1
|
Chen YH, Liu IJ, Lin TC, Tsai MC, Hu SH, Hsu TC, Wu YT, Tzang BS, Chiang WH. PEGylated chitosan-coated nanophotosensitizers for effective cancer treatment by photothermal-photodynamic therapy combined with glutathione depletion. Int J Biol Macromol 2024; 266:131359. [PMID: 38580018 DOI: 10.1016/j.ijbiomac.2024.131359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has emerged as a promising strategy for cancer treatment. However, the poor photostability and photothermal conversion efficiency (PCE) of organic small-molecule photosensitizers, and the intracellular glutathione (GSH)-mediated singlet oxygen scavenging largely decline the antitumor efficacy of PTT and PDT. Herein, a versatile nanophotosensitizer (NPS) system is developed by ingenious incorporation of indocyanine green (ICG) into the PEGylated chitosan (PEG-CS)-coated polydopamine (PDA) nanoparticles via multiple π-π stacking, hydrophobic and electrostatic interactions. The PEG-CS-covered NPS showed prominent colloidal and photothermal stability as well as high PCE (ca 62.8 %). Meanwhile, the Michael addition between NPS and GSH can consume GSH, thus reducing the GSH-induced singlet oxygen scavenging. After being internalized by CT26 cells, the NPS under near-infrared laser irradiation produced massive singlet oxygen with the aid of thermo-enhanced intracellular GSH depletion to elicit mitochondrial damage and lipid peroxide formation, thus leading to ferroptosis and apoptosis. Importantly, the combined PTT and PDT delivered by NPS effectively inhibited CT26 tumor growth in vivo by light-activated intense hyperthermia and redox homeostasis disturbance. Overall, this work presents a new tactic of boosting antitumor potency of ICG-mediated phototherapy by PEG-CS-covered NPS.
Collapse
Affiliation(s)
- Yu-Hsin Chen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - I-Ju Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Tzu-Chen Lin
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Min-Chen Tsai
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yi-Ting Wu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
2
|
Desai VM, Choudhary M, Chowdhury R, Singhvi G. Photodynamic Therapy Induced Mitochondrial Targeting Strategies for Cancer Treatment: Emerging Trends and Insights. Mol Pharm 2024; 21:1591-1608. [PMID: 38396330 DOI: 10.1021/acs.molpharmaceut.3c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The perpetuity of cancer prevalence at a global level calls for development of novel therapeutic approaches with improved targetability and reduced adverse effects. Conventional cancer treatments have a multitude of limitations such as nonselectivity, invasive nature, and severe adverse effects. Chemotherapy is also losing its efficacy because of the development of multidrug resistance in the majority of cancers. To address these issues, selective targeting-based approaches are being explored for an effective cancer treatment. Mitochondria, being the moderator of a majority of crucial cellular pathways like metabolism, apoptosis, and reactive oxygen species (ROS) homeostasis, are an effective targeting site. Mitochondria-targeted photodynamic therapy (PDT) has arisen as a potential approach in this endeavor. By designing photosensitizers (PSs) that preferentially accumulate in the mitochondria, PDT offers a localized technique to induce cytotoxicity in cancer cells. In this review, we intend to explore the crucial principles and challenges associated with mitochondria-targeted PDT, including variability in mitochondrial function, mitochondria-specific PSs, targeted nanocarrier-based monotherapy, and combination therapies. The hurdles faced by this emerging strategy with respect to safety, optimization, clinical translation, and scalability are also discussed. Nonetheless, mitochondria-targeted PDT exhibits a significant capacity in cancer treatment, especially in combination with other therapeutic modalities. With perpetual research and technological advancements, this treatment strategy is a great addition to the arsenal of cancer treatment options, providing better tumor targetability while reducing the damage to surrounding healthy tissues. This review emphasizes the current status of mitochondria-targeted PDT, limitations, and future prospects in its pursuit of safe and efficacious cancer therapy.
Collapse
Affiliation(s)
- Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, FD-III, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Vidya Vihar, Pilani, Rajasthan, India 333031
| | - Mahima Choudhary
- Cancer Biology Laboratory, Department of Biological Sciences, FD-III, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Vidya Vihar, Rajasthan, India 333031
| | - Rajdeep Chowdhury
- Cancer Biology Laboratory, Department of Biological Sciences, FD-III, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Vidya Vihar, Rajasthan, India 333031
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, FD-III, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Vidya Vihar, Pilani, Rajasthan, India 333031
| |
Collapse
|
3
|
Ganji C, Muppala V, Khan M, Purnachandra Nagaraju G, Farran B. Mitochondrial-targeted nanoparticles: Delivery and therapeutic agents in cancer. Drug Discov Today 2023; 28:103469. [PMID: 36529353 DOI: 10.1016/j.drudis.2022.103469] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Mitochondria are the powerhouses of cells and modulate the essential metabolic functions required for cellular survival. Various mitochondrial pathways, such as oxidative phosphorylation or production of reactive oxygen species (ROS) are dysregulated during cancer growth and development, rendering them attractive targets against cancer. Thus, the delivery of antitumor agents to mitochondria has emerged as a potential approach for treating cancer. Recent advances in nanotechnology have provided innovative solutions for overcoming the physical barriers posed by the structure of mitochondrial organelles, and have enabled the development of efficient mitochondrial nanoplatforms. In this review, we examine the importance of mitochondria during neoplastic development, explore the most recent smart designs of nano-based systems aimed at targeting mitochondria, and highlight key mitochondrial pathways in cancer cells.
