1
|
Liu X, Hu Z, Xing P, Guo J, Xing Y, Liu S, Wang C. Construction of iron-doped nickel cobalt phosphide nanoparticles via solvothermal phosphidization and their application in alkaline oxygen evolution. J Colloid Interface Sci 2025; 677:441-451. [PMID: 39153247 DOI: 10.1016/j.jcis.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Multi-metallic phosphides offer the possibility to combine the strategies of surface reconstruction, electronic interaction and mechanistic pathway tuning to achieve high electrocatalytic oxygen evolution activity. Here, iron-doped nickel cobalt phosphide nanoparticles (FexCoyNi2-x-yP) with the crystalline NiCoP phase are for the first time synthesized by the solvothermal phosphidization method via the reaction between metal-organic frameworks and white phosphorus. When used to electrochemically catalyze oxygen evolution reaction (OER), the Fe0.4Co0.8Ni0.8P supported by nickel foam requires only 248 mV overpotential to achieve 10 mA cm-2 current densities, and is robust towards the long-term OER in 1 M KOH. The higher number of electrochemically active sites can account for the good OER activity, along with the improved intrinsic activity which is caused by the electron interaction that optimizes the adsorption energy of hydroxyl intermediates, and that increases the acidity of high-valent metal centers. The OER mechanistic pathway involves both adsorbate and lattice oxygen. Surface conversion is observed after OER in alkaline solution, and metal phosphide layer transforms to metal oxides and (oxy)hydroxides.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Zhikai Hu
- Department of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Peize Xing
- Department of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Jiale Guo
- Department of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yichuang Xing
- Department of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Shuling Liu
- Department of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Chao Wang
- Department of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
2
|
Chen Y, Xu J, Chen Y, Wang L, Jiang S, Xie ZH, Zhang T, Munroe P, Peng S. Rapid Defect Engineering in FeCoNi/FeAl 2O 4 Hybrid for Enhanced Oxygen Evolution Catalysis: A Pathway to High-Performance Electrocatalysts. Angew Chem Int Ed Engl 2024; 63:e202405372. [PMID: 38659283 DOI: 10.1002/anie.202405372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Rational modulation of surface reconstruction in the oxygen evolution reaction (OER) utilizing defect engineering to form efficient catalytic activity centers is a topical interest in the field of catalysis. The introduction of point defects has been demonstrated to be an effective strategy to regulate the electronic configuration of electrocatalysts, but the influence of more complex planar defects (e.g., twins and stacking faults), on their intrinsic activity is still not fully understood. This study harnesses ultrasonic cavitation for rapid and controlled introduction of different types of defects in the FeCoNi/FeAl2O4 hybrid coating, optimizing OER catalytic activity. Theoretical calculations and experiments demonstrate that the different defects optimize the coordination environment and facilitate the activation of surface reconstruction into true catalytic activity centers at lower potentials. Moreover, it demonstrates exceptional durability, maintaining stable oxygen production at a high current density of 300 mA cm-2 for over 120 hours. This work not only presents a novel pathway for designing advanced electrocatalysts but also deepens our understanding of defect-engineered catalytic mechanisms, showcasing the potential for rapid and efficient enhancement of electrocatalytic performance.
Collapse
Affiliation(s)
- Yuhao Chen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jiang Xu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yujie Chen
- School of Mechanical Engineering, University of Adelaide, Adelaide, SA-5005, Australia
| | - Luqi Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shuyun Jiang
- Department of Mechanical Engineering, Southeast University, 2 Si Pai Lou, Nanjing, 210096, PR China
| | - Zong-Han Xie
- School of Mechanical Engineering, University of Adelaide, Adelaide, SA-5005, Australia
| | - Tianran Zhang
- College of Material Science and Opto-Electronic Technology, University of Chinese Academy of Science, Beijing, PR China
| | - Paul Munroe
- School of Materials Science and Engineering, University of New South Wales, NSW, 2052, Australia
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
3
|
Wang H, Zhai T, Wu Y, Zhou T, Zhou B, Shang C, Guo Z. High-Valence Oxides for High Performance Oxygen Evolution Electrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301706. [PMID: 37253121 PMCID: PMC10401147 DOI: 10.1002/advs.202301706] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Valence tuning of transition metal oxides is an effective approach to design high-performance catalysts, particularly for the oxygen evolution reaction (OER) that underpins solar/electric water splitting and metal-air batteries. Recently, high-valence oxides (HVOs) are reported to show superior OER performance, in association with the fundamental dynamics of charge transfer and the evolution of the intermediates. Particularly considered are the adsorbate evolution mechanism (AEM) and the lattice oxygen-mediated mechanism (LOM). High-valence states enhance the OER performance mainly by optimizing the eg -orbital filling, promoting the charge transfer between the metal d band and oxygen p band. Moreover, HVOs usually show an elevated O 2p band, which triggers the lattice oxygen as the redox center and enacts the efficient LOM pathway to break the "scaling" limitation of AEM. In addition, oxygen vacancies, induced by the overall charge-neutrality, also promote the direct oxygen coupling in LOM. However, the synthesis of HVOs suffers from relatively large thermodynamic barrier, which makes their preparation difficult. Hence, the synthesis strategies of the HVOs are discussed to guide further design of the HVO electrocatalysts. Finally, further challenges and perspectives are outlined for potential applications in energy conversion and storage.
Collapse
Affiliation(s)
- Hao Wang
- Department of ChemistryThe University of Hong KongHong Kong SAR000000China
- Green Catalysis CenterCollege of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Tingting Zhai
- Department of Mechanical EngineeringThe University of Hong KongHong Kong SAR000000China
| | - Yifan Wu
- Department of ChemistryThe University of Hong KongHong Kong SAR000000China
| | - Tao Zhou
- Department of ChemistryThe University of Hong KongHong Kong SAR000000China
| | - Binbin Zhou
- Shenzhen Institute of Advanced Electronic MaterialsShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Congxiao Shang
- Department of ChemistryThe University of Hong KongHong Kong SAR000000China
| | - Zhengxiao Guo
- Department of ChemistryThe University of Hong KongHong Kong SAR000000China
- Department of Mechanical EngineeringThe University of Hong KongHong Kong SAR000000China
- Zhejiang Institute of Research and InnovationThe University of Hong KongHangzhou311300China
| |
Collapse
|
4
|
Nazari M, Ghaemmaghami M. Approach to Evaluation of Electrocatalytic Water Splitting Parameters, Reflecting Intrinsic Activity: Toward the Right Pathway. CHEMSUSCHEM 2023; 16:e202202126. [PMID: 36867113 DOI: 10.1002/cssc.202202126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/03/2023] [Indexed: 06/10/2023]
Abstract
The development of transition metal-based non-precious-metal electrocatalysts for energy storage and conversion systems has received a lot of interest recently. To further this subject in the proper way given the development of electrocatalysts, a fair comparison of their respective performance is necessary. This Review investigates the parameters used for the comparison of electrocatalyst activity. Significant evaluation criteria employed in electrochemical water splitting studies are the overpotential at defined current density usually at 10 mA per geometric surface area, Tafel slope, exchange current density, mass activity, specific activity and turnover frequency (TOF). This Review will discuss how to identify the specific activity and TOF by electrochemical and non-electrochemical methods to represent intrinsic activity as well as the benefits and uncertainties of each technique, ensuring that each method is applied correctly when calculating intrinsic activity metrics.
