1
|
Asri NA, Sezali NAA, Ong HL, Mohd Pisal MH, Lim YH, Fang J. Review on Biodegradable Aliphatic Polyesters: Development and Challenges. Macromol Rapid Commun 2024:e2400475. [PMID: 39445644 DOI: 10.1002/marc.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Biodegradable polymers are gaining attention as alternatives to non-biodegradable plastics to address environmental issues. With the rising global demand for plastic products, the development of non-toxic, biodegradable plastics is a significant topic of research. Aliphatic polyester, the most common biodegradable polyester, is notable for its semi-crystalline structure and can be synthesized from fossil fuels, microbial fermentation, and plants. Due to great properties like being lightweight, biodegradable, biocompatible, and non-toxic, aliphatic polyesters are used in packaging, medical, agricultural, wearable devices, sensors, and textile applications. The biodegradation rate, crucial for biodegradable polymers, is discussed in this review as it is influenced by their structural properties and environmental conditions. This review discusses currently available biodegradable polyesters, their emerging applications, and the challenges in their commercialization. As research in this area grows, this review emphasizes the innovation in biodegradable aliphatic polyesters and their role in advancing environmental sustainability.
Collapse
Affiliation(s)
- Nur Asnani Asri
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Nur Atirah Afifah Sezali
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Hui Lin Ong
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
- Centre of Excellence for Biomass Utilization and Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Mohd Hanif Mohd Pisal
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
- Centre of Excellence for Biomass Utilization and Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Ye Heng Lim
- Platinum Phase Sdn. Bhd., Plot 155, Jalan PKNK Utama, Kawasan Perusahaan Taman Ria Jaya, Sungai Petani, Kedah, 08000, Malaysia
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| |
Collapse
|
2
|
Yu L, Bennett CJ, Lin CH, Yan S, Yang J. Scaffold design considerations for peripheral nerve regeneration. J Neural Eng 2024; 21:041001. [PMID: 38996412 DOI: 10.1088/1741-2552/ad628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Peripheral nerve injury (PNI) represents a serious clinical and public health problem due to its high incurrence and poor spontaneous recovery. Compared to autograft, which is still the best current practice for long-gap peripheral nerve defects in clinics, the use of polymer-based biodegradable nerve guidance conduits (NGCs) has been gaining momentum as an alternative to guide the repair of severe PNI without the need of secondary surgery and donor nerve tissue. However, simple hollow cylindrical tubes can barely outperform autograft in terms of the regenerative efficiency especially in critical sized PNI. With the rapid development of tissue engineering technology and materials science, various functionalized NGCs have emerged to enhance nerve regeneration over the past decades. From the aspect of scaffold design considerations, with a specific focus on biodegradable polymers, this review aims to summarize the recent advances in NGCs by addressing the onerous demands of biomaterial selections, structural designs, and manufacturing techniques that contributes to the biocompatibility, degradation rate, mechanical properties, drug encapsulation and release efficiency, immunomodulation, angiogenesis, and the overall nerve regeneration potential of NGCs. In addition, several commercially available NGCs along with their regulation pathways and clinical applications are compared and discussed. Lastly, we discuss the current challenges and future directions attempting to provide inspiration for the future design of ideal NGCs that can completely cure long-gap peripheral nerve defects.
Collapse
Affiliation(s)
- Le Yu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Carly Jane Bennett
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Chung-Hsun Lin
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Jian Yang
- Biomedical Engineering Program, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
| |
Collapse
|
3
|
Davoy X, Devémy J, Garruchet S, Dequidt A, Hauret P, Malfreyt P. Toward a Better Understanding of the Poly(glycerol sebacate)-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11599-11609. [PMID: 38768448 DOI: 10.1021/acs.langmuir.4c00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Molecular simulations were conducted to provide a better description of the poly(glycerol sebacate) (PGS)-water interface. The density and the glass-transition temperature as well as their dependencies on the degree of esterification were examined in close connection with the available experimental data. The work of adhesion and water contact angle were calculated as a function of the degree of esterification. A direct correlation was established between the strength of the hydrogen bond network in the interfacial region and the change in the water contact angle with respect to the degree of esterification. The interfacial region was described by local density profiles and orientations of the water molecules.
Collapse
Affiliation(s)
- Xavier Davoy
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
- Manufacture Française des Pneumatiques Michelin, 23 Place des Carmes, Clermont-Ferrand 63040, France
| | - Julien Devémy
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Sébastien Garruchet
- Manufacture Française des Pneumatiques Michelin, 23 Place des Carmes, Clermont-Ferrand 63040, France
| | - Alain Dequidt
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Patrice Hauret
- Manufacture Française des Pneumatiques Michelin, 23 Place des Carmes, Clermont-Ferrand 63040, France
| | - Patrice Malfreyt
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
4
|
Resina L, Garrudo FFF, Alemán C, Esteves T, Ferreira FC. Wireless electrostimulation for cancer treatment: An integrated nanoparticle/coaxial fiber mesh platform. BIOMATERIALS ADVANCES 2024; 160:213830. [PMID: 38552500 DOI: 10.1016/j.bioadv.2024.213830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 05/04/2024]
Abstract
Cancer, namely breast and prostate cancers, is the leading cause of death in many developed countries. Controlled drug delivery systems are key for the development of new cancer treatment strategies, to improve the effectiveness of chemotherapy and tackle off-target effects. In here, we developed a biomaterials-based wireless electrostimulation system with the potential for controlled and on-demand release of anti-cancer drugs. The system is composed of curcumin-loaded poly(3,4-ethylenedioxythiophene) nanoparticles (CUR/PEDOT NPs), encapsulated inside coaxial poly(glycerol sebacate)/poly(caprolactone) (PGS/PCL) electrospun fibers. First, we show that the PGS/PCL nanofibers are biodegradable, which allows the delivery of NPs closer to the tumoral region, and have good mechanical properties, allowing the prolonged storage of the PEDOT NPs before their gradual release. Next, we demonstrate PEDOT/CUR nanoparticles can release CUR on-demand (65 % of release after applying a potential of -1.5 V for 180 s). Finally, a wireless electrostimulation platform using this NP/fiber system was set up to promote in vitro human prostate cancer cell death. We found a decrease of 67 % decrease in cancer cell viability. Overall, our results show the developed NP/fiber system has the potential to effectively deliver CUR in a highly controlled way to breast and prostate cancer in vitro models. We also show the potential of using wireless electrostimulation of drug-loaded NPs for cancer treatment, while using safe voltages for the human body. We believe our work is a stepping stone for the design and development of biomaterial-based future smarter and more effective delivery systems for anti-cancer therapy.
Collapse
Affiliation(s)
- Leonor Resina
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal; Department of Chemical Engineering, Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, Edif. I2, 08019 Barcelona, Spain
| | - Fábio F F Garrudo
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal; Instituto de Telecomunicações and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Carlos Alemán
- Department of Chemical Engineering, Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, Edif. I2, 08019 Barcelona, Spain
| | - Teresa Esteves
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Frederico Castelo Ferreira
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| |
Collapse
|
5
|
Lee IK, Xie R, Luz-Madrigal A, Min S, Zhu J, Jin J, Edwards KL, Phillips MJ, Ludwig AL, Gamm DM, Gong S, Ma Z. Micromolded honeycomb scaffold design to support the generation of a bilayered RPE and photoreceptor cell construct. Bioact Mater 2023; 30:142-153. [PMID: 37575875 PMCID: PMC10415596 DOI: 10.1016/j.bioactmat.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/27/2023] [Accepted: 07/22/2023] [Indexed: 08/15/2023] Open
Abstract
Age-related macular degeneration (AMD) causes blindness due to loss of retinal pigment epithelium (RPE) and photoreceptors (PRs), which comprise the two outermost layers of the retina. Given the small size of the macula and the importance of direct contact between RPE and PRs, the use of scaffolds for targeted reconstruction of the outer retina in later stage AMD and other macular dystrophies is particularly attractive. We developed microfabricated, honeycomb-patterned, biodegradable poly(glycerol sebacate) (PGS) scaffolds to deliver organized, adjacent layers of RPE and PRs to the subretinal space. Furthermore, an optimized process was developed to photocure PGS, shortening scaffold production time from days to minutes. The resulting scaffolds robustly supported the seeding of human pluripotent stem cell-derived RPE and PRs, either separately or as a dual cell-layered construct. These advanced, economical, and versatile scaffolds can accelerate retinal cell transplantation efforts and benefit patients with AMD and other retinal degenerative diseases.
