1
|
Verdin A, Malherbe C, Eppe G. Designing SERS nanotags for profiling overexpressed surface markers on single cancer cells: A review. Talanta 2024; 276:126225. [PMID: 38749157 DOI: 10.1016/j.talanta.2024.126225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
This review focuses on the chemical design and the use of Surface-Enhanced Raman Scattering (SERS)-active nanotags for measuring surface markers that can be overexpressed at the surface of single cancer cells. Indeed, providing analytical tools with true single-cell measurements capabilities is capital, especially since cancer research is increasingly leaning toward single-cell analysis, either to guide treatment decisions or to understand complex tumor behaviour including the single-cell heterogeneity and the appearance of treatment resistance. Over the past two decades, SERS nanotags have triggered significant interest in the scientific community owing their advantages over fluorescent tags, mainly because SERS nanotags resist photobleaching and exhibit sharper signal bands, which reduces possible spectral overlap and enables the discrimination between the SERS signals and the autofluorescence background from the sample itself. The extensive efforts invested in harnessing SERS nanotags for biomedical purposes, particularly in cancer research, highlight their potential as the next generation of optical labels for single-cell studies. The review unfolds in two main parts. The first part focuses on the structure of SERS nanotags, detailing their chemical composition and the role of each building block of the tags. The second part explores applications in measuring overexpressed surface markers on single-cells. The latter encompasses studies using single nanotags, multiplexed measurements, quantitative information extraction, monitoring treatment responses, and integrating phenotype measurements with SERS nanotags on single cells isolated from complex biological matrices. This comprehensive review anticipates SERS nanotags to persist as a pivotal technology in advancing single-cell analytical methods, particularly in the context of cancer research and personalized medicine.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium.
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| |
Collapse
|
2
|
Mendes de Almeida Junior A, Ferreira AS, Camacho SA, Gontijo Moreira L, de Toledo KA, Oliveira ON, Aoki PHB. Enhancing Phototoxicity in Human Colorectal Tumor Cells Through Nanoarchitectonics for Synergistic Photothermal and Photodynamic Therapies. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38652860 DOI: 10.1021/acsami.4c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Phototherapies are promising for noninvasive treatment of aggressive tumors, especially when combining heat induction and oxidative processes. Herein, we show enhanced phototoxicity of gold shell-isolated nanorods conjugated with toluidine blue-O (AuSHINRs@TBO) against human colorectal tumor cells (Caco-2) with synergic effects of photothermal (PTT) and photodynamic therapies (PDT). Mitochondrial metabolic activity tests (MTT) performed on Caco-2 cell cultures indicated a photothermal effect from AuSHINRs owing to enhanced light absorption from the localized surface plasmon resonance (LSPR). The phototoxicity against Caco-2 cells was further increased with AuSHINRs@TBO where oxidative processes, such as hydroperoxidation, were also present, leading to a cell viability reduction from 85.5 to 39.0%. The molecular-level mechanisms responsible for these effects were investigated on bioinspired tumor membranes using Langmuir monolayers of Caco-2 lipid extract. Polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) revealed that the AuSHINRs@TBO incorporation is due to attractive electrostatic interactions with negatively charged groups of the Caco-2 lipid extract, resulting in the expansion of surface pressure isotherms. Upon irradiation, Caco-2 lipid extract monolayers containing AuSHINRs@TBO (1:1 v/v) exhibited ca. 1.0% increase in surface area. This is attributed to the generation of reactive oxygen species (ROS) and their interaction with Caco-2 lipid extract monolayers, leading to hydroperoxide formation. The oxidative effects are facilitated by AuSHINRs@TBO penetration into the polar groups of the extract, allowing oxidative reactions with carbon chain unsaturations. These mechanisms are consistent with findings from confocal fluorescence microscopy, where the Caco-2 plasma membrane was the primary site of the cell death induction process.
Collapse
Affiliation(s)
| | - André Satoshi Ferreira
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| | - Sabrina Aléssio Camacho
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis, SP 19806-900, Brazil
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Lucas Gontijo Moreira
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| | - Karina Alves de Toledo
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Pedro Henrique Benites Aoki
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| |
Collapse
|
3
|
Bao Y, Oluwafemi A. Recent advances in surface modified gold nanorods and their improved sensing performance. Chem Commun (Camb) 2024; 60:469-481. [PMID: 38105689 DOI: 10.1039/d3cc04056a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Gold nanorods (AuNRs) have received tremendous attention recently in the fields of sensing and detection applications due to their unique characteristic of surface plasmon resonance. Surface modification of the AuNRs is a necessary path to effectively utilize their properties for these applications. In this Article, we have focused both on demonstrating the recent advances in methods for surface functionalization of AuNRs as well as their use for improved sensing performance using various techniques. The main surface modification methods discussed include ligand exchange with the assistance of a thiol-group, the layer by layer assembly method, and depositing inorganic materials with the desired surface and morphology. Covered techniques that can then be applied for using these functionalized AuNRs include colourimetric sensing, refractive index sensing and surface enhance Raman scattering sensing. Finally, the outlook on the future development of surface modified AuNRs for improved sensing performance is considered.
Collapse
Affiliation(s)
- Ying Bao
- Department of Chemistry, Western Washington University, Bellingham, Washington, 98225, USA.
| | - Ayomide Oluwafemi
- Department of Chemistry, Western Washington University, Bellingham, Washington, 98225, USA.
| |
Collapse
|
4
|
Almeida AM, Moreira LG, Camacho SA, Ferreira FG, Conceição K, Tada DB, Aoki PHB. Photochemical outcomes triggered by gold shell-isolated nanorods on bioinspired nanoarchitectonics for bacterial membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184216. [PMID: 37598878 DOI: 10.1016/j.bbamem.2023.184216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Boosted by the indiscriminate use of antibiotics, multidrug-resistance (MDR) demands new strategies to combat bacterial infections, such as photothermal therapy (PTT) based on plasmonic nanostructures. PTT efficiency relies on photoinduced damage caused to the bacterial machinery, for which nanostructure incorporation into the cell envelope is key. Herein, we shall unveil the binding and photochemical mechanisms of gold shell-isolated nanorods (AuSHINRs) on bioinspired bacterial membranes assembled as Langmuir and Langmuir-Schaefer (LS) monolayers of DOPE, Lysyl-PG, DOPG and CL. AuSHINRs incorporation expanded the isotherms, with stronger effect on the anionic DOPG and CL. Indeed, FTIR of LS films revealed more modifications for DOPG and CL owing to stronger attractive electrostatic interactions between anionic phosphates and the positively charged AuSHINRs, while electrostatic repulsions with the cationic ethanolamine (DOPE) and lysyl (Lysyl-PG) polar groups might have weakened their interactions with AuSHINRs. No statistical difference was observed in the surface area of irradiated DOPE and Lysyl-PG monolayers on AuSHINRs, which is evidence of the restricted nanostructures insertion. In contrast, irradiated DOPG monolayer on AuSHINRs decreased 4.0 % in surface area, while irradiated CL monolayer increased 3.7 %. Such results agree with oxidative reactions prompted by ROS generated by AuSHINRs photoactivation. The deepest AuSHINRs insertion into DOPG may have favored chain cleavage while hydroperoxidation is the mostly like outcome in CL, where AuSHINRs are surrounding the polar groups. Furthermore, preliminary experiments on Escherichia coli culture demonstrated that the electrostatic interactions with AuSHINRs do not inhibit bacterial growth, but the photoinduced effects are highly toxic, resulting in microbial inactivation.