Collapse
Affiliation(s)
- Mahrokh Nazari
- Department of Chemistry, Tarbiat Modares University, P.O. Box, 14115-175, Tehran, Iran
| | - Mostafa Ghaemmaghami
- Department of Chemistry, Tarbiat Modares University, P.O. Box, 14115-175, Tehran, Iran
| |
Collapse
|
5
|
Páll B, Mersel MA, Pekker P, Makó É, Vágvölgyi V, Németh M, Pap JS, Fodor L, Horváth O. Photocatalytic H 2 Production by Visible Light on Cd 0.5Zn 0.5S Photocatalysts Modified with Ni(OH) 2 by Impregnation Method. Int J Mol Sci 2023; 24:9802. [PMID: 37372950 DOI: 10.3390/ijms24129802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Nowadays, the study of environmentally friendly ways of producing hydrogen as a green energy source is an increasingly important challenge. One of these potential processes is the heterogeneous photocatalytic splitting of water or other hydrogen sources such as H2S or its alkaline solution. The most common catalysts used for H2 production from Na2S solution are the CdS-ZnS type catalysts, whose efficiency can be further enhanced by Ni-modification. In this work, the surface of Cd0.5Zn0.5S composite was modified with Ni(II) compound for photocatalytic H2 generation. Besides two conventional methods, impregnation was also applied, which is a simple but unconventional modification technique for the CdS-type catalysts. Among the catalysts modified with 1% Ni(II), the impregnation method resulted in the highest activity, for which a quantum efficiency of 15.8% was achieved by using a 415 nm LED and Na2S-Na2SO3 sacrificial solution. This corresponded to an outstanding rate of 170 mmol H2/h/g under the given experimental conditions. The catalysts were characterized by DRS, XRD, TEM, STEM-EDS, and XPS analyses, which confirmed that Ni(II) is mainly present as Ni(OH)2 on the surface of the CdS-ZnS composite. The observations from the illumination experiments indicated that Ni(OH)2 was oxidized during the reaction, and that it therefore played a hole-trapping role.
Collapse
Affiliation(s)
- Bence Páll
- Research Group of Environmental and Inorganic Photochemistry, Center for Natural Sciences, Faculty of Engineering, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Maali-Amel Mersel
- Research Group of Environmental and Inorganic Photochemistry, Center for Natural Sciences, Faculty of Engineering, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Péter Pekker
- Environmental Mineralogy Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Éva Makó
- Department of Materials Engineering, Research Center for Engineering Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Veronika Vágvölgyi
- Research Group of Analytical Chemistry, Center for Natural Sciences, Faculty of Engineering, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Miklós Németh
- Surface Chemistry and Catalysis Department, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege Street 29-33, H-1121 Budapest, Hungary
| | - József Sándor Pap
- Surface Chemistry and Catalysis Department, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege Street 29-33, H-1121 Budapest, Hungary
| | - Lajos Fodor
- Research Group of Environmental and Inorganic Photochemistry, Center for Natural Sciences, Faculty of Engineering, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Ottó Horváth
- Research Group of Environmental and Inorganic Photochemistry, Center for Natural Sciences, Faculty of Engineering, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| |
Collapse
|
6
|
Beglau THY, Rademacher L, Oestreich R, Janiak C. Synthesis of Ketjenblack Decorated Pillared Ni(Fe) Metal-Organic Frameworks as Precursor Electrocatalysts for Enhancing the Oxygen Evolution Reaction. Molecules 2023; 28:4464. [PMID: 37298940 PMCID: PMC10254712 DOI: 10.3390/molecules28114464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/20/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Metal-organic frameworks (MOFs) have been investigated with regard to the oxygen evolution reaction (OER) due to their structure diversity, high specific surface area, adjustable pore size, and abundant active sites. However, the poor conductivity of most MOFs restricts this application. Herein, through a facile one-step solvothermal method, the Ni-based pillared metal-organic framework [Ni2(BDC)2DABCO] (BDC = 1,4-benzenedicarboxylate, DABCO = 1,4-diazabicyclo[2.2.2]octane), its bimetallic nickel-iron form [Ni(Fe)(BDC)2DABCO], and their modified Ketjenblack (mKB) composites were synthesized and tested toward OER in an alkaline medium (KOH 1 mol L-1). A synergistic effect of the bimetallic nickel-iron MOF and the conductive mKB additive enhanced the catalytic activity of the MOF/mKB composites. All MOF/mKB composite samples (7, 14, 22, and 34 wt.% mKB) indicated much higher OER performances than the MOFs and mKB alone. The Ni-MOF/mKB14 composite (14 wt.% of mKB) demonstrated an overpotential of 294 mV at a current density of 10 mA cm-2 and a Tafel slope of 32 mV dec-1, which is comparable with commercial RuO2, commonly used as a benchmark material for OER. The catalytic performance of Ni(Fe)MOF/mKB14 (0.57 wt.% Fe) was further improved to an overpotential of 279 mV at a current density of 10 mA cm-2. The low Tafel slope of 25 mV dec-1 as well as a low reaction resistance due to the electrochemical impedance spectroscopy (EIS) measurement confirmed the excellent OER performance of the Ni(Fe)MOF/mKB14 composite. For practical applications, the Ni(Fe)MOF/mKB14 electrocatalyst was impregnated into commercial nickel foam (NF), where overpotentials of 247 and 291 mV at current densities of 10 and 50 mA cm-2, respectively, were realized. The activity was maintained for 30 h at the applied current density of 50 mA cm-2. More importantly, this work adds to the fundamental understanding of the in situ transformation of Ni(Fe)DMOF into OER-active α/β-Ni(OH)2, β/γ-NiOOH, and FeOOH with residual porosity inherited from the MOF structure, as seen by powder X-ray diffractometry and N2 sorption analysis. Benefitting from the porosity structure of the MOF precursor, the nickel-iron catalysts outperformed the solely Ni-based catalysts due to their synergistic effects and exhibited superior catalytic activity and long-term stability in OER. In addition, by introducing mKB as a conductive carbon additive in the MOF structure, a homogeneous conductive network was constructed to improve the electronic conductivity of the MOF/mKB composites. The electrocatalytic system consisting of earth-abundant Ni and Fe metals only is attractive for the development of efficient, practical, and economical energy conversion materials for efficient OER activity.
