1
|
Selvaraj H, George HS, Aravind P, Chandrasekaran K, Ilangovan A, Sundaram M. Eco-friendly and sustainable process for recovery of sulfate from paper mill mixed salt: Recycling of sulfate for dye fixation process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120201. [PMID: 38335602 DOI: 10.1016/j.jenvman.2024.120201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/02/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024]
Abstract
Paper mill Electrostatic Precipitator (ESP) ash contains a mixture of alkali metal chloride (34.2 %) and sulfate (84.2 %) which has serious negative effects on the environment and makes it more expensive and constrained to dispose ESP ash. Therefore, handling and recycling ESP ash demands extra thought when disposing of it. Present study, aimed to separate chloride and sulfate from ESP ash using electrochemical membrane technology. Three different concentrations of ESP ash solution such as 200 g L-1, 320 g L-1 and 450 g L-1 were used as the electrolyte. Ti/TiO2-IrO2-RuO2 and titanium (Ti) are used as anode and cathode respectively. Caustic and sulfate solutions were recovered at the respective compartments. The collected sulfate solution was dried by solar light to convert 99 % sulfate salts as confirmed by Energy-dispersive X-ray analysis (EDAX) analysis. Recovered sulfate salt was used for the dye fixing process, in which the colour fixing difference of ΔE value was about 2.10 and the strength of the dye was about 86.72 %. Therefore, the textile industry can repurpose the recovered sulfate salt for the dye fixing process.
Collapse
Affiliation(s)
- Hosimin Selvaraj
- School of Chemistry, Bharathidasan University, Trichy, 620024, India; CSIR- Central Electrochemical Research Institute, Karaikudi, 630003, India.
| | | | | | | | | | | |
Collapse
|
2
|
Dhandapani P, Srinivasan V, Parthipan P, AlSalhi MS, Devanesan S, Narenkumar J, Rajamohan R, Ezhilselvi V, Rajasekar A. Development of an environmentally sustainable technique to minimize the sludge production in the textile effluent sector through an electrokinetic (EK) coupled with electrooxidation (EO) approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:81. [PMID: 38367190 DOI: 10.1007/s10653-023-01847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/27/2023] [Indexed: 02/19/2024]
Abstract
This study presents an environmentally sustainable method for minimizing sludge production in the textile effluent sector through the combined application of electrokinetic (EK) and electrooxidation (EO) processes. AAS and XRF analyses reveal that utilizing acidic electrolytes in the EK method successfully eliminates heavy metals (Cu, Mn, Zn, and Cr) from sludge, demonstrating superior efficiency compared to alkaline conditions. In addition, the total removal efficiency of COD contents was calculated following the order of EK-3 (60%), EK-1 (51%) and EK-2 (34%). Notably, EK-3, leveraging pH gradient fluctuations induced by anolyte in the catholyte reservoir, outperforms other EK systems in removing COD from sludge. The EK process is complemented by the EO process, leading to further degradation of dye and other organic components through the electrochemical generation of hypochlorite (940 ppm). At an alkaline pH of 10.0, the color and COD removal were effectively achieved at 98 and 70% in EO treatment, compared to other mediums. In addition, GC-MS identified N-derivative residues at the end of the EO. This study demonstrates an integrated approach that effectively eliminates heavy metals and COD from textile sludge, combining EK with EO techniques.
Collapse
Affiliation(s)
- Perumal Dhandapani
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Venkatesan Srinivasan
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Punniyakotti Parthipan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Jayaraman Narenkumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Rajaram Rajamohan
- Organic Materials Synthesis Lab, School of Chemical Engineering, Yeungnam University, Gyeongsan-si, 38541, Republic of Korea.
| | - Varathan Ezhilselvi
- Indian Reference Materials (BND) Division, CSIR-National Physical Laboratory, Dr. K S Krishnan Marg, New Delhi, 110012, India
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India.