Collapse
Affiliation(s)
- In-Kyu Lee
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ruosen Xie
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Agustin Luz-Madrigal
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Comparative Biomedical Sciences, University of Wisconsin–Madison, Madison, WI, 53706, USA
| | - Seunghwan Min
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jingcheng Zhu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jiahe Jin
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - M. Joseph Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Allison L. Ludwig
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - David M. Gamm
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Comparative Biomedical Sciences, University of Wisconsin–Madison, Madison, WI, 53706, USA
| | - Shaoqin Gong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhenqiang Ma
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Grainger Institute for Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
6
|
Fakhri V, Su CH, Tavakoli Dare M, Bazmi M, Jafari A, Pirouzfar V. Harnessing the power of polyol-based polyesters for biomedical innovations: synthesis, properties, and biodegradation. J Mater Chem B 2023; 11:9597-9629. [PMID: 37740402 DOI: 10.1039/d3tb01186k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Polyesters based on polyols have emerged as promising biomaterials for various biomedical applications, such as tissue engineering, drug delivery systems, and regenerative medicine, due to their biocompatibility, biodegradability, and versatile physicochemical properties. This review article provides an overview of the synthesis methods, performance, and biodegradation mechanisms of polyol-based polyesters, highlighting their potential for use in a wide range of biomedical applications. The synthesis techniques, such as simple polycondensation and enzymatic polymerization, allow for the fine-tuning of polyester structure and molecular weight, thereby enabling the tailoring of material properties to specific application requirements. The physicochemical properties of polyol-based polyesters, such as hydrophilicity, crystallinity, and mechanical properties, can be altered by incorporating different polyols. The article highlights the influence of various factors, such as molecular weight, crosslinking density, and degradation medium, on the biodegradation behavior of these materials, and the importance of understanding these factors for controlling degradation rates. Future research directions include the development of novel polyesters with improved properties, optimization of degradation rates, and exploration of advanced processing techniques for fabricating scaffolds and drug delivery systems. Overall, polyol-based polyesters hold significant potential in the field of biomedical applications, paving the way for groundbreaking advancements and innovative solutions that could revolutionize patient care and treatment outcomes.
Collapse
Affiliation(s)
- Vafa Fakhri
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Masoud Tavakoli Dare
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Maryam Bazmi
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aliakbar Jafari
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Vahid Pirouzfar
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Godinho B, Nogueira R, Gama N, Ferreira A. Synthesis of Prepolymers of Poly(glycerol- co-diacids) Based on Sebacic and Succinic Acid Mixtures. ACS OMEGA 2023; 8:16194-16205. [PMID: 37179609 PMCID: PMC10173435 DOI: 10.1021/acsomega.3c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023]
Abstract
In this study, poly(glycerol-co-diacids) prepolymers were produced using different ratios of glycerol (G), sebacic acid (S), and succinic acid (Su) (molar ratios: GS 1:1, GSSu 1:0.9:0.1, GSSu 1:0.8:0.2, GSSu 1:0.5:0.5, GSSu 1:0.2:0.8, GSSu 1:0.1:0.9, GSu 1:1). All polycondensation reactions were performed at 150 °C until reaching a degree of polymerization of ≈55%, inferred by the water volume collected from a reactor. We concluded that the reaction time is correlated with the ratio of diacids used, that is, the increase in succinic acid is proportional to a decrease in the duration of the reaction. In fact, the reaction of poly(glycerol sebacate) (PGS 1:1) is twice as slow as the reaction of poly(glycerol succinate) (PGSu 1:1). The obtained prepolymers were analyzed by electrospray ionization mass spectrometry (ESI-MS) and 1H and 13C nuclear magnetic resonance (NMR). Besides its catalytic influence in poly(glycerol)/ether bond formation, the presence of succinic acid also contributes to a mass growth of ester oligomers, the formation of cyclic structures, a greater number of oligomers detected, and a difference in mass distribution. When compared with PGS (1:1), and even at lower ratios, the prepolymers produced with succinic acid presented mass peak characteristics of oligomer species with a glycerol unit as its end group in higher abundance. Generally, the most abundant oligomers have molecular weights between 400 and 800 g/mol.
Collapse
Affiliation(s)
- Bruno Godinho
- CICECO—Aveiro
Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Rosana Nogueira
- CICECO—Aveiro
Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Nuno Gama
- CICECO—Aveiro
Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Artur Ferreira
- CICECO—Aveiro
Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
- ESTGA—Águeda
School of Technology and Management, Águeda 3750-127, Portugal
| |
Collapse
|
8
|
Howis J, Bandzerewicz A, Gadomska-Gajadhur A. Rapid and Efficient Optimization of Poly(1,2-Ethanediol Citrate) Synthesis Based on Magic Squares' Various Methods. Gels 2022; 9:30. [PMID: 36661798 PMCID: PMC9858187 DOI: 10.3390/gels9010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
New biomaterials among aliphatic polyesters are in demand due to their potential applications in tissue engineering. There is a challenge not only to design scaffolds to regenerate defects in load-bearing tissues but also to ensure a proper blood supply to the reconstructed tissues. Poly-(1,2-ethanediol citrate) is one of the novel citrate-based polymers that could have the desired properties for cell scaffold fabrication and for enhancing cell adhesion. Both citric acid and 1,2-ethanediol are used in medicine and are fully resorbable by cells. This work aimed to synthesize poly(1,2-ethanediol citrate) in a catalyzed reaction with water removed by the Dean-Stark apparatus. The polyester structure was characterized by FTIR and NMR spectroscopy, and the HMBC experiment was performed to support the theory of successful polymer synthesis. The molecular weight was determined for the products obtained at 140 °C. The process was described via non-linear mathematical models. The influence of temperature and catalyst content on the degree of esterification and the conversion of acid groups in citric acid is described. The optimal process parameters are determined at 140 °C and 3.6% of p-toluenesulfonic acid content. The presented results are the starting point for scaffold design and scaling-up the process.
Collapse
|
9
|
Aleemardani M, Trikić MZ, Green NH, Claeyssens F. Elastomeric, bioadhesive and pH-responsive amphiphilic copolymers based on direct crosslinking of poly(glycerol sebacate)- co-polyethylene glycol. Biomater Sci 2022; 10:7015-7031. [PMID: 36342181 DOI: 10.1039/d2bm01335e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Poly(glycerol sebacate) (PGS), a synthetic biorubber, is characterised by its biocompatibility, high elasticity and tunable mechanical properties; however, its inherent hydrophobicity and insolubility in water make it unsuitable for use in advanced biomaterials like hydrogels fabrication. Here, we developed new hydrophilic PGS-based copolymers that enable hydrogel formation through use of two different types of polyethylene glycol (PEG), polyethylene glycol (PEG2) or glycerol ethoxylate (PEG3), combined at different ratios. A two-step polycondensation reaction was used to produce poly(glycerol sebacate)-co-polyethylene glycol (PGS-co-PEG) copolymers that were then crosslinked thermally without the use of initiators or crosslinkers, resulting in PGS-co-PEG2 and PGS-co-PEG3 amphiphilic polymers. It has been illustrated that the properties of PGS-co-PEG copolymers can be controlled by altering the type and amount of PEG. PGS-co-PEG copolymers containing PEG ≥ 40% showed high swelling, flexibility, stretching, bioadhesion and biocompatibility, and good enzymatic degradation and mechanical properties. Also, the addition of PEG created hydrogels that demonstrated pH-responsive behaviours, which can be used for bioapplications requiring responding to physicochemical dynamics. Interestingly, PGS-co-40PEG2 and PGS-co-60PEG3 had the highest shear strengths, 340.4 ± 49.7 kPa and 336.0 ± 35.1 kPa, and these are within the range of commercially available sealants or bioglues. Due to the versatile multifunctionalities of these new copolymer hydrogels, they can have great potential in soft tissue engineering and biomedicine.
Collapse
Affiliation(s)
- Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK. .,Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Michael Zivojin Trikić
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK.
| | - Nicola Helen Green
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK. .,Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK. .,Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| |
Collapse
|
10
|
Yu L, Zeng G, Xu J, Han M, Wang Z, Li T, Long M, Wang L, Huang W, Wu Y. Development of Poly(Glycerol Sebacate) and Its Derivatives: A Review of the Progress over the past Two Decades. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2150774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Liu Yu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guanjie Zeng
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie Xu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Mingying Han
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Zihan Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ting Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meng Long
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Hsiao SK, Liang CW, Chang TL, Sung YC, Chen YT, Chen Y, Wang J. An in vitro fibrotic liver lobule model through sequential cell-seeding of HSCs and HepG2 on 3D-printed poly(glycerol sebacate) acrylate scaffolds. J Mater Chem B 2022; 10:9590-9598. [PMID: 36106522 DOI: 10.1039/d1tb02686k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cirrhosis is a major cause of global morbidity and mortality, and significantly leads to a heightened risk of liver cancer. Despite decades of efforts in seeking for cures for cirrhosis, this disease remains irreversible. To assist in the advancement of understanding toward cirrhosis as well as therapeutic options, various disease models, each with different strengths, are developed. With the development of three-dimensional (3D) cell culture in recent years, more realistic biochemical properties are observed in 3D cell models, which have gradually taken over the responsibilities of traditional 2D cell culture, and are expected to replace some of the animal models in the near future. Here, we propose a 3D fibrotic liver model inspired by liver lobules. In the model, 3D-printed poly(glycerol sebacate) acrylate (PGSA) scaffolds facilitated the formation of 3D tissues and guided the deposition of fibrotic structures. Through the sequential seeding of hepatic stellate cells (HSCs), HepG2 and HSCs, fibrotic septum-like tissues were created on PGSA scaffolds. As albumin secretion is considered a rather important function of the liver and is found only among hepatic cells, the detection of albumin secretion up to 30 days indicates the mimicking of basic liver functions. Moreover, the in vivo fibrotic tissue shows a high similarity to fibrotic septa. Finally, via complete encapsulation of HSCs, a down-regulated albumin secretion profile was observed in the capped model, which is a metabolic indicator that is important for the prognosis for liver cirrhosis. Looking forward, the incorporation of the vasculature will further upgrade the model into a sound tool for liver research and associated treatments.