Collapse
Affiliation(s)
- Chaithanya Ganji
- Department of Hematology and Oncology, School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Veda Muppala
- Department of Hematology and Oncology, School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Musaab Khan
- Department of Hematology and Oncology, School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
4
|
Khan T, Waseem R, Zehra Z, Aiman A, Bhardwaj P, Ansari J, Hassan MI, Islam A. Mitochondrial Dysfunction: Pathophysiology and Mitochondria-Targeted Drug Delivery Approaches. Pharmaceutics 2022; 14:pharmaceutics14122657. [PMID: 36559149 PMCID: PMC9785072 DOI: 10.3390/pharmaceutics14122657] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Mitochondria are implicated in a wide range of functions apart from ATP generation, and, therefore, constitute one of the most important organelles of cell. Since healthy mitochondria are essential for proper cellular functioning and survival, mitochondrial dysfunction may lead to various pathologies. Mitochondria are considered a novel and promising therapeutic target for the diagnosis, treatment, and prevention of various human diseases including metabolic disorders, cancer, and neurodegenerative diseases. For mitochondria-targeted therapy, there is a need to develop an effective drug delivery approach, owing to the mitochondrial special bilayer structure through which therapeutic molecules undergo multiple difficulties in reaching the core. In recent years, various nanoformulations have been designed such as polymeric nanoparticles, liposomes, inorganic nanoparticles conjugate with mitochondriotropic moieties such as mitochondria-penetrating peptides (MPPs), triphenylphosphonium (TPP), dequalinium (DQA), and mitochondrial protein import machinery for overcoming barriers involved in targeting mitochondria. The current approaches used for mitochondria-targeted drug delivery have provided promising ways to overcome the challenges associated with targeted-drug delivery. Herein, we review the research from past years to the current scenario that has identified mitochondrial dysfunction as a major contributor to the pathophysiology of various diseases. Furthermore, we discuss the recent advancements in mitochondria-targeted drug delivery strategies for the pathologies associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Zainy Zehra
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ayesha Aiman
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Priyanka Bhardwaj
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
- Correspondence:
| |
Collapse
|
5
|
Alves CG, Lima-Sousa R, Melo BL, Ferreira P, Moreira AF, Correia IJ, Melo-Diogo DD. Poly(2-ethyl-2-oxazoline)-IR780 conjugate nanoparticles for breast cancer phototherapy. Nanomedicine (Lond) 2022; 17:2057-2072. [PMID: 36803049 DOI: 10.2217/nnm-2022-0218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Aims: To address the limitations of IR780 by preparing hydrophilic polymer-IR780 conjugates and to employ these conjugates in the assembly of nanoparticles (NPs) intended for cancer photothermal therapy. Materials & methods: The cyclohexenyl ring of IR780 was conjugated for the first time with thiol-terminated poly(2-ethyl-2-oxazoline) (PEtOx). This novel poly(2-ethyl-2-oxazoline)-IR780 (PEtOx-IR) conjugate was combined with D-α-tocopheryl succinate (TOS), leading to the assembly of mixed NPs (PEtOx-IR/TOS NPs). Results: PEtOx-IR/TOS NPs displayed optimal colloidal stability as well as cytocompatibility in healthy cells at doses within the therapeutic range. In turn, the combination of PEtOx-IR/TOS NPs and near-infrared light reduced heterotypic breast cancer spheroid viability to just 15%. Conclusion: PEtOx-IR/TOS NPs are promising agents for breast cancer photothermal therapy.
Collapse
Affiliation(s)
- Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D Henrique, Covilhã, 6200-506, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D Henrique, Covilhã, 6200-506, Portugal
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D Henrique, Covilhã, 6200-506, Portugal
| | - Paula Ferreira
- CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, Coimbra, 3030-790, Portugal
- Department of Chemical & Biological Engineering, Coimbra Institute of Engineering (ISEC), Rua Pedro Nunes, Coimbra, 3030-199, Portugal
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D Henrique, Covilhã, 6200-506, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D Henrique, Covilhã, 6200-506, Portugal
- CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, Coimbra, 3030-790, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D Henrique, Covilhã, 6200-506, Portugal
| |
Collapse
|
6
|
Mandal AK. Mitochondrial targeting of potent nanoparticulated drugs in combating diseases. J Biomater Appl 2022; 37:614-633. [PMID: 35790487 DOI: 10.1177/08853282221111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mitochondrial dysfunction, characterized by the electron transport chain (ETC) leakage and reduced adenosine tri-phosphate synthesis, occurs primarily due to free radicals -induced mutations in either the mitochondrial deoxyribonucleic acid (mtDNA) or nuclear (n) DNA caused by pathogenic infections, toxicant exposures, adverse drug-effects, or other environmental exposures, leading to secondary dysfunction affecting ischemic, diabetic, cancerous, and degenerative diseases. In these concerns, mitochondria-targeted remedies may include a significant role in the protection and treatment of mitochondrial function to enhance its activity. Coenzyme Q10 pyridinol and pyrimidinol antioxidant analogues and other potent drug-compounds for their multifunctional radical quencher and other anti-toxic activities may take a significant therapeutic effectivity for ameliorating mitochondrial dysfunction. Moreover, the encapsulation of these bioactive ligands-attached potent compounds in vesicular system may enable them a superb biological effective for the treatment of mitochondria-targeted dysfunction-related diseases with least side effects. This review depicts mainly on mitochondrial enzymatic dysfunction and their amelioration by potent drugs with the usages of nanoparticulated delivery system against mitochondria-affected diseases.
Collapse
|
7
|
Qin S, Xu Y, Li H, Chen H, Yuan Z. Recent advances in in situ oxygen-generating and oxygen-replenishing strategies for hypoxic-enhanced photodynamic therapy. Biomater Sci 2021; 10:51-84. [PMID: 34882762 DOI: 10.1039/d1bm00317h] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer is a leading cause of death worldwide, accounting for an estimated 10 million deaths by 2020. Over the decades, various strategies for tumor therapy have been developed and evaluated. Photodynamic therapy (PDT) has attracted increasing attention due to its unique characteristics, including low systemic toxicity and minimally invasive nature. Despite the excellent clinical promise of PDT, hypoxia is still the Achilles' heel associated with its oxygen-dependent nature related to increased tumor proliferation, angiogenesis, and distant metastases. Moreover, PDT-mediated oxygen consumption further exacerbates the hypoxia condition, which will eventually lead to the poor effect of drug treatment and resistance and irreversible tumor metastasis, even limiting its effective application in the treatment of hypoxic tumors. Hypoxia, with increased oxygen consumption, may occur in acute and chronic hypoxia conditions in developing tumors. Tumor cells farther away from the capillaries have much lower oxygen levels than cells in adjacent areas. However, it is difficult to change the tumor's deep hypoxia state through different ways to reduce the tumor tissue's oxygen consumption. Therefore, it will become more difficult to cure malignant tumors completely. In recent years, numerous investigations have focused on improving PDT therapy's efficacy by providing molecular oxygen directly or indirectly to tumor tissues. In this review, different molecular oxygen supplementation methods are summarized to alleviate tumor hypoxia from the innovative perspective of using supplemental oxygen. Besides, the existing problems, future prospects and potential challenges of this strategy are also discussed.
