1
|
Saconsint S, Srifa A, Koo-Amornpattana W, Assabumrungrat S, Sano N, Fukuhara C, Ratchahat S. Development of Ni-Mo carbide catalyst for production of syngas and CNTs by dry reforming of biogas. Sci Rep 2023; 13:12928. [PMID: 37558901 PMCID: PMC10412613 DOI: 10.1038/s41598-023-38436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
Biogas has been widely regarded as a promising source of renewable energy. Recently, the direct conversion of biogas over heterogeneous catalysts for the simultaneous production of syngas and carbon nanotubes exhibits a high potential for full utilization of biogas with great benefits. Involving the combined dry reforming of methane and catalytic decomposition of methane, the efficiency of process is strongly depended on the catalyst activity/stability, mainly caused by carbon deposition. In this study, Ni-Mo catalyst is engineered to provide a life-long performance and perform high activity in the combined process. The surface modification of catalysts by a controlled carburization pretreatment is proposed for the first time to produce a carbide catalyst along with improving the catalyst stability as well as the reactivity for direct conversion of biogas. The performance of as-prepared carbide catalysts is investigated with comparison to the oxide and metallic ones. As a result, the Ni-Mo2C catalyst exhibited superior activity and stability over its counterparts, even though the condensed nanocarbon was largely grown and covered on the surface. In addition, up to 82% of CH4 conversion and 93% of CO2 conversion could remain almost constant at 800 °C throughout the entire test period of 3 h under a high flowrate inlet stream of pure biogas at 48,000 cm3 g-1 h-1. The XPS spectra of catalysts confirmed that the presence of Mo2C species on the catalyst surface could promote the stability and reactivity of the catalyst, resulting in higher productivity of carbon nanotubes over a longer time.
Collapse
Affiliation(s)
- Supanida Saconsint
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Atthapon Srifa
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Wanida Koo-Amornpattana
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Suttichai Assabumrungrat
- Department of Chemical Engineering, Faculty of Engineering, Center of Excellence in Catalysis and Catalytic Reaction Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Noriaki Sano
- Department of Chemical Engineering, Faculty of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Choji Fukuhara
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University, Shizuoka, 432-8561, Japan
| | - Sakhon Ratchahat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
2
|
Huang N, Su T, Qin Z, Ji H. Nickel Supported on Multilayer Vanadium Carbide for Dry Reforming of Methane. ChemistrySelect 2022. [DOI: 10.1002/slct.202203873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nongfeng Huang
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology Guangxi University 100 Daxue Road Nanning 530004 P. R. China
| | - Tongming Su
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology Guangxi University 100 Daxue Road Nanning 530004 P. R. China
| | - Zuzeng Qin
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology Guangxi University 100 Daxue Road Nanning 530004 P. R. China
| | - Hongbing Ji
- Fine Chemical Institute Sun Yat-sen University 135 Xingangxi Road Guangzhou 510275 P. R. China
| |
Collapse
|
3
|
Wang H, Diao Y, Gao Z, Smith KJ, Guo X, Ma D, Shi C. H 2 Production from Methane Reforming over Molybdenum Carbide Catalysts: From Surface Properties and Reaction Mechanism to Catalyst Development. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Haiyan Wang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
| | - Yanan Diao
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
| | - Zirui Gao
- College of Chemistry and Molecular Engineering, Peking University, Beijing100871, P. R. China
| | - Kevin J. Smith
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BCV6T 1Z3, Canada
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
| | - Ding Ma
- College of Chemistry and Molecular Engineering, Peking University, Beijing100871, P. R. China
| | - Chuan Shi
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
| |
Collapse
|
4
|
Effect of the Carbon Support and Conditions on the Carbothermal Synthesis of Cu-Molybdenum Carbide and Its Application on CO 2 Hydrogenation to Methanol. NANOMATERIALS 2022; 12:nano12071048. [PMID: 35407166 PMCID: PMC9000400 DOI: 10.3390/nano12071048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/28/2022]
Abstract
The synthesis of methanol by carbon dioxide hydrogenation has been studied using copper-molybdenum carbides supported on high surface area graphite, reduced graphene oxide and carbon nanotubes. The synthesis conditions and the effect of the support were studied. The catalysts were prepared in situ using H2 or He at 600 °C or 700 °C. Both molybdenum carbide and oxycarbide were obtained. A support with less reactive carbon resulted in lower proportion of carbide obtained. The best results were achieved over a 5 wt.% Cu and 10 wt.% Mo on high surface area graphite that reached 96.3% selectivity to methanol.