Collapse
Affiliation(s)
- Syuan-Ku Hsiao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| | - Cheng-Wei Liang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| | - Tze-Ling Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| | - Yun-Chieh Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China. .,Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Yi-Ting Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| |
Collapse
|
12
|
Godinho B, Gama N, Ferreira A. Different methods of synthesizing poly(glycerol sebacate) (PGS): A review. Front Bioeng Biotechnol 2022; 10:1033827. [PMID: 36532580 PMCID: PMC9748623 DOI: 10.3389/fbioe.2022.1033827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/10/2022] [Indexed: 08/24/2023] Open
Abstract
Poly(glycerol sebacate) (PGS) is a biodegradable elastomer that has attracted increasing attention as a potential material for applications in biological tissue engineering. The conventional method of synthesis, first described in 2002, is based on the polycondensation of glycerol and sebacic acid, but it is a time-consuming and energy-intensive process. In recent years, new approaches for producing PGS, PGS blends, and PGS copolymers have been reported to not only reduce the time and energy required to obtain the final material but also to adjust the properties and processability of the PGS-based materials based on the desired applications. This review compiles more than 20 years of PGS synthesis reports, reported inconsistencies, and proposed alternatives to more rapidly produce PGS polymer structures or PGS derivatives with tailor-made properties. Synthesis conditions such as temperature, reaction time, reagent ratio, atmosphere, catalysts, microwave-assisted synthesis, and PGS modifications (urethane and acrylate groups, blends, and copolymers) were revisited to present and discuss the diverse alternatives to produce and adapt PGS.
Collapse
Affiliation(s)
- Bruno Godinho
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Nuno Gama
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Artur Ferreira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- ESTGA-Águeda School of Technology and Management, Águeda, Portugal
| |
Collapse
|
13
|
Massironi A, Marzorati S, Marinelli A, Toccaceli M, Gazzotti S, Ortenzi MA, Maggioni D, Petroni K, Verotta L. Synthesis and Characterization of Curcumin-Loaded Nanoparticles of Poly(Glycerol Sebacate): A Novel Highly Stable Anticancer System. Molecules 2022; 27:molecules27206997. [PMID: 36296595 PMCID: PMC9606863 DOI: 10.3390/molecules27206997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The research for alternative administration methods for anticancer drugs, towards enhanced effectiveness and selectivity, represents a major challenge for the scientific community. In the last decade, polymeric nanostructured delivery systems represented a promising alternative to conventional drug administration since they ensure secure transport to the selected target, providing active compounds protection against elimination, while minimizing drug toxicity to non-target cells. In the present research, poly(glycerol sebacate), a biocompatible polymer, was synthesized and then nanostructured to allow curcumin encapsulation, a naturally occurring polyphenolic phytochemical isolated from the powdered rhizome of Curcuma longa L. Curcumin was selected as an anticancer agent in virtue of its strong chemotherapeutic activity against different cancer types combined with good cytocompatibility within healthy cells. Despite its strong and fascinating biological activity, its possible exploitation as a novel chemotherapeutic has been hampered by its low water solubility, which results in poor absorption and low bioavailability upon oral administration. Hence, its encapsulation within nanoparticles may overcome such issues. Nanoparticles obtained through nanoprecipitation, an easy and scalable technique, were characterized in terms of size and stability over time using dynamic light scattering and transmission electron microscopy, confirming their nanosized dimensions and spherical shape. Finally, biological investigation demonstrated an enhanced cytotoxic effect of curcumin-loaded PGS-NPs on human cervical cancer cells compared to free curcumin.
Collapse
Affiliation(s)
- Alessio Massironi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
- Correspondence: (A.M.); (K.P.)
| | - Stefania Marzorati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Alessandra Marinelli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Marta Toccaceli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Stefano Gazzotti
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Marco Aldo Ortenzi
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Daniela Maggioni
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Katia Petroni
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Correspondence: (A.M.); (K.P.)
| | - Luisella Verotta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
14
|
Solvent-Free Production by Extrusion of Bio-Based Poly(glycerol-co-diacids) Sheets for the Development of Biocompatible and Electroconductive Elastomer Composites. Polymers (Basel) 2022; 14:polym14183829. [PMID: 36145974 PMCID: PMC9502118 DOI: 10.3390/polym14183829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Faced with growing global demand for new potent, bio-based, biocompatible elastomers, the present study reports the solvent-free production of 13 pure and derived poly(glycerol-co-diacid) composite sheets exclusively using itaconic acid, sebacic acid, and 2,5-furandicarboxylic acid (FDCA) with glycerol. Herein, modified melt polycondensation and Co(II)-catalyzed polytransesterification were employed to produce all exploitable prepolymers, enabling the easy and rapid manufacturing of elastomer sheets by extrusion. Most of our samples were loaded with 4 wt% of various additives such as natural polysaccharides, synthetic polymers, and/or 25 wt% sodium chloride as porogen agents. The removal of unreacted monomers and acidic short oligomers was carried out by means of washing with NaHCO3 aqueous solution, and pH monitoring was conducted until efficient sheet surface neutralization. For each sheet, their surface morphologies were observed by Field-emission microscopy, and DSC was used to confirm their amorphous nature and the impact of the introduction of every additive. The chemical constitution of the materials was monitored by FTIR. Then, cytotoxicity tests were performed for six of our most promising candidates. Finally, we achieved the production of two different types of extrusion-made PGS elastomers loaded with 10 wt% PANI particulates and 4 wt% microcrystalline cellulose for adding potential electroconductivity and stability to the material, respectively. In a preliminary experiment, we showed the effectiveness of these materials as performant, time-dependent electric pH sensors when immersed in a persistent HCl atmosphere.
Collapse
|
15
|
Yousefi Talouki P, Tamimi R, Zamanlui Benisi S, Goodarzi V, Shojaei S, Hesami tackalou S, Samadikhah HR. Polyglycerol sebacate (PGS)-based composite and nanocomposites: properties and applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2097681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Pardis Yousefi Talouki
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Reyhaneh Tamimi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
- Stem cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 13185/768, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19945-546, Tehran, Iran
| | - Shahrokh Shojaei
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
- Stem cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 13185/768, Iran
| | | | | |
Collapse
|
16
|
Karami-Mosammam M, Danninger D, Schiller D, Kaltenbrunner M. Stretchable and Biodegradable Batteries with High Energy and Power Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204457. [PMID: 35714220 DOI: 10.1002/adma.202204457] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Realizing a sustainable, technologically advanced future will necessitate solving the electronic waste problem. Biodegradable forms of electronics offer a viable path through their environmental benignity. With both the sheer number of devices produced every day as well as their areas of application ever increasing, new concepts of degradable batteries able to sustain the high power demands of modern electronics must be developed. Simultaneously, integration of electronics in close interaction with its user or powering soft robotic devices necessitates high degrees of compliance, rendering stretchable batteries indispensable. Here, a concept for merging intrinsically stretchable materials with engineered stretchability by kirigami-patterning on a component level is shown to yield high-power biodegradable batteries with reversible elasticity up to 35% when stretched uniaxially and 20% for biaxial extension. Using a combination of molybdenum metal foils, a molybdenum trioxide paste, and magnesium metal foils as electrode materials, a peak power output of 196 µW cm-2 and an energy density of 1.72 mWh cm-2 is achieved. The biodegradable batteries are used to power an on-skin biomedical sensor patch, enabling monitoring of sodium concentration in sweat. This concept provides a versatile route for high-power biodegradable batteries, enabling untethered soft electronic devices in a sustainable future.