Collapse
Affiliation(s)
| | | | | | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany; (T.H.Y.B.); (L.R.); (R.O.)
| |
Collapse
|
7
|
Zheng L, Ye W, Zhao Y, Lv Z, Shi X, Wu Q, Fang X, Zheng H. Defect-Induced Atomic Arrangement in CoFe Bimetallic Heterostructures with Boosted Oxygen Evolution Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205092. [PMID: 36534831 DOI: 10.1002/smll.202205092] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Three CoFe-bimetallic oxides with different compositions (termed as CoFeOx -A/N/H) are prepared by thermally treating metal-organic-framework (MOF) precursors under different atmospheres (air, N2, and NaBH4 /N2 ), respectively. With the aid of vast oxygen vacancies (Ov ), cobalt at tetrahedral sites (Co2+ (Th)) in spinel Co3 O4 is diffused into interstitial octahedral sites (Oh) to form rocksalt CoO and ternary oxide CoFe2 O4 has been induced to give the unique defective CoO/CoFe2 O4 heterostructure. The resultant CoFeOx -H exhibits superb electrocatalytic activity toward water oxidation: overpotential at 10 mA cm-2 is 192 mV, which is 122 mV smaller than that of CoFeOx -A. The smaller Tafel slope (42.53 mV dec-1 ) and higher turnover frequency (785.5 h-1 ) suggest fast reaction kinetics. X-ray absorption spectroscopy, ex situ characterizations, and theoretical calculations reveal that defect engineering effectively tunes the electronic configuration to a more active state, resulting in the greatly decreased binding energy of oxo intermediates, and consequently much lower catalytic overpotential. Moreover, the construction of hetero-interface in CoFeOx -H can provide rich active sites and promote efficient electron transfer. This work may shed light on a comprehensive understanding of the modulation of electron configuration of bimetallic oxides and inspire the smart design of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Lingxia Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Weiqing Ye
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yijian Zhao
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhuoqing Lv
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiaowei Shi
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Qi Wu
- School of Science and Institute of Oxygen Supply and Everest Research Institute, Tibet University, Lhasa, 850000, P. R. China
| | - Xiaosheng Fang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Huajun Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
8
|
Perroni P, Ferraz T, Rousseau J, Canaff C, Varela H, Napporn T. Stainless Steel supported NiCo2O4 active layer for Oxygen Evolution Reaction. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Raveendran A, Chandran M, Dhanusuraman R. A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts. RSC Adv 2023; 13:3843-3876. [PMID: 36756592 PMCID: PMC9890951 DOI: 10.1039/d2ra07642j] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Electrochemical splitting of water is an appealing solution for energy storage and conversion to overcome the reliance on depleting fossil fuel reserves and prevent severe deterioration of the global climate. Though there are several fuel cells, hydrogen (H2) and oxygen (O2) fuel cells have zero carbon emissions, and water is the only by-product. Countless researchers worldwide are working on the fundamentals, i.e. the parameters affecting the electrocatalysis of water splitting and electrocatalysts that could improve the performance of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) and overall simplify the water electrolysis process. Noble metals like platinum for HER and ruthenium and iridium for OER were used earlier; however, being expensive, there are more feasible options than employing these metals for all commercialization. The review discusses the recent developments in metal and metalloid HER and OER electrocatalysts from the s, p and d block elements. The evaluation perspectives for electrocatalysts of electrochemical water splitting are also highlighted.
Collapse
Affiliation(s)
- Asha Raveendran
- Nano Electrochemistry Lab (NEL), Department of Chemistry, National Institute of Technology Puducherry Karaikal - 609609 India
| | - Mijun Chandran
- Department of Chemistry, Central University of Tamil Nadu Thiruvarur - 610005 India
| | - Ragupathy Dhanusuraman
- Nano Electrochemistry Lab (NEL), Department of Chemistry, National Institute of Technology Puducherry Karaikal - 609609 India
| |
Collapse
|
10
|
Taha A, Hassanin HA. Facile Green Synthesis of Ni(OH) 2@Mn 3O 4 Cactus-Type Nanocomposite: Characterization and Cytotoxicity Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248703. [PMID: 36557837 PMCID: PMC9782178 DOI: 10.3390/molecules27248703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 12/13/2022]
Abstract
In the present work, the facile eco-friendly synthesis and evaluation of the anti-tumor activity of Ni(OH)2@Mn3O4 nanocomposite were carried out. The synthesis of Ni(OH)2@Mn3O4 nanocomposite from chia-seed extract was mediated by sonication. The obtained materials were characterized by different spectroscopic techniques such as transmission electron microscopy (TEM), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-Vis), and Fourier transform infrared (FT-IR) spectroscopies. The results of XRD, SEM, EDS, TEM, FT-IR, and UV-Vis analysis indicate the successful manufacturing of a crystalline, cactus-type Ni(OH)2@Mn3O4 nanocomposite of 10.10 nm average particle size. XPS analysis confirms that the synthesized materials consist mainly of Ni2+, Mn2+, and Mn3+. The antitumor activity of the nanocomposite was tested against a breast cancer (MCF-7) cell line. The results showed Ni(OH)2@Mn3O4 nanocomposite possesses insignificant cytotoxicity. The cell-death percentage was 34% at a 100 ppm concentration of Ni(OH)2@Mn3O4 nanocomposite. The obtained results imply that the synthesized nanocomposite could be suitable and safe for drug delivery and water treatment.
Collapse
Affiliation(s)
- Amel Taha
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, Khartoum 11121, Sudan
| | - Hanaa A. Hassanin
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Correspondence: ; Tel.: +966-135897502; Fax: +966-135899557
| |
Collapse
|
11
|
Using coupled Ni and Zn oxides based on ZIF8 as efficient electrocatalyst for OER. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Electrodeposited 3D Lithiophilic Ni Microvia Host for Long Cycling Li Metal Anode at High Current Density. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Choudhary N, Abdelgaid M, Mpourmpakis G, Mobin SM. CuNi bimetallic nanocatalyst enables sustainable direct carboxylation reactions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Sonochemical-Assisted Biogenic Synthesis of Theophrasite β-Ni(OH)2 Nanocluster Using Chia Seeds Extract: Characterization and Anticancer Activity. NANOMATERIALS 2022; 12:nano12111919. [PMID: 35683774 PMCID: PMC9182536 DOI: 10.3390/nano12111919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/07/2022]
Abstract
Theophrasite β-Ni(OH)2 nanocluster were fabricated via the sonochemical-assisted biogenic method using chia seeds extract as a reducing and stabilizing agent. The optical and morphological feature of the synthesized nanocluster was characterized using UV-Vis, FTIR, FE-SEM-EDS, HR-TEM, DLS, XPS, and XRD analysis. According to FE-SEM and HR-TEM images of the synthesized materials, β-Ni(OH)2 nanocluster illustrates the hexagonal particle shape with an average size of 5.8 nm, while the EDS results confirm the high purity of the synthesized nanocluster. Moreover, the XRD pattern of the synthesized materials shows typical peaks that match the reference pattern of the Theophrasite form of β-Ni(OH)2 with a hexagonal crystal system. The XPS analysis illustrates that the prepared samples exhibit both Ni2+ and Ni3+ with the predominance of Ni2+ species. Additionally the in-vitro cytotoxic activity of β-Ni(OH)2 nanocluster is tested against the MCF7 cell lines (breast cancer cells). The MTT assay results proved that the synthesized β-Ni(OH)2 nanocluster has potent cytotoxic activity against breast cancer cell lines (IC50: 62.7 μg/mL).