Collapse
|
5
|
Delir Kheyrollahi Nezhad P, Bekheet MF, Bonmassar N, Gili A, Kamutzki F, Gurlo A, Doran A, Schwarz S, Bernardi J, Praetz S, Niaei A, Farzi A, Penner S. Elucidating the role of earth alkaline doping in perovskite-based methane dry reforming catalysts. Catal Sci Technol 2022; 12:1229-1244. [PMID: 35310768 PMCID: PMC8859525 DOI: 10.1039/d1cy02044g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022]
Abstract
To elucidate the role of earth alkaline doping in perovskite-based dry reforming of methane (DRM) catalysts, we embarked on a comparative and exemplary study of a Ni-based Sm perovskite with and without Sr doping. While the Sr-doped material appears as a structure-pure Sm1.5Sr0.5NiO4 Ruddlesden Popper structure, the undoped material is a NiO/monoclinic Sm2O3 composite. Hydrogen pre-reduction or direct activation in the DRM mixture in all cases yields either active Ni/Sm2O3 or Ni/Sm2O3/SrCO3 materials, with albeit different short-term stability and deactivation behavior. The much smaller Ni particle size after hydrogen reduction of Sm1.5Sr0.5NiO4, and of generally all undoped materials stabilizes the short and long-term DRM activity. Carbon dioxide reactivity manifests itself in the direct formation of SrCO3 in the case of Sm1.5Sr0.5NiO4, which is dominant at high temperatures. For Sm1.5Sr0.5NiO4, the CO : H2 ratio exceeds 1 at these temperatures, which is attributed to faster direct carbon dioxide conversion to SrCO3 without catalytic DRM reactivity. As no Sm2O2CO3 surface or bulk phase as a result of carbon dioxide activation was observed for any material – in contrast to La2O2CO3 – we suggest that oxy-carbonate formation plays only a minor role for DRM reactivity. Rather, we identify surface graphitic carbon as the potentially reactive intermediate. Graphitic carbon has already been shown as a crucial reaction intermediate in metal-oxide DRM catalysts and appears both for Sm1.5Sr0.5NiO4 and NiO/monoclinic Sm2O3 after reaction as crystalline structure. It is significantly more pronounced for the latter due to the higher amount of oxygen-deficient monoclinic Sm2O3 facilitating carbon dioxide activation. Despite the often reported beneficial role of earth alkaline dopants in DRM catalysis, we show that the situation is more complex. In our studies, the detrimental role of earth alkaline doping manifests itself in the exclusive formation of the sole stable carbonated species and a general destabilization of the Ni/monoclinic Sm2O3 interface by favoring Ni particle sintering. To elucidate the role of earth alkaline doping in perovskite-based dry reforming of methane (DRM) catalysts, we embarked on a comparative and exemplary study of a Ni-based Sm perovskite with and without Sr doping.![]()
Collapse
Affiliation(s)
- Parastoo Delir Kheyrollahi Nezhad
- Reactor & Catalyst Research Lab, Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Maged F. Bekheet
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
| | - Nicolas Bonmassar
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Albert Gili
- Institut für Chemie, Technische Universität Berlin, Sekretariat TC 8, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Franz Kamutzki
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
| | - Aleksander Gurlo
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
| | - Andrew Doran
- Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley, California 94720, USA
| | - Sabine Schwarz
- University Service Center for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
| | - Johannes Bernardi
- University Service Center for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
| | - Sebastian Praetz
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Aligholi Niaei
- Reactor & Catalyst Research Lab, Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Ali Farzi
- Reactor & Catalyst Research Lab, Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Simon Penner
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| |
Collapse
|
6
|
Czaplicka N, Rogala A, Wysocka I. Metal (Mo, W, Ti) Carbide Catalysts: Synthesis and Application as Alternative Catalysts for Dry Reforming of Hydrocarbons-A Review. Int J Mol Sci 2021; 22:12337. [PMID: 34830220 PMCID: PMC8617837 DOI: 10.3390/ijms222212337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022] Open
Abstract
Dry reforming of hydrocarbons (DRH) is a pro-environmental method for syngas production. It owes its pro-environmental character to the use of carbon dioxide, which is one of the main greenhouse gases. Currently used nickel catalysts on oxide supports suffer from rapid deactivation due to sintering of active metal particles or the deposition of carbon deposits blocking the flow of gases through the reaction tube. In this view, new alternative catalysts are highly sought after. Transition metal carbides (TMCs) can potentially replace traditional nickel catalysts due to their stability and activity in DR processes. The catalytic activity of carbides results from the synthesis-dependent structural properties of carbides. In this respect, this review presents the most important methods of titanium, molybdenum, and tungsten carbide synthesis and the influence of their properties on activity in catalyzing the reaction of methane with carbon dioxide.