- Adjunct Faculty, Department of Prothodontics, Saveetha Dental Collge and Hospital, Chennai, Tamil Nadu, 600 077, India.
| |
Collapse
|
3
|
Abilaji S, Narenkumar J, Das B, S S, Rajakrishnan R, Sathishkumar K, Rajamohan R, Rajasekar A. Electrochemical oxidation of azo dyes degradation by RuO 2-IrO 2-TiO 2 electrode with biodegradation Aeromonas hydrophila AR1 and its degradation pathway: An integrated approach. CHEMOSPHERE 2023; 345:140516. [PMID: 37879370 DOI: 10.1016/j.chemosphere.2023.140516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Azo dyes are the most varied class of synthetic chemicals with non-degradable characteristics. They are complex compounds made up of many different parts. It was primarily utilized for various application procedures in the dyeing industry. Therefore, it's crucial to develop an economical and environmentally friendly approach to treating azo dyes. Our present investigation is an integrated approach to the electrooxidation (EO) process of azo dyes using RuO2-IrO2-TiO2 (anode) and titanium mesh (cathode) electrodes, followed by the biodegradation process (BD) of the treated EO dyes. Chemical oxygen demand (COD) removal efficiency as follows MB (55%) ≥ MR (45%) ≥ TB (38%) ≥ CR (37%) correspondingly. The fragment generated during the degradation process which was identified with high-resolution mass spectrometry (HRMS) and its degradation mechanism pathway was proposed as demethylation reaction and N-N and C-N/C-S cleavage reaction occurs during EO. In biodegradation studies by Aeromonas hydrophila AR1, the EO treated dyes were completely mineralized aerobically which was evident by the COD removal efficiency as MB (98%) ≥ MR (92.9%) ≥ TB (88%) ≥ CR (87%) respectively. The EO process of dyes produced intermediate components with lower molecular weights, which was effectively utilized by the Aeromonas hydrophila AR1 and resulted in higher degradation efficiency 98%. We reported the significance of the enhanced approach of electrochemical oxidation with biodegradation studies in the effective removal of the pollutants in dye industrial effluent contaminated water environment.
Collapse
Affiliation(s)
- Subramani Abilaji
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, India
| | - Jayaraman Narenkumar
- Department of Environmental & Water Resources Engineering.School of Civil Engineering (SCE). Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Bhaskar Das
- Department of Environmental & Water Resources Engineering.School of Civil Engineering (SCE). Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Suresh S
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Rajagopal Rajakrishnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kuppusamy Sathishkumar
- Rhizosphere Biology Laboratory, Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Rajaram Rajamohan
- Organic Materials Synthesis Laboratory, School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, India.
| |
Collapse
|
4
|
Dai S, Harnisch F, Bin-Hudari MS, Keller NS, Vogt C, Korth B. Improving the performance of bioelectrochemical sulfate removal by applying flow mode. Microb Biotechnol 2023; 16:595-604. [PMID: 36259447 PMCID: PMC9948226 DOI: 10.1111/1751-7915.14157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Treatment of wastewater contaminated with high sulfate concentrations is an environmental imperative lacking a sustainable and environmental friendly technological solution. Microbial electrochemical technology (MET) represents a promising approach for sulfate reduction. In MET, a cathode is introduced as inexhaustible electron source for promoting sulfate reduction via direct or mediated electron transfer. So far, this is mainly studied in batch mode representing straightforward and easy-to-use systems, but their practical implementation seems unlikely, as treatment capacities are limited. Here, we investigated bioelectrochemical sulfate reduction in flow mode and achieved removal efficiencies (Esulfate , 89.2 ± 0.4%) being comparable to batch experiments, while sulfate removal rates (Rsulfate , 3.1 ± 0.2 mmol L-1 ) and Coulombic efficiencies (CE, 85.2 ± 17.7%) were significantly increased. Different temperatures and hydraulic retention times (HRT) were applied and the best performance was achieved at HRT 3.5 days and 30°C. Microbial community analysis based on amplicon sequencing demonstrated that sulfate reduction was mainly performed by prokaryotes belonging to the genera Desulfomicrobium, Desulfovibrio, and Desulfococcus, indicating that hydrogenotrophic and heterotrophic sulfate reduction occurred by utilizing cathodically produced H2 or acetate produced by homoacetogens (Acetobacterium). The advantage of flow operation for bioelectrochemical sulfate reduction is likely based on higher absolute biomass, stable pH, and selection of sulfate reducers with a higher sulfide tolerance, and improved ratio between sulfate-reducing prokaryotes and homoacetogens.