Collapse
Affiliation(s)
- Mahya Karami-Mosammam
- Division of Soft Matter Physics, Institute for Experimental Physics, Johannes Kepler University, Altenberger Str. 69, Linz, 4040, Austria
- Soft Materials Lab, Linz Institute of Technology, Johannes Kepler University, Altenberger Str. 69, Linz, 4040, Austria
| | - Doris Danninger
- Division of Soft Matter Physics, Institute for Experimental Physics, Johannes Kepler University, Altenberger Str. 69, Linz, 4040, Austria
- Soft Materials Lab, Linz Institute of Technology, Johannes Kepler University, Altenberger Str. 69, Linz, 4040, Austria
| | - David Schiller
- Division of Soft Matter Physics, Institute for Experimental Physics, Johannes Kepler University, Altenberger Str. 69, Linz, 4040, Austria
- Soft Materials Lab, Linz Institute of Technology, Johannes Kepler University, Altenberger Str. 69, Linz, 4040, Austria
| | - Martin Kaltenbrunner
- Division of Soft Matter Physics, Institute for Experimental Physics, Johannes Kepler University, Altenberger Str. 69, Linz, 4040, Austria
- Soft Materials Lab, Linz Institute of Technology, Johannes Kepler University, Altenberger Str. 69, Linz, 4040, Austria
| |
Collapse
|
17
|
Jiang YS, Hu MH, Jan JS, Hu JJ. Incorporation of Glutamic Acid or Amino-Protected Glutamic Acid into Poly(Glycerol Sebacate): Synthesis and Characterization. Polymers (Basel) 2022; 14:polym14112206. [PMID: 35683879 PMCID: PMC9182726 DOI: 10.3390/polym14112206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Poly(glycerol sebacate) (PGS), a soft, tough elastomer with excellent biocompatibility, has been exploited successfully in many tissue engineering applications. Although tunable to some extent, the rapid in vivo degradation kinetics of PGS is not compatible with the healing rate of some tissues. The incorporation of L-glutamic acid into a PGS network with an aim to retard the degradation rate of PGS through the formation of peptide bonds was conducted in this study. A series of poly(glycerol sebacate glutamate) (PGSE) containing various molar ratios of sebacic acid/L-glutamic acid were synthesized. Two kinds of amino-protected glutamic acids, Boc-L-glutamic acid and Z-L-glutamic acid were used to prepare controls that consist of no peptide bonds, denoted as PGSE-B and PGSE-Z, respectively. The prepolymers were characterized using 1H-NMR spectroscopy. Cured elastomers were characterized using FT-IR, DSC, TGA, mechanical testing, and contact angle measurement. In vitro enzymatic degradation of PGSE over a period of 28 days was investigated. FT-IR spectroscopy confirmed the formation of peptide bonds. The glass transition temperature for the elastomer was found to increase as the ratio of sebacic acid/glutamic acid was increased to four. The decomposition temperature of the elastomer decreased as the amount of glutamic acid was increased. PGSE exhibited less stiffness and larger elongation at break as the ratio of sebacic acid/glutamic acid was decreased. Notably, PGSE-Z was stiffer and had smaller elongation at break than PGSE and PGSE-B at the same molar ratio of monomers. The results of in vitro enzymatic degradation demonstrated that PGSE has a lower degradation rate than does PGS, whereas PGSE-B and PGSE-Z degrade at a greater rate than does PGS. SEM images suggest that the degradation of these crosslinked elastomers is due to surface erosion. The cytocompatibility of PGSE was considered acceptable although slightly lower than that of PGS. The altered mechanical properties and retarded degradation kinetics for PGSE reflect the influence of peptide bonds formed by the introduction of L-glutamic acid. PGSE displaying a lower degradation rate compared to that for PGS can be used as a scaffold material for the repair or regeneration of tissues that are featured by a low healing rate.
Collapse
Affiliation(s)
- Yi-Sheng Jiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Ming-Hsien Hu
- Bachelor Program for Design and Materials for Medical Equipment and Devices, Da-Yeh University, Changhua 515, Taiwan;
- Orthopedic Department, Showchwan Memorial Hospital, Changhua 500, Taiwan
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (J.-S.J.); (J.-J.H.)
| | - Jin-Jia Hu
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence: (J.-S.J.); (J.-J.H.)
| |
Collapse
|
18
|
Potential of Biodegradable Synthetic Polymers for Use in Small-diameter Vascular Engineering. Macromol Res 2022. [DOI: 10.1007/s13233-022-0056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Rezk AI, Yeon Kim J, Su Kim B, Hee Park C, Sang Kim C. De novo dual functional 3D scaffold using computational simulation with controlled drug release. J Colloid Interface Sci 2022; 625:12-23. [PMID: 35714404 DOI: 10.1016/j.jcis.2022.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 01/03/2023]
Abstract
A novel and facile synthesis is made of cotton-like three-dimensional (3D) fibrous scaffold containing spatiotemporally defined patterns of simvastatin (SIM) optimized for angiogenesis-coupled osteogenesis. Herein, we demonstrate the 3D fiber deposition mechanism in detail during the electrospinning process via computer simulation. The 3D fibrous scaffolds were functionalized with hydroxyapatite nanoparticles (HA - NPs) to induce the biomineralization process mimicking the natural apatite layer. The morphology, physiochemical properties, biomimetic mineralization, and drug release of the as-fabricated 3D fibrous scaffolds of simvastatin-loaded poly (ɛ-caprolactone) poly (glycerol-sebacate) hydroxyapatite nanoparticles (3D - PGHS) were investigated. The effects of simvastatin on the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and angiogenesis in human umbilical vein endothelial cells (HUVECs) were assessed. The results showed that the 3D - PGHS both enhanced the expression of osteogenic markers including ALP, RUNX2, and COLA1 in hMSCs, and promoted the migration and tube formation of HUVECs. This finding demonstrates the potential of 3D scaffold-loaded SIM as a putative point-of-care therapy for tightly controlled tissue regeneration.
Collapse
Affiliation(s)
- Abdelrahman I Rezk
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Ju Yeon Kim
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Beom Su Kim
- Carbon Nano Convergence Technology Center for Next Generation Engineers (CNN), Jeonbuk National University, Jeonju City 561-756, Republic of Korea; Cellco Inc., Jeonju University, Cheonjam-ro303, Wansan-gu 55069, Republic of Korea.
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
20
|
Seyfikar S, Asgharnejad-laskoukalayeha M, Hassan Jafari S, Goodarzi V, Hadi Salehi M, Zamanlui S. Introducing a New Approach to Preparing Bionanocomposite Sponges Based on Poly (glycerol sebacate urethane) (PGSU) with Great Interconnectivity and High Hydrophilicity Properties for Application in Tissue Engineering. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Chen S, Wu Z, Chu C, Ni Y, Neisiany RE, You Z. Biodegradable Elastomers and Gels for Elastic Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105146. [PMID: 35212474 PMCID: PMC9069371 DOI: 10.1002/advs.202105146] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Indexed: 05/30/2023]
Abstract
Biodegradable electronics are considered as an important bio-friendly solution for electronic waste (e-waste) management, sustainable development, and emerging implantable devices. Elastic electronics with higher imitative mechanical characteristics of human tissues, have become crucial for human-related applications. The convergence of biodegradability and elasticity has emerged a new paradigm of next-generation electronics especially for wearable and implantable electronics. The corresponding biodegradable elastic materials are recognized as a key to drive this field toward the practical applications. The review first clarifies the relevant concepts including biodegradable and elastic electronics along with their general design principles. Subsequently, the crucial mechanisms of the degradation in polymeric materials are discussed in depth. The diverse types of biodegradable elastomers and gels for electronics are then summarized. Their molecular design, modification, processing, and device fabrication especially the structure-properties relationship as well as recent advanced are reviewed in detail. Finally, the current challenges and the future directions are proposed. The critical insights of biodegradability and elastic characteristics in the elastomers and gel allows them to be tailored and designed more effectively for electronic applications.
Collapse
Affiliation(s)
- Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Zekai Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Chengzhen Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Yufeng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer EngineeringFaculty of EngineeringHakim Sabzevari UniversitySabzevar9617976487Iran
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| |
Collapse
|
22
|
Golbaten-Mofrad H, Salehi MH, Jafari SH, Goodarzi V, Entezari M, Hashemi M. Preparation and properties investigation of biodegradable poly (glycerol sebacate-co-gelatin) containing nanoclay and graphene oxide for soft tissue engineering applications. J Biomed Mater Res B Appl Biomater 2022; 110:2241-2257. [PMID: 35467798 DOI: 10.1002/jbm.b.35073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 11/07/2022]
Abstract
This study has attempted to systematically investigate the influence of nanoclay and graphene oxide (GO) on thermal, mechanical, hydrophobic, and, most importantly, biological properties of poly(glycerol sebacate)/gelatin (PGS/gel) nanocomposites. The PGS/gel copolymer nanocomposites were successfully synthesized via in situ polymerization, approved by rudimentary characterization methods. The nanofillers were appropriately dispersed within the elastomeric matrix according to morphological studies. Also, the fillers posed as a hydrophobic entity that slightly decreased the hydrophilic properties of PGS/gel. This could be sensed clearly in hybrid composite due to the robust network of GO and clay. Water contact angle values for gelatin-contained nanocomposites were reported in the range of 38.42° to 66.7°, indicating the hydrophilic nature of the prepared samples. Thermal and mechanical studies of nanocomposites displayed rather contradicting results as the former improved while a slight decrease in the latter was noticed compared to the pristine specimens. In dry conditions, their storage modulus was in the range of 0.94-6.4 MPa, making them suitable for mimicking some soft tissues. The swelling ratio for nanocomposites containing nanoparticles was associated with an ascending trend so that GO improved the swelling rate by up to 45%. Biological analyses, such as Ames and in vitro cell viability tests, exhibited promising outcomes. As for the mutagenesis effect, the PGS and hybrid samples showed negative results. The presence of functional groups on the nanofillers' surface positively influenced the cells' metabolic activity as well as its attachment to the matrix. After 7 days, the cell proliferation rate resulted in an 82% improvement for the GO-containing nanocomposite, significantly higher than its neat counterpart (65%). This study has shown the feasibility of the prepared bio-elastomer nanocomposites for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Hooman Golbaten-Mofrad
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Hadi Salehi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed Hassan Jafari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
23
|
Lang K, Quichocho HB, Black SP, Bramson MTK, Linhardt RJ, Corr DT, Gross RA. Lipase-Catalyzed Poly(glycerol-1,8-octanediol-sebacate): Biomaterial Engineering by Combining Compositional and Crosslinking Variables. Biomacromolecules 2022; 23:2150-2159. [PMID: 35468284 DOI: 10.1021/acs.biomac.2c00198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study examined poly(glycerol-1,8-octanediol-sebacate) (PGOS) copolymers with low-level substitution of O (1,8-octanediol) for G (glycerol) units (G/O ratios 0.5:0.5, 0.66:0.33, 0.75:0.25, 0.8:0.2, and 0.91:0.09) prepared in bulk by immobilized Candida antarctica Lipase B (N435) catalysis. The central question explored was the extent that exchanging less than half of poly(glycerol sebacate) (PGS) glycerol units with 1,8-octanediol can be used as a strategy to fine-tune biomaterial properties. Synthesized copolymers having G/O ratios of 0.66:0.33, 0.75:0.25, 0.8:0.2, and 0.91:0.09 have similar molecular weights, where Mw varied from 52,800 to 63,800 g/mol, Mn varied from 5100 to 6450 g/mol, and ĐM (molecular mass dispersity, Mw/Mn) values were also similar (8.4-11.4). All of the copolymers were branched, and dendritic glycerol units reached 11% for PGOS-0.91:0.09:1.0. Analysis of DSC second heating scans revealed that copolymers with higher 1,8-octanediol contents have relatively higher Tm and ΔHf values. Over the copolymer compositional range studied herein, Tm and ΔHf values varied from 5.3 to 21.1 °C and 8.0 to 23.1 J/g, respectively. Stress-strain curves of PGOS copolymers cured at 140 °C for 48 h exhibited either a unimodal, bimodal, or trimodal response to tensile loading. Varying G/O from 10:1 to 2:1 resulted in significant increases in the peak stress (0.26-4.01 MPa), preyield modulus (0.65-62.59 MPa), failure to strain (64-110%), and failure toughness (0.1-0.56 MPa). This demonstrates that altering the G/O ratio over a narrow compositional range provides biomaterials with widely different yet tunable mechanical properties. Further investigation of PGOS-0.75:0.25:1.0 films revealed that varying the cure conditions from 120 to 160 °C for periods of 24-72 h provides access to biomaterials with a failure strain range from 15 to 224% and Young's modulus from 1.17 to 10.85 MPa. Hence, using the dual variables of compositional variation and changes in cure conditions provides an exciting platform for PGS analogues to optimize material-tissue interactions. Increased contents of 1,8-octanediol slowed in vitro degradation. Slowed degradation of PGOS relative to PGS will be valuable for use in slower healing wounds.