Collapse
Affiliation(s)
| | | | - Izabela Wysocka
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12 St., 80-233 Gdansk, Poland; (N.C.); (A.R.)
| |
Collapse
|
7
|
Alam MI, Cheula R, Moroni G, Nardi L, Maestri M. Mechanistic and multiscale aspects of thermo-catalytic CO 2 conversion to C 1 products. Catal Sci Technol 2021; 11:6601-6629. [PMID: 34745556 PMCID: PMC8521205 DOI: 10.1039/d1cy00922b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/26/2021] [Indexed: 12/04/2022]
Abstract
The increasing environmental concerns due to anthropogenic CO2 emissions have called for an alternate sustainable source to fulfill rising chemical and energy demands and reduce environmental problems. The thermo-catalytic activation and conversion of abundantly available CO2, a thermodynamically stable and kinetically inert molecule, can significantly pave the way to sustainably produce chemicals and fuels and mitigate the additional CO2 load. This can be done through comprehensive knowledge and understanding of catalyst behavior, reaction kinetics, and reactor design. This review aims to catalog and summarize the advances in the experimental and theoretical approaches for CO2 activation and conversion to C1 products via heterogeneous catalytic routes. To this aim, we analyze the current literature works describing experimental analyses (e.g., catalyst characterization and kinetics measurement) as well as computational studies (e.g., microkinetic modeling and first-principles calculations). The catalytic reactions of CO2 activation and conversion reviewed in detail are: (i) reverse water-gas shift (RWGS), (ii) CO2 methanation, (iii) CO2 hydrogenation to methanol, and (iv) dry reforming of methane (DRM). This review is divided into six sections. The first section provides an overview of the energy and environmental problems of our society, in which promising strategies and possible pathways to utilize anthropogenic CO2 are highlighted. In the second section, the discussion follows with the description of materials and mechanisms of the available thermo-catalytic processes for CO2 utilization. In the third section, the process of catalyst deactivation by coking is presented, and possible solutions to the problem are recommended based on experimental and theoretical literature works. In the fourth section, kinetic models are reviewed. In the fifth section, reaction technologies associated with the conversion of CO2 are described, and, finally, in the sixth section, concluding remarks and future directions are provided.
Collapse
Affiliation(s)
- Md Imteyaz Alam
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Raffaele Cheula
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Gianluca Moroni
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Luca Nardi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| |
Collapse
|
8
|
Fang H, Chen W, Wu L, Zhao P, Roldan A, Yuan Y. Stable and Antisintering Tungsten Carbides with Controllable Active Phase for Selective Cleavage of Aryl Ether C-O Bonds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8274-8284. [PMID: 33560841 DOI: 10.1021/acsami.0c19599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transition-metal carbides are important materials in heterogeneous catalysis. It remains challenging yet attractive in nanoscience to construct the active phase of carbide catalysts in a controllable manner and keep a sintering-resistant property in redox reactions, especially hydroprocessing. In this work, an integrated strategy was presented to synthesize stable and well-defined tungsten carbide nanoparticles (NPs) by assembling the metal precursor onto carbon nanotubes (CNTs), wrapping a thin polymeric layer, and following a controlled carburization. The polymer served as a soft carbon source to modulate the metal/carbon ratio in the carbides and introduced amorphous carbons around the carbides to prevent the NPs from sintering. The as-built p-WxC/CNT displayed high stability in the hydrogenolysis of aryl ether C-O bond in guaiacol for more than 150 h. Its activity was more than two and six times higher than those prepared via typical temperature-programmed reduction with gaseous carbon (WxC/CNT-TPR) and carbothermal reduction with intrinsic carbon support (WxC/CNT-CTR), respectively. Our p-WxC/CNT catalyst also achieved high efficiency for selective cleavage of the aryl ether C-O bonds in lignin-derived aromatic ethers, including anisole, dimethoxylphenol, and diphenyl ether, with a robust lifespan.