Collapse
Affiliation(s)
- Alexandre M Almeida
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Lucas G Moreira
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Sabrina A Camacho
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil; IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Fabiana G Ferreira
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP 12231280, Brazil
| | - Katia Conceição
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP 12231280, Brazil
| | - Dayane B Tada
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP 12231280, Brazil
| | - Pedro H B Aoki
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil.
| |
Collapse
|
5
|
Peck K, Lien J, Su M, Stacy AD, Guo T. Bottom-Up Then Top-Down Synthesis of Gold Nanostructures Using Mesoporous Silica-Coated Gold Nanorods. ACS OMEGA 2023; 8:42667-42677. [PMID: 38024760 PMCID: PMC10652254 DOI: 10.1021/acsomega.3c05444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Gold nanostructures were synthesized by etching away gold from heat-treated mesoporous silica-coated gold nanorods (AuNR@mSiO2), providing an example of top-down modification of nanostructures made using bottom-up methodology. Twelve different types of nanostructures were made using this bottom-up-then-top-down synthesis (BUTTONS), of which the etching of the same starting nanomaterial of AuNR@mSiO2 was found to be controlled by how AuNR@mSiO2 were heat treated, the etchant concentration, and etching time. When the heat treatment occurred in smooth moving solutions in round-bottomed flasks, red-shifted longitudinal surface plasmon resonance (LSPR) was observed, on the order of 10-30 min, indicating increased aspect ratios of the gold nanostructures inside the mesoporous silica shells. When the heat treatment occurred in turbulent solutions in scintillation vials, a blue shift of the LSPR was obtained within a few minutes or less, resulting from reduced aspect ratios of the rods in the shells. The influence of the shape of the glassware, which may impact the flow patterns of the solution, on the heat treatment was investigated. One possible explanation is that the flow patterns affect the location of opened pores in the mesoporous shells, with the smooth flow of solution mainly removing CTAB surfactants from the pores along the cylindrical body of mSiO2, therefore increasing the aspect ratios after etching, and the turbulent solutions removing more surfactants from the pores of the two ends or tips of the silica shells, hence decreasing the aspect ratios after etching. These new stable gold nanostructures in silica shells, bare and without surfactant protection, may possess unique chemical properties and capabilities. Catalysis using heat-treated nanomaterials was studied as an example of potential applications of these nanostructures.
Collapse
Affiliation(s)
- Kristin
A. Peck
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Jennifer Lien
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Mengqi Su
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Aaron D. Stacy
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | | |
Collapse
|
6
|
Zhou Y, Lu Y, Liu Y, Hu X, Chen H. Current strategies of plasmonic nanoparticles assisted surface-enhanced Raman scattering toward biosensor studies. Biosens Bioelectron 2023; 228:115231. [PMID: 36934607 DOI: 10.1016/j.bios.2023.115231] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023]
Abstract
With the progressive nanofabrication technology, plasmonic nanoparticles (PNPs) have been increasingly deployed in the field of biosensing. PNPs have favorable biocompatibility, conductivity, and tunable optical properties. In addition, the localized surface plasmon resonance (LSPR) of PNPs plays a vital role in surface-enhanced Raman scattering (SERS). PNPs-based SERS biosensing enables wide-ranging applications for sensitive detection and high spatial and temporal resolution imaging. Numerous reviews of PNPs in the field of SERS biosensing highlight the fabrication or applications in one or more fields. However, the specific strategies for the SERS biosensor construction had not been summarized systematically. Thus, this work offers a comprehensive overview of SERS enhancement strategies based on PNPs, with a focus on SERS label-free detection along with label detection sensing construction, as well as its challenges and future trends.
Collapse
Affiliation(s)
- Yangyang Zhou
- School of Medicine, Shanghai University, Shanghai, 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yongkai Lu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yawen Liu
- School of Medicine, Shanghai University, Shanghai, 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
7
|
Yuan K, Jurado-Sánchez B, Escarpa A. Nanomaterials meet surface-enhanced Raman scattering towards enhanced clinical diagnosis: a review. J Nanobiotechnology 2022; 20:537. [PMID: 36544151 PMCID: PMC9771791 DOI: 10.1186/s12951-022-01711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Surface-enhanced Raman scattering (SERS) is a very promising tool for the direct detection of biomarkers for the diagnosis of i.e., cancer and pathogens. Yet, current SERS strategies are hampered by non-specific interactions with co-existing substances in the biological matrices and the difficulties of obtaining molecular fingerprint information from the complex vibrational spectrum. Raman signal enhancement is necessary, along with convenient surface modification and machine-based learning to address the former issues. This review aims to describe recent advances and prospects in SERS-based approaches for cancer and pathogens diagnosis. First, direct SERS strategies for key biomarker sensing, including the use of substrates such as plasmonic, semiconductor structures, and 3D order nanostructures for signal enhancement will be discussed. Secondly, we will illustrate recent advances for indirect diagnosis using active nanomaterials, Raman reporters, and specific capture elements as SERS tags. Thirdly, critical challenges for translating the potential of the SERS sensing techniques into clinical applications via machine learning and portable instrumentation will be described. The unique nature and integrated sensing capabilities of SERS provide great promise for early cancer diagnosis or fast pathogens detection, reducing sanitary costs but most importantly allowing disease prevention and decreasing mortality rates.
Collapse
Affiliation(s)
- Kaisong Yuan
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28802, Madrid, Spain
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28802, Madrid, Spain
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares, 28802, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28802, Madrid, Spain
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares, 28802, Madrid, Spain
| |
Collapse
|
8
|
Gong T, Das CM, Yin MJ, Lv TR, Singh NM, Soehartono AM, Singh G, An QF, Yong KT. Development of SERS tags for human diseases screening and detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Li J, Liu Z, Tian D, Li B, Shao L, Lou Z. Assembly of gold nanorods functionalized by zirconium-based metal-organic frameworks for surface enhanced Raman scattering. NANOSCALE 2022; 14:5561-5568. [PMID: 35343993 DOI: 10.1039/d2nr00298a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a promising detection technique providing outstanding molecular fingerprint identification and high sensitivity of analytes. Developing sensitive and stable SERS substrates is highly desirable but remains a challenge. We herein report a wet-chemistry approach for the preparation of (Au nanorod core)@(Zr-based metal-organic framework shell) (Au nanorod@Zr-MOF) nanostructures with the Zr-MOF shell thickness ranging from 3 nm to 90 nm. The stacked Au nanorod@Zr-MOF composites exhibit remarkably improved SERS sensitivity because the MOF shell enriches the molecules to the abundant plasmonic hotspots between the Au nanorod cores. The optimized Au nanorod@Zr-MOF structures exhibit superior SERS activity for detecting 4'-mercaptobiphenylcarbonitrile molecules at a concentration as low as 2 × 10-10 M, with the SERS enhancement factor 2 and 8 times as high as that of ordered bare Au nanorod arrays and random stacking bare Au nanorods, respectively. This study enriches the library of hybrid nanostructures of plasmonic nanocrystals and MOFs, providing an integrated SERS platform with molecular enrichment capability for the realization of sensitive and quantitative analyte identification.