Collapse
Affiliation(s)
- Kening Lang
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ha'Ani-Belle Quichocho
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Sarah P Black
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Michael T K Bramson
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - David T Corr
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Richard A Gross
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
24
|
Riaz R, Abbas SR, Iqbal M. Synthesis, rheological characterization, and proposed application of pre‐polyglycerol sebacate as ultrasound contrast agent based on theoretical estimation. J Appl Polym Sci 2022. [DOI: 10.1002/app.51963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ramish Riaz
- Department of Industrial Biotechnology Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Shah Rukh Abbas
- Department of Industrial Biotechnology Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) Islamabad Pakistan
| | | |
Collapse
|
25
|
Tevlek A, Topuz B, Akbay E, Aydin HM. Surface channel patterned and endothelialized poly(glycerol sebacate) based elastomers. J Biomater Appl 2022; 37:287-302. [DOI: 10.1177/08853282221085798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prevascularization of tissue equivalents is critical for fulfilling the need for sufficient vascular organization for nutrient and gas transport. Hence, endothelial cell culture on biomaterials is of great importance for researchers. Numerous alternate strategies have been suggested in this sense, with cell-based methods being the most commonly employed. In this study, poly (glycerol sebacate) (PGS) elastomers with varying crosslinking ratios were synthesized and their surfaces were patterned with channels by using laser ablation technique. In order to determine an ideal material for cell culture studies, the elastomers were subsequently mechanically, chemically, and biologically characterized. Following that, human umbilical vein endothelial cells (HUVECs) were seeded into the channels established on the PGS membranes and cultured under various culture conditions to establish the optimal culture parameters. Lastly, the endothelial cell responses to the synthesized PGS elastomers were evaluated. Remarkable cell proliferation and impressive cellular organizations were noticed on the constructs created as part of the investigation. On the concrete output of this research, arrangements in various geometries can be created by laser ablation method and the effects of various molecules, drugs or agents on endothelial cells can be evaluated. The platforms produced can be employed as an intermediate biomaterial layer containing endothelial cells for vascularization of tissue-engineered structures, particularly in layer-by-layer tissue engineering approaches.
Collapse
Affiliation(s)
- Atakan Tevlek
- Institute of Science, Bioengineering Division, Hacettepe University, Ankara, Turkey
| | - Bengisu Topuz
- Institute of Science, Bioengineering Division, Hacettepe University, Ankara, Turkey
| | - Esin Akbay
- Faculty of Science, Department of Biology, Hacettepe University, Ankara, Turkey
| | - Halil Murat Aydin
- Institute of Science, Bioengineering Division, Hacettepe University, Ankara, Turkey
- Centre for Bioengineering, Hacettepe University, Ankara, Turkey§Current Affiliation: METU MEMS Center, Ankara, Turkey
| |
Collapse
|
26
|
Saghebasl S, Akbarzadeh A, Gorabi AM, Nikzamir N, SeyedSadjadi M, Mostafavi E. Biodegradable functional macromolecules as promising scaffolds for cardiac tissue engineering. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Solmaz Saghebasl
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Abolfazl Akbarzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Universal Scientific Education and Research Network (USERN) Tabriz Iran
| | - Armita Mahdavi Gorabi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Nasrin Nikzamir
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| | | | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute Stanford University School of Medicine Stanford California USA
- Department of Medicine Stanford University School of Medicine Stanford California USA
| |
Collapse
|
27
|
Becerril-Rodriguez IC, Claeyssens F. Low methacrylated poly (glycerol sebacate) for soft tissue engineering. Polym Chem 2022. [DOI: 10.1039/d2py00212d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tissue engineering for soft tissue has made great advances in recent years, though there are still challenges to overcome. The main problem is that autologous tissue implants have not given...
Collapse
|
28
|
Ning Z, Lang K, Xia K, Linhardt RJ, Gross RA. Lipase-Catalyzed Synthesis and Characterization of Poly(glycerol sebacate). Biomacromolecules 2021; 23:398-408. [PMID: 34936341 DOI: 10.1021/acs.biomac.1c01351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study demonstrated that immobilized Candida antarctica lipase B (N435) catalysis in bulk leads to higher molecular weight poly(glycerol sebacate), PGS, than self-catalyzed condensation polymerization. Since the glass-transition temperature, fragility, modulus, and strength for rubbery networks are inversely dependent on the concentration of chain ends, higher molecular weight PGS prepolymers will enable the preparation of cross-linked PGS matrices with unique mechanical properties. The evolution of molecular species during the prepolymerization step conducted at 120 °C for 24 h, prior to enzyme addition, revealed regular decreases in sebacic acid and glycerol-sebacate dimer with corresponding increases in oligomers with chain lengths from 3 to 7 units such that a homogeneous liquid substrate has resulted. At 67 h, for N435-catalyzed PGS synthesis, the carboxylic acid conversion reached 82% without formation of a gel fraction, and number-average molecular weight (Mn) and weight-average molecular weight (Mw) values reached 6000 and 59 400 g/mol, respectively. In contrast, self-catalyzed PGS condensation polymerizations required termination at 55 h to avoid gelation, reached 72% conversion, and Mn and Mw values of 2600 and 13 800 g/mol, respectively. We also report the extent that solvent fractionation can enrich PGS in higher molecular weight chains. The use of methanol as a nonsolvent increased Mn and Mw by 131.7 and 18.3%, respectively, and narrower dispersity (Đ) decreased by 47.7% relative to the nonfractionated product.
