1
|
Haessig C, Landman J, Scholten E, Jarray A. How bulk liquid viscosity shapes capillary suspensions. J Colloid Interface Sci 2025; 678:400-409. [PMID: 39255597 DOI: 10.1016/j.jcis.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
HYPOTHESIS Capillary suspensions offer a new approach to generate novel materials. They are ternary liquid-liquid-solid systems characterized by particles connected by liquid bridges of one fluid suspended in a second immiscible bulk fluid. The viscosity of the bulk liquid can be modulated to customize the structure and rheological properties of capillary suspensions. Experiments and simulations: Using experiments and numerical simulations, we investigated capillary suspensions in the pendular state, using silica particles and water as a bridging liquid. To modulate the viscosity of the bulk fluid, we use different ratios of either dodecane and diisononyl phthalate, or silicone oils with varying chain lengths as bulk liquids. The rheological behavior was characterized using the maximum storage and loss moduli and the yielding behavior. This was related to structural changes of the systems, which was visualized using confocal laser scanning microscopy. In addition, we used Molecular Dynamics (MD) simulations to gain more insights into the behavior of two particles connected by a liquid bridge for various bulk liquids. FINDINGS Experiments show that higher bulk liquid viscosity reduces strength, yield stress, and yield strain in capillary suspensions, which is partly attributed to a reduced inter-connectivity of the percolating network. This is caused by the breakup of liquid bridges occurring at shorter distances in the presence of highly viscous bulk liquids, as indicated by numerical simulations.
Collapse
Affiliation(s)
- Christoph Haessig
- Physics and Physical Chemistry of Foods, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands.
| | - Jasper Landman
- Physics and Physical Chemistry of Foods, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands.
| | - Elke Scholten
- Physics and Physical Chemistry of Foods, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands.
| | - Ahmed Jarray
- Physics and Physical Chemistry of Foods, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands; Multi Scale Mechanics (MSM), MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| |
Collapse
|
2
|
Dyab AKF, Paunov VN. 3D structured capillary cell suspensions aided by aqueous two-phase systems. J Mater Chem B 2024; 12:10215-10220. [PMID: 39377243 DOI: 10.1039/d4tb01296h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
We report a facile technique for 3D structuring of living cells by forming capillary cell suspensions based on an aqueous two-phase system (ATPS) of polyethylene glycol (PEG) and dextran (DEX) solutions. We demonstrate the formation of water-in-water (DEX-in-PEG) capillary bridges using concentrated suspensions of yeast cells which show enhanced rheological properties and distinctive 3D patterns. Capillary structured cell suspensions can potentially find applications in novel ways of 3D cell culturing, instant tissue engineering and many biomedical investigations.
Collapse
Affiliation(s)
- Amro K F Dyab
- Department of Chemistry, Nazarbayev University, Kabanbay Batyr 53, Astana 010000, Kazakhstan.
- Colloids & Advanced Materials Group, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Vesselin N Paunov
- Department of Chemistry, Nazarbayev University, Kabanbay Batyr 53, Astana 010000, Kazakhstan.
| |
Collapse
|
3
|
Simoes S, Rousseau D. A hybrid approach to oil structuring - combining wax oleogels and capillary suspensions. SOFT MATTER 2024; 20:4329-4336. [PMID: 38742675 DOI: 10.1039/d3sm01619f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
There is continuing interest in finding new approaches to gel liquid oil for processed food applications. Here, we combined oleogels and capillary suspensions to generate model oil-continuous networks consisting of a wax oleogel and a water-bridged, glass particle network. The composition map tested comprised 30 vol% polar or non-polar glass beads dispersed in a 70 vol% non-particle phase consisting of water (≤9 vol%) as well as 2 wt% hexatriacontane as oleogelator in canola oil. While the hexatriacontane wax alone gelled the oil, presence of the glass beads (but no water) prevented oleogelation. Self-supporting capillary networks formed with polar particles and 1 vol% water or non-polar glass beads and 3 vol% water in canola oil. The capillary suspensions demonstrated significant differences in rheological behaviour as the polar particles yielded much higher elastic moduli than their non-polar particle counterparts. Polar hybrids were weakened by inclusion of the wax whereas the non-polar particle hybrid network displayed elastic moduli greater than the respective contributions of both capillary and wax gel networks. This hybrid method of oleogelation can be applied to virtually any food particles and uses minimal water and wax.
Collapse
Affiliation(s)
- Selvyn Simoes
- Food and Soft Materials Research Group, Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, Canada.
| | - Dérick Rousseau
- Food and Soft Materials Research Group, Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, Canada.
| |
Collapse
|
4
|
Okesanjo O, Meredith JC, Behrens SH. Effect of Shear on Pumped Capillary Foams. Ind Eng Chem Res 2023; 62:7031-7039. [PMID: 37191909 PMCID: PMC10178927 DOI: 10.1021/acs.iecr.3c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Foam flow in many applications, like firefighting and oil recovery, requires stable foams that can withstand the stress and aging that result from both shear and thermodynamic instability. Events of drainage and coarsening drive the collapse of foams and greatly affect foam efficacy in processes relying on foam transport. Recently, it was discovered that foams can be stabilized by the synergistic action of colloidal particles and a small amount of a water-immiscible liquid that mediates capillary forces. The so-called capillary foams contain gas bubbles that are coated by a thin oil-particle film and integrated in a network of oil-bridged particles; the present study explores how this unique architecture impacts the foams' flow dynamics. We pumped capillary foams through millimeter-sized tubing (ID: 790 μm) at different flow rates and analyzed the influence of stress and aging on capillary foam stability. We find that the foams remain stable when pumped at higher flow rates but undergo phase separation when pumped at low flow rates. Our observations further show that the particle network is responsible for the observed stability in capillary foams and that network strength and stability of an existing foam can be increased by shearing.
Collapse
Affiliation(s)
- Omotola Okesanjo
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - J. Carson Meredith
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sven Holger Behrens
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Polymer
Science & Materials Chemistry Practice, Exponent Inc., Atlanta, Georgia 30326, United States
| |
Collapse
|
5
|
Effects of particle wettability and water moisture on separation efficiency and drop size distribution of particle-laden droplets in oil. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Ishigami T, Karasudani T, Onitake S, Shirzadi M, Fukasawa T, Fukui K, Mino Y. Effect of liquid volume fraction and shear rate on rheological properties and microstructure formation in ternary particle/oil/water dispersion systems under shear flow: two-dimensional direct numerical simulation. SOFT MATTER 2022; 18:4338-4350. [PMID: 35622067 DOI: 10.1039/d2sm00373b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We numerically studied the rheological properties and microstructure formation under shear flow in a ternary particle/oil/water dispersion system. Our numerical simulation method was based on a phase-field model for capturing a free interface, the discrete element method for tracking particle motion, the immersed boundary method for calculating fluid-particle interactions, and a wetting model that assigns an order parameter to the solid surface according to the wettability. The effects of the water-phase volume fraction and shear rate on the microstructure and apparent viscosity were investigated. When the water-phase volume fraction was low, a pendular state was formed, and with an increase in the water-phase volume fraction, the state transitioned into a co-continuous state and a Pickering emulsion. This change in the microstructure state is qualitatively consistent with the results of previous experimental studies. In the pendular state, the viscosity increased with an increase in the water-phase volume fraction. This was due to the development of a network structure connected by liquid bridges, and the increase in the coordination number was quantitatively confirmed. In the case of the pendular state, significant shear thinning was observed, but in the case of the Pickering emulsion, no significant shear thinning was observed. It is concluded that this is due to the difference in the manner in which the microstructure changes with the shear rate. This is the first study to numerically demonstrate the microstructure formation of a ternary dispersion under shear flow and its correlation with the apparent viscosity.