Collapse
|
15
|
Shi F, Wang Z, Zhu K, Zhu X, Yang W. Enhancing activity and stability of Co-MOF-74 for oxygen evolution reaction by wrapping polydopamine. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Dai W, Zhou J, Bian Y, Hao Z, Cao Y, Xiao J, Gou H, Gao F. A universal synthesis of MOF-Hydroxyl for highly active oxygen evolution. J Colloid Interface Sci 2022; 623:318-326. [PMID: 35594590 DOI: 10.1016/j.jcis.2022.05.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/01/2022] [Accepted: 05/08/2022] [Indexed: 12/13/2022]
Abstract
Since of their adjustable pore structure and variety of metal sites, MOFs materials have infinite possibilities, but their low intrinsic activity hinders them from being employed in electrolytic water. The sulfurization and oxidation of MOFs has proven to be a feasible technique for producing highly active catalytic materials. Here, the MOFs are completely converted to hydroxide by treatment with alkaline solutions only. Electron microscopy demonstrates that hydroxides generated from various MOFs retain the complete profile of the precursor and contain a two-dimensional lamellar or mesoporous structure. Fe-MIL-88(A)-OH, a two-dimensional structural transformation product generated from Fe-MIL-88(A), demonstrates significant OER performance increase. At the same 300 mV overpotential, Fe-MIL-88(A)-OH delivers 83 times the current density of Fe-MIL-88(A) and 16 times that of commercial IrO2 (22.56 mA cm-2 vs. 0.27 mA cm-2 vs. 1.37 mA cm-2). The alkali treatment strategy proved to be a generally applicable treatment for MOFs, allowing the conversion of nickel- and cobalt-based MOFs to hydroxide with a significant boost in OER performance.
Collapse
Affiliation(s)
- Wenjing Dai
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Junshuang Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Ying Bian
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhuoran Hao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yunpeng Cao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jiajia Xiao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Huiyang Gou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Faming Gao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
17
|
Balčiūnaitė A, Upadhyay KK, Radinović K, Santos DMF, Montemor MF, Šljukić B. Steps towards highly-efficient water splitting and oxygen reduction using nanostructured β-Ni(OH) 2. RSC Adv 2022; 12:10020-10028. [PMID: 35424964 PMCID: PMC8965823 DOI: 10.1039/d2ra00914e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/20/2022] [Indexed: 11/21/2022] Open
Abstract
β-Ni(OH)2 nanoplatelets are prepared by a hydrothermal procedure and characterized by scanning and transmission electron microscopy, X-ray diffraction analysis, Raman spectroscopy, and X-ray photoelectron spectroscopy. The material is demonstrated to be an efficient electrocatalyst for oxygen reduction, oxygen evolution, and hydrogen evolution reactions in alkaline media. β-Ni(OH)2 shows an overpotential of 498 mV to reach 10 mA cm-2 towards oxygen evolution, with a Tafel slope of 149 mV dec-1 (decreasing to 99 mV dec-1 at 75 °C), along with superior stability as evidenced by chronoamperometric measurements. Similarly, a low overpotential of -333 mV to reach 10 mA cm-2 (decreasing to only -65 mV at 75 °C) toward hydrogen evolution with a Tafel slope of -230 mV dec-1 is observed. Finally, β-Ni(OH)2 exhibits a noteworthy performance for the ORR, as evidenced by a low Tafel slope of -78 mV dec-1 and a number of exchanged electrons of 4.01 (indicating direct 4e--oxygen reduction), whereas there are only a few previous reports on modest ORR activity of pure Ni(OH)2.
Collapse
Affiliation(s)
- Aldona Balčiūnaitė
- Department of Catalysis, Center for Physical Sciences and Technology Saulėtekio ave. 3 Vilnius LT-10257 Lithuania
| | - Kush K Upadhyay
- Centro de Química Estrutural-CQE, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa 1049-001 Lisbon Portugal
| | - Kristina Radinović
- University of Belgrade, Faculty of Physical Chemistry Studentski trg 12-16 11158 Belgrade Serbia
| | - Diogo M F Santos
- Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa 1049-001 Lisbon Portugal
| | - M F Montemor
- Centro de Química Estrutural-CQE, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa 1049-001 Lisbon Portugal
| | - Biljana Šljukić
- University of Belgrade, Faculty of Physical Chemistry Studentski trg 12-16 11158 Belgrade Serbia
- Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa 1049-001 Lisbon Portugal
| |
Collapse
|
18
|
Chavan HS, Lee CH, Inamdar AI, Han J, Park S, Cho S, Shreshta NK, Lee SU, Hou B, Im H, Kim H. Designing and Tuning the Electronic Structure of Nickel–Vanadium Layered Double Hydroxides for Highly Efficient Oxygen Evolution Electrocatalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05813] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Harish S. Chavan
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| | - Chi Ho Lee
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan 15588, South Korea
| | - Akbar I. Inamdar
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| | - Jonghoon Han
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
- Quantum-functional Research Centre, Dongguk University, Seoul 04620, South Korea
| | - Sunjung Park
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
- Quantum-functional Research Centre, Dongguk University, Seoul 04620, South Korea
| | - Sangeun Cho
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| | - Nabeen K. Shreshta
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| | - Sang Uck Lee
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan 15588, South Korea
| | - Bo Hou
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K
| | - Hyunsik Im
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| | - Hyungsang Kim
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| |
Collapse
|
19
|
Piccinni M, Bellani S, Bianca G, Bonaccorso F. Nickel-Iron Layered Double Hydroxide Dispersions in Ethanol Stabilized by Acetate Anions. Inorg Chem 2022; 61:4598-4608. [PMID: 35254806 DOI: 10.1021/acs.inorgchem.1c03485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This work reports a method to obtain stable dispersions of nickel-iron layered double hydroxide (NiFe-LDH) nanosheets in ethanol by exposing the as-synthetized bulk NiFe-LDH to a sodium acetate solution or by adding acetate and citrate anions inside the reaction mixture. In the case of citrate-containing NiFe-LDH, the formation of single-layer nanosheets is confirmed by X-ray diffraction and atomic force microscopy measurements. Lastly, the effect of acetate ions on the electrocatalytic activity of NiFe-LDH is discussed for the oxygen evolution reaction. Our results provide useful information to improve the existing LDH exfoliation routes based on the use of green solvent alternatives to the mostly used formamide.