Collapse
Affiliation(s)
- Huihuang Fang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Weikun Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Lijie Wu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Pu Zhao
- The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Youzhu Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
9
|
Abdel Karim Aramouni N, Zeaiter J, Kwapinski W, J. Leahy J, Ahmad MN. Molybdenum and nickel-molybdenum nitride catalysts supported on MgO-Al2O3 for the dry reforming of methane. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Dongil AB, Conesa JM, Pastor-Pérez L, Sepúlveda-Escribano A, Guerrero-Ruiz A, Rodríguez-Ramos I. Carbothermally generated copper–molybdenum carbide supported on graphite for the CO2 hydrogenation to methanol. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00410g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The carbothermal synthesis of monometallic and bimetallic molybdenum carbide and copper supported on high surface area graphite, has been studied at 600 and 700 °C and characterised. The catalysts were tested for CO2 hydrogenation to CH3OH.
Collapse
Affiliation(s)
- A. B. Dongil
- Instituto de Catálisis y Petroleoquímica
- CSIC
- 28049 Madrid
- Spain
| | - J. M. Conesa
- Dpto. Química Inorgánica y Técnica
- Facultad de Ciencias UNED
- 28040 Madrid
- Spain
| | - L. Pastor-Pérez
- Department of Chemical and Process Engineering
- University of Surrey
- Guildford
- UK
| | - A. Sepúlveda-Escribano
- Laboratorio de Materiales Avanzados
- Departamento de Química Inorgánica – Instituto Universitario de Materiales de Alicante
- Universidad de Alicante
- E-03080 Alicante
- Spain
| | - A. Guerrero-Ruiz
- Dpto. Química Inorgánica y Técnica
- Facultad de Ciencias UNED
- 28040 Madrid
- Spain
- UA UNED-ICP(CSIC)
| | - I. Rodríguez-Ramos
- Instituto de Catálisis y Petroleoquímica
- CSIC
- 28049 Madrid
- Spain
- UA UNED-ICP(CSIC)
| |
Collapse
|
11
|
Bekheet MF, Delir Kheyrollahi Nezhad P, Bonmassar N, Schlicker L, Gili A, Praetz S, Gurlo A, Doran A, Gao Y, Heggen M, Niaei A, Farzi A, Schwarz S, Bernardi J, Klötzer B, Penner S. Steering the Methane Dry Reforming Reactivity of Ni/La 2O 3 Catalysts by Controlled In Situ Decomposition of Doped La 2NiO 4 Precursor Structures. ACS Catal 2021; 11:43-59. [PMID: 33425477 PMCID: PMC7783868 DOI: 10.1021/acscatal.0c04290] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 11/28/2022]
Abstract
The influence of A- and/or B-site doping of Ruddlesden-Popper perovskite materials on the crystal structure, stability, and dry reforming of methane (DRM) reactivity of specific A2BO4 phases (A = La, Ba; B = Cu, Ni) has been evaluated by a combination of catalytic experiments, in situ X-ray diffraction, X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and aberration-corrected electron microscopy. At room temperature, B-site doping of La2NiO4 with Cu stabilizes the orthorhombic structure (Fmmm) of the perovskite, while A-site doping with Ba yields a tetragonal space group (I4/mmm). We observed the orthorhombic-to-tetragonal transformation above 170 °C for La2Ni0.9Cu0.1O4 and La2Ni0.8Cu0.2O4, slightly higher than for undoped La2NiO4. Loss of oxygen in interstitial sites of the tetragonal structure causes further structure transformations for all samples before decomposition in the temperature range of 400 °C-600 °C. Controlled in situ decomposition of the parent or A/B-site doped perovskite structures in a DRM mixture (CH4:CO2 = 1:1) in all cases yields an active phase consisting of exsolved nanocrystalline metallic Ni particles in contact with hexagonal La2O3 and a mixture of (oxy)carbonate phases (hexagonal and monoclinic La2O2CO3, BaCO3). Differences in the catalytic activity evolve because of (i) the in situ formation of Ni-Cu alloy phases (in a composition of >7:1 = Ni:Cu) for La2Ni0.9Cu0.1O4, La2Ni0.8Cu0.2O4, and La1.8Ba0.2Ni0.9Cu0.1O4, (ii) the resulting Ni particle size and amount of exsolved Ni, and (iii) the inherently different reactivity of the present (oxy)carbonate species. Based on the onset temperature of catalytic DRM activity, the latter decreases in the order of La2Ni0.9Cu0.1O4 ∼ La2Ni0.8Cu0.2O4 ≥ La1.8Ba0.2Ni0.9Cu0.1O4 > La2NiO4 > La1.8Ba0.2NiO4. Simple A-site doped La1.8Ba0.2NiO4 is essentially DRM inactive. The Ni particle size can be efficiently influenced by introducing Ba into the A site of the respective Ruddlesden-Popper structures, allowing us to control the Ni particle size between 10 nm and 30 nm both for simple B-site and A-site doped structures. Hence, it is possible to steer both the extent of the metal-oxide-(oxy)carbonate interface and its chemical composition and reactivity. Counteracting the limitation of the larger Ni particle size, the activity can, however, be improved by additional Cu-doping on the B-site, enhancing the carbon reactivity. Exemplified for the La2NiO4 based systems, we show how the delicate antagonistic balance of doping with Cu (rendering the La2NiO4 structure less stable and suppressing coking by efficiently removing surface carbon) and Ba (rendering the La2NiO4 structure more stable and forming unreactive surface or interfacial carbonates) can be used to tailor prospective DRM-active catalysts.
Collapse
Affiliation(s)
- Maged F. Bekheet
- Fachgebiet Keramische
Werkstoffe/Chair of Advanced Ceramic Materials, Institut für
Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
| | - Parastoo Delir Kheyrollahi Nezhad
- Reactor & Catalyst Research Lab, Department of Chemical Engineering, University of Tabriz, Tabriz 51386, Iran
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Nicolas Bonmassar
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Lukas Schlicker
- Fachgebiet Keramische
Werkstoffe/Chair of Advanced Ceramic Materials, Institut für
Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
| | - Albert Gili
- Fachgebiet Keramische
Werkstoffe/Chair of Advanced Ceramic Materials, Institut für
Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
| | - Sebastian Praetz
- Institute of Optics
and Atomic Physics, Technische Universität
Berlin, Hardenbergstraße
36, 10623 Berlin, Germany
| | - Aleksander Gurlo
- Fachgebiet Keramische
Werkstoffe/Chair of Advanced Ceramic Materials, Institut für
Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
| | - Andrew Doran
- Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley, California 94720, United States
| | - Yuanxu Gao
- Ernst Ruska-Centrum
für Mikroskopie und Spektroskopie mit Elektronen Forschungszentrum
Jülich GmbH 52425 Jülich, Germany
| | - Marc Heggen
- Ernst Ruska-Centrum
für Mikroskopie und Spektroskopie mit Elektronen Forschungszentrum
Jülich GmbH 52425 Jülich, Germany
| | - Aligholi Niaei
- Reactor & Catalyst Research Lab, Department of Chemical Engineering, University of Tabriz, Tabriz 51386, Iran
| | - Ali Farzi
- Reactor & Catalyst Research Lab, Department of Chemical Engineering, University of Tabriz, Tabriz 51386, Iran
| | - Sabine Schwarz
- University Service Center for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
| | - Johannes Bernardi
- University Service Center for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
| | - Bernhard Klötzer
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Simon Penner
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| |
Collapse
|
12
|
Zhang L, Yang Y, Yao Z, Yan S, Kang X. Finding of a new cycle route in Ni/Mo 2C catalyzed CH 4–CO 2 reforming. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02428g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new cycle route of Ni/Mo2C ↔ MoNi4 is firstly confirmed in a Ni/Mo2C catalyzed CH4–CO2 reforming reaction.
