz , Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , 01006 Vitoria-Gasteiz , Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundacion Eduardo Anitua) , 01007 Vitoria , Spain
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower , 169856 Singapore
| | | | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
- Department of Regenerative Biomaterials , Radboud University Medical Center , Philips van Leydenlaan 25 , Nijmegen 6525 EX , The Netherlands
| |
Collapse
|
43
|
Pei M, Mao J, Xu W, Zhou Y, Xiao P. Photocrosslinkable chitosan hydrogels and their biomedical applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Minjie Pei
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of EducationWuhan Textile University Wuhan 430073 People's Republic of China
| | - Jun Mao
- Hospital, Wuhan Textile University Wuhan 430073 People's Republic of China
| | - Weilin Xu
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of EducationWuhan Textile University Wuhan 430073 People's Republic of China
| | - Yingshan Zhou
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of EducationWuhan Textile University Wuhan 430073 People's Republic of China
| | - Pu Xiao
- Research School of ChemistryAustralian National University Canberra Australian Capital Territory 2601 Australia
| |
Collapse
|
44
|
Irmak G, Demirtaş TT, Gümüşderelioǧlu M. Highly Methacrylated Gelatin Bioink for Bone Tissue Engineering. ACS Biomater Sci Eng 2018; 5:831-845. [DOI: 10.1021/acsbiomaterials.8b00778] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Preparation of in situ Injectable Chitosan/Gelatin Hydrogel Using an Acid-tolerant Tyrosinase. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0315-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Moshkbar H, Arsalani N, Saleh Ghadimi L. Synthesis of Chitosan/Gelatin granule containing amine derivated octa(ammonium chloride) substituted Polyhedral Oligomeric Silsesquioxane and investigating its application as a drug carrier. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1517345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hamideh Moshkbar
- Research Laboratory of Polymer, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Nasser Arsalani
- Research Laboratory of Polymer, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Laleh Saleh Ghadimi
- Research Laboratory of Polymer, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| |
Collapse
|
47
|
Xu Z, Bratlie KM. Click Chemistry and Material Selection for in Situ Fabrication of Hydrogels in Tissue Engineering Applications. ACS Biomater Sci Eng 2018; 4:2276-2291. [DOI: 10.1021/acsbiomaterials.8b00230] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zihao Xu
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Kaitlin M. Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Division of Materials Science & Engineering, Ames National Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
48
|
Dey K, Agnelli S, Serzanti M, Ginestra P, Scarì G, Dell’Era P, Sartore L. Preparation and properties of high performance gelatin-based hydrogels with chitosan or hydroxyethyl cellulose for tissue engineering applications. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1429439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kamol Dey
- Mechanical and Industrial Engineering Department, University of Brescia, Brescia, Italy
| | - Silvia Agnelli
- Mechanical and Industrial Engineering Department, University of Brescia, Brescia, Italy
| | - Marialaura Serzanti
- Cellular Fate Reprogramming Unit, Molecular and Translational Medicine Department, University of Brescia, Brescia, Italy
| | - Paola Ginestra
- Mechanical and Industrial Engineering Department, University of Brescia, Brescia, Italy
| | - Giorgio Scarì
- Department of Biosciences, University of Milano, Milano, Italy
| | - Patrizia Dell’Era
- Cellular Fate Reprogramming Unit, Molecular and Translational Medicine Department, University of Brescia, Brescia, Italy
| | - Luciana Sartore
- Mechanical and Industrial Engineering Department, University of Brescia, Brescia, Italy
| |
Collapse
|
49
|
Zhou Y, Zhao S, Zhang C, Liang K, Li J, Yang H, Gu S, Bai Z, Ye D, Xu W. Photopolymerized maleilated chitosan/thiol-terminated poly (vinyl alcohol) hydrogels as potential tissue engineering scaffolds. Carbohydr Polym 2018; 184:383-389. [PMID: 29352933 DOI: 10.1016/j.carbpol.2018.01.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/13/2017] [Accepted: 01/02/2018] [Indexed: 01/06/2023]
Abstract
Photocrosslinkable hydrogels composed of natural materials exhibit great application potential in tissue engineering scaffolds. However, weak formation and poor mechanical property can usually be a limitation. Herein, the photo-clickable thiol-ene hydrogels based chitosan were synthesized using photopolymerization of maleic chitosan (MCS) and thiol-terminated poly (vinyl alcohol) (TPVA) in the presence of a biocompatible photoinitiator. Rheological property and absorbing behavior of the MCS/TPVA hydrogels could be tailored by varying the amount of TPVA in the feed. There was strong intermolecular hydrogen bonding between the molecules of MCS and TPVA. Notably, the MCS/TPVA hydrogel (MT-3) exhibited rapid gelation behavior (<120 s), improved stiff (G' = ∼5500 Pa) and compressive strength (0.285 ± 0.014 MPa), which were important for hydrogel scaffolds, especially for injectable hydrogel scaffolds. Photocrosslinked MCS/TPVA hydrogels was cytocompatible and could promote the L929 cells attachment and proliferation, showing their potential as tissue engineering scaffolds.
Collapse
Affiliation(s)
- Yingshan Zhou
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China; Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan, 430073, People's Republic of China.
| | - Shuyan Zhao
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Can Zhang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Kaili Liang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Jun Li
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Hongjun Yang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China; Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Shaojin Gu
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China; Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Zikui Bai
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China; Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Dezhan Ye
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China; Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Weilin Xu
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| |
Collapse
|
50
|
Choi YR, Kim EH, Lim S, Choi YS. Efficient preparation of a permanent chitosan/gelatin hydrogel using an acid-tolerant tyrosinase. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|