Collapse
Affiliation(s)
- Marco Piccinni
- Istituto Italiano di Tecnologia, Graphene Labs, via Morego 30, 16163 Genoa, Italy.,Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genoa, Italy
| | | | - Gabriele Bianca
- Istituto Italiano di Tecnologia, Graphene Labs, via Morego 30, 16163 Genoa, Italy.,Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genoa, Italy
| | - Francesco Bonaccorso
- Istituto Italiano di Tecnologia, Graphene Labs, via Morego 30, 16163 Genoa, Italy.,BeDimensional Spa, via Lungotorrente Secca 30R, 16163 Genoa, Italy
| |
Collapse
|
20
|
Dong Y, Fang Z, Yang W, Tang B, Liu Q. Integrated Bifunctional Electrodes Based on Amorphous Co-Ni-S Nanoflake Arrays with Atomic Dispersity of Active Sites for Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10277-10287. [PMID: 35166520 DOI: 10.1021/acsami.1c22092] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fabrication of amorphous electrocatalysts without noble metals for cost-effective full water splitting is highly desired but remains a substantial challenge. In the present work, we report a facile strategy for exploring integrated bifunctional electrocatalysts based on amorphous cobalt/nickel sulfide nanoflake arrays self-supported on carbon cloth, by tailoring competitive coordination of metal ions between glucose and 2-aminoterephthalic acid. Ultrahigh dispersion of binary metal active sites with balanced atomic distribution enables the optimization of catalytic properties for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) in an alkaline solution. The obtained catalyst exhibits remarkably enhanced OER and HER activities as compared with its oxide counterpart and analogues with different Co/Ni ratios. It requires overpotentials of 296 and 192 mV to deliver a current density of 10 mA cm-2 for the OER and HER, respectively; it retains 96.6 and 96.9% activity after 32 h of OER and 36 h of HER tests at 10 mA cm-2, respectively. As directly used an anode and a cathode in an alkaline electrolyzer, a low cell voltage of 1.60 V could endow a water splitting current of 10 mA cm-2, outperforming the benchmark RuO2 and Pt/C-based electrolyzer at 1.72 V@10 mA cm-2. The current synthetic strategy may provide more opportunities for the design and direct synthesis of amorphous catalysts for overall water splitting and beyond.
Collapse
Affiliation(s)
- Yaqian Dong
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, P. R. China
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, P. R. China
| | - Zhi Fang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, P. R. China
| | - Weiyou Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, P. R. China
| | - Bin Tang
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Qiao Liu
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, P. R. China
| |
Collapse
|
21
|
Efficient OER nanocomposite electrocatalysts based on Ni and/or Co supported on MoSe2 nanoribbons and MoS2 nanosheets. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
22
|
Electrokinetic analysis of water oxidation on alumina supported silver oxide nanopowders. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Singh S, Yadav M, Singh DK, Yadav DK, Sonkar PK, Ganesan V. One step synthesis of a bimetallic (Ni and Co) metal–organic framework for the efficient electrocatalytic oxidation of water and hydrazine. NEW J CHEM 2022. [DOI: 10.1039/d2nj00773h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of metal–organic frameworks (MOFs) with varying Ni : Co ratios are synthesized by an easy one-step solvothermal method using trimesic acid as an organic linker.
Collapse
Affiliation(s)
- Smita Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, UP, India
| | - Mamta Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, UP, India
| | - Devesh Kumar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, UP, India
| | | | - Piyush Kumar Sonkar
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Vellaichamy Ganesan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, UP, India
| |
Collapse
|
24
|
Li T, Ma X, Wu J, Chu F, Qiao L, Song Y, Wu M, Lin J, Peng L, Chen Z. Ni(OH)2 microspheres in situ self-grown on ultra-thin layered g-C3N4 as a heterojunction electrocatalyst for oxygen evolution reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Wang D, Gong W, Zhang J, Wang G, Zhang H, Zhao H. In situ growth of MOFs on Ni(OH) 2 for efficient electrocatalytic oxidation of 5-hydroxymethylfurfural. Chem Commun (Camb) 2021; 57:11358-11361. [PMID: 34643624 DOI: 10.1039/d1cc04680b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ni-based MOF is in situ grown onto Ni(OH)2 nanosheets to effectively suppress the oxygen evolution reaction for the efficient electrocatalytic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid with 100% yield and faradaic efficiency at 1.4 V (vs. RHE).
Collapse
Affiliation(s)
- Dongdong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | - Wanbing Gong
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | - Jifang Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | - Huijun Zhao
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China. .,Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Queensland 4222, Australia
| |
Collapse
|
26
|
Anantharaj S, Karthik PE, Noda S. The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sengeni Anantharaj
- Department of Applied Chemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Waseda Research Institute for Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Pitchiah Esakki Karthik
- Department of Chemical Engineering Hanyang University 222 Wangsimni ro, Seongdong-gu Seoul 04763 Republic of Korea
| | - Suguru Noda
- Department of Applied Chemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Waseda Research Institute for Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| |
Collapse
|
27
|
Anantharaj S, Karthik PE, Noda S. The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angew Chem Int Ed Engl 2021; 60:23051-23067. [PMID: 34523770 PMCID: PMC8596788 DOI: 10.1002/anie.202110352] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 11/08/2022]
Abstract
For decades, turnover frequency (TOF) has served as an accurate descriptor of the intrinsic activity of a catalyst, including those in electrocatalytic reactions involving both fuel generation and fuel consumption. Unfortunately, in most of the recent reports in this area, TOF is often not properly reported or not reported at all, in contrast to the overpotentials at a benchmarking current density. The current density is significant in determining the apparent activity, but it is affected by catalyst-centric parasitic reactions, electrolyte-centric competing reactions, and capacitance. Luckily, a properly calculated TOF can precisely give the intrinsic activity free from these phenomena in electrocatalysis. In this Viewpoint we ask: 1) What makes the commonly used activity markers unsuitable for intrinsic activity determination? 2) How can TOF reflect the intrinsic activity? 3) Why is TOF still underused in electrocatalysis? 4) What methods are used in TOF determination? and 5) What is essential in the more accurate calculation of TOF? Finally, the significance of normalizing TOF by Faradaic efficiency (FE) is stressed and we give our views on the development of universal analytical tools to determine the exact number of active sites and real surface area for all kinds of materials.