Collapse
Affiliation(s)
- Juan Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China.
| | - Zhenfeng Liu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China.
| | - Dehua Tian
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China.
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China.
| | - Lei Shao
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518110, China.
| | - Zaizhu Lou
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China.
- State Key Laboratory for Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
10
|
Meyer SM, Murphy CJ. Anisotropic silica coating on gold nanorods boosts their potential as SERS sensors. NANOSCALE 2022; 14:5214-5226. [PMID: 35315863 DOI: 10.1039/d1nr07918b] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gold nanorods are well-known surface-enhanced Raman scattering substrates. Under longitudinal plasmonic excitation, the ends of the nanorods experience larger local electric fields compared to the sides of the rods, suggesting that Raman-active molecules would be best detected if the molecules could preferentially bind to the ends of the nanorods. Coating the tips of gold nanorods with anionic mesoporous silica caps enabled surface-enhanced Raman scattering (SERS) detection of the cationic dye methylene blue at lower concentrations than observed for the corresponding silica coating of the entire rod. By analyzing the intensity ratio of two Raman active modes of methylene blue and the surface plasmon resonance peak shift of the gold nanorod composites, it can be inferred that at a low concentration of methylene blue, molecules adsorb to the tips of the tip coated silica gold nanorods. Functionalization of the anionic silica endcaps with cationic groups eliminates the SERS enhancement for the cationic methylene blue, demonstrating the electrostatic nature of the adsorption process in this case. These results show that anisotropic silica coatings can concentrate analytes at the tips of gold nanorods for improvements in chemical sensing and diagnostics.
Collapse
Affiliation(s)
- Sean M Meyer
- Department of Chemistry, 600. S. Mathews Ave., University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Catherine J Murphy
- Department of Chemistry, 600. S. Mathews Ave., University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
11
|
Plou J, Valera PS, García I, de Albuquerque CDL, Carracedo A, Liz-Marzán LM. Prospects of Surface-Enhanced Raman Spectroscopy for Biomarker Monitoring toward Precision Medicine. ACS PHOTONICS 2022; 9:333-350. [PMID: 35211644 PMCID: PMC8855429 DOI: 10.1021/acsphotonics.1c01934] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 05/14/2023]
Abstract
Future precision medicine will be undoubtedly sustained by the detection of validated biomarkers that enable a precise classification of patients based on their predicted disease risk, prognosis, and response to a specific treatment. Up to now, genomics, transcriptomics, and immunohistochemistry have been the main clinically amenable tools at hand for identifying key diagnostic, prognostic, and predictive biomarkers. However, other molecular strategies, including metabolomics, are still in their infancy and require the development of new biomarker detection technologies, toward routine implementation into clinical diagnosis. In this context, surface-enhanced Raman scattering (SERS) spectroscopy has been recognized as a promising technology for clinical monitoring thanks to its high sensitivity and label-free operation, which should help accelerate the discovery of biomarkers and their corresponding screening in a simpler, faster, and less-expensive manner. Many studies have demonstrated the excellent performance of SERS in biomedical applications. However, such studies have also revealed several variables that should be considered for accurate SERS monitoring, in particular, when the signal is collected from biological sources (tissues, cells or biofluids). This Perspective is aimed at piecing together the puzzle of SERS in biomarker monitoring, with a view on future challenges and implications. We address the most relevant requirements of plasmonic substrates for biomedical applications, as well as the implementation of tools from artificial intelligence or biotechnology to guide the development of highly versatile sensors.
Collapse
Affiliation(s)
- Javier Plou
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
| | - Pablo S. Valera
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
| | - Isabel García
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| | | | - Arkaitz Carracedo
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
- Biomedical
Research Networking Center in Cancer (CIBERONC), 48160, Derio, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
- Translational
Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, 48160 Derio, Spain
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
12
|
Medeghini F, Pettine J, Meyer SM, Murphy CJ, Nesbitt DJ. Regulating and Directionally Controlling Electron Emission from Gold Nanorods with Silica Coatings. NANO LETTERS 2022; 22:644-651. [PMID: 34989588 DOI: 10.1021/acs.nanolett.1c03569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dielectric coatings offer a versatile means of manipulating hot carrier emission from nanoplasmonic systems for emerging nanocatalysis and photocathode applications, with uniform coatings acting as regulators and nonuniform coatings providing directional photocurrent control. However, the mechanisms for electron emission through dense and mesoporous silica (SiO2) coatings require further examination. Here, we present a systematic investigation of photoemission from single gold nanorods as a function of dense versus mesoporous silica coating thicknesses. Studies with dense coatings on gold nanostructures clarify the short (∼1 nm) attenuation length responsible for severely reduced transmission through the silica conduction band. By contrast, mesoporous silica is much more transmissive, and a simple geometric model quantitatively recapitulates the electron escape probability through nanoscopic porous channels. Finally, photoelectron velocity map imaging (VMI) studies of nanorods with coating defects verify that photoemission occurs preferentially through the thinner regions, illustrating new opportunities for designing photocurrent distributions on the nanoscale.
Collapse
Affiliation(s)
- Fabio Medeghini
- JILA, University of Colorado─Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
| | - Jacob Pettine
- JILA, University of Colorado─Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado─Boulder, Boulder, Colorado 80309, United States
| | - Sean M Meyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David J Nesbitt
- JILA, University of Colorado─Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado─Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado─Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
13
|
Grys DB, de Nijs B, Huang J, Scherman OA, Baumberg JJ. SERSbot: Revealing the Details of SERS Multianalyte Sensing Using Full Automation. ACS Sens 2021; 6:4507-4514. [PMID: 34882398 PMCID: PMC8715530 DOI: 10.1021/acssensors.1c02116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Surface-enhanced
Raman spectroscopy (SERS) is considered an attractive
candidate for quantitative and multiplexed molecular sensing of analytes
whose chemical composition is not fully known. In principle, molecules
can be identified through their fingerprint spectrum when binding
inside plasmonic hotspots. However, competitive binding experiments
between methyl viologen (MV2+) and its deuterated isomer
(d8-MV2+) here show that determining
individual concentrations by extracting peak intensities from spectra
is not possible. This is because analytes bind to different binding
sites inside and outside of hotspots with different affinities. Only
by knowing all binding constants and geometry-related factors, can
a model revealing accurate concentrations be constructed. To collect
sufficiently reproducible data for such a sensitive experiment, we
fully automate measurements using a high-throughput SERS optical system
integrated with a liquid handling robot (the SERSbot). This now allows
us to accurately deconvolute analyte mixtures through independent
component analysis (ICA) and to quantitatively map out the competitive
binding of analytes in nanogaps. Its success demonstrates the feasibility
of automated SERS in a wide variety of experiments and applications.