Collapse
Affiliation(s)
- Toru Ishigami
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Taisei Karasudani
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Shu Onitake
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Mohammadreza Shirzadi
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Tomonori Fukasawa
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Kunihiro Fukui
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Yasushi Mino
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
7
|
Influence of Degassing Treatment on the Ink Properties and Performance of Proton Exchange Membrane Fuel Cells. MEMBRANES 2022; 12:membranes12050541. [PMID: 35629867 PMCID: PMC9145345 DOI: 10.3390/membranes12050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
Degradation occurs in catalyst inks because of the catalytic oxidation of the solvent. Identification of the generation process of impurities and their effects on the properties of HSC ink and LSC ink is crucial in mitigating them. In this study, gas chromatography-mass spectrometry (GC-MS) and cyclic voltammetry (CV) showed that oxidation of NPA and EA was the primary cause of impurities such as acetic acid, aldehyde, propionic acid, propanal, 1,1-dipropoxypropane, and propyl propionate. After the degassing treatment, the degradation of the HSC ink was suppressed, and the concentrations of acetic acid, propionic acid, and propyl propionate plummeted from 0.0898 wt.%, 0.00224 wt.%, and 0.00046 wt.% to 0.0025 wt.%, 0.0126 wt.%, and 0.0003 wt.%, respectively. The smaller particle size and higher zeta potential in the degassed HSC ink indicated the higher utilization of Pt, thus leading to optimized mass transfer in the catalyst layer (CL) during working conditions. The electrochemical performance test result shows that the MEA fabricated from the degassed HSC ink had a peak power density of 0.84 W cm−2, which was 0.21 W cm−2 higher than that fabricated from the normal HSC ink. However, the introduction of propionic acid in the LSC ink caused the Marangoni flux to inhibit the coffee ring effect and promote the uniform deposition of the catalyst. The RDE tests indicated that the electrode deposited from the LSC ink with propionic acid possessed a mass activity of 84.4 mA∙mgPt−1, which was higher than the 60.5 mA∙mgPt−1 of the electrode deposited from the normal LSC ink.
Collapse
|
8
|
Bindgen S, Allard J, Koos E. The behavior of capillary suspensions at diverse length scales: From single capillary bridges to bulk. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2021.101557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Kim J, Lee J. Liquid-Suspended and Liquid-Bridged Liquid Metal Microdroplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2108069. [PMID: 35150080 DOI: 10.1002/smll.202108069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Liquid metals (LMs) and alloys are attracting increasing attention owing to their combined advantages of high conductivity and fluidity, and have shown promising results in various emerging applications. Patterning technologies using LMs are being actively researched; among them, direct ink writing is considered a potentially viable approach for efficient LM additive manufacturing. However, true LM additive manufacturing with arbitrary printing geometries remains challenging because of the intrinsically low rheological strength of LMs. Herein, colloidal suspensions of LM droplets amenable to additive manufacturing (or "3D printing") are realized using formulations containing minute amounts of liquid capillary bridges. The resulting LM suspensions exhibit exceptionally high rheological strength with yield stress values well above 103 Pa, attributed to inter-droplet capillary attraction mediated by the liquid bridges adsorbed on the oxide skin of the LM droplets. Such liquid-bridged LM suspensions, as extrudable ink-type filaments, are based on uncurable continuous-phase liquid media, have a long pot-life and outstanding shear-thinning properties, and shape retention, demonstrating excellent rheological processability suitable for 3D printing. These findings will enable the emergence of a variety of new advanced applications that necessitate LM patterning into highly complicated multidimensional structures.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Korea
| | - Joohyung Lee
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Korea
| |
Collapse
|
10
|
Kazama R, Murakami Y, Shono A. Microstructure and rheological behavior of capillary suspension prepared with plate-shaped particles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Dedovets D, Li Q, Leclercq L, Nardello‐Rataj V, Leng J, Zhao S, Pera‐Titus M. Multiphase Microreactors Based on Liquid-Liquid and Gas-Liquid Dispersions Stabilized by Colloidal Catalytic Particles. Angew Chem Int Ed Engl 2022; 61:e202107537. [PMID: 34528366 PMCID: PMC9293096 DOI: 10.1002/anie.202107537] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 01/08/2023]
Abstract
Pickering emulsions, foams, bubbles, and marbles are dispersions of two immiscible liquids or of a liquid and a gas stabilized by surface-active colloidal particles. These systems can be used for engineering liquid-liquid-solid and gas-liquid-solid microreactors for multiphase reactions. They constitute original platforms for reengineering multiphase reactors towards a higher degree of sustainability. This Review provides a systematic overview on the recent progress of liquid-liquid and gas-liquid dispersions stabilized by solid particles as microreactors for engineering eco-efficient reactions, with emphasis on biobased reagents. Physicochemical driving parameters, challenges, and strategies to (de)stabilize dispersions for product recovery/catalyst recycling are discussed. Advanced concepts such as cascade and continuous flow reactions, compartmentalization of incompatible reagents, and multiscale computational methods for accelerating particle discovery are also addressed.
Collapse
Affiliation(s)
- Dmytro Dedovets
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
- Laboratoire du Futur (LOF)UMR 5258, CNRS-Solvay-Universite Bordeaux 1178 Av Dr Albert Schweitzer33608Pessac CedexFrance
| | - Qingyuan Li
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
| | - Loïc Leclercq
- Univ LilleCNRSCentrale LilleUniv ArtoisUMR 8181 UCCSF-59000LilleFrance
| | | | - Jacques Leng
- Laboratoire du Futur (LOF)UMR 5258, CNRS-Solvay-Universite Bordeaux 1178 Av Dr Albert Schweitzer33608Pessac CedexFrance
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologySchool of Chemistry and Chemical EngineeringGuangxi University530004NanningChina
| | - Marc Pera‐Titus
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
12
|
Dedovets D, Li Q, Leclercq L, Nardello‐Rataj V, Leng J, Zhao S, Pera‐Titus M. Multiphase Microreactors Based on Liquid–Liquid and Gas–Liquid Dispersions Stabilized by Colloidal Catalytic Particles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dmytro Dedovets
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
- Laboratoire du Futur (LOF) UMR 5258, CNRS-Solvay-Universite Bordeaux 1 178 Av Dr Albert Schweitzer 33608 Pessac Cedex France
| | - Qingyuan Li
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
| | - Loïc Leclercq
- Univ Lille CNRS Centrale Lille Univ Artois UMR 8181 UCCS F-59000 Lille France
| | | | - Jacques Leng
- Laboratoire du Futur (LOF) UMR 5258, CNRS-Solvay-Universite Bordeaux 1 178 Av Dr Albert Schweitzer 33608 Pessac Cedex France
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology School of Chemistry and Chemical Engineering Guangxi University 530004 Nanning China
| | - Marc Pera‐Titus
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| |
Collapse
|
13
|
Koroleva MY, Yurtov EV. Pickering emulsions: properties, structure, using as colloidosomes and stimuli-responsive emulsions. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Okesanjo O, Meredith JC, Behrens SH. Structure-Property Relationship in Capillary Foams. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10510-10520. [PMID: 34435492 DOI: 10.1021/acs.langmuir.1c01479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The recently discovered capillary foams are aqueous foams stabilized by the synergistic action of colloidal particles and a small amount of oil. Characteristically, their gas bubbles are coated by a particle-stabilized layer of oil and embedded in a gel network of oil-bridged particles. This unique foam architecture offers opportunities for engineering new foam-related materials and processes, but the necessary understanding of its structure-property relations is still in its infancy. Here, we study the effects of particle wettability, particle volume fraction, and oil-to-particle ratio on the structure and selected properties of capillary foams and use our findings to relate measured foamability, foam stability, and rheological key parameters to the observed foam microstructure. We see that particle wettability not only determines the type of gel network formed but also influences the prevalence of oil droplets included within the foam. Our results further show that the stability and rheology of capillary foams are mainly a function of the particle volume fraction whereas the foamability and observed microstructure are sensitive also to the oil-to-particle ratio. These insights expand our fundamental understanding of capillary foams and will greatly facilitate future work on new foam formulations.