Collapse
Affiliation(s)
- Sengeni Anantharaj
- Department of Applied ChemistrySchool of Advanced Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
- Waseda Research Institute for Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
| | - Pitchiah Esakki Karthik
- Department of Chemical EngineeringHanyang University222 Wangsimni ro, Seongdong-guSeoul04763Republic of Korea
| | - Suguru Noda
- Department of Applied ChemistrySchool of Advanced Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
- Waseda Research Institute for Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
| |
Collapse
|
28
|
Wu B, Yang Z, Dai X, Yin X, Gan Y, Nie F, Ren Z, Cao Y, Li Z, Zhang X. Hierarchical sheet-on-sheet heterojunction array of a β-Ni(OH) 2/Fe(OH) 3 self-supporting anode for effective overall alkaline water splitting. Dalton Trans 2021; 50:12547-12554. [PMID: 34545883 DOI: 10.1039/d1dt02195h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rationally designing high-performance non-noble metal electrocatalysts is of essence to improve energy conversion efficiency in water splitting. Herein, a unique 3D hierarchical sheet-on-sheet heterojunction between Fe(OH)3 and β-Ni(OH)2 on pretreated Ni foam (NiFe-HD/pre-NF) was fabricated by a two-step strategy involving the interfacial hydrolysis-deposition of Fe2+ and electrodeposition of Ni2+. The presence of the Ni-O-Fe bridge at the Fe(OH)3/β-Ni(OH)2 heterointerface can induce interfacial electronic redistribution to form Ni3+ in NiFe-HD/pre-NF, and further strengthen the adsorption of OH- and weaken the O-H bond to change the rate-determining step (RDS) for accelerating OER kinetics. Benefiting from the sheet-on-sheet architecture and dual-phase synergism on NiFe-HD/pre-NF, the optimal NiFe-HD/pre-NF exhibits excellent OER performance with a lower overpotential of 256 mV at 100 mA cm-2, a small Tafel slope of 81 mV dec-1, high intrinsic activity and robust stability. Alkaline water-splitting using NiFe-HD/pre-NF as the anode requires ultralow cell voltages of 1.62 V and 1.83 V at current densities of 100 mA cm-2 and 400 mA cm-2, respectively, which are comparable with commercial alkaline water electrolysis, and operates steadily at a current density of 100 mA cm-2 for 85 h without decay. This work proposes a facile strategy for constructing heterojunctions and modulating electronic interaction to develop electrocatalysts with new architectures.
Collapse
Affiliation(s)
- Baoqiang Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Zhaohui Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Xiaoping Dai
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Xueli Yin
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Yonghao Gan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Fei Nie
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Ziteng Ren
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Yihua Cao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Zhi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| |
Collapse
|
29
|
Zhang K, Zou R. Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100129. [PMID: 34114334 DOI: 10.1002/smll.202100129] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/06/2021] [Indexed: 05/14/2023]
Abstract
Oxygen evolution reaction (OER) is an important half-reaction involved in many electrochemical applications, such as water splitting and rechargeable metal-air batteries. However, the sluggish kinetics of its four-electron transfer process becomes a bottleneck to the performance enhancement. Thus, rational design of electrocatalysts for OER based on thorough understanding of mechanisms and structure-activity relationship is of vital significance. This review begins with the introduction of OER mechanisms which include conventional adsorbate evolution mechanism and lattice-oxygen-mediated mechanism. The reaction pathways and related intermediates are discussed in detail, and several descriptors which greatly assist in catalyst screen and optimization are summarized. Some important parameters suggested as measurement criteria for OER are also mentioned and discussed. Then, recent developments and breakthroughs in experimental achievements on transition metal-based OER electrocatalysts are reviewed to reveal the novel design principles. Finally, some perspectives and future directions are proposed for further catalytic performance enhancement and deeper understanding of catalyst design. It is believed that iterative improvements based on the understanding of mechanisms and fundamental design principles are essential to realize the applications of efficient transition metal-based OER electrocatalysts for electrochemical energy storage and conversion technologies.
Collapse
Affiliation(s)
- Kexin Zhang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Institute of Clean Energy, Peking University, Beijing, 100871, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Institute of Clean Energy, Peking University, Beijing, 100871, China
| |
Collapse
|
30
|
Li S, Li E, An X, Hao X, Jiang Z, Guan G. Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives. NANOSCALE 2021; 13:12788-12817. [PMID: 34477767 DOI: 10.1039/d1nr02592a] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a clean energy carrier, hydrogen has priority in decarbonization to build sustainable and carbon-neutral economies due to its high energy density and no pollutant emission upon combustion. Electrochemical water splitting driven by renewable electricity to produce green hydrogen with high-purity has been considered to be a promising technology. Unfortunately, the reaction of water electrolysis always requires a large excess potential, let alone the large-scale application (e.g., >500 mA cm-2 needs a cell voltage range of 1.8-2.4 V). Thus, developing cost-effective and robust transition metal electrocatalysts working at high current density is imperative and urgent for industrial electrocatalytic water splitting. In this review, the strategies and requirements for the design of self-supported electrocatalysts are summarized and discussed. Subsequently, the fundamental mechanisms of water electrolysis (OER or HER) are analyzed, and the required important evaluation parameters, relevant testing conditions and potential conversion in exploring electrocatalysts working at high current density are also introduced. Specifically, recent progress in the engineering of self-supported transition metal-based electrocatalysts for either HER or OER, as well as overall water splitting (OWS), including oxides, hydroxides, phosphides, sulfides, nitrides and alloys applied in the alkaline electrolyte at large current density condition is highlighted in detail, focusing on current advances in the nanostructure design, controllable fabrication and mechanistic understanding for enhancing the electrocatalytic performance. Finally, remaining challenges and outlooks for constructing self-supported transition metal electrocatalysts working at large current density are proposed. It is expected to give guidance and inspiration to rationally design and prepare these electrocatalysts for practical applications, and thus further promote the practical production of hydrogen via electrochemical water splitting.
Collapse
Affiliation(s)
- Shasha Li
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | | | | | | | | | | |
Collapse
|
31
|
Bao F, Kemppainen E, Dorbandt I, Xi F, Bors R, Maticiuc N, Wenisch R, Bagacki R, Schary C, Michalczik U, Bogdanoff P, Lauermann I, van de Krol R, Schlatmann R, Calnan S. Host, Suppressor, and Promoter—The Roles of Ni and Fe on Oxygen Evolution Reaction Activity and Stability of NiFe Alloy Thin Films in Alkaline Media. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01190] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fuxi Bao
- PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstrasse 3, 12489 Berlin, Germany
| | - Erno Kemppainen
- PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstrasse 3, 12489 Berlin, Germany
| | - Iris Dorbandt
- PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstrasse 3, 12489 Berlin, Germany
| | - Fanxing Xi
- PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstrasse 3, 12489 Berlin, Germany
| | - Radu Bors
- PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstrasse 3, 12489 Berlin, Germany
| | - Natalia Maticiuc
- PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstrasse 3, 12489 Berlin, Germany
| | - Robert Wenisch
- PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstrasse 3, 12489 Berlin, Germany
| | - Rory Bagacki
- PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstrasse 3, 12489 Berlin, Germany
| | - Christian Schary
- PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstrasse 3, 12489 Berlin, Germany
| | - Ursula Michalczik
- Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Peter Bogdanoff
- Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Iver Lauermann
- PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstrasse 3, 12489 Berlin, Germany
| | - Roel van de Krol
- Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Rutger Schlatmann
- PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstrasse 3, 12489 Berlin, Germany
| | - Sonya Calnan
- PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstrasse 3, 12489 Berlin, Germany
| |
Collapse
|
32
|
Viswanathan C, Ponpandian N. NiCo 2O 4 nanoparticles inlaid on sulphur and nitrogen doped and co-doped rGO sheets as efficient electrocatalysts for the oxygen evolution and methanol oxidation reactions. NANOSCALE ADVANCES 2021; 3:3216-3231. [PMID: 36133652 PMCID: PMC9417605 DOI: 10.1039/d1na00135c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/26/2021] [Accepted: 03/28/2021] [Indexed: 05/06/2023]
Abstract
The present work depicts the fabrication of NiCo2O4 decorated on rGO, and doped and co-doped rGO and its electrocatalytic activity towards the oxygen evolution reaction and methanol oxidation reaction. The NiCo2O4 catalyst with S-doped rGO outperformed the other catalysts, indicating that the sulphur atoms attached on rGO possess low oxophilicity and optimum free energy. This results in facile adsorption of the intermediate products formed during the OER and a rapid release of O2 molecules. The same catalyst requires an overpotential of 1.51 V vs. RHE to attain the benchmark current density value of 10 mA cm-2 and shows a Tafel slope of 57 mV dec-1. It also reveals outstanding stability during its operation for 10 h with a minimum loss in potential. On the other hand, NiCo2O4/S,N-rGO reveals superior activity with high efficiency and stability in catalyzing methanol oxidation. The catalyst delivered a low onset potential of 0.12 V vs. Hg/HgO and high current density of 203.4 mA cm-2 after addition of 0.5 M methanol, revealing the outstanding performance of the electrocatalyst.