Collapse
Affiliation(s)
- David-Benjamin Grys
- Department of Physics, NanoPhotonics Centre, Cavendish Laboratory, JJ Thompson Avenue University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Bart de Nijs
- Department of Physics, NanoPhotonics Centre, Cavendish Laboratory, JJ Thompson Avenue University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Junyang Huang
- Department of Physics, NanoPhotonics Centre, Cavendish Laboratory, JJ Thompson Avenue University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Oren A. Scherman
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jeremy J. Baumberg
- Department of Physics, NanoPhotonics Centre, Cavendish Laboratory, JJ Thompson Avenue University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
14
|
Yang X, Liu Y, Lam SH, Wang J, Wen S, Yam C, Shao L, Wang J. Site-Selective Deposition of Metal-Organic Frameworks on Gold Nanobipyramids for Surface-Enhanced Raman Scattering. NANO LETTERS 2021; 21:8205-8212. [PMID: 34533323 DOI: 10.1021/acs.nanolett.1c02649] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Site-selective deposition of metal-organic frameworks (MOFs) on metal nanocrystals has remained challenging because of the difficult control of the nucleation and growth of MOFs. Herein we report on a facile wet-chemistry approach for the selective deposition of zeolitic imidazolate framework-8 (ZIF-8) on anisotropic Au nanobipyramids (NBPs) and nanorods. ZIF-8 is selectively deposited at the ends and waist and around the entire surface of the elongated Au nanocrystals. The NBP-based nanostructures with end-deposited ZIF-8 exhibit the best surface-enhanced Raman scattering (SERS) performance, implying that molecules can be concentrated by ZIF-8 at the hot spots. In addition, the SERS signal exhibits good selectivity for small molecules because of the molecular sieving effect of ZIF-8. This study opens up a promising route for constructing plasmonic nanostructures with site selectively deposited ZIF-8, which hold enormous potential for molecular sensing, optical switching, and plasmonic catalysis.
Collapse
Affiliation(s)
- Xueqing Yang
- Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR , People's Republic of China
| | - Yi Liu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR , People's Republic of China
| | - Shiu Hei Lam
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR , People's Republic of China
| | - Jing Wang
- Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
| | - Shizheng Wen
- Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
| | - ChiYung Yam
- Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518110, People's Republic of China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518110, People's Republic of China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR , People's Republic of China
| |
Collapse
|
15
|
Lee J, Ha JW. Influence of oxygen plasma treatment on structural and spectral changes in silica-coated gold nanorods studied using total internal reflection microscopy and spectroscopy. Analyst 2021; 146:4125-4129. [PMID: 34076657 DOI: 10.1039/d1an00592h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper shows how oxygen plasma treatment affects the structural, localized surface plasmon resonance (LSPR) spectral, and spatial orientation changes in single gold nanorods coated with a mesoporous silica shell (AuNRs@SiO2) in comparison with bare AuNRs with the same aspect ratio (AR). Single AuNRs@SiO2 subjected to different plasma treatment times were characterized using scanning electron microscopy and total internal reflection scattering (TIRS) microscopy and spectroscopy. The AR of the single AuNRs without a silica shell was decreased by structural deformation, while their LSPR linewidth was increased with increasing plasma treatment time. In contrast, single AuNRs@SiO2 showed much higher structural and spectral stability due to the silica shell under the energetic plasma treatment. Furthermore, there was no noticeable variation in the three-dimensional (3D) orientations of single AuNR cores in the silica shell before and after the plasma treatment. The results support that no significant structural and spectral changes occur in single AuNRs@SiO2 and that the silica coating enhances the stability of AuNR cores against oxygen plasma treatment. Therefore, fundamental information on the relationship among plasma treatment time, structural change, LSPR damping, and defocused orientation patterns is provided at the single-particle level.
Collapse
Affiliation(s)
- Jaeran Lee
- Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea.
| | - Ji Won Ha
- Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea. and Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
| |
Collapse
|
16
|
Sang Y, Chen X, Zhang L, Li D, Xu H. Electrospun polymeric nanofiber decorated with sea urchin-like gold nanoparticles as an efficient and stable SERS platform. J Colloid Interface Sci 2021; 590:125-133. [PMID: 33524713 DOI: 10.1016/j.jcis.2021.01.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/24/2022]
Abstract
Surface enhanced Raman scattering (SERS)-based nanoprobes have been used as well-established analytical tools enabling single-molecule detection. In this work, we report a facile method to decorate sea urchin-like gold nanoparticles (SUGNPs) on the surface of PMMA/P4VP nanofibers. Firstly, PMMA/P4VP nanofibers within the submicrometer size range were prepared by applying the electrospinning technique. Then, the incorporation of SUGNPs on the surface of PMMA/P4VP nanofiber was achieved by immersing PMMA/P4VP nanofiber into freshly prepared SUGNP aqueous solution through the specific Au-N interactions. The as-fabricated SUGNP-coated PMMA/P4VP nanofibers exhibited good sensitivity and reproducibility in SERS measurements with the relative standard deviation down to 6.6%, by employing 4-mercaptobenzoic acid as a probe molecule with 30 min of soaking time. Hence, we envisage that the SUGNP-coated PMMA/P4VP nanofibers can act as efficient and stable SERS substrates for potential applications in molecular detection as well as chemical and biological analysis.
Collapse
Affiliation(s)
- Yaqin Sang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xin Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Li Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Dongyan Li
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Hui Xu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
17
|
Jang E. Effect of Alcohol Chain Length on Formation of Cetyltrimethylammonium Bromide‐templated Mesoporous Silica Layer on Gold Nanorods. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eue‐Soon Jang
- Department of Applied Chemistry Kumoh National Institute of Technology, Daehak‐ro 61, Gumi Gyeongbuk South Korea
| |
Collapse
|
18
|
Reduced cytotoxicity of CTAB-templated silica layer on gold nanorod using fluorescence dyes and its application in cancer theranostics. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
van
der Hoeven JES, Deng TS, Albrecht W, Olthof LA, van Huis MA, de Jongh PE, van Blaaderen A. Structural Control over Bimetallic Core-Shell Nanorods for Surface-Enhanced Raman Spectroscopy. ACS OMEGA 2021; 6:7034-7046. [PMID: 33748617 PMCID: PMC7970553 DOI: 10.1021/acsomega.0c06321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Bimetallic nanorods are important colloidal nanoparticles for optical applications, sensing, and light-enhanced catalysis due to their versatile plasmonic properties. However, tuning the plasmonic resonances is challenging as it requires a simultaneous control over the particle shape, shell thickness, and morphology. Here, we show that we have full control over these parameters by performing metal overgrowth on gold nanorods within a mesoporous silica shell, resulting in Au-Ag, Au-Pd, and Au-Pt core-shell nanorods with precisely tunable plasmonic properties. The metal shell thickness was regulated via the precursor concentration and reaction time in the metal overgrowth. Control over the shell morphology was achieved via a thermal annealing, enabling a transition from rough nonepitaxial to smooth epitaxial Pd shells while retaining the anisotropic rod shape. The core-shell synthesis was successfully scaled up from micro- to milligrams, by controlling the kinetics of the metal overgrowth via the pH. By carefully tuning the structure, we optimized the plasmonic properties of the bimetallic core-shell nanorods for surface-enhanced Raman spectroscopy. The Raman signal was the most strongly enhanced by the Au core-Ag shell nanorods, which we explain using finite-difference time-domain calculations.