Collapse
Affiliation(s)
- Lin Zhang
- School of Petrochemical Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Ying Yang
- School of Petrochemical Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Zhiwei Yao
- School of Petrochemical Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Shi Yan
- School of Petrochemical Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Xiaoxue Kang
- School of Petrochemical Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| |
Collapse
|
13
|
Chen X, Ding W, Yao Z, Na S, Wang Z, Yan S, Wang L. Novel synthesis of a NiMoP phosphide catalyst via carbothermal reduction for dry reforming of methane. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01434j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NiMoP-Glu with small particle size and an appropriate carbon content showed higher catalytic activity and stability than NiMoP-H2.
Collapse
Affiliation(s)
- Xinyu Chen
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, P.R. China
| | - Wei Ding
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, P.R. China
| | - Zhiwei Yao
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, P.R. China
| | - Sun Na
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, P.R. China
| | - Zhimeng Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, P.R. China
| | - Shi Yan
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, P.R. China
| | - Liming Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, P.R. China
| |
Collapse
|
14
|
Nickel–Promoted Molybdenum or Tungsten Carbides as Catalysts in Dry Reforming of Methane: Effects of Variation in CH4/CO2 Molar Ratio. Catal Letters 2020. [DOI: 10.1007/s10562-020-03420-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Ramirez A, Lee K, Harale A, Gevers L, Telalovic S, Al Solami B, Gascon J. Stable High‐Pressure Methane Dry Reforming Under Excess of CO
2. ChemCatChem 2020. [DOI: 10.1002/cctc.202001049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Adrian Ramirez
- KAUST Catalysis Center (KCC) Advanced Catalytic Materials King Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia
| | - Kunho Lee
- Carbon Management Research Division Research & Development Center Saudi Aramco Dhahran 31311 Saudi Arabia
| | - Aadesh Harale
- Carbon Management Research Division Research & Development Center Saudi Aramco Dhahran 31311 Saudi Arabia
| | - Lieven Gevers
- KAUST Catalysis Center (KCC) Advanced Catalytic Materials King Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia
| | - Selvedin Telalovic
- KAUST Catalysis Center (KCC) Advanced Catalytic Materials King Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia
| | - Bandar Al Solami
- Carbon Management Research Division Research & Development Center Saudi Aramco Dhahran 31311 Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC) Advanced Catalytic Materials King Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia
| |
Collapse
|
16
|
Transition Metal Carbides (TMCs) Catalysts for Gas Phase CO2 Upgrading Reactions: A Comprehensive Overview. Catalysts 2020. [DOI: 10.3390/catal10090955] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Increasing demand for CO2 utilization reactions and the stable character of CO2 have motivated interest in developing highly active, selective and stable catalysts. Precious metal catalysts have been studied extensively due to their high activities, but their implementation for industrial applications is hindered due to their elevated cost. Among the materials which have comparatively low prices, transition metal carbides (TMCs) are deemed to display catalytic properties similar to Pt-group metals (Ru, Rh, Pd, Ir, Pt) in several reactions such as hydrogenation and dehydrogenation processes. In addition, they are excellent substrates to disperse metallic particles. Hence, the unique properties of TMCs make them ideal substitutes for precious metals resulting in promising catalysts for CO2 utilization reactions. This work aims to provide a comprehensive overview of recent advances on TMCs catalysts towards gas phase CO2 utilization processes, such as CO2 methanation, reverse water gas shift (rWGS) and dry reforming of methane (DRM). We have carefully analyzed synthesis procedures, performances and limitations of different TMCs catalysts. Insights on material characteristics such as crystal structure and surface chemistry and their connection with the catalytic activity are also critically reviewed.