Collapse
Affiliation(s)
- C Viswanathan
- Department of Nanoscience and Technology, Bharathiar University Coimbatore-641046 India +91-422-2422-387 +91-422-2428-421
| | - N Ponpandian
- Department of Nanoscience and Technology, Bharathiar University Coimbatore-641046 India +91-422-2422-387 +91-422-2428-421
| |
Collapse
|
33
|
Anantharaj S, Pitchaimuthu S, Noda S. A review on recent developments in electrochemical hydrogen peroxide synthesis with a critical assessment of perspectives and strategies. Adv Colloid Interface Sci 2021; 287:102331. [PMID: 33321333 DOI: 10.1016/j.cis.2020.102331] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Electrochemical hydrogen peroxide synthesis using two-electron oxygen electrochemistry is an intriguing alternative to currently dominating environmentally unfriendly and potentially hazardous anthraquinone process and noble metals catalysed direct synthesis. Electrocatalytic two-electron oxygen reduction reaction (ORR) and water oxidation reaction (WOR) are the source of electrochemical hydrogen peroxide generation. Various electrocatalysts have been used for the same and were characterized using several electroanalytical, chemical, spectroscopic and chromatographic tools. Though there have been a few reviews summarizing the recent developments in this field, none of them have unified the approaches in catalysts' design, criticized the ambiguities and flaws in the methods of evaluation, and emphasized the role of electrolyte engineering. Hence, we dedicated this review to discuss the recent trends in the catalysts' design, performance optimization, evaluation perspectives and their appropriateness and opportunities with electrolyte engineering. In addition, particularized discussions on fundamental oxygen electrochemistry, additional methods for precise screening, and the role of solution chemistry of synthesized hydrogen peroxide are also presented. Thus, this review discloses the state-of-the-art in an unpresented view highlighting the challenges, opportunities, and alternative perspectives.
Collapse
|
34
|
Jadhav RG, Das AK. Pulse electrodeposited, morphology controlled organic-inorganic nanohybrids as bifunctional electrocatalysts for urea oxidation. NANOSCALE 2020; 12:23596-23606. [PMID: 33210694 DOI: 10.1039/d0nr07236b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic-inorganic nanohybrids with nanoscale architectures and electrocatalytic properties are emerging as a new branch of advanced functional materials. Herein, nanohybrid organic-inorganic nanosheets are grown on carbon paper via a pulse-electrochemical deposition technique. A benzo[2,1,3]selenadiazole-5-carbonyl protected dipeptide BSeFL (BSe = benzoselenadiazole; F = phenylalanine; and L = leucine) cross-linked with Ni2+ ions (Ni-BSeFL) and nickel hydroxide (Ni(OH)2) in a BSeFL/Ni(OH)2 electrode exhibits stable electrocatalytic activity toward urea oxidation. The cross-linked nanosheet morphology of nanohybrids was optimized by controlling the reduction potential during pulse electrodeposition. The BSeFL/Ni(OH)2 (-1.0 V) nanohybrid deposited at -1.0 V provides abundant active sites of Ni3+ with low charge transfer resistance (RCT) and high exchange current density (J0) at the electrocatalytic interface. The nanohybrids with Ni-BSeFL and Ni(OH)2 show low overpotential and superior stability for electrocatalytic urea electro-oxidation. The BSeFL/Ni(OH)2 (-1.0 V) nanohybrid based electrode requires a low potential of 1.30 V (vs. RHE) to acquire a current density of 10 mA cm-2 for the urea oxidation reaction (UOR) in urea containing alkaline solution which is lower than that for water oxidation in alkaline solution (1.49 V vs. RHE). The organic-inorganic nanohybrid BSeFL/Ni(OH)2 (-1.0 V) shows durability over 10 h for oxygen evolution and urea electro-oxidation, thereby confirming the BSeFL/Ni(OH)2 (-1.0 V) nanohybrid-based electrode as an efficient electrocatalyst.
Collapse
Affiliation(s)
- Rohit G Jadhav
- Department of Chemistry and Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore, Indore 453552, India.
| | | |
Collapse
|
35
|
Wang L, Qin T, Wang J, Wang J, Zhang J, Cong Y, Li XK, Li Y. Grain boundary engineering of Co 3O 4 nanomeshes for efficient electrochemical oxygen evolution. NANOTECHNOLOGY 2020; 31:455401. [PMID: 32717726 DOI: 10.1088/1361-6528/aba976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of high-efficiency and stable electrocatalysts is significant for energy conversion and storage. The oxygen evolution reaction (OER), a pivotal half reaction, is seriously limited in its practical applications due to its sluggish kinetics and thus an excellent electrocatalyst for OER is urgently required. In this paper, we design a novel Co3O4 nanomesh (Co3O4 NMs) with high density grain boundaries (GBs), which functions as a highly efficient and steady OER electrocatalyst. The optimal Co3O4 NMs-500 can achieve a low overpotential of 295 mV at a current density of 10 mA cm-2, and a small Tafel slope of 31 mV dec-1, which exceeds the commercial Ir/C, as well as the majority of other catalysts reported in the literature. The Co3O4 NMs-500 also exhibit promising durability, with a negligible decline in activity after 18 h of operation. Detailed studies indicate that the presence of GBs leads to more exposed active sites and the enhanced adsorption of intermediate species on Co3O4 NMs-500, thereby improving the OER's catalytic activity. This work not only relates to the activity-GBs relationship, but also opens up a unique perspective for the design of the next generation of electrocatalysts.