Collapse
Affiliation(s)
- Omotola Okesanjo
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - J Carson Meredith
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sven H Behrens
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
15
|
Hao B, Li B, Yu W. Nonequilibrium Structure Diagram of Pendular Suspensions under Large-Amplitude Oscillatory Shear. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6208-6218. [PMID: 33975432 DOI: 10.1021/acs.langmuir.1c00367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For pendular suspensions with particles in contact with immiscible secondary liquid bridges, the shear field significantly influences particle aggregates and networks. In this work, we study the structure of the pendular network and how the structure changes under large-amplitude-oscillatory shear. Using rheology and optical microscopy, we found unique network destruction followed by reconstruction with increasing strain. Two processes show different shear-field dependencies, strain-rate dependency for destruction and strain dependency for reconstruction. A nonequilibrium state diagram is constructed to show the phase behavior, where the critical particle concentration of sol-gel transition is dependent on the shear history and may depend on shear strain nonmonotonically. Two different mechanisms, shear-induced network breakdown at low strain and shear-induced agglomeration at high strain, are suggested to describe the nonmonotonic critical concentration under the upward strain sweep quantitatively.
Collapse
Affiliation(s)
- Bonan Hao
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Benke Li
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wei Yu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
16
|
Xie H, Zhao W, Ali DC, Zhang X, Wang Z. Interfacial biocatalysis in bacteria-stabilized Pickering emulsions for microbial transformation of hydrophobic chemicals. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02243h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Pickering emulsion interface is an exceptional habitat for bacteria to grow by simultaneously utilizing hydrophobic and hydrophilic chemicals.
Collapse
Affiliation(s)
- Haisheng Xie
- State Key Laboratory of Microbial Metabolism
- Engineering Research Center of Cell & Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiao Tong University
| | - Wenyu Zhao
- State Key Laboratory of Microbial Metabolism
- Engineering Research Center of Cell & Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiao Tong University
| | - Daniel Chikere Ali
- State Key Laboratory of Microbial Metabolism
- Engineering Research Center of Cell & Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiao Tong University
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism
- School of Life Science and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Zhilong Wang
- State Key Laboratory of Microbial Metabolism
- Engineering Research Center of Cell & Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiao Tong University
| |
Collapse
|
17
|
Behrens SH. Oil-coated bubbles in particle suspensions, capillary foams, and related opportunities in colloidal multiphase systems. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Ji X, Wang X, Zhang Y, Zang D. Interfacial viscoelasticity and jamming of colloidal particles at fluid-fluid interfaces: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:126601. [PMID: 32998118 DOI: 10.1088/1361-6633/abbcd8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Colloidal particles can be adsorbed at fluid-fluid interfaces, a phenomenon frequently observed in particle-stabilized foams, Pickering emulsions, and bijels. Particles adsorbed at interfaces exhibit unique physical and chemical behaviors, which affect the mechanical properties of the interface. Therefore, interfacial colloidal particles are of interest in terms of both fundamental and applied research. In this paper, we review studies on the adsorption of colloidal particles at fluid-fluid interfaces, from both thermodynamic and mechanical points of view, and discuss the differences as compared with surfactants and polymers. The unique particle interactions induced by the interfaces as well as the particle dynamics including lateral diffusion and contact line relaxation will be presented. We focus on the rearrangement of the particles and the resultant interfacial viscoelasticity. Particular emphasis will be given to the effects of particle shape, size, and surface hydrophobicity on the interfacial particle assembly and the mechanical properties of the obtained particle layer. We will also summarize recent advances in interfacial jamming behavior caused by adsorption of particles at interfaces. The buckling and cracking behavior of particle layers will be discussed from a mechanical perspective. Finally, we suggest several potential directions for future research in this area.
Collapse
Affiliation(s)
- Xiaoliang Ji
- Soft Matter & Complex Fluids Group, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, People's Republic of China
| | - Xiaolu Wang
- Institute of Welding and Surface Engineering Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Yongjian Zhang
- Shaanxi Key Laboratory of Surface Engineering and Remanufacturing, Xi'an University, Xi'an 710065, People's Republic of China
| | - Duyang Zang
- Soft Matter & Complex Fluids Group, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, People's Republic of China
| |
Collapse
|
19
|
Xiang SY, Ye LSY, Huang YJ, Lv YD, Kong MQ, Li GX. Coalescence Suppression in Flowing Polymer Blends Using Silica Rods with Different Surface Chemistries. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Bindgen S, Bossler F, Allard J, Koos E. Connecting particle clustering and rheology in attractive particle networks. SOFT MATTER 2020; 16:8380-8393. [PMID: 32814939 DOI: 10.1039/d0sm00861c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The structural properties of suspensions and other multiphase systems are vital to overall processability, functionality and acceptance among consumers. Therefore, it is crucial to understand the intrinsic connection between the microstructure of a material and the resulting rheological properties. Here, we demonstrate how the transitions in the microstructural conformations can be quantified and correlated to rheological measurements. We find semi-local parameters from graph theory, the mathematical study of networks, to be useful in linking structure and rheology. Our results, using capillary suspensions as a model system, show that the use of the clustering coefficient, in combination with the coordination number, is able to capture not only the agglomeration of particles, but also measures the formation of groups. These phenomena are tightly connected to the rheological properties. The present sparse networks cannot be described by established techniques such as betweenness centrality.
Collapse
Affiliation(s)
- Sebastian Bindgen
- KU Leuven, Chemical Engineering Department, Celestijnenlaan 200f, box 2424, 3001 Leuven, Belgium.
| | - Frank Bossler
- KU Leuven, Chemical Engineering Department, Celestijnenlaan 200f, box 2424, 3001 Leuven, Belgium.
| | - Jens Allard
- KU Leuven, Chemical Engineering Department, Celestijnenlaan 200f, box 2424, 3001 Leuven, Belgium.
| | - Erin Koos
- KU Leuven, Chemical Engineering Department, Celestijnenlaan 200f, box 2424, 3001 Leuven, Belgium.
| |
Collapse
|
21
|
Yang J, Park HS, Kim J, Mok J, Kim T, Shin EK, Kwak C, Lim S, Kim CB, Park JS, Na HB, Choi D, Lee J. Yield Stress Enhancement of a Ternary Colloidal Suspension via the Addition of Minute Amounts of Sodium Alginate to the Interparticle Capillary Bridges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9424-9435. [PMID: 32659098 DOI: 10.1021/acs.langmuir.0c01284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Capillary suspensions are ternary solid-liquid-liquid systems produced via the addition of a small amount of secondary fluid to the bulk fluid that contained the dispersed solid particles. The secondary fluid could exert strong capillary forces between the particles and dramatically change the rheological properties of the suspension. So far, research has focused on capillary suspensions that consist of additive-free fluids, whereas capillary suspensions with additives, particularly those of large molecular weight that are highly relevant for industrial purposes, have been relatively less studied. In this study, we performed a systematic analysis of the properties of capillary suspensions that consist of paraffin oil (bulk phase), water (secondary phase), and α-Al2O3 microparticles (particle phase), in which the aqueous secondary phase contained an important eco-friendly polymeric binder, sodium alginate (SA). It was determined that the yield stress of the suspension increased significantly with the increase in the SA content in the aqueous secondary phase, which was attributed to the synergistic effect of the capillary force and hydrogen bonding force that may be related to the increase in the number of capillary bridges. The amounts of SA used to induce a significant change in the yield stress in this study were very small (<0.02% of the total sample volume). The addition of Ca2+ ions to the SA-containing secondary phase further increased the yield stress with possible gelation of the SA chains-in the presence of excess Ca2+ ions, however, the yield stress decreased because of the microscopic phase separation that occurred in the aqueous secondary phase. The microstructures of the sintered porous materials that were produced by using capillary suspensions as precursors were qualitatively well correlated to the rheological behavior of the precursor suspensions, suggesting a new method for the subtle control of the microstructures of porous materials using the addition of minute amounts of polymeric additives.