Collapse
Affiliation(s)
- Shixiang Dai
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Falk Harnisch
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Mohammad Sufian Bin-Hudari
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Nina Sophie Keller
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Benjamin Korth
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| |
Collapse
|
5
|
Annamalai S, Muthukumar V, Alkhulaifi MM. A converged approach of electro-biological process for decolorization and degradation of toxic synthetic dyes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:14. [PMID: 36271209 DOI: 10.1007/s10661-022-10583-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/20/2021] [Indexed: 06/16/2023]
Abstract
Being one of the leading industries worldwide, the textile industry has been consuming large quantities of groundwater and discharging huge volumes of dye-contaminated effluents into our aquatic environment. Augmentation of water sources via reuse of treated effluents is therefore highly necessary. In the present study, the decolorization and degradation of synthetic toxic dye from an aqueous solution were investigated through an electro-biological route. Initially, decolorization of synthetic dye solutions (100, 500, and 1000 mg L-1) was carried out by electrooxidation process using mixed metal oxide and titanium as anode and cathode, respectively. The electrooxidation solutions were further treated using bacteria (Pseudomonas aeruginosa) that were isolated from petroleum-transporting pipelines. UV-Vis, TOC, chemical oxygen demand, and NMR analyses revealed that the biodegradation process with electrooxidation enhanced the mineralization of the synthetic dye solutions. An optimum NaCl electrolyte concentration of 3 g L-1 was sufficient to produce reactive species viz., free chlorine and hypochlorite, which are responsible for the Reactive Blue 19 (RB-19) decolorization. Among the three RB-19 concentrations, the highest removal percentage was noticed at 100 mg L-1 (100%) with energy consumption and energy costs equal to 5.44 kWh m-3 and 0.65 USD m-3, respectively.
Collapse
Affiliation(s)
- Sivasankar Annamalai
- CSIR-Central Electrochemical Research Institute, Karaikudi, 630 003, India.
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Venkatesan Muthukumar
- Department of Chemistry, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Manal M Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
6
|
Annamalai S, Santhanam M, Selvaraj S, Sundaram M, Pandian K, Pazos M. "Green technology": Bio-stimulation by an electric field for textile reactive dye contaminated agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:1649-1657. [PMID: 29054631 DOI: 10.1016/j.scitotenv.2017.10.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
The aim of the study is to degrade pollutants as well as to increase the fertility of agricultural soil by starch enhancing electrokinetic (EKA) and electro-bio-stimulation (EBS) processes. Starch solution was used as an anolyte and voltage gradient was about 0.5V/cm. The influence of bacterial mediated process was evaluated in real contaminated farming soil followed by pilot scale experiment. The in-situ formation of β-cyclodextrin from starch in the treatments had also influence on the significant removal of the pollutants from the farming soil. The conductivity of the soil was effectively reduced from 15.5dS/m to 1.5dS/m which corroborates well with the agricultural norms. The bio-stimulation was confirmed by the increase of the phosphorus content in the treated soil. Finally, phytotoxicity assays demonstrated the viability of the developed technique for soil remediation because plant germination percentage was higher in the treated soil in comparison to untreated soil.
Collapse
Affiliation(s)
- Sivasankar Annamalai
- CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, India; Academy of Scientific and Innovative Research, Karaikudi, Tamil Nadu 630 003, India.