Collapse
Affiliation(s)
- Jessi E. S. van
der Hoeven
- Soft
Condensed Matter, Debye Institute for Nanomaterials
Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- Inorganic
Chemistry and Catalysis, Debye Institute
for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Tian-Song Deng
- Soft
Condensed Matter, Debye Institute for Nanomaterials
Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Wiebke Albrecht
- Soft
Condensed Matter, Debye Institute for Nanomaterials
Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Liselotte A. Olthof
- Inorganic
Chemistry and Catalysis, Debye Institute
for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Marijn A. van Huis
- Soft
Condensed Matter, Debye Institute for Nanomaterials
Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Petra E. de Jongh
- Inorganic
Chemistry and Catalysis, Debye Institute
for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Alfons van Blaaderen
- Soft
Condensed Matter, Debye Institute for Nanomaterials
Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
20
|
Guselnikova O, Lim H, Na J, Eguchi M, Kim HJ, Elashnikov R, Postnikov P, Svorcik V, Semyonov O, Miliutina E, Lyutakov O, Yamauchi Y. Enantioselective SERS sensing of pseudoephedrine in blood plasma biomatrix by hierarchical mesoporous Au films coated with a homochiral MOF. Biosens Bioelectron 2021; 180:113109. [PMID: 33677356 DOI: 10.1016/j.bios.2021.113109] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/05/2021] [Accepted: 02/19/2021] [Indexed: 11/30/2022]
Abstract
Here, we present a new family of hierarchical porous hybrid materials as an innovative tool for ultrasensitive and selective sensing of enantiomeric drugs in complex biosamples via chiral surface-enhanced Raman spectroscopy (SERS). Hierarchical porous hybrid films were prepared by the combination of mesoporous plasmonic Au films and microporous homochiral metal-organic frameworks (HMOFs). The proposed hierarchical porous substrates enable extremely low limit of detection values (10-12 M) for pseudoephedrine in undiluted blood plasma due to dual enhancement mechanisms (physical enhancement by the mesoporous Au nanostructures and chemical enhancement by HMOF), chemical recognition by HMOF, and a discriminant function for bio-samples containing large biomolecules, such as blood components. We demonstrate the effect of each component (mesoporous Au and microporous AlaZnCl (HMOF)) on the analytical performance for sensing. The growth of AlaZnCl leads to an increase in the SERS signal (by around 17 times), while the use of mesoporous Au leads to an increase in the signal (by up to 40%). In the presence of a complex biomatrix (blood serum or plasma), the hybrid hierarchical porous substrate provides control over the transport of the molecules inside the pores and prevents blood protein infiltration, provoking competition with existing plasmonic materials at the limit of detection and enantioselectivity in the presence of a multicomponent biomatrix.
Collapse
Affiliation(s)
- Olga Guselnikova
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic; Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634049, Tomsk, Russian Federation.
| | - Hyunsoo Lim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; New & Renewable Energy Research Center, Korea Electronics Technology Institute (KETI), 25, Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13509, Republic of Korea
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Miharu Eguchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hyun-Jong Kim
- Surface Technology Group, Korea Institute of Industrial Technology (KITECH), Incheon, 21999, Republic of Korea
| | - Roman Elashnikov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - Pavel Postnikov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic; Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634049, Tomsk, Russian Federation
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - Oleg Semyonov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634049, Tomsk, Russian Federation
| | - Elena Miliutina
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic; Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634049, Tomsk, Russian Federation
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic; Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634049, Tomsk, Russian Federation
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| |
Collapse
|
21
|
Cavigli L, Khlebtsov BN, Centi S, Khlebtsov NG, Pini R, Ratto F. Photostability of Contrast Agents for Photoacoustics: The Case of Gold Nanorods. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E116. [PMID: 33419130 PMCID: PMC7825532 DOI: 10.3390/nano11010116] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Plasmonic particles as gold nanorods have emerged as powerful contrast agents for critical applications as the photoacoustic imaging and photothermal ablation of cancer. However, their unique efficiency of photothermal conversion may turn into a practical disadvantage, and expose them to the risk of overheating and irreversible photodamage. Here, we outline the main ideas behind the technology of photoacoustic imaging and the use of relevant contrast agents, with a main focus on gold nanorods. We delve into the processes of premelting and reshaping of gold nanorods under illumination with optical pulses of a typical duration in the order of few ns, and we present different approaches to mitigate this issue. We undertake a retrospective classification of such approaches according to their underlying, often implicit, principles as: constraining the initial shape; or speeding up their thermal coupling to the environment by lowering their interfacial thermal resistance; or redistributing the input energy among more particles. We discuss advantages, disadvantages and contexts of practical interest where one solution may be more appropriate than the other.
Collapse
Affiliation(s)
- Lucia Cavigli
- Istituto di Fisica Applicata Nello Carrara, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.C.); (R.P.); (F.R.)
| | - Boris N. Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia; (B.N.K.); (N.G.K.)
| | - Sonia Centi
- Istituto di Fisica Applicata Nello Carrara, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.C.); (R.P.); (F.R.)
| | - Nikolai G. Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia; (B.N.K.); (N.G.K.)
- Saratov State University, 83 Ulitsa Astrakhanskaya, 410026 Saratov, Russia
| | - Roberto Pini
- Istituto di Fisica Applicata Nello Carrara, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.C.); (R.P.); (F.R.)
| | - Fulvio Ratto
- Istituto di Fisica Applicata Nello Carrara, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.C.); (R.P.); (F.R.)
| |
Collapse
|
22
|
Pellas V, Hu D, Mazouzi Y, Mimoun Y, Blanchard J, Guibert C, Salmain M, Boujday S. Gold Nanorods for LSPR Biosensing: Synthesis, Coating by Silica, and Bioanalytical Applications. BIOSENSORS 2020; 10:E146. [PMID: 33080925 PMCID: PMC7603250 DOI: 10.3390/bios10100146] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022]
Abstract
Nanoparticles made of coinage metals are well known to display unique optical properties stemming from the localized surface plasmon resonance (LSPR) phenomenon, allowing their use as transducers in various biosensing configurations. While most of the reports initially dealt with spherical gold nanoparticles owing to their ease of synthesis, the interest in gold nanorods (AuNR) as plasmonic biosensors is rising steadily. These anisotropic nanoparticles exhibit, on top of the LSPR band in the blue range common with spherical nanoparticles, a longitudinal LSPR band, in all respects superior, and in particular in terms of sensitivity to the surrounding media and LSPR-biosensing. However, AuNRs synthesis and their further functionalization are less straightforward and require thorough processing. In this paper, we intend to give an up-to-date overview of gold nanorods in LSPR biosensing, starting from a critical review of the recent findings on AuNR synthesis and the main challenges related to it. We further highlight the various strategies set up to coat AuNR with a silica shell of controlled thickness and porosity compatible with LSPR-biosensing. Then, we provide a survey of the methods employed to attach various bioreceptors to AuNR. Finally, the most representative examples of AuNR-based LSPR biosensors are reviewed with a focus put on their analytical performances.