Collapse
Affiliation(s)
- Jeewon Yang
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Hyun-Su Park
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Jieun Kim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Jihye Mok
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Taeyeon Kim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Eun-Kyung Shin
- Department of Materials Science and Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Chaesu Kwak
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Sehyeong Lim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Chae Bin Kim
- Department of Polymer Science and Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| | - Jong-Sung Park
- Department of Materials Science and Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Hyon Bin Na
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Dalsu Choi
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Joohyung Lee
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| |
Collapse
|
22
|
Amoabeng D, Tempalski A, Young BA, Binks BP, Velankar SS. Fumed silica induces co-continuity across a wide composition range in immiscible polymer blends. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Park J, Willenbacher N, Ahn KH. How the interaction between styrene-butadiene-rubber (SBR) binder and a secondary fluid affects the rheology, microstructure and adhesive properties of capillary-suspension-type graphite slurries used for Li-ion battery anodes. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Chen JF, Guo J, Liu SH, Luo WQ, Wang JM, Yang XQ. Zein Particle-Stabilized Water-In-Water Emulsion as a Vehicle for Hydrophilic Bioactive Compound Loading of Riboflavin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9926-9933. [PMID: 31398027 DOI: 10.1021/acs.jafc.9b02415] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vitamins and flavonoids are two kinds of essential trace bioactives which are prone to photodegradation during food processing and storage. In this study, a particle-stabilized water-in-water (W/W) emulsion system composed of soy protein isolate (SPI) and guar gum (GG) was applied in loading riboflavin. Based on the significant binding affinity differences of SPI (Ka = 1.11 × 105 L mol-1) and GG (Ka = 9.00 × 103 L mol-1) to riboflavin, this hydrophilic and light-sensitive bioactive compound was loaded in SPI-rich droplets. Confocal images indicated that a stable microstructure of SPI-rich droplets suspended in GG-rich continuous phase was successfully constructed by manipulating the proportion of the two polymeric components and using zein-based particles (ZPs) as stabilizers. These negatively charged particles modified by pectin with a hydrodynamic diameter of 533 ± 5.7 nm were able to adsorb at the SPI/GG interface and subsequently stabilized the SPI-in-GG emulsion. Fluorescence spectra of riboflavin suggested that the formation of such W/W emulsion could effectively delay the photodegradation of riboflavin during an 8 h ultraviolet irradiation, and its color was maintained to a maximum extent. Therefore, this structured W/W emulsion could be a desired architecture for delivering light-sensitive cargo.
Collapse
Affiliation(s)
- Jia-Feng Chen
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing , South China University of Technology , Guangzhou 510640 , P. R China
| | - Jian Guo
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing , South China University of Technology , Guangzhou 510640 , P. R China
| | - Si-Hong Liu
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing , South China University of Technology , Guangzhou 510640 , P. R China
| | - Wei-Qian Luo
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing , South China University of Technology , Guangzhou 510640 , P. R China
| | - Jin-Mei Wang
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing , South China University of Technology , Guangzhou 510640 , P. R China
| | - Xiao-Quan Yang
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing , South China University of Technology , Guangzhou 510640 , P. R China
| |
Collapse
|
25
|
Hao B, Yu W. A New Solid-like State for Liquid/Liquid/Particle Mixtures with Bicontinuous Morphology of Concentrated Emulsion and Concentrated Suspension. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9529-9537. [PMID: 31251879 DOI: 10.1021/acs.langmuir.9b01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Research in exploring the microstructures of the ternary liquid/liquid/particle mixture is still a challenging task due to the complex interface properties and compositions of each phase. In this work, we report a new kind of solid-like state for ternary mixtures after the addition of a surfactant, which has the bicontinuous morphology of two phases, that is, the concentrated emulsion and the concentrated noncolloidal suspension. The bicontinuous morphology was justified by optical microscopy and the unique two-step yielding behavior under large oscillatory shear flow, which has the yielding character of a noncolloidal suspension at smaller strain and that of a concentrated emulsion at larger strain. A phase diagram is constructed from the rheological measurements and morphological observations. The boundaries of the new solid-like state can be well predicted from three basic requirements on the glass forming or jamming conditions in the aqueous noncolloidal suspension phase, the aqueous emulsion phase, and the whole ternary mixture.
Collapse
Affiliation(s)
- Bonan Hao
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Wei Yu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| |
Collapse
|
26
|
Qiao Y, Xiang S, Huang Y, Mao C, Kong M, Yang Q, Li G. Microstructure of Rod-Based Capillary Suspensions with Different Rod Aspect Ratios under Quiescent and Shear Flow. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunjiao Qiao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| | - Siying Xiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| | - Yajiang Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| | - Chaoying Mao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| | - Miqiu Kong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| | - Qi Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| | - Guangxian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| |
Collapse
|
27
|
Weiß M, Maurath J, Willenbacher N, Koos E. Shrinkage and dimensional accuracy of porous ceramics derived from capillary suspensions. Ann Ital Chir 2019. [DOI: 10.1016/j.jeurceramsoc.2019.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Role of particles in the rheology of solid-stabilized high internal phase emulsions. J Colloid Interface Sci 2019; 540:197-206. [DOI: 10.1016/j.jcis.2018.12.098] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 11/22/2022]
|
29
|
Lightweight Porous Glass Composite Materials Based on Capillary Suspensions. MATERIALS 2019; 12:ma12040619. [PMID: 30791420 PMCID: PMC6416639 DOI: 10.3390/ma12040619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 11/17/2022]
Abstract
In this article, we present a simple, advanced method to produce lightweight tailor-made materials based on capillary suspensions that are made from locally bonded hollow glass spheres with a high total porosity in the range of 70% at apparent densities of 200 kg/m3, having a compressive strength of 0.6 MPa. The amount of added liquid and the particle surface treatment determine the network structure in the pastes and the resulting microstructure of the porous material in a straightforward manner. This structure has a strong impact on the porosity, pore size, and mechanical properties of the final body. The most promising porous materials were made of surface treated hollow glass spheres that create a sample-spanning network in the capillary state, where the added liquid wets the particles worse than the bulk fluid. These samples approach the density of natural balsa wood and they may find application in fields where either weight or structure are important, such as in insulation materials, filters, and membranes, as well as lightweight construction materials for automotive or aerospace engineering.
Collapse
|
30
|
Zhang L, Lei Q, Luo J, Zeng M, Wang L, Huang D, Wang X, Mannan S, Peng B, Cheng Z. Natural Halloysites-Based Janus Platelet Surfactants for the Formation of Pickering Emulsion and Enhanced Oil Recovery. Sci Rep 2019; 9:163. [PMID: 30655562 PMCID: PMC6336865 DOI: 10.1038/s41598-018-36352-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/05/2018] [Indexed: 11/23/2022] Open
Abstract
Janus colloidal surfactants with opposing wettabilities are receiving attention for their practical application in industry. Combining the advantages of molecular surfactants and particle-stabilized Pickering emulsions, Janus colloidal surfactants generate remarkably stable emulsions. Here we report a straightforward and cost-efficient strategy to develop Janus nanoplate surfactants (JNPS) from an aluminosilicate nanoclay, halloysite, by stepwise surface modification, including an innovative selective surface modification step. Such colloidal surfactants are found to be able to stabilize Pickering emulsions of different oil/water systems. The microstructural characterization of solidified polystyrene emulsions indicates that the emulsion interface is evenly covered by JNPS. The phase behaviors of water/oil emulsion generated by these novel platelet surfactants were also investigated. Furthermore, we demonstrate the application of JNPS for enhanced oil recovery with a microfluidic flooding test, showing a dramatic increase of oil recovery ratio. This research provides important insights for the design and synthesis of two-dimensional Janus colloidal surfactants, which could be utilized in biomedical, food and mining industries, especially for circumstances where high salinity and high temperature are involved.