Collapse
|
17
|
Thakur R, VahidMohammadi A, Smith J, Hoffman M, Moncada J, Beidaghi M, Carrero CA. Insights into the Genesis of a Selective and Coke-Resistant MXene-Based Catalyst for the Dry Reforming of Methane. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00797] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raj Thakur
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36830, United States
| | - Armin VahidMohammadi
- Department of Materials Engineering, Auburn University, Auburn, Alabama 36830, United States
| | - Justin Smith
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36830, United States
| | - Megan Hoffman
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36830, United States
| | - Jorge Moncada
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36830, United States
| | - Majid Beidaghi
- Department of Materials Engineering, Auburn University, Auburn, Alabama 36830, United States
| | - Carlos A. Carrero
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36830, United States
| |
Collapse
|
18
|
Wu W, Liu Q, Shi Y, Yao Z, Ding W, Dou B. Binary and ternary transition metal phosphides for dry reforming of methane. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00027b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mo-based phosphides showed higher activity for CH4–CO2 reforming than Fe2P, WP, CoP and Ni2P.
Collapse
Affiliation(s)
- Wenxi Wu
- Department of Petrochemical Engineering
- College of Chemistry, Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Qingyou Liu
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior
- Institute of Geochemistry, Chinese Academy of Sciences
- Guiyang
- P.R. China
| | - Yan Shi
- Department of Petrochemical Engineering
- College of Chemistry, Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Zhiwei Yao
- Department of Petrochemical Engineering
- College of Chemistry, Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Wei Ding
- Department of Petrochemical Engineering
- College of Chemistry, Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Binlin Dou
- School of Energy and Power Engineering
- University of Shanghai for Science and Technology
- Shanghai
- P.R. China
| |
Collapse
|
19
|
Preparation and process investigation of molybdenum carbide and their N-doped analogue by calcination. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.120961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
The Relationship between Reaction Temperature and Carbon Deposition on Nickel Catalysts Based on Al2O3, ZrO2 or SiO2 Supports during the Biogas Dry Reforming Reaction. Catalysts 2019. [DOI: 10.3390/catal9080676] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The tackling of carbon deposition during the dry reforming of biogas (BDR) necessitates research of the surface of spent catalysts in an effort to obtain a better understanding of the effect that different carbon allotropes have on the deactivation mechanism and correlation of their formation with catalytic properties. The work presented herein provides a comparative assessment of catalytic stability in relation to carbon deposition and metal particle sintering on un-promoted Ni/Al2O3, Ni/ZrO2 and Ni/SiO2 catalysts for different reaction temperatures. The spent catalysts were examined using thermogravimetric analysis (TGA), Raman spectroscopy, high angle annular dark field scanning transmission electron microscopy (STEM-HAADF) and X-ray photoelectron spectroscopy (XPS). The results show that the formation and nature of carbonaceous deposits on catalytic surfaces (and thus catalytic stability) depend on the interplay of a number of crucial parameters such as metal support interaction, acidity/basicity characteristics, O2– lability and active phase particle size. When a catalytic system possesses only some of these beneficial characteristics, then competition with adverse effects may overshadow any potential benefits.
Collapse
|
21
|
Zhao H, Shi Y, Yao Z, Liang L, Wang S, Liu Q, Jiang B, Sun Y. Phenol-formaldehyde resin route to the synthesis of several iron group transition metal phosphides. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2018.1550644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hanchuan Zhao
- Department of Petrochemical Engineering, College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, P.R. China
| | - Yan Shi
- Department of Petrochemical Engineering, College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, P.R. China
| | - Zhiwei Yao
- Department of Petrochemical Engineering, College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, P.R. China
| | - Liying Liang
- Department of Petrochemical Engineering, College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, P.R. China
| | - Siqi Wang
- Department of Petrochemical Engineering, College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, P.R. China
| | - Qingyou Liu
- Key Laboratory of High-temperature and High-pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, P.R. China
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, P.R. China
| | - Yue Sun
- Department of Petrochemical Engineering, College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, P.R. China
| |
Collapse
|
22
|
Gao L, Shi Y, Yao Z, Gao H, Sun Y, liang F, Jiang B. Phenolic resin as a carbon source for the synthesis of monometallic Mo and bimetallic CoMo carbides via carbothermal reduction route. PHOSPHORUS SULFUR 2018. [DOI: 10.1080/10426507.2017.1418740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Liang Gao
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, P. R. China
| | - Yan Shi
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, P. R. China
| | - Zhiwei Yao
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, P. R. China
| | - Haifeng Gao
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, P. R. China
| | - Yue Sun
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, P. R. China
| | - Feixue liang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, P. R. China
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, P. R. China
| |
Collapse
|
23
|
Gao H, Yao Z, Shi Y, Jia R, Liang F, Sun Y, Mao W, Wang H. Simple and large-scale synthesis of β-phase molybdenum carbides as highly stable catalysts for dry reforming of methane. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00532f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic stability of monometallic β-Mo2C/CNTs was found to be superior to that of bimetallic Ni/β-Mo2C under similar reaction conditions.