Collapse
Affiliation(s)
- Vincent Pellas
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 Place Jussieu, F-75005 Paris, France
| | - David Hu
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Yacine Mazouzi
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Yoan Mimoun
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Juliette Blanchard
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Clément Guibert
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Michèle Salmain
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 Place Jussieu, F-75005 Paris, France
| | - Souhir Boujday
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| |
Collapse
|
23
|
Lee HL, Wei H, Kim K, Choe HS, Park H, Yu T, Lee C, Kim JH, Kim JH. Versatile Yolk-Shell Encapsulation: Catalytic, Photothermal, and Sensing Demonstration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002311. [PMID: 32743935 DOI: 10.1002/smll.202002311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/18/2020] [Indexed: 05/28/2023]
Abstract
Here, a novel, versatile synthetic strategy to fabricate a yolk-shell structured material that can encapsulate virtually any functional noble metal or metal oxide nanocatalysts of any morphology in a free suspension fashion is reported. This strategy also enables encapsulation of more than one type of nanoparticle inside a single shell, including paramagnetic iron oxide used for magnetic separation. The mesoporous organosilica shell provides efficient mass transfer of small target molecules, while serving as a size exclusion barrier for larger interfering molecules. Major structural and functional advantages of this material design are demonstrated by performing three proof-of-concept applications. First, effective encapsulation of plasmonic gold nanospheres for localized photothermal heating and heat-driven reaction inside the shell is shown. Second, hydrogenation catalysis is demonstrated under spatial confinement driven by palladium nanocubes. Finally, the surface-enhanced Raman spectroscopic detection of model pollutant by gold nanorods is presented for highly sensitive environmental sensing with size exclusion.
Collapse
Affiliation(s)
- Hak-Lae Lee
- Department of Chemical and Environmental Engineering, Pusan National University, Busan, 46241, Korea
| | - Haoran Wei
- Department of Chemical and Environmental Engineering and Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, CT, 06511, USA
- Environmental Chemistry and Technology and Department of Civil and Environmental Engineering, University of Wisconsin-Madison, 660 N Park Street, Madison, WI, 53706, USA
| | - Kiyoon Kim
- Department of Chemical Engineering, Kyung Hee University, Yongin, 17140, Korea
| | - Hyun-Seok Choe
- Department of Chemical and Environmental Engineering, Pusan National University, Busan, 46241, Korea
| | - Hyun Park
- Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan, 46241, Korea
| | - Taekyung Yu
- Department of Chemical Engineering, Kyung Hee University, Yongin, 17140, Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Korea
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering and Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, CT, 06511, USA
| | - Jae-Hyuk Kim
- Department of Chemical and Environmental Engineering, Pusan National University, Busan, 46241, Korea
| |
Collapse
|
24
|
Compartmentalization of gold nanoparticle clusters in hollow silica spheres and their assembly induced by an external electric field. J Colloid Interface Sci 2020; 566:202-210. [DOI: 10.1016/j.jcis.2020.01.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
|
25
|
Buchman JT, Pho T, Rodriguez RS, Feng ZV, Haynes CL. Coating iron oxide nanoparticles with mesoporous silica reduces their interaction and impact on S. oneidensis MR-1. CHEMOSPHERE 2019; 237:124511. [PMID: 31549642 DOI: 10.1016/j.chemosphere.2019.124511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Here, we investigate the impact of iron oxide nanoparticles (IONPs) and mesoporous silica-coated iron oxide nanoparticles (msIONPs) on Shewanella oneidensis in an aerobic environment, which is likely the main environment where such nanoparticles will end up after use in consumer products or biomedical applications. Monitoring the viability of S. oneidensis, a model environmental organism, after exposure to the nanoparticles reveals that IONPs promote bacterial survival, while msIONPs do not impact survival. These apparent impacts are correlated with association of the nanoparticles with the bacterial membrane, as revealed by TEM and ICP-MS studies, and upregulation of membrane-associated genes. However, similar survival in bacteria was observed when exposed to equivalent concentrations of released ions from each nanomaterial, indicating that aqueous nanoparticle transformations are responsible for the observed changes in bacterial viability. Therefore, this work demonstrates that a simple mesoporous silica coating can control the dissolution of the IONP core by greatly reducing the amount of released iron ions, making msIONPs a more sustainable option to reduce perturbations to the ecosystem upon release of nanoparticles into the environment.
Collapse
Affiliation(s)
- Joseph T Buchman
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN, 55455, United States
| | - Thomas Pho
- Chemistry Department, Augsburg University, 2211 Riverside Ave, Minneapolis, MN, 55454, United States
| | - Rebeca S Rodriguez
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN, 55455, United States
| | - Z Vivian Feng
- Chemistry Department, Augsburg University, 2211 Riverside Ave, Minneapolis, MN, 55454, United States
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN, 55455, United States.
| |
Collapse
|
26
|
Hogan LT, Horak EH, Ward JM, Knapper KA, Nic Chormaic S, Goldsmith RH. Toward Real-Time Monitoring and Control of Single Nanoparticle Properties with a Microbubble Resonator Spectrometer. ACS NANO 2019; 13:12743-12757. [PMID: 31614083 PMCID: PMC6887843 DOI: 10.1021/acsnano.9b04702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/15/2019] [Indexed: 05/22/2023]
Abstract
Optical microresonators have widespread application at the frontiers of nanophotonic technology, driven by their ability to confine light to the nanoscale and enhance light-matter interactions. Microresonators form the heart of a recently developed method for single-particle photothermal absorption spectroscopy, whereby the microresonators act as microscale thermometers to detect the heat dissipated by optically pumped, nonluminescent nanoscopic targets. However, translation of this technology to chemically dynamic systems requires a platform that is mechanically stable, solution compatible, and visibly transparent. We report microbubble absorption spectrometers as a versatile platform that meets these requirements. Microbubbles integrate a two-port microfluidic device within a whispering gallery mode microresonator, allowing for the facile exchange of chemical reagents within the resonator's interior while maintaining a solution-free environment on its exterior. We first leverage these qualities to investigate the photoactivated etching of single gold nanorods by ferric chloride, providing a method for rapid acquisition of spatial and morphological information about nanoparticles as they undergo chemical reactions. We then demonstrate the ability to control nanorod orientation within a microbubble through optically exerted torque, a promising route toward the construction of hybrid photonic-plasmonic systems. Critically, the reported platform advances microresonator spectrometer technology by permitting room-temperature, aqueous experimental conditions, which may be used for time-resolved single-particle experiments on non-emissive, nanoscale analytes engaged in catalytically and biologically relevant chemical dynamics.