Collapse
Affiliation(s)
- Lecheng Zhang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843-3122, USA.,Mary Kay O'Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843-3122, USA
| | - Qun Lei
- Research Institute of Petroleum Exploration & Development (RIPED), PetroChina, Beijing, 100083, China
| | - Jianhui Luo
- Research Institute of Petroleum Exploration & Development (RIPED), PetroChina, Beijing, 100083, China.,Key Laboratory of Nano Chemistry (KLNC), CNPC, Beijing, 100083, China
| | - Minxiang Zeng
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843-3122, USA
| | - Ling Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843-3122, USA
| | - Dali Huang
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, 77843-3003, USA
| | - Xuezhen Wang
- Mary Kay O'Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843-3122, USA
| | - Sam Mannan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843-3122, USA.,Mary Kay O'Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843-3122, USA
| | - Baoliang Peng
- Research Institute of Petroleum Exploration & Development (RIPED), PetroChina, Beijing, 100083, China. .,Key Laboratory of Nano Chemistry (KLNC), CNPC, Beijing, 100083, China.
| | - Zhengdong Cheng
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843-3122, USA. .,Mary Kay O'Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843-3122, USA. .,Department of Materials Science & Engineering, Texas A&M University, College Station, TX, 77843-3003, USA.
| |
Collapse
|
31
|
Yang J, Heinichen N, Velankar SS. The effect of particle wettability on the of rheology particulate suspensions with capillary force. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.08.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Anjali TG, Basavaraj MG. Influence of pH and Salt Concentration on Pickering Emulsions Stabilized by Colloidal Peanuts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13312-13321. [PMID: 30303393 DOI: 10.1021/acs.langmuir.8b02913] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Solid-stabilized emulsions commonly known as Pickering emulsions offer unique benefits such as superior stability and controlled permeability compared to conventional surfactant stabilized emulsions. In this article, the effect of pH, the electrolyte and particle concentration, homogenization speed, and volume fraction of oil on the formation, stability, and the microstructure of emulsion droplets stabilized by micron-size peanut-shaped hematite particles are investigated. The influence of surface charge of particles on emulsification is studied by varying the pH of the dispersing medium, the addition of an electrolyte or a combination of both. Stable O/W emulsions are formed only when the aqueous dispersions at intermediate pH between 4 and 11, and decane (2:1 volume ratio) are vigorously mixed. However, emulsions are not formed when the particles are highly charged that is, at pH 2 and 12. The presence of monovalent salt or high-speed homogenization assists the emulsion formation at pH 3, whereas their combination helps in emulsification at pH 2. However, neither the addition of an electrolyte nor the high-speed homogenization or their combination facilitates the formation of emulsions at pH 12. We show that the image-charge repulsion and the surface charge induced wettability change can explain the influence of both pH and salt concentrations on the formation of Pickering emulsions. Although oil-in-water emulsions typically cream because of the density difference, microscopy observations revealed the presence of a large number of small particle-covered oil droplets in the sediments of the emulsified samples. These drops are observed to be entrapped in dense-particle networks. This leads to a considerable reduction in the number of particles available for the stabilization of floating emulsion droplets and thus influences their size and surface coverage. The possibility of tailoring the stability, droplet size and, the surface coverage discussed in this article can play a crucial role in situations that demand controlled release of active components.
Collapse
Affiliation(s)
- Thriveni G Anjali
- Polymer Engineering and Colloid Science (PECS) Laboratory, Department of Chemical Engineering , Indian Institute of Technology Madras , Chennai 600 036 , India
| | - Madivala G Basavaraj
- Polymer Engineering and Colloid Science (PECS) Laboratory, Department of Chemical Engineering , Indian Institute of Technology Madras , Chennai 600 036 , India
| |
Collapse
|
33
|
Kong M, Chen G, Xi S, Huang Y, Li G. Morphology Mapping of Nanoparticle-Filled Immiscible Polymer Blends in Flow: The Existence of a Critical Ratio between Nanoparticle Concentration and Droplet Concentration. ACS OMEGA 2018; 3:11550-11557. [PMID: 31459254 PMCID: PMC6645428 DOI: 10.1021/acsomega.7b02072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/06/2018] [Indexed: 06/10/2023]
Abstract
The delicate flow-induced morphology of immiscible polypropylene/polystyrene blends in the presence of silica nanoparticles (NPs) is investigated in a multiparameter space. The morphology map constructed based on in situ morphology observation reveals that a critical ratio of NP concentration to droplet concentration, which strongly depends on the NP surface chemistries and the ratio of the NP concentration to the droplet concentration, exists. Below or above the critical ratio, the NPs display diverse effects on the morphology (promote or suppress droplet coalescence). These results can be interpreted by the competition between the bridging mechanism (acceleratory effect) and the enhanced viscoelasticity (inhibitory effect) exerted by the NPs.
Collapse
Affiliation(s)
- Miqiu Kong
- School of Aeronautics and Astronautics and College of Polymer
Science and
Engineering, State Key Laboratory of Polymer Materials Engineering
of China, Sichuan University, Chengdu 610065, PRC
| | - Guangling Chen
- School of Aeronautics and Astronautics and College of Polymer
Science and
Engineering, State Key Laboratory of Polymer Materials Engineering
of China, Sichuan University, Chengdu 610065, PRC
| | - Shuting Xi
- School of Aeronautics and Astronautics and College of Polymer
Science and
Engineering, State Key Laboratory of Polymer Materials Engineering
of China, Sichuan University, Chengdu 610065, PRC
| | - Yajiang Huang
- School of Aeronautics and Astronautics and College of Polymer
Science and
Engineering, State Key Laboratory of Polymer Materials Engineering
of China, Sichuan University, Chengdu 610065, PRC
| | - Guangxian Li
- School of Aeronautics and Astronautics and College of Polymer
Science and
Engineering, State Key Laboratory of Polymer Materials Engineering
of China, Sichuan University, Chengdu 610065, PRC
| |
Collapse
|
34
|
Bulk soldering: Conductive polymer composites filled with copper particles and solder. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Hauf K, Koos E. Structure of capillary suspensions and their versatile applications in the creation of smart materials. MRS COMMUNICATIONS 2018; 8:332-342. [PMID: 30079275 PMCID: PMC6071843 DOI: 10.1557/mrc.2018.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In this article, we review recent research in the field of capillary suspensions and highlight a variety of applications in the field of smart materials. Capillary suspensions are liquid-liquid-solid ternary systems where one liquid is only present in a few percent and induces a strong, capillary-induced particle network. These suspensions have a large potential for exploitation, particularly in the production of porous materials since the paste itself and the properties of the final material can be adapted. We also discuss the rheological properties of the suspension and network structure to highlight the various ways these systems can be tuned.
Collapse
Affiliation(s)
- Katharina Hauf
- Karlsruhe Institute for Technology, Institute for Mechanical Process
Engineering and Mechanics, Karlsruhe, Germany
| | - Erin Koos
- Karlsruhe Institute for Technology, Institute for Mechanical Process
Engineering and Mechanics, Karlsruhe, Germany
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200f,
3001 Leuven, Belgium
| |
Collapse
|
36
|
Natalia I, Zeiler N, Weiß M, Koos E. Negative normal stress differences N 1-N 2 in a low concentration capillary suspension. SOFT MATTER 2018; 14:3254-3264. [PMID: 29687109 PMCID: PMC5993191 DOI: 10.1039/c8sm00305j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here, negative normal stress differences are reported in capillary suspensions, i.e. particle suspensions in a two-fluid system that creates strong capillary attractions, at a solid concentration of 25%, and a volume fraction that has heretofore been considered too low to show such normal stress differences. Such capillary suspensions have strong particle networks and are shear thinning for the entire range of shear rates studied. Capillary suspensions exist in two states: a pendular state when the secondary fluid preferentially wets the particles, and a capillary state when the bulk fluid is preferentially wetting. In the pendular state, the system undergoes a transition from a positive normal stress difference at high shear rates to a negative stress difference at low shear rates. These results are an indication of flexible flocs in the pendular state that are able to rotate to reorientate in the vorticity direction under shear. Analogous experiments were also conducted for the capillary state, where only a negative normal stress difference occurs. The capillary state system forms more network contacts due to droplet breakup at higher shear rates, which enhances the importance of hydrodynamic interactions in the non-colloidal suspension.