Collapse
Affiliation(s)
- Haifeng Gao
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Zhiwei Yao
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Yan Shi
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Renren Jia
- PetroChina No. 3 Refinery of FuShun Petrochemical Company
- Fushun
- P.R. China
| | - Feixue Liang
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Yue Sun
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Wei Mao
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Haiyan Wang
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| |
Collapse
|
24
|
Gao H, Yao Z, Shi Y, Wang S. Improvement of the catalytic stability of molybdenum carbide via encapsulation within carbon nanotubes in dry methane reforming. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02506h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We reported for the first time the enhancement of the oxidation resistance of Mo2C nanoparticles by encapsulation within carbon nanotubes (CNTs).
Collapse
Affiliation(s)
- Haifeng Gao
- College of Chemistry, Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Zhiwei Yao
- College of Chemistry, Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Yan Shi
- College of Chemistry, Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Siqi Wang
- College of Chemistry, Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| |
Collapse
|
25
|
Liang P, Gao H, Yao Z, Jia R, Shi Y, Sun Y, Fan Q, Wang H. Simple synthesis of ultrasmall β-Mo2C and α-MoC1−x nanoparticles and new insights into their catalytic mechanisms for dry reforming of methane. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00708f] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrasmall β- and α-molybdenum carbide particles were synthesized by a resin route and they showed different oxidation–recarburization cycles.
Collapse
Affiliation(s)
- Pengliang Liang
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Haifeng Gao
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Zhiwei Yao
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Renren Jia
- PetroChina No.3 Refinery of FuShun Petrochemical Company
- Fushun
- P.R. China
| | - Yan Shi
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Yue Sun
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Qi Fan
- School of Foreign Languages
- Liaoning Shihua University
- Fushun
- P.R. China
| | - Haiyan Wang
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- P.R. China
| |
Collapse
|
26
|
Yu X, Zhang F, Chu W. Effect of a second metal (Co, Cu, Mn or Zr) on nickel catalysts derived from hydrotalcites for the carbon dioxide reforming of methane. RSC Adv 2016. [DOI: 10.1039/c6ra12335j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NiCo and NiCu catalysts exhibited enhanced stability compared with a Ni catalyst for the dry reforming of methane. On the contrary, NiMn and NiZr catalysts decreased the reforming stability.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Department of Chemical Engineering
- Sichuan University of Science and Engineering
- Zigong 643000
- China
| | - Fubao Zhang
- Zhonghao Chenguang Research Institute of Chemical Industry Co. Ltd
- Zigong 643002
- China
| | - Wei Chu
- Department of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
27
|
Yao Z, Luan F, Sun Y, Jiang B, Song J, Wang H. Molybdenum phosphide as a novel and stable catalyst for dry reforming of methane. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00836d] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel MoP catalyst exhibited high coking and oxidation resistance for dry reforming of CH4with CO2.
Collapse
Affiliation(s)
- Zhiwei Yao
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- PR China
| | - Fubing Luan
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- PR China
| | - Yue Sun
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- PR China
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education of the People's Republic of China
- Heilongjiang University
- Harbin 150080
- China
| | - Jia Song
- School of Foreign Languages
- Liaoning Shihua University
- Fushun
- PR China
| | - Haiyan Wang
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- PR China
| |
Collapse
|