Collapse
Affiliation(s)
- Shuheng Qin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Yue Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Hua Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| |
Collapse
|
8
|
Gonçalves ASC, Rodrigues CF, Fernandes N, de Melo-Diogo D, Ferreira P, Moreira AF, Correia IJ. IR780 loaded gelatin-PEG coated gold core silica shell nanorods for cancer-targeted photothermal/photodynamic therapy. Biotechnol Bioeng 2021; 119:644-656. [PMID: 34841513 DOI: 10.1002/bit.27996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/10/2021] [Accepted: 09/19/2021] [Indexed: 01/17/2023]
Abstract
Gold core silica shell (AuMSS) nanorods present excellent physicochemical properties that allow their application as photothermal and drug delivery agents. Herein, AuMSS nanorods were dual-functionalized with Polyethylene glycol methyl ether (PEG-CH3 ) and Gelatin (GEL) to enhance both the colloidal stability and uptake by HeLa cancer cells. Additionally, the AuMSS nanorods were combined for the first time with IR780 (a heptamethine cyanine molecule) and its photothermal and photodynamic capacities were determined. The obtained results reveal that the encapsulation of IR780 (65 µg per AuMSS mg) increases the photothermal conversion efficiency of AuMSS nanorods by 10%, and this enhanced heat generation was maintained even after three irradiation cycles with a NIR (808 nm) laser. Moreover, the IR780-loaded AuMSS/T-PEG-CH3 /T-GEL presented ≈2-times higher uptake in HeLa cells, when compared to the non-coated counterparts, and successfully mediated the light-triggered generation of reactive oxygen species. Overall, the combination of photodynamic and photothermal therapy mediated by IR780-loaded AuMSS/T-PEG-CH3 /T-GEL nanorods effectively promoted the ablation of HeLa cancer cells.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Carolina F Rodrigues
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Natanael Fernandes
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Paula Ferreira
- CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Coimbra, Portugal
| | - André F Moreira
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.,CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Takano Y, Hirata E, Ushijima N, Harashima H, Yamada Y. An effective in vivo mitochondria-targeting nanocarrier combined with a π-extended porphyrin-type photosensitizer. NANOSCALE ADVANCES 2021; 3:5919-5927. [PMID: 36132667 PMCID: PMC9419188 DOI: 10.1039/d1na00427a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/20/2021] [Indexed: 05/15/2023]
Abstract
A photochemical reaction mediated by light-activated molecules (photosensitizers) in photodynamic therapy (PDT) causes molecular oxygen to be converted into highly reactive oxygen species (ROS) that are beneficial for cancer therapy. As the active oxygen consumer and the primary regulator of apoptosis, mitochondria are known as an important target for optimizing PDT outcomes. However, most of the clinically used photosensitizers exhibited a poor tumor accumulation profile as well as lack of mitochondria targeting ability. Therefore, by applying a nanocarrier platform, mitochondria-specific delivery of photosensitizers can be materialized. The present research develops an effective mitochondria-targeting liposome-based nanocarrier system (MITO-Porter) encapsulating a π-extended porphyrin-type photosensitizer (rTPA), which results in a significant in vivo antitumor activity. A single PDT treatment of the rTPA-MITO-Porter resulted in a dramatic tumor inhibition against both human and murine tumors that had been xenografted in a mouse model. Furthermore, depolarization of the mitochondrial membrane was observed, implying the damage of the mitochondrial membrane due to the photochemical reaction that occurred specifically in the mitochondria of tumor cells. The findings presented herein serve to verify the significance of the mitochondria-targeted nanocarrier system for advancing the in vivo PDT effectivity in cancer therapy regardless of tumor type.
Collapse
Affiliation(s)
- Yuta Takano
- Research Institute for Electronic Science, Hokkaido University Kita-20 Nishi-10, Kita-ku Sapporo 001-0020 Japan
- Graduate School of Environmental Science, Hokkaido University Sapporo 060-0810 Japan
| | - Eri Hirata
- Faculty of Dental Medicine, Hokkaido University Sapporo 060-8586 Japan
| | - Natsumi Ushijima
- Faculty of Dental Medicine, Hokkaido University Sapporo 060-8586 Japan
| | - Hideyoshi Harashima
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University Kita-12 Nishi-6, Kita-ku Sapporo 060-0812 Japan
| | - Yuma Yamada
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University Kita-12 Nishi-6, Kita-ku Sapporo 060-0812 Japan
| |
Collapse
|
10
|
Guo X, Yang N, Ji W, Zhang H, Dong X, Zhou Z, Li L, Shen HM, Yao SQ, Huang W. Mito-Bomb: Targeting Mitochondria for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007778. [PMID: 34510563 DOI: 10.1002/adma.202007778] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/12/2021] [Indexed: 05/22/2023]
Abstract
Cancer has been one of the most common life-threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) have been utilized for cancer treatment owing to their high selectivity, minor resistance, and minimal toxicity. Accumulating evidence has demonstrated that selective delivery of drugs to specific subcellular organelles can significantly enhance the efficiency of cancer therapy. Mitochondria-targeting therapeutic strategies are promising for cancer therapy, which is attributed to the essential role of mitochondria in the regulation of cancer cell apoptosis, metabolism, and more vulnerable to hyperthermia and oxidative damage. Herein, the rational design, functionalization, and applications of diverse mitochondria-targeting units, involving organic phosphine/sulfur salts, quaternary ammonium (QA) salts, peptides, transition-metal complexes, guanidinium or bisguanidinium, as well as mitochondria-targeting cancer therapies including PDT, PTT, CDT, and others are summarized. This review aims to furnish researchers with deep insights and hints in the design and applications of novel mitochondria-targeting agents for cancer therapy.
Collapse
Affiliation(s)
- Xiaolu Guo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Hang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Xiao Dong
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Zhiqiang Zhou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
11
|
S Allemailem K, Almatroudi A, Alsahli MA, Aljaghwani A, M El-Kady A, Rahmani AH, Khan AA. Novel Strategies for Disrupting Cancer-Cell Functions with Mitochondria-Targeted Antitumor Drug-Loaded Nanoformulations. Int J Nanomedicine 2021; 16:3907-3936. [PMID: 34135584 PMCID: PMC8200140 DOI: 10.2147/ijn.s303832] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/24/2021] [Indexed: 12/16/2022] Open
Abstract
Any variation in normal cellular function results in mitochondrial dysregulation that occurs in several diseases, including cancer. Such processes as oxidative stress, metabolism, signaling, and biogenesis play significant roles in cancer initiation and progression. Due to their central role in cellular metabolism, mitochondria are favorable therapeutic targets for the prevention and treatment of conditions like neurodegenerative diseases, diabetes, and cancer. Subcellular mitochondria-specific theranostic nanoformulations for simultaneous targeting, drug delivery, and imaging of these organelles are of immense interest in cancer therapy. It is a challenging task to cross multiple barriers to target mitochondria in diseased cells. To overcome these multiple barriers, several mitochondriotropic nanoformulations have been engineered for the transportation of mitochondria-specific drugs. These nanoformulations include liposomes, dendrimers, carbon nanotubes, polymeric nanoparticles (NPs), and inorganic NPs. These nanoformulations are made mitochondriotropic by conjugating them with moieties like dequalinium, Mito-Porter, triphenylphosphonium, and Mitochondria-penetrating peptides. Most of these nanoformulations are meticulously tailored to control their size, charge, shape, mitochondriotropic drug loading, and specific cell-membrane interactions. Recently, some novel mitochondria-selective antitumor compounds known as mitocans have shown high toxicity against cancer cells. These selective compounds form vicious oxidative stress and reactive oxygen species cycles within cancer cells and ultimately push them to cell death. Nanoformulations approved by the FDA and EMA for clinical applications in cancer patients include Doxil, NK105, and Abraxane. The novel use of these NPs still faces tremendous challenges and an immense amount of research is needed to understand the proper mechanisms of cancer progression and control by these NPs. Here in this review, we summarize current advancements and novel strategies of delivering different anticancer therapeutic agents to mitochondria with the help of various nanoformulations.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Aseel Aljaghwani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Asmaa M El-Kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
12
|
Abstract
IR780, a small molecule with a strong optical property and excellent photoconversion efficiency following near infrared (NIR) irradiation, has attracted increasing attention in the field of cancer treatment and imaging. This review is focused on different IR780-based nanoplatforms and the application of IR780-based nanomaterials for cancer bioimaging and therapy. Thus, this review summarizes the overall aspects of IR780-based nanomaterials that positively impact cancer biomedical applications.