Collapse
Affiliation(s)
- Irene Natalia
- KU Leuven, Soft Matter, Rheology and Technology - Department of Chemical Engineering, Celestijnenlaan 200f, 3001 Leuven, Belgium.
| | | | | | | |
Collapse
|
37
|
Hauf K, Riazi K, Willenbacher N, Koos E. Radical polymerization of capillary bridges between micron-sized particles in liquid bulk phase as a low temperature route to produce porous solid materials. Colloid Polym Sci 2018; 295:1773-1785. [PMID: 29503494 DOI: 10.1007/s00396-017-4149-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We present a generic and versatile low temperature route to produce macro-porous bodies with porosity and pore size distribution that are adjustable in a wide range. Capillary suspensions, where the minor fluid is a monomer, are used as pre-cursors. The monomer is preferentially located between the particles, creating capillary bridges, resulting in a strong, percolating network. Thermally induced polymerization of these bridges at temperatures below 100 °C for less than 5 hours and subsequent removal of the bulk fluid yields macroscopic, self-supporting solid bodies with high porosity. This process is demonstrated using methylmethacrylate and hydroxyethylmethacrlyate with glass particles as a model system. The produced PMMA had a molecular weight of about 500.000 g/mol and dispersity about three. Application specific porous bodies, including PMMA particles connected by PMMA bridges, micron-sized capsules containing phase change material with high inner surface, and porous graphite membranes with high electrical conductivity, are also shown.
Collapse
Affiliation(s)
- Katharina Hauf
- KIT - Campus Süd, Institut für Mechanische Verfahrenstechnik und Mechanik, Arbeitsgruppe Angewandte Mechanik, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Tel.: +49 721 608 -43757
| | - Kamran Riazi
- MZE, Geb. 30.48, Raum 217, Am Forum 7, 76131 Karlsruhe, Tel.: +49 721 608 41400
| | - Norbert Willenbacher
- KIT - Campus Süd, Institut für Mechanische Verfahrenstechnik und Mechanik, Arbeitsgruppe Angewandte Mechanik, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Tel.: +49 721 608 -43757
| | - Erin Koos
- Department of Chemical Engineering (CIT), Celestijnenlaan 200f - box 2424, 3001 Leuven, Tel. +32 16 37 63 47
| |
Collapse
|
38
|
Dunstan TS, Das AAK, Starck P, Stoyanov SD, Paunov VN. Capillary Structured Suspensions from In Situ Hydrophobized Calcium Carbonate Particles Suspended in a Polar Liquid Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:442-452. [PMID: 29239178 DOI: 10.1021/acs.langmuir.7b03589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We demonstrate that capillary suspensions can be formed from hydrophilic calcium carbonate particles suspended in a polar continuous media and connected by capillary bridges formed of minute amounts of an immiscible secondary liquid phase. This was achieved in two different polar continuous phases, water and glycerol, and three different oils, oleic acid, isopropyl myristate, and peppermint oil as a secondary liquid phase. The capillary structuring of the suspension was made possible through local in situ hydrophobization of the calcium carbonate particles dispersed in the polar media by adding very small amounts of oleic acid to the secondary liquid phase. We observed a strong increase in the viscosity of the calcium carbonate suspension by several orders of magnitude upon addition of the secondary oil phase compared with the same suspension without secondary liquid phase or without oleic acid. The stability and the rheological properties of the obtained capillary structured materials were studied in relation to the physical properties of the system such as the particle size, interfacial tension between the primary and secondary liquid phases, as well as the particle contact angle at this liquid-liquid interface. We also determined the minimal concentrations of the secondary liquid phase at fixed particle concentration as well as the minimal particle concentration at fixed secondary phase concentration needed to form a capillary suspension. Capillary suspensions formed by this method can find application in structuring pharmaceutical and food formulations as well as a variety of home and personal care products.
Collapse
Affiliation(s)
- Timothy S Dunstan
- School of Mathematics and Physical Sciences (Chemistry), University of Hull , Hull HU6 7RX, United Kingdom
| | - Anupam A K Das
- School of Mathematics and Physical Sciences (Chemistry), University of Hull , Hull HU6 7RX, United Kingdom
| | - Pierre Starck
- Unilever R&D Port Sunlight , Quarry Road East, Bebington, CH63 3JW, United Kingdom
| | - Simeon D Stoyanov
- Unilever R&D Vlaardingen , Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University , 6703 HB Wageningen, The Netherlands
- Department of Mechanical Engineering, University College London , Torrington Place, London WC1E 7JE, United Kingdom
| | - Vesselin N Paunov
- School of Mathematics and Physical Sciences (Chemistry), University of Hull , Hull HU6 7RX, United Kingdom
| |
Collapse
|
39
|
Danov KD, Georgiev MT, Kralchevsky PA, Radulova GM, Gurkov TD, Stoyanov SD, Pelan EG. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation. Adv Colloid Interface Sci 2018; 251:80-96. [PMID: 29174116 DOI: 10.1016/j.cis.2017.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/11/2017] [Accepted: 11/12/2017] [Indexed: 01/19/2023]
Abstract
Suspensions of colloid particles possess the remarkable property to solidify upon the addition of minimal amount of a second liquid that preferentially wets the particles. The hardening is due to the formation of capillary bridges (pendular rings), which connect the particles. Here, we review works on the mechanical properties of such suspensions and related works on the capillary-bridge force, and present new rheological data for the weakly studied concentration range 30-55 vol% particles. The mechanical strength of the solidified capillary suspensions, characterized by the yield stress Y, is measured at the elastic limit for various volume fractions of the particles and the preferentially wetting liquid. A quantitative theoretical model is developed, which relates Y with the maximum of the capillary-bridge force, projected on the shear plane. A semi-empirical expression for the mean number of capillary bridges per particle is proposed. The model agrees very well with the experimental data and gives a quantitative description of the yield stress, which increases with the rise of interfacial tension and with the volume fractions of particles and capillary bridges, but decreases with the rise of particle radius and contact angle. The quantitative description of capillary force is based on the exact theory and numerical calculation of the capillary bridge profile at various bridge volumes and contact angles. An analytical formula for Y is also derived. The comparison of the theoretical and experimental strain at the elastic limit reveals that the fluidization of the capillary suspension takes place only in a deformation zone of thickness up to several hundred particle diameters, which is adjacent to the rheometer's mobile plate. The reported experimental results refer to water-continuous suspension with hydrophobic particles and oily capillary bridges. The comparison of data for bridges from soybean oil and hexadecane surprisingly indicate that the yield strength is greater for the suspension with soybean oil despite its lower interfacial tension against water. The result can be explained with the different contact angles of the two oils in agreement with the theoretical predictions. The results could contribute for a better understanding, quantitative prediction and control of the mechanical properties of three-phase capillary suspensions solid/liquid/liquid.
Collapse
|
40
|
Bossler F, Maurath J, Dyhr K, Willenbacher N, Koos E. Fractal approaches to characterize the structure of capillary suspensions using rheology and confocal microscopy. JOURNAL OF RHEOLOGY 2018; 62:183-196. [PMID: 29503485 PMCID: PMC5830082 DOI: 10.1122/1.4997889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The rheological properties of a particle suspension can be substantially altered by adding a small amount of a secondary fluid that is immiscible with the bulk phase. The drastic change in the strength of these capillary suspensions arises due to the capillary forces, induced by the added liquid, leading to a percolating particle network. Using rheological scaling models, fractal dimensions are deduced from the yield stress and from oscillatory strain amplitude sweep data as function of the solid volume fraction. Exponents obtained using aluminum-oxide-based capillary suspensions, with a preferentially wetting secondary fluid, indicate an increase in the particle gel's fractal dimension with increasing particle size. This may be explained by a corresponding relative reduction in the capillary force compared to other forces. Confocal images using a glass model system show the microstructure to consist of compact particle flocs interconnected by a sparse backbone. Thus, using the rheological models two different fractal dimensionalities are distinguished - a lower network backbone dimension (D = 1.86-2.05) and an intrafloc dimension (D = 2.57-2.74). The latter is higher due to the higher local solid volume fraction inside of the flocs compared to the sparse backbone. Both of these dimensions are compared with values obtained by analysis of spatial particle positions from 3D confocal microscopy images, where dimensions between 2.43 and 2.63 are computed, lying between the two dimension ranges obtained from rheology. The fractal dimensions determined via this method corroborate the increase in structural compactness with increasing particle size.