| | - Manikandan Santhanam
- CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, India; Academy of Scientific and Innovative Research, Karaikudi, Tamil Nadu 630 003, India
| | - Subbulakshmi Selvaraj
- CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, India; Academy of Scientific and Innovative Research, Karaikudi, Tamil Nadu 630 003, India
| | | | - Kannan Pandian
- Dryland Agricultural Research Station, Tamilnadu Agricultural University, Chettinad 630 102, India
| | - Marta Pazos
- Department of Chemical Engineering, University of Vigo, Lagoas-Marcosende 36310, Spain
| |
Collapse
|
7
|
Ding L, Lv W, Yao K, Li L, Wang M, Liu G. Remediation of Cd(II)-contaminated soil via humin-enhanced electrokinetic technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3430-3436. [PMID: 27873110 DOI: 10.1007/s11356-016-8069-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Humin is the component of humic substances that is recalcitrant to extraction by either strong bases or strong acids, which contains a variety of functional groups that may combine with heavy metal ions. The present study employed humin as an adsorbent to investigate the efficacy of a remediation strategy under the effects of humin-enhanced electrokinetics. Because the cations gravitate toward cathode and anions are transferred to anode, humin was placed in close proximity to the cathode in the form of a package. The humin was taken out after the experiments to determine whether a target pollutant (cadmium) might be completely removed from soil. Acetic acid-sodium acetate was selected as the electrolyte for these experiments, which was circulated between the two electrode chambers via a peristaltic pump, in order to control the pH of the soil. The results indicated that when the remediation duration was extended to 240 h, the removal of acid extractable Cd(II) could be up to 43.86% efficiency, and the adsorption of the heavy metal within the humin was 86.15 mg/kg. Further, the recycling of the electrolyte exhibited a good control of the pH of the soil. When comparing the pH of the soil with the circulating electrolyte during remediation, in contrast to when it was not being recycled, the pH of the soil at the anode increased from 3.89 to 5.63, whereas the soil at the cathode decreased from 8.06 to 7.10. This indicated that the electrolyte recycling had the capacity to stabilize the pH of the soil.
Collapse
Affiliation(s)
- Ling Ding
- School of Environmental Science and Engineering, and Institute of Environmental Health and Pollution Control, Guangzhou Higher Education Mega Center, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Wenying Lv
- School of Environmental Science and Engineering, and Institute of Environmental Health and Pollution Control, Guangzhou Higher Education Mega Center, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China.
| | - Kun Yao
- School of Environmental Science and Engineering, and Institute of Environmental Health and Pollution Control, Guangzhou Higher Education Mega Center, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Liming Li
- School of Environmental Science and Engineering, and Institute of Environmental Health and Pollution Control, Guangzhou Higher Education Mega Center, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Mengmeng Wang
- School of Environmental Science and Engineering, and Institute of Environmental Health and Pollution Control, Guangzhou Higher Education Mega Center, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Guoguang Liu
- School of Environmental Science and Engineering, and Institute of Environmental Health and Pollution Control, Guangzhou Higher Education Mega Center, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
8
|
Cen GJ, Chang CC, Wang CY. Optimizing electroosmotic flow in an annulus from Debye Hückel approximation to Poisson–Boltzmann equation. RSC Adv 2017. [DOI: 10.1039/c6ra27105g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Optimal EO pumping rates on the plane of zeta potentials with distribution of the inner radius of annular tube.
Collapse
Affiliation(s)
- Gan-Jun Cen
- College of Chemistry and Chemical Engineering and College of Civil Engineering and Architecture
- Guangxi University
- Nanning 530004
- China
- Institute of Applied Mechanics and Center for Advanced Study in Theoretical Sciences
| | - Chien-Cheng Chang
- College of Chemistry and Chemical Engineering and College of Civil Engineering and Architecture
- Guangxi University
- Nanning 530004
- China
- Institute of Applied Mechanics and Center for Advanced Study in Theoretical Sciences
| | - Chang-Yi Wang
- Departments of Mathematics and Mechanical Engineering
- Michigan State University
- East Lansing
- USA
| |
Collapse
|
9
|
Annamalai S, Santhanam M, Sudanthiramoorthy S, Pandian K, Pazos M. Greener technology for organic reactive dye degradation in textile dye-contaminated field soil and in situ formation of “electroactive species” at the anode by electrokinetics. RSC Adv 2016. [DOI: 10.1039/c5ra20344a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study focuses on the electrokinetic process for the in situ formation of electroactive species at the anode.
Collapse
Affiliation(s)
| | | | | | - Kannan Pandian
- Dryland Agricultural Research Station
- Tamilnadu Agricultural University
- Chettinad – 630 102
- India
| | - Marta Pazos
- Department of Chemical Engineering
- University of Vigo
- Lagoas-Marcosende 36310
- Spain
| |
Collapse
|