Collapse
Affiliation(s)
- Long Wang
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. and Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chengcheng Niu
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. and Department of Ultrasound Diagnosis and Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
13
|
Calori IR, Bi H, Tedesco AC. Expanding the Limits of Photodynamic Therapy: The Design of Organelles and Hypoxia-Targeting Nanomaterials for Enhanced Photokilling of Cancer. ACS APPLIED BIO MATERIALS 2021; 4:195-228. [PMID: 35014281 DOI: 10.1021/acsabm.0c00945] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photodynamic therapy (PDT) is a minimally invasive clinical protocol that combines a nontoxic photosensitizer (PS), appropriate visible light, and molecular oxygen for cancer treatment. This triad generates reactive oxygen species (ROS) in situ, leading to different cell death pathways and limiting the arrival of nutrients by irreversible destruction of the tumor vascular system. Despite the number of formulations and applications available, the advancement of therapy is hindered by some characteristics such as the hypoxic condition of solid tumors and the limited energy density (light fluence) that reaches the target. As a result, the use of PDT as a definitive monotherapy for cancer is generally restricted to pretumor lesions or neoplastic tissue of approximately 1 cm in size. To expand this limitation, researchers have synthesized functional nanoparticles (NPs) capable of carrying classical photosensitizers with self-supplying oxygen as well as targeting specific organelles such as mitochondria and lysosomes. This has improved outcomes in vitro and in vivo. This review highlights the basis of PDT, many of the most commonly used strategies of functionalization of smart NPs, and their potential to break the current limits of the classical protocol of PDT against cancer. The application and future perspectives of the multifunctional nanoparticles in PDT are also discussed in some detail.
Collapse
Affiliation(s)
- Italo Rodrigo Calori
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo-Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Hong Bi
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, 111 Jiulong Road, Hefei 230601, China
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo-Ribeirão Preto, São Paulo 14040-901, Brazil.,School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, 111 Jiulong Road, Hefei 230601, China
| |
Collapse
|
14
|
Mó I, Alves CG, de Melo-Diogo D, Lima-Sousa R, Correia IJ. Assessing the Combinatorial Chemo-Photothermal Therapy Mediated by Sulfobetaine Methacrylate-Functionalized Nanoparticles in 2D and 3D In Vitro Cancer Models. Biotechnol J 2020; 15:e2000219. [PMID: 33063471 DOI: 10.1002/biot.202000219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Combinatorial cancer therapies mediated by nanomaterials can potentially overcome the limitations of conventional treatments. These therapies are generally investigated using 2D in vitro cancer models, leading to an inaccurate screening. Recently, 3D in vitro spheroids have emerged in the preclinical testing stage of nanomedicines due to their ability to mimic key features of the in vivo solid tumors. Investigate the chemo-photothermal therapy mediated by Doxorubicin and IR780 loaded sulfobetaine methacrylate functionalized nanoparticles, for the first time, using monolayers of cancer cells and spheroids. In the 2D cancer models, the nanomaterials' mediated photothermal therapy, chemotherapy, and chemo-photothermal therapy reduced cancer cells' viability to about 58%, 29%, and 1%, respectively. Interestingly, when the nanomaterials' mediated photothermal therapy is tested on 3D spheroids, no cytotoxic effect is noticed. In contrast, the nanostructures' induced chemotherapy decreased spheroids' viability to 42%. On the other hand, nanomaterials' mediated chemo-photothermal therapy diminished spheroids' viability to 16%, being the most promising therapeutic modality. These results demonstrate the importance of using 3D spheroids during the in vitro screening of single/combinatorial therapies mediated by nanomaterials.
Collapse
Affiliation(s)
- Inês Mó
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, 6200-506, Portugal
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, 6200-506, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, 6200-506, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, 6200-506, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, 6200-506, Portugal.,CIEPQPF - Departamento de Engenharia Química, Rua Sílvio Lima, Universidade de Coimbra, Coimbra, 3030-790, Portugal
| |
Collapse
|
15
|
Chen S, Huang B, Pei W, Wang L, Xu Y, Niu C. Mitochondria-Targeting Oxygen-Sufficient Perfluorocarbon Nanoparticles for Imaging-Guided Tumor Phototherapy. Int J Nanomedicine 2020; 15:8641-8658. [PMID: 33177823 PMCID: PMC7652575 DOI: 10.2147/ijn.s281649] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background Although photothermal therapy (PTT) and photodynamics therapy (PDT) have both made excellent progress in tumor therapy, the effectiveness of using PTT or PDT alone is dissatisfactory due to the limitations of the penetration depth in PTT and the hypoxic microenvironment of tumors for PDT. Combination phototherapy has currently become a burgeoning cancer treatment. Methods and Materials In this work, a mitochondria-targeting liquid perfluorocarbon (PFC)-based oxygen delivery system was developed for the synergistic PDT/photothermal therapy (PTT) of cancer through image guiding. Results Importantly, these nanoparticles (NPs) can effectively and accurately accumulate in the target tumor via the enhanced permeability and retention (EPR) effect. Conclusion This approach offers a novel technique to achieve outstanding antitumor efficacy by an unprecedented design with tumor mitochondria targeting, oxygen delivery, and synergistic PDT/PTT with dual-imaging guidance.