Collapse
Affiliation(s)
- Frank Bossler
- Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200f, 3001 Leuven, Belgium
| | - Johannes Maurath
- Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany
| | - Katrin Dyhr
- Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany
| | - Norbert Willenbacher
- Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany
| | - Erin Koos
- Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200f, 3001 Leuven, Belgium
| |
Collapse
|
41
|
Das AAK, Dunstan TS, Stoyanov SD, Starck P, Paunov VN. Thermally Responsive Capillary Suspensions. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44152-44160. [PMID: 29210563 DOI: 10.1021/acsami.7b11358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We demonstrate that stimulus-responsive capillary-structured materials can be formed from hydrophobized calcium carbonate particles suspended in a non-polar phase (silicone oil) and bridged by very small amounts of a hydrogel as the secondary aqueous phase. Inclusion of thermally responsive polymers into the aqueous phase yielded a capillary-structured suspension whose rheology is controlled by a change in temperature and can increase its complex modulus by several orders of magnitude because of the gelation of the capillary bridges between the solid particles. We demonstrate that the rheology of the capillary suspension and its response upon temperature changes can be controlled by the gelling properties as little as 0.1 w/w % of the secondary aqueous phase containing 2 wt % of the gelling carbohydrate. Doping the secondary (aqueous) phase with methyl cellulose, which gels at elevated temperatures, gave capillary-structured materials whose viscosity and structural strength can increase by several orders of magnitude as the temperature is increased past the gelling temperature of the methyl cellulose solution. Increasing the methyl cellulose concentration from 0 to 2 w/w % in the secondary (aqueous) phase increases the complex modulus and the yield stress of the capillary suspension of 10 w/w % hydrophobized calcium carbonate in silicone oil by 2 orders of magnitude at a fixed temperature. By using an aqueous solution of a low melting point agarose as a secondary liquid phase, which melts as the temperature is raised, we produced capillary-structured materials whose viscosity and structural strength can decrease by several orders of magnitude as the temperature is increased past the melting temperature of the agarose solution. The development of thermally responsive capillary suspensions can find potential applications in structuring of smart home and personal care products as well as in temperature-triggered change in rheology and release of flavors in foods and actives in pharmaceutical formulations.
Collapse
Affiliation(s)
- Anupam A K Das
- School of Mathematics and Physical Sciences (Chemistry), University of Hull , Hull HU6 7RX, U.K
| | - Timothy S Dunstan
- School of Mathematics and Physical Sciences (Chemistry), University of Hull , Hull HU6 7RX, U.K
| | - Simeon D Stoyanov
- Unilever R&D Vlaardingen , Olivier van Noortlaan 120, Vlaardingen 3133 AT, The Netherlands
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University , Wageningen 6703 HB, The Netherlands
- Department of Mechanical Engineering, University College London , Torrington Place, London WC1E 7JE, U.K
| | - Pierre Starck
- Unilever Discover Port Sunlight , Quarry Road East, Bebington CH63 3JW, U.K
| | - Vesselin N Paunov
- School of Mathematics and Physical Sciences (Chemistry), University of Hull , Hull HU6 7RX, U.K
| |
Collapse
|
42
|
Yang J, Roell D, Echavarria M, Velankar SS. A microstructure-composition map of a ternary liquid/liquid/particle system with partially-wetting particles. SOFT MATTER 2017; 13:8579-8589. [PMID: 29104989 DOI: 10.1039/c7sm01571b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We examine the effect of composition on the morphology of a ternary mixture comprising two molten polymeric liquid phases (polyisobutylene and polyethylene oxide) and micron-scale spherical silica particles. The silica particles were treated with silanes to make them partially wetted by both polymers. Particle loadings up to 30 vol% are examined while varying the fluid phase ratios across a wide range. Numerous effects of particle addition are catalogued, stabilization of Pickering emulsions and of interfacially-jammed co-continuous microstructures, meniscus-bridging of particles, particle-induced coalescence of the dispersed phase, and significant shifts in the phase inversion composition. Many of the effects are asymmetric, for example particle-induced coalescence is more severe and drop sizes are larger when polyisobutylene is the continuous phase, and particles promote phase continuity of the polyethylene oxide. These asymmetries are likely attributable to a slight preferential wettability of the particles towards the polyethylene oxide. A state map is constructed which classifies the various microstructures within a triangular composition diagram. Comparisons are made between this diagram vs. a previous one constructed for the case when particles are fully-wetted by polyethylene oxide.
Collapse
Affiliation(s)
- Junyi Yang
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
43
|
Mao C, Huang Y, Yang J, Kong M, Wang Y, Yang Q, Li G. Controlling the Orientation of Droplets in Ellipsoid-Filled Polymeric Emulsions with Particle Parameters and Flow Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10577-10587. [PMID: 28930633 DOI: 10.1021/acs.langmuir.7b02240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effect of particle parameters [aspect ratio (AR) and concentration] and flow conditions (gap spacing and shear rate) on droplet orientation deformation behavior in polystyrene (PS) particle-filled binary polymeric emulsions is investigated by using a rheo-optical technique and confocal microscopy. Interesting vorticity orientation behavior is achieved by tailoring experimental conditions to yield rigid anisotropic droplets during slow confined shear flow. PS ellipsoids with a high AR are found to reside both at the fluid interface in a monolayer side-on state and inside droplets, leading to the formation of rigid anisotropic droplets because of the interfacial/bulk jamming effect at appropriate particle concentrations. In unconfined bulk samples, droplets with a vorticity orientation can also be observed under the wall migration effect and confinement effect arising from nearby droplets. However, the overly strong wall confinement effect remarkably facilitates the coalescence of vorticity-aligned droplets during slow shear, eventually leading to the formation of a long stringlike phase aligning along the flow direction. High shear rates generate refined droplets with lower particle coverage and weak rigidity, which restrain the formation of anisotropic droplets and thus suppress the droplet vorticity orientation.
Collapse
Affiliation(s)
- Chaoying Mao
- College of polymer science and engineering, State key laboratory of polymer materials engineering of China, Sichuan University , No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yajiang Huang
- College of polymer science and engineering, State key laboratory of polymer materials engineering of China, Sichuan University , No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Junlong Yang
- College of polymer science and engineering, State key laboratory of polymer materials engineering of China, Sichuan University , No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Miqiu Kong
- School of Aeronautics and Astronautics, Sichuan University , No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yuan Wang
- College of Chemical Engineering, Sichuan University , No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Qi Yang
- College of polymer science and engineering, State key laboratory of polymer materials engineering of China, Sichuan University , No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Guangxian Li
- College of polymer science and engineering, State key laboratory of polymer materials engineering of China, Sichuan University , No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
44
|
Binks BP. Colloidal Particles at a Range of Fluid-Fluid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6947-6963. [PMID: 28478672 DOI: 10.1021/acs.langmuir.7b00860] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The study of solid particles residing at fluid-fluid interfaces has become an established area in surface and colloid science recently, experiencing a renaissance since around 2000. Particles at interfaces arise in many industrial products and processes such as antifoam formulations, crude oil emulsions, aerated foodstuffs, and flotation. Although they act in many ways like traditional surfactant molecules, they offer distinct advantages also, and the area is now multidisciplinary, involving research in the fundamental science and potential applications. In this Feature Article, the flavor of some of this interest is given on the basis of recent work from our own group and includes the behavior of particles at oil-water, air-water, oil-oil, air-oil, and water-water interfaces. The materials capable of being prepared by assembling various kinds of particles at fluid interfaces include particle-stabilized emulsions, particle-stabilized aqueous and oil foams, dry liquids, liquid marbles, and powdered emulsions.