Collapse
Affiliation(s)
- Zhuoyuan Ning
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Kening Lang
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ke Xia
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Richard A Gross
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
29
|
Sha D, Wu Z, Zhang J, Ma Y, Yang Z, Yuan Y. Development of modified and multifunctional poly(glycerol sebacate) (PGS)-based biomaterials for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Siehr A, Flory C, Callaway T, Schumacher RJ, Siegel RA, Shen W. Implantable and Degradable Thermoplastic Elastomer. ACS Biomater Sci Eng 2021; 7:5598-5610. [PMID: 34788004 DOI: 10.1021/acsbiomaterials.1c01123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biodegradable and implantable materials having elastomeric properties are highly desirable for many biomedical applications. Here, we report that poly(lactide)-co-poly(β-methyl-δ-valerolactone)-co-poly(lactide) (PLA-PβMδVL-PLA), a thermoplastic triblock poly(α-ester), has combined favorable properties of elasticity, biodegradability, and biocompatibility. This material exhibits excellent elastomeric properties in both dry and aqueous environments. The elongation at break is approximately 1000%, and stretched specimens completely recover to their original shape after force is removed. The material is degradable both in vitro and in vivo; it degrades more slowly than poly(glycerol sebacate) and more rapidly than poly(caprolactone) in vivo. Both the polymer and its degradation product show high cytocompatibility in vitro. The histopathological analysis of PLA-PβMδVL-PLA specimens implanted in the gluteal muscle of rats for 1, 4, and 8 weeks revealed similar tissue responses as compared with poly(glycerol sebacate) and poly(caprolactone) controls, two widely accepted implantable polymers, suggesting that PLA-PβMδVL-PLA can potentially be used as an implantable material with favorable in vivo biocompatibility. The thermoplastic nature allows this elastomer to be readily processed, as demonstrated by the facile fabrication of the substrates with topographical cues to enhance muscle cell alignment. These properties collectively make this polymer potentially highly valuable for applications such as medical devices and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Allison Siehr
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Craig Flory
- Center for Translational Medicine, University of Minnesota, Phillips-Wangensteen Building 516 Delaware St. SE, MMC 367, Minneapolis, Minnesota 55455, United States
| | - Trenton Callaway
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Robert J Schumacher
- Center for Translational Medicine, University of Minnesota, Phillips-Wangensteen Building 516 Delaware St. SE, MMC 367, Minneapolis, Minnesota 55455, United States.,Experimental and Clinical Pharmacology, University of Minnesota, 7-115 Weaver-Densford Hall, 308 Harvard St. SE, Minneapolis, Minnesota 55455, United States
| | - Ronald A Siegel
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States.,Department of Pharmaceutics, University of Minnesota, 308 Harvard St. SE, Room 9-177 Weaver Densford Hall, Minneapolis, Minnesota 55455, United States.,Institute for Engineering in Medicine, University of Minnesota, 420 Delaware St. SE, 725 Mayo Memorial Building, MMC 609, Minneapolis, Minnesota 55455, United States
| | - Wei Shen
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States.,Institute for Engineering in Medicine, University of Minnesota, 420 Delaware St. SE, 725 Mayo Memorial Building, MMC 609, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
31
|
Golbaten-Mofrad H, Seyfi Sahzabi A, Seyfikar S, Salehi MH, Goodarzi V, Wurm FR, Jafari SH. Facile template preparation of novel electroactive scaffold composed of polypyrrole-coated poly(glycerol-sebacate-urethane) for tissue engineering applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110749] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Gadomska‐Gajadhur A, Bandzerewicz A, Wrzecionek M, Ruśkowski P. Biobased poly(glycerol citrate) synthesis optimization via design of experiments. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Paweł Ruśkowski
- Faculty of Chemistry Warsaw University of Technology Warsaw Poland
| |
Collapse
|
33
|
Chang CW, Yeh YC. Poly(glycerol sebacate)-co-poly(ethylene glycol)/Gelatin Hybrid Hydrogels as Biocompatible Biomaterials for Cell Proliferation and Spreading. Macromol Biosci 2021; 21:e2100248. [PMID: 34514730 DOI: 10.1002/mabi.202100248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/06/2021] [Indexed: 01/05/2023]
Abstract
Synthetic polymers have been widely employed to prepare hydrogels for biomedical applications, such as cell culture, drug delivery, and tissue engineering. However, the activity of cells cultured in the synthetic polymer-based hydrogels faces the challenges of limited cell proliferation and spreading compared to cells cultured in natural polymer-based hydrogels. To address this concern, a hybrid hydrogel strategy is demonstrated by incorporating thiolated gelatin (GS) into the norbornene-functionalized poly (glycerol sebacate)-co-polyethylene glycol (Nor_PGS-co-PEG, NPP) network to prepare highly biocompatible NPP/GS_UV hydrogels after the thiol-ene photo-crosslinking reaction. The GS introduces several desirable features (i.e., enhanced water content, enlarged pore size, increased mechanical property, and more cell adhesion sites) to the NPP/GS_UV hydrogels, facilitating the cell proliferation and spreading inside the network. Thus, the highly biocompatible NPP/GS_UV hydrogels are promising materials for cell encapsulation and tissue engineering applications. Taken together, the hybrid hydrogel strategy is demonstrated as a powerful approach to fabricate hydrogels with a highly friendly environment for cell culture, expanding the biomedical applications of hydrogels.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
34
|
Enzymatic synthesis of glycerol, azido-glycerol and azido-triglycerol based amphiphilic copolymers and their relevance as nanocarriers: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Garrudo FFF, Nogueira DES, Rodrigues CAV, Ferreira FA, Paradiso P, Colaço R, Marques AC, Cabral JMS, Morgado J, Linhardt RJ, Ferreira FC. Electrical stimulation of neural-differentiating iPSCs on novel coaxial electroconductive nanofibers. Biomater Sci 2021; 9:5359-5382. [PMID: 34223566 DOI: 10.1039/d1bm00503k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neural tissue engineering strategies are paramount to create fully mature neurons, necessary for new therapeutic strategies for neurological diseases or the creation of reliable in vitro models. Scaffolds can provide physical support for these neurons and enable cues for enhancing neural cell differentiation, such as electrical current. Coaxial electrospinning fibers, designed to fulfill neural cell needs, bring together an electroconductive shell layer (PCL-PANI), able to mediate electrical stimulation of cells cultivated on fibers mesh surface, and a soft core layer (PGS), used to finetune fiber diameter (951 ± 465 nm) and mechanical properties (1.3 ± 0.2 MPa). Those dual functional coaxial fibers are electroconductive (0.063 ± 0.029 S cm-1, stable over 21 days) and biodegradable (72% weigh loss in 12 hours upon human lipase accelerated assay). For the first time, the long-term effects of electrical stimulation on induced neural progenitor cells were studied using such fibers. The results show increase in neural maturation (upregulation of MAP2, NEF-H and SYP), up-regulation of glutamatergic marker genes (VGLUT1 - 15-fold) and voltage-sensitive channels (SCN1α - 12-fold, CACNA1C - 32-fold), and a down-regulation of GABAergic marker (GAD67 - 0.09-fold), as detected by qRT-PCR. Therefore, this study suggest a shift from an inhibitory to an excitatory neural cell profile. This work shows that the PGS/PCL-PANI coaxial fibers here developed have potential applications in neural tissue engineering.
Collapse
Affiliation(s)
- Fábio F F Garrudo
- Department of Chemistry and Chemical Biology, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA. and Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal. and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal and Department of Bioengineering and Instituto de Telecomunicações, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001, Lisboa, Portugal
| | - Diogo E S Nogueira
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal. and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Carlos A V Rodrigues
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal. and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Flávio A Ferreira
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal. and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Patrizia Paradiso
- IDMEC - Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa, Portugal
| | - Rogério Colaço
- IDMEC - Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa, Portugal
| | - Ana C Marques
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, P-1049-001 Lisboa, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal. and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jorge Morgado
- Department of Bioengineering and Instituto de Telecomunicações, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001, Lisboa, Portugal
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA.
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal. and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
36
|
Wu Z, Jin K, Wang L, Fan Y. A Review: Optimization for Poly(glycerol sebacate) and Fabrication Techniques for Its Centered Scaffolds. Macromol Biosci 2021; 21:e2100022. [PMID: 34117837 DOI: 10.1002/mabi.202100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/26/2021] [Indexed: 12/29/2022]
Abstract
Poly(glycerol sebacate) (PGS), an emerging promising thermosetting polymer synthesized from sebacic acid and glycerol, has attracted considerable attention due to its elasticity, biocompatibility, and tunable biodegradation properties. But it also has some drawbacks such as harsh synthesis conditions, rapid degradation rates, and low stiffness. To overcome these challenges and optimize PGS performance, various modification methods and fabrication techniques for PGS-based scaffolds have been developed in recent years. Outlining the current modification approaches of PGS and summarizing the fabrication techniques for PGS-based scaffolds are of great importance to accelerate the development of new materials and enable them to be appropriately used in potential applications. Thus, this review comprehensively overviews PGS derivatives, PGS composites, PGS blends, processing for PGS-based scaffolds, and their related applications. It is envisioned that this review could instruct and inspire the design of the PGS-based materials and facilitate tissue engineering advances into clinical practice.
Collapse
Affiliation(s)
- Zebin Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Kaixiang Jin
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,School of Medical Science and Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
37
|
Chopra H, Singh I, Kumar S, Bhattacharya T, Rahman MH, Akter R, Kabir MT. Comprehensive Review on Hydrogels. Curr Drug Deliv 2021; 19:658-675. [PMID: 34077344 DOI: 10.2174/1567201818666210601155558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
The conventional drug delivery systems have a long list of issues of repeated dosing and toxicity arising due to it. The hydrogels are the answer to them and offer a result that minimizes such activities and optimizes therapeutic benefits. The hydrogels proffer tunable properties that can withstand degradation, metabolism, and controlled release moieties. Some of the areas of applications of hydrogels involve wound healing, ocular systems, vaginal gels, scaffolds for tissue, bone engineering, etc. They consist of about 90% of the water that makes them suitable bio-mimic moiety. Here, we present a birds-eye view of various perspectives of hydrogels, along with their applications.