Collapse
Affiliation(s)
- Sijie Chen
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Department of Ultrasound Diagnosis, Changsha Central Hospital, Nanhua University, Changsha, Hunan 410014, People's Republic of China
| | - Biying Huang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Wenjing Pei
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Yan Xu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Chengcheng Niu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| |
Collapse
|
16
|
Yamada Y, Hibino M, Sasaki D, Abe J, Harashima H. Power of mitochondrial drug delivery systems to produce innovative nanomedicines. Adv Drug Deliv Rev 2020; 154-155:187-209. [PMID: 32987095 DOI: 10.1016/j.addr.2020.09.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Mitochondria carry out various essential functions including ATP production, the regulation of apoptosis and possess their own genome (mtDNA). Delivering target molecules to this organelle, it would make it possible to control the functions of cells and living organisms and would allow us to develop a better understanding of life. Given the fact that mitochondrial dysfunction has been implicated in a variety of human disorders, delivering therapeutic molecules to mitochondria for the treatment of these diseases is an important issue. To date, several mitochondrial drug delivery system (DDS) developments have been reported, but a generalized DDS leading to therapy that exclusively targets mitochondria has not been established. This review focuses on mitochondria-targeted therapeutic strategies including antioxidant therapy, cancer therapy, mitochondrial gene therapy and cell transplantation therapy based on mitochondrial DDS. A particular focus is on nanocarriers for mitochondrial delivery with the goal of achieving mitochondria-targeting therapy. We hope that this review will stimulate the accelerated development of mitochondrial DDS.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Laboratory for Biological Drug Development Based on DDS Technology, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Mitsue Hibino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Daisuke Sasaki
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Jiro Abe
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Laboratory for Biological Drug Development Based on DDS Technology, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
17
|
Wang M, Wang Z, Qiao B, Cao J, Quan L, Luo Y, Qi H, Zhong X, He Y, Zhang X, Hao L. Inhibited Metastasis and Amplified Chemotherapeutic Effects by Epigene-Transfection Based on a Tumor-Targeting Nanoparticle. Int J Nanomedicine 2020; 15:4483-4500. [PMID: 32606690 PMCID: PMC7320902 DOI: 10.2147/ijn.s247567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/25/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Tumor metastasis and drug resistance have always been vital aspects to cancer mortality and prognosis. To compromise metastasis and drug resistance, a nanoparticle IPPD-PHF2 (IR780/PLGA-PEI(Dox)-PHF2) has been engineered to accomplish efficient targeted epigenotherapy forced by PHF2-induced MET (mesenchymal to epithelial transition). Materials and Methods IPPD-PHF2 nanoparticle was synthesized and characterized by several analytical techniques. The transfection efficiency of IPP-PHF2 (IR780/PLGA-PEI-PHF2) was compared with PP-PHF2 (PLGA-PEI-PHF2) in vitro by WB and in vivo by IHC, and the cytotoxicity of IPP was compared with Lipo2000 in vitro by CCK8 assay. The inhibition of cancer cell migration caused by PHF2-upregulation was tested by wound healing assay, and the enhanced chemotherapeutic sensitivity was detected by flow cytometry. Tumor-targeting property of IPPD-PHF2 was proved by fluorescent imaging in vivo with MDA-MB-231 tumor-bearing nude mice. Except for fluorescent imaging ability, considerable photoacoustic signals of IPPD-PHF2 at tumor sites were verified. The anti-tumor activity of IPPD-PHF2 was investigated using in vivo human breast cancer MDA-MB-231 cell models. Results Tumor-targeting nanoparticle IPPD-PHF2 had an average size of about 319.2 nm, a stable zeta potential at about 38 mV. The encapsulation efficiency of doxorubicin was around 39.28%, and the adsorption capacity of plasmids was about 64.804 μg/mg. Significant up-regulation of PHF2 induced MET and caused reduced migration as well as enhanced chemotherapeutic sensitivity. Either IPPD (IR780/PLGA-PEI(Dox)) or IPP-PHF2 (IR780/PLGA-PEI-PHF2) presented minor therapeutic effects, whereas IPPD-PHF2 specifically accumulated within tumors, showed extraordinary transfection efficiency specifically in tumor sites, acted as inhibitors of metastasis and proliferation, and presented good multimodality imaging potentials in vivo. Conclusion IPPD-PHF2 NPs is a promising tool to bring epigenotherapy into a more practical era, and the potential application of harm-free multimodality imaging guidance is of great value.
Collapse
Affiliation(s)
- Mengzhu Wang
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Bin Qiao
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Jin Cao
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Luya Quan
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yuanli Luo
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Hanwen Qi
- The A. Gary Anderson Graduate School of Management, University of California, Riverside, Riverside, CA, 92521, USA
| | - Xiaowen Zhong
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yubei He
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Xianquan Zhang
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China.,Cardiothoracic Surgery Department, Chongqing Hygeia Cancer Hospital, Chongqing, 401331, People's Republic of China
| | - Lan Hao
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| |
Collapse
|
18
|
Alves CG, de Melo-Diogo D, Lima-Sousa R, Correia IJ. IR780 loaded sulfobetaine methacrylate-functionalized albumin nanoparticles aimed for enhanced breast cancer phototherapy. Int J Pharm 2020; 582:119346. [PMID: 32315749 DOI: 10.1016/j.ijpharm.2020.119346] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
Abstract
New insights about nanomaterials' biodistribution revealed their ability to achieve tumor accumulation by taking advantage from the dynamic vents occurring in tumor's vasculature. This paradigm-shift emphasizes the importance of extending nanomaterials' blood circulation time to enhance their tumor uptake. The classic strategy to improve nanomaterials' stability during circulation relies on their functionalization with poly(ethylene glycol). However, recent reports have been showing that PEGylated nanomaterials can suffer from the accelerated blood clearance phenomenon, emphasizing the importance of developing novel coatings for functionalizing the nanomaterials. To address this limitation, the modification of natural carriers' surface to enhance their stability appears to be a promising strategy. Herein, sulfobetaine methacrylate (SBMA)-functionalized bovine serum albumin (BSA) was synthesized for the first time to investigate the capacity of this modification to improve the resulting nanoparticles' physicochemical properties, colloidal stability and in vitro performance. This novel polymer was then employed in the formulation of nanoparticles loaded with IR780 for application in breast cancer phototherapy (IR/SBMA-BSA NPs). When compared to their non-functionalized equivalents, the IR/SBMA-BSA NPs presented a neutral surface charge and a higher stability in biologically relevant media. Due to these features, the IR/SBMA-BSA NPs could achieve a 1.9-fold greater uptake by breast cancer cells than IR/BSA NPs. Furthermore, the IR/SBMA-BSA NPs were cytocompatible towards normal cells and reduced breast cancer cells' viability up to 42%. The phototherapy mediated by IR/SBMA-BSA NPs could further decrease cancer cells' viability to about 12%. Overall, the IR/SBMA-BSA NPs have enhanced features that propel their application in breast cancer phototherapy.
Collapse
Affiliation(s)
- Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| |
Collapse
|
19
|
Therapeutic Strategies for Regulating Mitochondrial Oxidative Stress. Biomolecules 2020; 10:biom10010083. [PMID: 31948035 PMCID: PMC7023101 DOI: 10.3390/biom10010083] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/24/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023] Open
Abstract
There have been many reports on the relationship between mitochondrial oxidative stress and various types of diseases. This review covers mitochondrial targeting photodynamic therapy and photothermal therapy as a therapeutic strategy for inducing mitochondrial oxidative stress. We also discuss other mitochondrial targeting phototherapeutic methods. In addition, we discuss anti-oxidant therapy by a mitochondrial drug delivery system (DDS) as a therapeutic strategy for suppressing oxidative stress. We also describe cell therapy for reducing oxidative stress in mitochondria. Finally, we discuss the possibilities and problems associated with clinical applications of mitochondrial DDS to regulate mitochondrial oxidative stress.