Collapse
Affiliation(s)
- Levi T. Hogan
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Erik H. Horak
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jonathan M. Ward
- Light-Matter
Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Kassandra A. Knapper
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Síle Nic Chormaic
- Light-Matter
Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Randall H. Goldsmith
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- E-mail:
| |
Collapse
|
27
|
Murphy CJ, Chang HH, Falagan-Lotsch P, Gole MT, Hofmann DM, Hoang KNL, McClain SM, Meyer SM, Turner JG, Unnikrishnan M, Wu M, Zhang X, Zhang Y. Virus-Sized Gold Nanorods: Plasmonic Particles for Biology. Acc Chem Res 2019; 52:2124-2135. [PMID: 31373796 PMCID: PMC6702043 DOI: 10.1021/acs.accounts.9b00288] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plasmons, collective oscillations of conduction-band electrons in nanoscale metals, are well-known phenomena in colloidal gold and silver nanocrystals that produce brilliant visible colors in these materials that depend on the nanocrystal size and shape. Under illumination at or near the plasmon bands, gold and silver nanocrystals exhibit properties that enable fascinating biological applications: (i) the nanocrystals elastically scatter light, providing a straightforward way to image them in complex aqueous environments; (ii) the nanocrystals produce local electric fields that enable various surface-enhanced spectroscopies for sensing, molecular diagnostics, and boosting of bound fluorophore performance; (iii) the nanocrystals produce heat, which can lead to chemical transformations at or near the nanocrystal surface and can photothermally destroy nearby cells. While all the above-mentioned applications have already been well-demonstrated in the literature, this Account focuses on several other aspects of these nanomaterials, in particular gold nanorods that are approximately the size of viruses (diameters of ∼10 nm, lengths up to 100 nm). Absolute extinction, scattering, and absorption properties are compared for gold nanorods of various absolute dimensions, and references for how to synthesize gold nanorods with four different absolute dimensions are provided. Surface chemistry strategies for coating nanocrystals with smooth or rough shells are detailed; specific examples include mesoporous silica and metal-organic framework shells for porous (rough) coatings and polyelectrolyte layer-by-layer wrapping for "smooth" shells. For self-assembled-monolayer molecular coating ligands, the smoothest shells of all, a wide range of ligand densities have been reported from many experiments, yielding values from less than 1 to nearly 10 molecules/nm2 depending on the nanocrystal size and the nature of the ligand. Systematic studies of ligand density for one particular ligand with a bulky headgroup are highlighted, showing that the highest ligand density occurs for the smallest nanocrystals, even though these ligand headgroups are the most mobile as judged by NMR relaxation studies. Biomolecular coronas form around spherical and rod-shaped nanocrystals upon immersion into biological fluids; these proteins and lipids can be quantified, and their degree of adsorption depends on the nanocrystal surface chemistry as well as the biophysical characteristics of the adsorbing biomolecule. Photothermal adsorption and desorption of proteins on nanocrystals depend on the enthalpy of protein-nanocrystal surface interactions, leading to light-triggered alteration in protein concentrations near the nanocrystals. At the cellular scale, gold nanocrystals exert genetic changes at the mRNA level, with a variety of likely mechanisms that include alteration of local biomolecular concentration gradients, changes in mechanical properties of the extracellular matrix, and physical interruption of key cellular processes-even without plasmonic effects. Microbiomes, both organismal and environmental, are the likely first point of contact of nanomaterials with natural living systems; we see a major scientific frontier in understanding, predicting, and controlling microbe-nanocrystal interactions, which may be augmented by plasmonic effects.
Collapse
Affiliation(s)
- Catherine J. Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Huei-Huei Chang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Priscila Falagan-Lotsch
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Matthew T. Gole
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Daniel M. Hofmann
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Khoi Nguyen L. Hoang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Sophia M. McClain
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Sean M. Meyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Jacob G. Turner
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Mahima Unnikrishnan
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Meng Wu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Xi Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Yishu Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| |
Collapse
|
28
|
Buchman JT, Hudson-Smith NV, Landy KM, Haynes CL. Understanding Nanoparticle Toxicity Mechanisms To Inform Redesign Strategies To Reduce Environmental Impact. Acc Chem Res 2019; 52:1632-1642. [PMID: 31181913 DOI: 10.1021/acs.accounts.9b00053] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There has been a surge of consumer products that incorporate nanoparticles, which are used to improve or impart new functionalities to the products based on their unique physicochemical properties. With such an increase in products containing nanomaterials, there is a need to understand their potential impacts on the environment. This is often done using various biological models that are abundant in the different environmental compartments where the nanomaterials may end up after use. Beyond studying whether nanomaterials simply kill an organism, the molecular mechanisms by which nanoparticles exhibit toxicity have been extensively studied. Some of the main mechanisms include (1) direct nanoparticle association with an organism's cell surface, where the membrane can be damaged or initiate internal signaling pathways that damage the cell, (2) dissolution of the material, releasing toxic ions that impact the organism, generally through impairing important enzyme functions or through direct interaction with a cell's DNA, and (3) the generation of reactive oxygen species and subsequent oxidative stress on an organism, which can also damage important enzymes or an organism's genetic material. This Account reviews these toxicity mechanisms, presenting examples for each with different types of nanomaterials. Understanding the mechanism of nanoparticle toxicity will inform efforts to redesign nanoparticles with reduced environmental impact. The redesign strategies will need to be chosen based on the major mode of toxicity, but also considering what changes can be made to the nanomaterial without impacting its ability to perform in its intended application. To reduce interactions with the cell surface, nanomaterials can be designed to have a negative surface charge, use ligands such as polyethylene glycol that reduce protein binding, or have a morphology that discourages binding with a cell surface. To reduce the nanoparticle dissolution to toxic ions, the toxic species can be replaced with less toxic elements that have similar properties, the nanoparticle can be capped with a shell material, the morphology of the nanoparticle can be chosen to minimize surface area and thus minimize dissolution, or a chelating agent can be co-introduced or functionalized onto the nanomaterial's surface. To reduce the production of reactive oxygen species, the band gap of the material can be tuned either by using different elements or by doping, a shell layer can be added to inhibit direct contact with the core, or antioxidant molecules can be tethered to the nanoparticle surface. When redesigning nanoparticles, it will be important to test that the redesign strategy actually reduces toxicity to organisms from relevant environmental compartments. It is also necessary to confirm that the nanomaterial still demonstrates the critical physicochemical properties that inspired its inclusion in a product or device.
Collapse
Affiliation(s)
- Joseph T. Buchman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Natalie V. Hudson-Smith
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kaitlin M. Landy
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
29
|
Innocenzi P, Malfatti L. Mesoporous materials as platforms for surface-enhanced Raman scattering. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Zou Y, Chen H, Li Y, Yuan X, Zhao X, Chen W, Cao F, Cai N, Huang X, Yang F, Liu W. Synthesis of mesoporous-silica coated multi-branched gold nanoparticles for surface enhanced Raman scattering evaluation of 4-bromomethcathinone. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2018.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Keller EL, Kang H, Haynes CL, Frontiera RR. Effect of Silica Supports on Plasmonic Heating of Molecular Adsorbates as Measured by Ultrafast Surface-Enhanced Raman Thermometry. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40577-40584. [PMID: 30427654 DOI: 10.1021/acsami.8b14858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plasmonic materials show great potential for selective photocatalysis under relatively mild reaction conditions. However, the catalytic activity of these plasmonic catalysts can also depend upon the support material that stabilizes the catalysts, where the composition of the catalytic support may change the overall photocatalytic efficiency and yield. It is unknown how changes in the support material may change the plasmon-driven photocatalysis, which may be initiated by plasmon-derived hot carriers, localized heating, or enhanced electromagnetic fields. Herein, we probe the effects of catalytic supports on heating in plasmon-driven catalysis by examining various gold nanoparticle oxide systems. We use ultrafast surface-enhanced Raman thermometry to measure the effective temperature, equivalent to the vibrational kinetic energy, of reporter molecules located between plasmonic gold nanostructures and local environments ranging from ligands to mesoporous silica shells to silica shells. Upon photoexcitation, the transient effective temperature, equivalent to the energy deposited into a vibrational mode, of adsorbed molecules on the silica-coated samples increases, and the energy quickly dissipates within 3 ps. However, the baseline effective temperature that arises from the surface-enhanced Raman spectroscopy probing process depends upon the encapsulant, where the energy deposition differs by 200-300 K between the ligand-coated (citrate or CTAB) and the silica-coated samples. Adsorbates surrounded by a silica shell experience significantly higher effective temperatures than the adsorbates surrounded by ligands or solvent, likely because of the differing effective heat capacities of these media. Taken together, this work shows that a silica support impacts the localized heating of molecular adsorbates on the gold surface and may play a role in enhanced plasmonic photocatalysis because of increased thermal contributions.