Collapse
Affiliation(s)
- Hitesh Chopra
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Rajpura-140401, Patiala, Punjab, India
| | - Inderbir Singh
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Rajpura-140401, Patiala, Punjab, India
| | - Sandeep Kumar
- Department of Pharmaceutics, ASBASJSM College of Pharmacy, Bela-140111, Ropar, Punjab, India
| | | | - Md Habibur Rahman
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100. Bangladesh
| | - Rokeya Akter
- Department of Pharmacy, Southeast University, Banani, Dhaka-1213. Bangladesh
| | - Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212. Bangladesh
| |
Collapse
|
38
|
Barbier M, Le Guen MJ, McDonald-Wharry J, Bridson JH, Pickering KL. Quantifying the Shape Memory Performance of a Three-Dimensional-Printed Biobased Polyester/Cellulose Composite Material. 3D PRINTING AND ADDITIVE MANUFACTURING 2021; 8:193-200. [PMID: 36654660 PMCID: PMC9828606 DOI: 10.1089/3dp.2020.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A biobased composite material with heat-triggered shape memory ability was successfully formulated for three-dimensional (3D) printing. It was produced from cellulose nanocrystals and cellulose micro-powder particles within a bioderived thermally cured polyester matrix based on glycerol, citric acid, and sebacic acid. The effect of curing duration on the material's shape memory behavior was quantified by using two thermo-mechanical approaches to measure recovery: (1) displacement in three-point bending and (2) angular recovery from a beam bent at 90° in a single cantilever setup. Extending curing duration increased the material's glass-transition temperature from -26°C after 6 h to 13°C after 72 h of curing. Fourier-transform infrared spectroscopy confirmed the associated progressive conversion of functional groups consistent with polyester formation. Slow recovery rates and low levels of shape recovery (22-70%) were found for samples cured less than 24 h. Those results also indicated a high dependence on the measurement approach. In contrast, samples cured for 48 and 72 h exhibited faster recovery rates, a significantly higher recovery percentage (90-100%) and were less sensitive to the measurement approach. Results demonstrated that once a sufficient curing threshold was achieved, additional curing time could be used to tune the material glass-transition temperature and create heat-triggered 3D-printed products.
Collapse
Affiliation(s)
- Maxime Barbier
- Scion, Rotorua, New Zealand
- Address correspondence to: Maxime Barbier, Scion, Private Bag 3020, Rotorua 3010, New Zealand
| | | | - John McDonald-Wharry
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | | | - Kim L. Pickering
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
39
|
Vogt L, Ruther F, Salehi S, Boccaccini AR. Poly(Glycerol Sebacate) in Biomedical Applications-A Review of the Recent Literature. Adv Healthc Mater 2021; 10:e2002026. [PMID: 33733604 PMCID: PMC11468981 DOI: 10.1002/adhm.202002026] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/10/2021] [Indexed: 12/13/2022]
Abstract
Poly(glycerol sebacate) (PGS) continues to attract attention for biomedical applications owing to its favorable combination of properties. Conventionally polymerized by a two-step polycondensation of glycerol and sebacic acid, variations of synthesis parameters, reactant concentrations or by specific chemical modifications, PGS materials can be obtained exhibiting a wide range of physicochemical, mechanical, and morphological properties for a variety of applications. PGS has been extensively used in tissue engineering (TE) of cardiovascular, nerve, cartilage, bone and corneal tissues. Applications of PGS based materials in drug delivery systems and wound healing are also well documented. Research and development in the field of PGS continue to progress, involving mainly the synthesis of modified structures using copolymers, hybrid, and composite materials. Moreover, the production of self-healing and electroactive materials has been introduced recently. After almost 20 years of research on PGS, previous publications have outlined its synthesis, modification, properties, and biomedical applications, however, a review paper covering the most recent developments in the field is lacking. The present review thus covers comprehensively literature of the last five years on PGS-based biomaterials and devices focusing on advanced modifications of PGS for applications in medicine and highlighting notable advances of PGS based systems in TE and drug delivery.
Collapse
Affiliation(s)
- Lena Vogt
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Florian Ruther
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Sahar Salehi
- Chair of Biomaterials, University of Bayreuth, Bayreuth, 95447, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| |
Collapse
|
40
|
Hosseini Chenani F, Rezaei VF, Fakhri V, Wurm FR, Uzun L, Goodarzi V. Green synthesis and characterization of poly(glycerol‐azelaic acid) and its nanocomposites for applications in regenerative medicine. J Appl Polym Sci 2021. [DOI: 10.1002/app.50563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Vahid Faghihi Rezaei
- Department of Biomedical Engineering Islamic Azad University, Central Tehran Branch Tehran Iran
| | - Vafa Fakhri
- Department of Polymer Engineering Amirkabir University of Technology Tehran Iran
| | - Frederik R. Wurm
- Sustainable Polymer Chemistry Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology Universiteit Twente Enschede The Netherlands
| | - Lokman Uzun
- Faculty of Science, Department of Chemistry Hacettepe University Ankara Turkey
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| |
Collapse
|
41
|
Wrzecionek M, Ruśkowski P, Gadomska‐Gajadhur A. Mathematically described preparation process of poly(glycerol succinate) resins and elastomers—Meeting science with industry. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Paweł Ruśkowski
- Faculty of Chemistry Warsaw University of Technology Warsaw Poland
| | | |
Collapse
|
42
|
Johnson AR, Forster SP, White D, Terife G, Lowinger M, Teller RS, Barrett SE. Drug eluting implants in pharmaceutical development and clinical practice. Expert Opin Drug Deliv 2021; 18:577-593. [PMID: 33275066 DOI: 10.1080/17425247.2021.1856072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Drug eluting implants offer patient convenience and improved compliance through less frequent dosing, eliminating repeated, painful injections and providing localized, site specific delivery with applications in contraception, ophthalmology, and oncology.Areas covered: This review provides an overview of available implant products, design approaches, biodegradable and non-biodegradable polymeric materials, and fabrication techniques with a focus on commercial applications and industrial drug product development. Developing trends in the field, including expanded availability of suitable excipients, development of novel materials, scaled down manufacturing process, and a wider understanding of the implant development process are discussed and point to opportunities for differentiated drug eluting implant products.Expert opinion: In the future, long-acting implants will be important clinical tools for prophylaxis and treatment of global health challenges, especially for infectious diseases, to reduce the cost and difficulty of treating chronic indications, and to prolong local delivery in difficult to administer parts of the body. These products will help improve patient safety, adherence, and comfort.
Collapse
Affiliation(s)
- Ashley R Johnson
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| | - Seth P Forster
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| | | | - Graciela Terife
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| | - Michael Lowinger
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| | | | - Stephanie E Barrett
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|
43
|
Bagewadi S, Parameswaran S, Krishnakumar S, Sethuraman S, Subramanian A. Tissue engineering approaches towards the regeneration of biomimetic scaffolds for age-related macular degeneration. J Mater Chem B 2021; 9:5935-5953. [PMID: 34254105 DOI: 10.1039/d1tb00976a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Age-related macular degeneration (AMD) is the third major cause of blindness in people aged above 60 years. It causes dysfunction of the retinal pigment epithelium (RPE) and leads to an irreversible loss of central vision. The present clinical treatment options are more palliative in controlling the progression of the disease and do not functionally restore the degenerated RPE monolayer and photoreceptors. Currently, the clinical transplantation of RPE cells has shown poor engraftment potential due to the absence of an intact Bruch's membrane in AMD patients, thereby the vision is unable to be restored completely. Although tissue engineering strategies target the development of Bruch's membrane-mimetic substrates, the challenge still lies in the development of an ultrathin, biologically and mechanically equivalent membrane to restore visual acuity. Further, existing limitations such as cellular aggregation, surgical complications including retinal tissue damage, tissue rejection, disease transmission, inferior mechanical strength, and the loss of vision over time demand the search for an ideal strategy to restore the functional RPE. Hence, this review aims to provide insights into various approaches, from conventional cell therapy to 3D bioprinting, and their unmet challenges in treating AMD by outlining the pathophysiology of AMD and the host tissue response with respect to injury, treatment and preclinical animal models.
Collapse
Affiliation(s)
- Shambhavi Bagewadi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology Vision Research Foundation, Chennai, India
| | - Subramanian Krishnakumar
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology Vision Research Foundation, Chennai, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - Anuradha Subramanian
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
44
|
Fakhri V, Jafari A, Shafiei MA, Ehteshamfar MV, Khalighiyan S, Hosseini H, Goodarzi V, Wurm FR, Moosazadeh Moghaddam M, Khonakdar HA. Development of physical, mechanical, antibacterial and cell growth properties of poly(glycerol sebacate urethane) (PGSU) with helping of curcumin and hydroxyapatite nanoparticles. Polym Chem 2021. [DOI: 10.1039/d1py01040a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Biocompatible and antimicrobial elastomers with controlled hydrophilicity and degradation rate, as well as appropriate stiffness and elasticity, are interesting for biomedical applications, such as regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Vafa Fakhri
- Department of Polymer Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Aliakbar Jafari
- Department of Polymer Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Mir Alireza Shafiei
- Department of Polymer Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Mohammad Vahid Ehteshamfar
- Department of Mechanical Engineering, Amirkabir University of Technology, 424 Hafez Avenue, Tehran 15875-4413, Iran
| | - Shima Khalighiyan
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, P.O. Box: 19395-1495, Tehran, Iran
| | - Hadi Hosseini
- Faculty of Engineering & Technology, University of Mazandaran, Babolsar, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19945-546, Tehran, Iran
| | - Frederik R. Wurm
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, Enschede, The Netherlands
| | - Mehrdad Moosazadeh Moghaddam
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19945-546, Tehran, Iran
| | - Hossein Ali Khonakdar
- Department of Processing, Iran Polymer and Petrochemical Institute, PO Box 14965/115, Tehran, Iran
- Reactive processing, Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, Dresden D-01069, Germany
| |
Collapse
|
45
|
Lang K, Sánchez-Leija RJ, Gross RA, Linhardt RJ. Review on the Impact of Polyols on the Properties of Bio-Based Polyesters. Polymers (Basel) 2020; 12:E2969. [PMID: 33322728 PMCID: PMC7764582 DOI: 10.3390/polym12122969] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Bio-based polyol polyesters are biodegradable elastomers having potential utility in soft tissue engineering. This class of polymers can serve a wide range of biomedical applications. Materials based on these polymers are inherently susceptible to degradation during the period of implantation. Factors that influence the physicochemical properties of polyol polyesters might be useful in achieving a balance between durability and biodegradability. The characterization of these polyol polyesters, together with recent comparative studies involving creative synthesis, mechanical testing, and degradation, have revealed many of their molecular-level differences. The impact of the polyol component on the properties of these bio-based polyesters and the optimal reaction conditions for their synthesis are only now beginning to be resolved. This review describes our current understanding of polyol polyester structural properties as well as a discussion of the more commonly used polyol monomers.