Collapse
|
20
|
Jeyaraj M, Gurunathan S, Qasim M, Kang MH, Kim JH. A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1719. [PMID: 31810256 PMCID: PMC6956027 DOI: 10.3390/nano9121719] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022]
Abstract
Platinum nanoparticles (PtNPs) are noteworthy scientific tools that are being explored in various biotechnological, nanomedicinal, and pharmacological fields. They are unique because of their large surface area and their numerous catalytic applications such as their use in automotive catalytic converters and as petrochemical cracking catalysts. PtNPs have been widely utilized not only in the industry, but also in medicine and diagnostics. PtNPs are extensively studied because of their antimicrobial, antioxidant, and anticancer properties. So far, only one review has been dedicated to the application of PtNPs to nanomedicine. However, no studies describe the synthesis, characterization, and biomedical application of PtNPs. Therefore, the aim of this review is to provide a comprehensive assessment of the current knowledge regarding the synthesis, including physical, chemical, and biological and toxicological effects of PtNPs on human health, in terms of both in vivo and in vitro experimental analysis. Special attention has been focused on the biological synthesis of PtNPs using various templates as reducing and stabilizing agents. Finally, we discuss the biomedical and other applications of PtNPs.
Collapse
Affiliation(s)
| | | | | | | | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea; (M.J.); (S.G.); (M.Q.); (M.-H.K.)
| |
Collapse
|
21
|
Zhang D, Zhang J, Li Q, Song A, Li Z, Luan Y. Cold to Hot: Rational Design of a Minimalist Multifunctional Photo-immunotherapy Nanoplatform toward Boosting Immunotherapy Capability. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32633-32646. [PMID: 31429272 DOI: 10.1021/acsami.9b09568] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The concept of integrating immunogenic cell death (ICD) with tailoring the immunosuppressive tumor microenvironment (TME) is promising for immunotherapy. Photothermal therapy (PTT) could efficiently induce ICD, while an indoleamine 2,3-dioxygenase (IDO) inhibitor could convert the "cold" TME. Therefore, combination of PTT and the IDO inhibitor is an attractive approach for immunotherapy. Unfortunately, combination of PTT and the IDO inhibitor for tumor therapy is rarely reported. Herein, organic photothermal agent IR820 and IDO inhibitor 1-methyl-tryptophan (1MT) were, for the first time, designed to be an all-rolled-into-one molecule nanoplatform via a molecular engineering strategy. The designed IR820-1MT molecule could self-assemble into nanoparticles with remarkably high dual-therapeutic agent loading (88.8 wt %). Importantly, poor water solubility of 1MT and inadequate targeting and short lifetime of IR820 were all well solved within as-prepared IR820-1MT nanoparticles. The laser-triggered IR820-1MT nanoparticles remarkably enhanced accumulation of cytotoxic T cells, helper T cells, and memory T cells and simultaneously suppressed a proportion of regulatory T cells, resulting in excellent immunotherapy against tumor metastasis and recurrence. Our molecular engineering strategy provides a promising alternative option for design of a robust immunotherapy weapon against tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Di Zhang
- School of Pharmaceutical Science , Key Laboratory of Chemical Biology (Ministry of Education) Shandong University , 44 West Wenhua Road , Jinan , Shandong Province 250012 , China
| | - Jing Zhang
- School of Pharmaceutical Science , Key Laboratory of Chemical Biology (Ministry of Education) Shandong University , 44 West Wenhua Road , Jinan , Shandong Province 250012 , China
| | - Qian Li
- School of Pharmaceutical Science , Key Laboratory of Chemical Biology (Ministry of Education) Shandong University , 44 West Wenhua Road , Jinan , Shandong Province 250012 , China
| | - Aixin Song
- Key Laboratory of Colloid & Interface Chemistry , Shandong University, Ministry of Education , Jinan 250100 , China
| | - Zhonghao Li
- Key Laboratory of Colloid & Interface Chemistry , Shandong University, Ministry of Education , Jinan 250100 , China
| | - Yuxia Luan
- School of Pharmaceutical Science , Key Laboratory of Chemical Biology (Ministry of Education) Shandong University , 44 West Wenhua Road , Jinan , Shandong Province 250012 , China
| |
Collapse
|
22
|
Shao N, Qi Y, Lu H, He D, Li B, Huang Y. Photostability Highly Improved Nanoparticles Based on IR-780 and Negative Charged Copolymer for Enhanced Photothermal Therapy. ACS Biomater Sci Eng 2018; 5:795-804. [DOI: 10.1021/acsbiomaterials.8b01558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nannan Shao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yanxin Qi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hongtong Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dongyun He
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun 130022, P.R. China
| | - Bin Li
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
23
|
Hu X, Tian H, Jiang W, Song A, Li Z, Luan Y. Rational Design of IR820- and Ce6-Based Versatile Micelle for Single NIR Laser-Induced Imaging and Dual-Modal Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802994. [PMID: 30474224 DOI: 10.1002/smll.201802994] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/12/2018] [Indexed: 06/09/2023]
Abstract
Phototherapy as a promising cancer diagnostic and therapeutic strategy has aroused extensive attention. However, single-wavelength near-infrared (NIR) light-triggered combinational treatment of photothermal therapy (PTT) and photodynamic therapy (PDT) is still a great challenge. Herein, a multifunctional micelle activated by a single-wavelength laser for simultaneous PTT and PDT as well as fluorescence imaging is developed. Briefly, new indocyanine green (IR820) is conjugated to d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) via the linker 6-aminocaproic acid, and then, chlorin e6 (Ce6) is encapsulated into the micelles formed by TPGS-IR820 conjugates to fabricate TPGS-IR820/Ce6 micelles. As the well-designed TPGS-IR820 conjugate shares a similar peak absorption wavelength with Ce6, this micelle can be applied with a single NIR laser (660 nm). The stable micelles exhibit excellent photothermal conversion efficiency in vitro and in vivo as well as high singlet oxygen generation capacity in tumor cells. After efficient cellular internalization, the as-prepared micelles display outstanding anticancer activity upon single NIR laser irradiation in vitro and in vivo. Furthermore, TPGS-IR820/Ce6 micelles show negligible systemic toxicity. The highly safe and effective TPGS-IR820/Ce6 micelles can offer an innovative strategy to construct single NIR light-induced PTT and PDT combined phototherapy nanoplatforms via suitable modification of organic phototherapeutic agents.