Collapse
Affiliation(s)
- Emily L Keller
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Hyunho Kang
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Christy L Haynes
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Renee R Frontiera
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
32
|
Rice D, Mouras R, Gleeson M, Liu N, Tofail SAM, Soulimane T, Silien C. APTES Duality and Nanopore Seed Regulation in Homogeneous and Nanoscale-Controlled Reduction of Ag Shell on SiO 2 Microparticle for Quantifiable Single Particle SERS. ACS OMEGA 2018; 3:13028-13035. [PMID: 31458023 PMCID: PMC6644844 DOI: 10.1021/acsomega.8b01247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/28/2018] [Indexed: 05/10/2023]
Abstract
Noble-metal nanoparticles size and packing density are critical for sensitive surface-enhanced Raman scattering (SERS) and controlled preparation of such films required to achieve reproducibility. Provided that they are made reliable, Ag shell on SiO2 microscopic particles (Ag/SiO2) are promising candidates for lab-on-a-bead analytical measurements of low analyte concentration in liquid specimen. Here, we selected nanoporous silica microparticles as a substrate for reduction of AgNO3 with 3-aminopropyltriethoxysilane (APTES). In a single preparation step, homogeneous and continuous films of Ag nanoparticles are formed on SiO2 surfaces with equimolar concentration of APTES and silver nitrate in ethanol. It is discussed that amine and silane moieties in APTES contribute first to an efficient reduction on the silica and second to capping the Ag nanoparticles. The high density and homogeneity of nanoparticle nucleation is further regulated by the nanoporosity of the silica. The Ag/SiO2 microparticles were tested for SERS using self-assembled 4-aminothiophenol monolayers, and an enhancement factor of ca. 2 × 106 is measured. Importantly, the SERS relative standard deviation is 36% when a single microparticle is considered and drops to 11% when sets of 10 microparticles are considered. As prepared, the microparticles are highly suitable for state-of-the-art quantitative lab-on-a-bead interrogation of specimens.
Collapse
Affiliation(s)
- Daragh Rice
- Department
of Physics & Bernal Institute and Department of Chemical Sciences
& Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Rabah Mouras
- Department
of Physics & Bernal Institute and Department of Chemical Sciences
& Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Matthew Gleeson
- Department
of Physics & Bernal Institute and Department of Chemical Sciences
& Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Ning Liu
- Department
of Physics & Bernal Institute and Department of Chemical Sciences
& Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Syed A. M. Tofail
- Department
of Physics & Bernal Institute and Department of Chemical Sciences
& Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Tewfik Soulimane
- Department
of Physics & Bernal Institute and Department of Chemical Sciences
& Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Christophe Silien
- Department
of Physics & Bernal Institute and Department of Chemical Sciences
& Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- E-mail:
| |
Collapse
|
33
|
Kang H, Buchman JT, Rodriguez RS, Ring HL, He J, Bantz KC, Haynes CL. Stabilization of Silver and Gold Nanoparticles: Preservation and Improvement of Plasmonic Functionalities. Chem Rev 2018; 119:664-699. [DOI: 10.1021/acs.chemrev.8b00341] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hyunho Kang
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Joseph T. Buchman
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Rebeca S. Rodriguez
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Hattie L. Ring
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Jiayi He
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Kyle C. Bantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
34
|
Pan S, Xing H, Fu X, Yu H, Yang Z, Yang Y, Sun W. The Effect of Photothermal Therapy on Osteosarcoma With Polyacrylic Acid-Coated Gold Nanorods. Dose Response 2018; 16:1559325818789841. [PMID: 30181729 PMCID: PMC6116076 DOI: 10.1177/1559325818789841] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 02/04/2023] Open
Abstract
Background: Polyacrylic acid (PAA)–coated gold nanorods (GNRs) were prepared in this
research, and then the structure, stability, temperature increment
efficiency, and biocompatibility of GNRs@PAA were detected. Methods: It was demonstrated that GNRs@PAA coupled with an 808 nm laser had superior
efficiency of hyperthermia therapy for MG63 human osteosarcoma cell. Results: The mechanism of photothermal therapy of GNRs@PAA was explored, and it was
proved that damaged cell membrane and DNA integration caused cell apoptosis
and death, and the cell apoptosis rate had been obviously promoted by in
vitro photothermal therapy which exhibited time–dose dependence. Conclusion: The results demonstrated that the GNRs@PAA could be a promising candidate for
phototherapeutic applications in human osteosarcoma.
Collapse
Affiliation(s)
- Su Pan
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China.,These authors contributed equally to this study
| | - Hongcun Xing
- College of Life Sciences, Jilin University, Changchun, Jilin, China.,These authors contributed equally to this study
| | - Xuqi Fu
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Hongmei Yu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhaogang Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Yudan Yang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Sun
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
35
|
Pinheiro PC, Daniel-da-Silva AL, Nogueira HIS, Trindade T. Functionalized Inorganic Nanoparticles for Magnetic Separation and SERS Detection of Water Pollutants. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800132] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paula C. Pinheiro
- Department of Chemistry-CICECO; University of Aveiro; 3810-193 Aveiro Portugal
| | | | | | - Tito Trindade
- Department of Chemistry-CICECO; University of Aveiro; 3810-193 Aveiro Portugal
| |
Collapse
|
36
|
Nature Inspired Plasmonic Structures: Influence of Structural Characteristics on Sensing Capability. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8050668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Xi W, Shrestha BK, Haes AJ. Promoting Intra- and Intermolecular Interactions in Surface-Enhanced Raman Scattering. Anal Chem 2017; 90:128-143. [DOI: 10.1021/acs.analchem.7b04225] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wenjing Xi
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 55242 United States
| | - Binaya K. Shrestha
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 55242 United States
| | - Amanda J. Haes
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 55242 United States
| |
Collapse
|
38
|
Hinman JG, Eller JR, Lin W, Li J, Li J, Murphy CJ. Oxidation State of Capping Agent Affects Spatial Reactivity on Gold Nanorods. J Am Chem Soc 2017; 139:9851-9854. [DOI: 10.1021/jacs.7b06391] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Joshua G. Hinman
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan R. Eller
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wayne Lin
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ji Li
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Junheng Li
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Catherine J. Murphy
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|