Collapse
Affiliation(s)
- Kening Lang
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.L.); (R.J.S.-L.)
| | - Regina J. Sánchez-Leija
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.L.); (R.J.S.-L.)
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, USA
| | - Richard A. Gross
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.L.); (R.J.S.-L.)
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.L.); (R.J.S.-L.)
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
46
|
Zbinden JC, Blum KM, Berman AG, Ramachandra AB, Szafron JM, Kerr KE, Anderson JL, Sangha GS, Earl CC, Nigh NR, Mirhaidari GJM, Reinhardt JW, Chang Y, Yi T, Smalley R, Gabriele PD, Harris JJ, Humphrey JD, Goergen CJ, Breuer CK. Effects of Braiding Parameters on Tissue Engineered Vascular Graft Development. Adv Healthc Mater 2020; 9:e2001093. [PMID: 33063452 DOI: 10.1002/adhm.202001093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/17/2020] [Indexed: 01/06/2023]
Abstract
Tissue engineered vascular grafts (TEVGs) using scaffolds fabricated from braided poly(glycolic acid) (PGA) fibers coated with poly(glycerol sebacate) (PGS) are developed. The approach relies on in vivo tissue engineering by which neotissue forms solely within the body after a scaffold has been implanted. Herein, the impact of altering scaffold braid design and scaffold coating on neotissue formation is investigated. Several combinations of braiding parameters are manufactured and evaluated in a Beige mouse model in the infrarenal abdominal aorta. Animals are followed with 4D ultrasound analysis, and 12 week explanted vessels are evaluated for biaxial mechanical properties as well as histological composition. Results show that scaffold parameters (i.e., braiding angle, braiding density, and presence of a PGS coating) have interdependent effects on the resulting graft performance, namely, alteration of these parameters influences levels of inflammation, extracellular matrix production, graft dilation, neovessel distensibility, and overall survival. Coupling carefully designed in vivo experimentation with regression analysis, critical relationships between the scaffold design and the resulting neotissue that enable induction of favorable cellular and extracellular composition in a controlled manner are uncovered. Such an approach provides a potential for fabricating scaffolds with a broad range of features and the potential to manufacture optimized TEVGs.
Collapse
Affiliation(s)
- Jacob C. Zbinden
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - Kevin M. Blum
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - Alycia G. Berman
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Abhay B. Ramachandra
- Department of Biomedical Engineering, Yale University 55 Prospect Street New Haven CT 06520 USA
| | - Jason M. Szafron
- Department of Biomedical Engineering, Yale University 55 Prospect Street New Haven CT 06520 USA
| | - Katherine E. Kerr
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Jennifer L. Anderson
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Gurneet S. Sangha
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Conner C. Earl
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Noah R. Nigh
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Gabriel J. M. Mirhaidari
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - James W. Reinhardt
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - Yu‐Chun Chang
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - Tai Yi
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| | - Ryan Smalley
- Secant Group, LLC 551 East Church Ave Telford PA 18969 USA
| | | | | | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University 55 Prospect Street New Haven CT 06520 USA
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University 206 S Martin Jischke Drive West Lafayette IN 47907 USA
| | - Christopher K. Breuer
- Nationwide Children's Hospital, Abagail Wexner Research Institute 575 Children's Crossroad Columbus OH 43215 USA
| |
Collapse
|
47
|
Torabi H, Mehdikhani M, Varshosaz J, Shafiee F. An innovative approach to fabricate a thermosensitive melatonin‐loaded conductive pluronic/chitosan hydrogel for myocardial tissue engineering. J Appl Polym Sci 2020. [DOI: 10.1002/app.50327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hadis Torabi
- Department of Biomedical Engineering, Faculty of Engineering University of Isfahan Isfahan Iran
| | - Mehdi Mehdikhani
- Department of Biomedical Engineering, Faculty of Engineering University of Isfahan Isfahan Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center Isfahan University of Medical Sciences Isfahan Iran
- Department of Pharmaceutics School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences Isfahan Iran
| | - Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
48
|
Zhou F, Hong Y, Liang R, Zhang X, Liao Y, Jiang D, Zhang J, Sheng Z, Xie C, Peng Z, Zhuang X, Bunpetch V, Zou Y, Huang W, Zhang Q, Alakpa EV, Zhang S, Ouyang H. Rapid printing of bio-inspired 3D tissue constructs for skin regeneration. Biomaterials 2020; 258:120287. [DOI: 10.1016/j.biomaterials.2020.120287] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/14/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
49
|
Kim SJ, Kwak HW, Kwon S, Jang H, Park SI. Synthesis, Characterization and Properties of Biodegradable Poly(Butylene Sebacate- Co-terephthalate). Polymers (Basel) 2020; 12:E2389. [PMID: 33081379 PMCID: PMC7602960 DOI: 10.3390/polym12102389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 01/19/2023] Open
Abstract
In this study, poly(butylene sebacate-co-terephthalate) (PBSeT) was successfully synthesized using various ratios of sebacic acid (Se) and dimethyl terephthalate (DMT). The synthesized PBSeT showed a high molecular weight (Mw, 88,700-154,900 g/mol) and good elastomeric properties. In particular, the PBSeT64 (6:4 sebacic acid/dimethyl terephthalate mole ratio) sample showed an elongation at break value of over 1600%. However, further increasing the DMT content decreased the elongation properties but increased the tensile strength due to the inherent strength of the aromatic unit. The melting point and crystallization temperature were difficult to observe in PBSeT64, indicating that an amorphous copolyester was formed at this mole ratio. Interestingly, wide angle X-ray diffraction (WAXD) curves was shown in the cases of PBSeT46 and PBSeT64, neither the crystal peaks of PBSe nor those of poly(butylene terephthalate) (PBT) are observed, that is, PBSeT64 showed an amorphous form with low crystallinity. The Fourier-transform infrared (FT-IR) spectrum showed C-H peaks at around 2900 cm-1 that reduced as the DMT ratio was increased. Nuclear magnetic resonance (NMR) showed well-resolved peaks split by coupling with the sebacate and DMT moieties. These results highlight that elastomeric PBSeT with high molecular weight could be synthesized by applying DMT monomer and showed promising mechanical properties.
Collapse
Affiliation(s)
- Sun Jong Kim
- Department of Packaging, Yonsei University, Wonju, Gangwon 26493, Korea; (S.J.K.); (S.K.); (H.J.)
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Korea;
| | - Sangwoo Kwon
- Department of Packaging, Yonsei University, Wonju, Gangwon 26493, Korea; (S.J.K.); (S.K.); (H.J.)
| | - Hyunho Jang
- Department of Packaging, Yonsei University, Wonju, Gangwon 26493, Korea; (S.J.K.); (S.K.); (H.J.)
| | - Su-il Park
- Department of Packaging, Yonsei University, Wonju, Gangwon 26493, Korea; (S.J.K.); (S.K.); (H.J.)
| |
Collapse
|
50
|
Yu C, Schimelman J, Wang P, Miller KL, Ma X, You S, Guan J, Sun B, Zhu W, Chen S. Photopolymerizable Biomaterials and Light-Based 3D Printing Strategies for Biomedical Applications. Chem Rev 2020; 120:10695-10743. [PMID: 32323975 PMCID: PMC7572843 DOI: 10.1021/acs.chemrev.9b00810] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the advent of additive manufacturing, known commonly as 3D printing, this technology has revolutionized the biofabrication landscape and driven numerous pivotal advancements in tissue engineering and regenerative medicine. Many 3D printing methods were developed in short course after Charles Hull first introduced the power of stereolithography to the world. However, materials development was not met with the same enthusiasm and remained the bottleneck in the field for some time. Only in the past decade has there been deliberate development to expand the materials toolbox for 3D printing applications to meet the true potential of 3D printing technologies. Herein, we review the development of biomaterials suited for light-based 3D printing modalities with an emphasis on bioprinting applications. We discuss the chemical mechanisms that govern photopolymerization and highlight the application of natural, synthetic, and composite biomaterials as 3D printed hydrogels. Because the quality of a 3D printed construct is highly dependent on both the material properties and processing technique, we included a final section on the theoretical and practical aspects behind light-based 3D printing as well as ways to employ that knowledge to troubleshoot and standardize the optimization of printing parameters.
Collapse
Affiliation(s)
- Claire Yu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jacob Schimelman
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Pengrui Wang
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Kathleen L Miller
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Xuanyi Ma
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Shangting You
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Bingjie Sun
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Wei Zhu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Chemical Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|