Collapse
Affiliation(s)
- Xu Hu
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, P. R. China
| | - Hailong Tian
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, P. R. China
| | - Wei Jiang
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, P. R. China
| | - Aixin Song
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan, 250100, P. R. China
| | - Zhonghao Li
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan, 250100, P. R. China
| | - Yuxia Luan
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, P. R. China
| |
Collapse
|
24
|
Wang S, Guo F, Ji Y, Yu M, Wang J, Li N. Dual-Mode Imaging Guided Multifunctional Theranosomes with Mitochondria Targeting for Photothermally Controlled and Enhanced Photodynamic Therapy in Vitro and in Vivo. Mol Pharm 2018; 15:3318-3331. [DOI: 10.1021/acs.molpharmaceut.8b00351] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Siyu Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, PR China
| | - Fang Guo
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, PR China
| | - Yanhui Ji
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, 300052 Tianjin, PR China
| | - Meng Yu
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, PR China
| | - Jinping Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, PR China
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, PR China
| |
Collapse
|
25
|
A Lipophilic IR-780 Dye-Encapsulated Zwitterionic Polymer-Lipid Micellar Nanoparticle for Enhanced Photothermal Therapy and NIR-Based Fluorescence Imaging in a Cervical Tumor Mouse Model. Int J Mol Sci 2018; 19:ijms19041189. [PMID: 29652833 PMCID: PMC5979520 DOI: 10.3390/ijms19041189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
To prolong blood circulation and avoid the triggering of immune responses, nanoparticles in the bloodstream require conjugation with polyethylene glycol (PEG). However, PEGylation hinders the interaction between the nanoparticles and the tumor cells and therefore limits the applications of PEGylated nanoparticles for therapeutic drug delivery. To overcome this limitation, zwitterionic materials can be used to enhance the systemic blood circulation and tumor-specific delivery of hydrophobic agents such as IR-780 iodide dye for photothermal therapy. Herein, we developed micellar nanoparticles using the amphiphilic homopolymer poly(12-(methacryloyloxy)dodecyl phosphorylcholine) (PCB-lipid) synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization. The PCB-lipid can self-assemble into micelles and encapsulate IR-780 dye (PCB-lipid–IR-780). Our results demonstrated that PCB-lipid–IR-780 nanoparticle (NP) exhibited low cytotoxicity and remarkable photothermal cytotoxicity to cervical cancer cells (TC-1) upon near-infrared (NIR) laser irradiation. The biodistribution of PCB-lipid–IR-780 showed higher accumulation of PCB-lipid–IR-780 than that of free IR-780 in the TC-1 tumor. Furthermore, following NIR laser irradiation of the tumor region, the PCB-lipid–IR-780 accumulated in the tumor facilitated enhanced tumor ablation and subsequent tumor regression in the TC-1 xenograft model. Hence, these zwitterionic polymer-lipid hybrid micellar nanoparticles show great potential for cancer theranostics and might be beneficial for clinical applications.
Collapse
|
26
|
Taba F, Onoda A, Hasegawa U, Enoki T, Ooyama Y, Ohshita J, Hayashi T. Mitochondria-Targeting Polyamine-Protoporphyrin Conjugates for Photodynamic Therapy. ChemMedChem 2017; 13:15-19. [PMID: 28961376 DOI: 10.1002/cmdc.201700467] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/29/2017] [Indexed: 12/13/2022]
Abstract
Two polyamine derivatives of protoporphyrin IX (PPIX) were tested as photodynamic therapy (PDT) agents in HT29 colorectal cancer and HEP3B liver cancer cell lines. These compounds exhibit excellent singlet oxygen quantum yields and show strong in vitro PDT efficacy after 660 nm laser irradiation, whereas exogenous PPIX itself exhibits much weaker PDT effects. Confocal microscopy imaging studies reveal that a protoporphyrin derivative with eight amine moieties has excellent water solubility, and localizes mainly in the mitochondria of both HT29 and HEP3B cells, whereas the cellular distribution of a protoporphyrin derivative with four amine moieties is not as specific. This work demonstrates that polyamine moieties on macrocycles can enhance PDT efficacy by targeting mitochondria.
Collapse
Affiliation(s)
- Fargol Taba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akira Onoda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Urara Hasegawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Toshiaki Enoki
- Department of Applied Chemistry, School of Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan
| | - Yousuke Ooyama
- Department of Applied Chemistry, School of Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan
| | - Joji Ohshita
- Department of Applied Chemistry, School of Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
27
|
Wang Z, Guo W, Kuang X, Hou S, Liu H. Nanopreparations for mitochondria targeting drug delivery system: Current strategies and future prospective. Asian J Pharm Sci 2017; 12:498-508. [PMID: 32104363 PMCID: PMC7032167 DOI: 10.1016/j.ajps.2017.05.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/23/2017] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are a novel and promising therapeutic target for diagnosis, treatment and prevention of a lot of human diseases such as cancer, metabolic diseases and neurodegenerative disease. Owing to the mitochondrial special bilayer structure and highly negative potential nature, therapeutic molecules have multiple difficulties in reaching mitochondria. To overcome multiple barriers for targeting mitochondria, the researchers developed various pharmaceutical preparations such as liposomes, polymeric nanoparticles and inorganic nanoparticles modified by mitochondriotropic moieties like dequalinium (DQA), triphenylphosphonium (TPP), mitochondrial penetrating peptides (MPPs) and mitochondrial protein import machinery that allow specific targeting. The targeted formulations exhibited enhanced pharmacological effect and better therapeutic effect than their untargeted counterpart both in vitro and in vivo. Nanocarriers may be used for bio-therapeutic delivery into specific mitochondria that possess a great potential treatment of mitochondria related diseases.