Collapse
Affiliation(s)
- Bernard P Binks
- School of Mathematics and Physical Sciences, University of Hull , Hull HU6 7RX, U.K
| |
Collapse
|
45
|
Amoabeng D, Roell D, Clouse KM, Young BA, Velankar SS. A composition-morphology map for particle-filled blends of immiscible thermoplastic polymers. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Bossler F, Weyrauch L, Schmidt R, Koos E. Influence of mixing conditions on the rheological properties and structure of capillary suspensions. Colloids Surf A Physicochem Eng Asp 2017; 518:85-97. [PMID: 28194044 PMCID: PMC5302188 DOI: 10.1016/j.colsurfa.2017.01.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The rheological properties of a suspension can be dramatically altered by adding a small amount of a secondary fluid that is immiscible with the bulk liquid. These capillary suspensions exist either in the pendular state where the secondary fluid preferentially wets the particles or the capillary state where the bulk fluid is preferentially wetting. The yield stress, as well as storage and loss moduli, depends on the size and distribution of secondary phase droplets created during sample preparation. Enhanced droplet breakup leads to stronger sample structures. In capillary state systems, this can be achieved by increasing the mixing speed and time of turbulent mixing using a dissolver stirrer. In the pendular state, increased mixing speed also leads to better droplet breakup, but spherical agglomeration is favored at longer times decreasing the yield stress. Additional mixing with a ball mill is shown to be beneficial to sample strength. The influence of viscosity variance between the bulk and second fluid on the droplet breakup is excluded by performing experiments with viscosity-matched fluids. These experiments show that the capillary state competes with the formation of Pickering emulsion droplets and is often more difficult to achieve than the pendular state.
Collapse
Affiliation(s)
- Frank Bossler
- Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics, Straße am Forum 8, 76131 Karlsruhe, Germany
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200f, 3001 Leuven, Belgium
| | - Lydia Weyrauch
- Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics, Straße am Forum 8, 76131 Karlsruhe, Germany
| | - Robert Schmidt
- Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics, Straße am Forum 8, 76131 Karlsruhe, Germany
| | - Erin Koos
- Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics, Straße am Forum 8, 76131 Karlsruhe, Germany
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200f, 3001 Leuven, Belgium
| |
Collapse
|
47
|
Kaganyuk M, Mohraz A. Non-monotonic dependence of Pickering emulsion gel rheology on particle volume fraction. SOFT MATTER 2017; 13:2513-2522. [PMID: 28306753 DOI: 10.1039/c6sm02858f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The microstructure of Pickering emulsion gels features a tenuous network of faceted droplets, bridged together by shared monolayers of particles. In this investigation, we use standard oscillatory rheometry in conjunction with confocal microscopy to gain a more comprehensive understanding of the role particle bridged interfaces have on the rheology of Pickering emulsion gels. The zero-shear elastic modulus of Pickering emulsion gels shows a non-monotonic dependence on particle loading, with three separate regimes of power-law and linear gel strengthening, and subsequent gel weakening. The transition from power-law to linear scaling is found to coincide with a peak in the volume fraction of particles that participate in bridging, which we indirectly calculate using measureable quantities, and the transition to gel weakening is shown to result from a loss in network connectivity at high particle loadings. These observations are explained via a simple representation of how Pickering emulsion gels arise from an initial population of partially-covered droplets. Based on these considerations, we propose a combined variable related to the initial droplet coverage, to be used in reporting and rationalizing the rheology of Pickering emulsion gels. We demonstrate the applicability of this variable with Pickering emulsions prepared at variable fluid ratios and with different-sized colloidal particles. The results of our investigation have important implications for many technological applications that utilize solid stabilized multi-phase emulsions and require a priori knowledge or engineering of their flow characteristics.
Collapse
Affiliation(s)
- M Kaganyuk
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA 92697, USA.
| | - A Mohraz
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
48
|
Zolali AM, Favis BD. Partial and Complete Wetting in Ultralow Interfacial Tension Multiphase Blends with Polylactide. J Phys Chem B 2016; 120:12708-12719. [PMID: 27973831 DOI: 10.1021/acs.jpcb.6b08800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The control of phase structuring in multiphase blends of polylactide (PLA) with other polymers is a viable approach to promote its broader implementation. In this article, ternary and quaternary blends of PLA with poly(butylene succinate) (PBS), poly(butylene adipate-co-terephthalate) (PBAT), and poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) are prepared by melt blending. The interfacial tensions between components are measured using three different techniques, and a Fourier transform infrared imaging technique is developed for the purpose of unambiguous phase identification. A tricontinuous complete wetting behavior is observed for the ternary 33PLA/33PBS/33PBAT blend before and after quiescent annealing, which correlates closely with spreading theory analysis. In the quaternary PLA/PBS/PBAT/PHBV blend, a concentration-dependent wetting behavior is found. At 10 vol % PBAT, self-assembled partially wet droplets of PBAT are observed at the interface of PBS and PHBV, and they remain stable after quiescent annealing as predicted by spreading theory. In contrast, at 25 vol % PBAT, a quadruple continuous system is observed after mixing, which only transforms to partially wet PBAT droplets after subsequent annealing. These results clearly indicate the potential of composition control during the mixing of multiphase systems to result in a complete change of spreading behavior.
Collapse
Affiliation(s)
- Ali M Zolali
- CREPEC, Department of Chemical Engineering, École Polytechnique de Montréal , Montréal, Quebec, Canada H3C3A7
| | - Basil D Favis
- CREPEC, Department of Chemical Engineering, École Polytechnique de Montréal , Montréal, Quebec, Canada H3C3A7
| |
Collapse
|
49
|
Mao C, Kong M, Yang Q, Li G, Huang Y. Vorticity Deformation in Polymeric Emulsions Induced by Anisotropic Ellipsoids. ACS Macro Lett 2016; 5:900-903. [PMID: 35607219 DOI: 10.1021/acsmacrolett.6b00456] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We study the influence of particle shape on shear-induced droplet deformation in polymeric emulsions. During shearing, droplets become elongated and rotate periodically about their major axes while aligning along the vorticity direction in ellipsoid-filled emulsions, while similar behavior is not observed in the pristine, microsphere-filled or ellipsoid-filled inverse systems. Based on the Jeffery orbit theory, the formation of anisotropic droplets with extremely small Reynolds number due to arrested coalescence in Newtonian matrix and strong confinement effect are suggested to be responsible for the vorticity alignment of droplets during slow shearing.
Collapse
Affiliation(s)
- Chaoying Mao
- College of Polymer Science
and Engineering, State Key Laboratory of Polymer Materials Engineering
of China, Sichuan University, Chengdu 610065, China
| | - Miqiu Kong
- College of Polymer Science
and Engineering, State Key Laboratory of Polymer Materials Engineering
of China, Sichuan University, Chengdu 610065, China
| | - Qi Yang
- College of Polymer Science
and Engineering, State Key Laboratory of Polymer Materials Engineering
of China, Sichuan University, Chengdu 610065, China
| | - Guangxian Li
- College of Polymer Science
and Engineering, State Key Laboratory of Polymer Materials Engineering
of China, Sichuan University, Chengdu 610065, China
| | - Yajiang Huang
- College of Polymer Science
and Engineering, State Key Laboratory of Polymer Materials Engineering
of China, Sichuan University, Chengdu 610065, China
| |
Collapse
|
50
|
Schneider M, Koos E, Willenbacher N. Highly conductive, printable pastes from capillary suspensions. Sci Rep 2016; 6:31367. [PMID: 27506726 PMCID: PMC4979208 DOI: 10.1038/srep31367] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/18/2016] [Indexed: 11/24/2022] Open
Abstract
We have used the capillary suspension phenomenon to design conductive pastes for printed electronic applications, such as front side metallization of solar cells, without non-volatile, organic additives that often deteriorate electrical properties. Adding a small amount of a second, immiscible fluid to a suspension creates a network of liquid bridges between the particles. This capillary force-controlled microstructure allows for tuning the flow behavior in a wide range. Yield stress and low-shear viscosity can be adjusted such that long-term stability is provided by inhibiting sedimentation, and, even more importantly, narrow line widths and high aspect ratios are accessible. These ternary mixtures, called capillary suspensions, exhibit a strong degree of shear thinning that allows for conventional coating or printing equipment to be used. Finally, the secondary fluid, beneficial for stability and processing of the wet paste, completely evaporates during drying and sintering. Thus, we obtained high purity silver and nickel layers with a conductivity two times greater than could be obtained with state-of-the-art, commercial materials. This revolutionary concept can be easily applied to other systems using inorganic or even organic conductive particles and represents a fundamental paradigm change to the formulation of pastes for printed electronics.
Collapse
|