Collapse
Affiliation(s)
| | | | | | | | - Hongzhuo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
28
|
Li M, He P, Li S, Wang X, Liu L, Lv F, Wang S. Oligo(p-phenylenevinylene) Derivative-Incorporated and Enzyme-Responsive Hybrid Hydrogel for Tumor Cell-Specific Imaging and Activatable Photodynamic Therapy. ACS Biomater Sci Eng 2017; 4:2037-2045. [DOI: 10.1021/acsbiomaterials.7b00610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Meng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ping He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shengliang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaoyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
29
|
Zielonka J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017; 117:10043-10120. [PMID: 28654243 PMCID: PMC5611849 DOI: 10.1021/acs.chemrev.7b00042] [Citation(s) in RCA: 983] [Impact Index Per Article: 140.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Carrera 5a No. 6-33, Floridablanca, Santander, Colombia, 681003
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Calle 4B No. 36-00, Cali, Colombia, 760032
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
30
|
Bhattarai P, Dai Z. Cyanine based Nanoprobes for Cancer Theranostics. Adv Healthc Mater 2017; 6. [PMID: 28558146 DOI: 10.1002/adhm.201700262] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/16/2017] [Indexed: 01/07/2023]
Abstract
Cyanine dyes are greatly accredited in the development of non-invasive therapy that can "see" and "treat" tumor cells via imaging, photothermal and photodynamic treatment. However, these dyes suffer from poor pharmacokinetics inducing severe toxicity to normal cells, insufficient accumulation in tumor regions and rapid photobleaching when delivered in free forms. Nanoparticles engineered to encapsulate these compounds and delivering them into tumor regions have increased rapidly, however, so far, these nanoparticles (NPs) have not proved to be so effective to circumvent existing challenges. Newly designed multifunctional smart nanocarriers that can improve phototherapeutic properties of these dyes, co-encapsulate multiple potent therapeutic compounds, and simultaneously overcome limitations related to tumor recurrence, metastases, limited intracellular uptake, and tumor hypoxia have potential to revolutionize modern paradigm of cancer therapy. Such cyanine based multifunctional nanocarriers integrating imaging and therapy in a single platform can effectively produce better clinical outcomes in cancer treatment. This review briefly summarizes recent advancements of cyanine nanoprobes that are currently used as imaging/phototherapeutic agents in unimodal/bimodal/trimodal cancer theranostics. Finally, we conclude this review by addressing challenges of pre-existing therapeutic systems and designs adopted to overcome them with a brief insight assimilating future perspective of emerging cyanine-based NPs in cancer theranostics.
Collapse
Affiliation(s)
- Pravin Bhattarai
- Department of Biomedical Engineering; College of Engineering; Peking University; Beijing 100871 China
| | - Zhifei Dai
- Department of Biomedical Engineering; College of Engineering; Peking University; Beijing 100871 China
| |
Collapse
|
31
|
Thomas RG, Jeong YY. NIRF Heptamethine Cyanine Dye Nanocomplexes for Multi Modal Theranosis of Tumors. Chonnam Med J 2017; 53:83-94. [PMID: 28584786 PMCID: PMC5457956 DOI: 10.4068/cmj.2017.53.2.83] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 01/15/2023] Open
Abstract
Heptamethine cyanine dyes are categorized as a class of near infrared fluorescent (NIRF) dyes which have been discovered to have tumor targeting and accumulation capability. This unique feature of NIRF dye makes it a promising candidate for imaging, targeted therapy and also as a drug delivery vehicle for various types of cancers. The favored uptake of dyes only in cancer cells is facilitated by several factors which include organic anion-transporting polypeptides, high mitochondrial membrane potential and tumor hypoxia in cancer cells. Currently nanotechnology has opened possibilities for multimodal or multifunctional strategies for cancer treatment. Including heptamethine cyanine dyes in nanoparticle based delivery systems have generally improved its theranostic ability by several fold owing to the multiple functionalities and structural features of heptamethine dyes. For this reason, nanocomplexes with NIRF heptamethine cyanine dye probe are preferred over non-targeting dyes such as indo cyanine green (ICG). This review sums up current trends and progress in NIRF heptamethine cyanine dye, including dye properties, multifunctional imaging and therapeutic applications in cancer.
Collapse
Affiliation(s)
- Reju George Thomas
- Department of Radiology, Chonnam National University Hwasun Hospital, Molecular Theranostics Laboratory, Hwasun, Korea
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Molecular Theranostics Laboratory, Hwasun, Korea
| |
Collapse
|
32
|
Pais-Silva C, de Melo-Diogo D, Correia IJ. IR780-loaded TPGS-TOS micelles for breast cancer photodynamic therapy. Eur J Pharm Biopharm 2017; 113:108-117. [PMID: 28087376 DOI: 10.1016/j.ejpb.2017.01.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 11/19/2022]
Abstract
IR780 iodide is a near-infrared (NIR) dye with a huge potential for cancer imaging and phototherapy. However, its biomedical application is strongly impaired by its lipophilic character. Herein, amphiphilic micelles based on d-α-tocopheryl polyethylene glycol succinate (TPGS) and d-α-tocopheryl succinate (TOS), two vitamin E derivatives with intrinsic anticancer activity, are explored to load IR780. IR780-loaded micelles with suitable sizes are obtained by using specific TPGS and TOS weight feed ratios during micelles formulation and these are able to encapsulate IR780 with high efficiency. In in vitro assays, the IR780-loaded micelles induce a cytotoxic effect in cancer cells upon exposure to NIR irradiation through the generation of reactive oxygen species (photodynamic therapy). This effective ablation of cancer cells is achieved using an ultra-low IR780 concentration. Moreover, IR780-loaded micelles also have the ability to act as photothermal and imaging agents, which widens their therapeutic and diagnostic potential. Overall, TPGS-TOS micelles are promising nanoplatforms for IR780-mediated cancer phototherapy and imaging.
Collapse
Affiliation(s)
- Cleide Pais-Silva
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
33
|
Pang X, Wang J, Tan X, Guo F, Lei M, Ma M, Yu M, Tan F, Li N. Dual-Modal Imaging-Guided Theranostic Nanocarriers Based on Indocyanine Green and mTOR Inhibitor Rapamycin. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13819-13829. [PMID: 27182890 DOI: 10.1021/acsami.6b04010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The development of treatment protocols that resulted in a complete response to photothermal therapy (PTT) was usually hampered by uneven heat distribution and low effectiveness. Here, we reported an NIR fluorescence and photoacoustic dual-modal imaging-guided active targeted thermal sensitive liposomes (TSLs) based on the photothermal therapy agent Indocyanine green (ICG) and antiangiogenesis agent Rapamycin (RAPA) to realize enhanced therapeutic and diagnostic functions. As expected, the in vitro drug release studies exhibited the satisfactory result of drug released from the TSLs under hyperthermia conditions induced by NIR stimulation. The in vitro cellular studies confirmed that the FA-ICG/RAPA-TSLs plus NIR laser exhibited efficient drug accumulation and cytotoxicity in tumor cells and epithelial cells. After 24 h intravenous injection of FA-ICG/RAPA-TSLs, the margins of tumor and normal tissue were accurately identified via the in vivo NIR fluorescence and photoacoustic dual-modal imaging. In addition, FA-ICG/RAPA-TSLs combined with NIR irradiation treated tumor-bearing nude mice inhibited tumor growth to a great extent and possessed much lower side effects to normal organs. All detailed evidence suggested that the theranostic TSLs which were capable of enhancing the therapeutic index might be a suitable drug delivery system for dual-modal imaging-guided therapeutic tools for diagnostics as well as the treatment of tumors.
Collapse
Affiliation(s)
- Xiaojuan Pang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Jinping Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Xiaoxiao Tan
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Fang Guo
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Mingzhu Lei
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Man Ma
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Meng Yu
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Fengping Tan
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| |
Collapse
|