Collapse
Affiliation(s)
- Lu Wang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 People's Republic of China. Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081 People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Highly efficient and robust sulfur-doped nickel-cobalt oxide towards oxygen evolution reaction. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Thangasamy P, Shanmuganathan S, Subramanian V. A NiCo-MOF nanosheet array based electrocatalyst for the oxygen evolution reaction. NANOSCALE ADVANCES 2020; 2:2073-2079. [PMID: 36132501 PMCID: PMC9417630 DOI: 10.1039/d0na00112k] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Metal organic frameworks (MOFs) are excellent materials for energy storage and conversion. This report describes 2D metal-organic framework nanosheets as an electrocatalyst for the oxygen evolution reaction (OER) under alkaline conditions. An ultrathin nanosheet array of a NiCo-metal-organic framework was grown on nickel foam (NiCo-MOF/NF) by a one-step solvothermal method. The catalytic OER of the NiCO-MOF/NF electrode was analysed by electrochemical methods. The resulting NiCO-MOF/NF exhibited a high current density (50 mA cm-2) with an overpotential of 270 mV, a Tafel slope of 35.4 mV dec-1 and a high turnover frequency (TOF) of 0.68 s-1 (η = 0.27 V) towards the OER. The excellent catalytic activity of the MOF towards the OER was due to the two-dimensional nanosheet array of NiCo-MOF with plentiful accessible molecular active sites and excellent mass transport properties. Faster electron transport was also achieved due to the synergetic effect of Co and Ni present on the MOF.
Collapse
Affiliation(s)
- Ponmuthuselvi Thangasamy
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University Karaikudi-630003 Tamil Nadu India
| | - Saravanakumar Shanmuganathan
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University Karaikudi-630003 Tamil Nadu India
| | - Viswanathan Subramanian
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University Karaikudi-630003 Tamil Nadu India
| |
Collapse
|
38
|
Munir A, Haq TU, Saleem M, Qurashi A, Hussain SZ, Sher F, Ul-Hamid A, Jilani A, Hussain I. Controlled engineering of nickel carbide induced N-enriched carbon nanotubes for hydrogen and oxygen evolution reactions in wide pH range. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136032] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Anantharaj S, Karthick K, Murugan P, Kundu S. V3+ Incorporated β-Co(OH)2: A Robust and Efficient Electrocatalyst for Water Oxidation. Inorg Chem 2019; 59:730-740. [DOI: 10.1021/acs.inorgchem.9b02977] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sengeni Anantharaj
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Electrochemical Research Institute (CSIR-CECRI) Campus, New Delhi, India
- Materials Electrochemistry Division (MED), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630006, Tamil Nadu, India
| | - Kannimuthu Karthick
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Electrochemical Research Institute (CSIR-CECRI) Campus, New Delhi, India
- Materials Electrochemistry Division (MED), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630006, Tamil Nadu, India
| | - Palanichamy Murugan
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Electrochemical Research Institute (CSIR-CECRI) Campus, New Delhi, India
- Materials Electrochemistry Division (MED), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630006, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Electrochemical Research Institute (CSIR-CECRI) Campus, New Delhi, India
- Materials Electrochemistry Division (MED), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630006, Tamil Nadu, India
| |
Collapse
|
40
|
Munir A, Ul Haq T, Hussain I, Qurashi A, Ullah U, Iqbal MJ, Hussain I. Ultrasmall Co@Co(OH) 2 Nanoclusters Embedded in N-Enriched Mesoporous Carbon Networks as Efficient Electrocatalysts for Water Oxidation. CHEMSUSCHEM 2019; 12:5117-5125. [PMID: 31647181 DOI: 10.1002/cssc.201902505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/16/2019] [Indexed: 05/12/2023]
Abstract
Metal nanoclusters (NCs, size ≤2 nm) are emerging materials in catalysis owing to their unique catalytic and electronic properties such as high surface/volume ratio, high redox potential, plethora of surface active sites, and dynamic behavior on a suitable support during catalysis. Herein, in situ growth of ultrasmall and robust Co@β-Co(OH)2 NCs (≈2 nm) hosted in a honeycomb-like 3D N-enriched carbon network was developed for water-oxidation catalysis with extremely small onset potential (1.44 V). Overpotentials of 220 and 270 mV were required to achieve a current density of 10 mA cm-2 and 100 mA cm-2 , respectively, in alkaline medium (1 m KOH). More promisingly, at η10 =240 mV, the prolonged oxygen evolution process (>130 h) with faradaic efficiency >95 % at a reaction rate of 22 s-1 at 1.46 V further substantiated the key role of the ultrasmall supported NCs, which outperformed the benchmark electrocatalysts (RuO2 /IrO2 ) and NCs reported so far. It is anticipated that the high redox potential of NCs with regeneratable active sites and their concerted synergistic effects with the N-enriched porous/flexible carbon network are inherently worth considering to enhance the mass/charge transport owing to the nanoscale interfacial collaboration across the electrode/electrolyte boundary, thereby efficiently energizing the sluggish/challenging oxygen evolution process.
Collapse
Affiliation(s)
- Akhtar Munir
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore, 54792, Pakistan
| | - Tanveer Ul Haq
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore, 54792, Pakistan
| | - Iqtidar Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore, 54792, Pakistan
| | - Ahsanulhaq Qurashi
- Department of Chemistry, Khalifa University (KU),Main Campus, Abu Dhabi, 127788, United Arab Emirates
| | - Ubaid Ullah
- Department of Electrical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore, 54792, Pakistan
| | - Muhammad Javed Iqbal
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore, 54792, Pakistan
| |
Collapse
|
41
|
Kim N, Lim D, Choi Y, Shim SE, Baeck SH. Hexagonal β-Ni(OH)2 nanoplates with oxygen vacancies as efficient catalysts for the oxygen evolution reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134868] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
42
|
|
43
|
Solvothermally Doping NiS2 Nanoparticles on Carbon with Ferric Ions for Efficient Oxygen Evolution Catalysis. Catalysts 2019. [DOI: 10.3390/catal9050458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Exploring efficient non-precious metal based electrocatalysts for the oxygen evolution reaction (OER) is a prerequisite to implement the widespread application of a water electrolyzer and metal-air batteries. Herein, Fe-doped NiS2 nanoparticles on a carbon matrix (Fe-NiS2/C) are facilely prepared via a two-step solvothermal process, where Ni-containing metal organic frameworks (Ni-MOFs) are vulcanized in situ and carbonized by a solvothermal method to form abundant NiS2 nanoparticles homogeneously distributed on a carbon matrix (NiS2/C), followed by doping with ferric ions via a similar solvothermal treatment. The resulting Fe-NiS2/C nanoparticle composites show a rougher surface than the NiS2/C parent, likely due to the formation of more structural defects after ferric ion doping, which maximizes the exposure of active sites. Moreover, ferric ion doping can also regulate the surface electronic state to reduce the activation energy barrier for OER on NiS2/C sample. With these merits, the best sample Fe-NiS2/C-30 only requires a potential of +1.486 V (vs. RHE) to reach an OER current density of 10 mA cm−2 and can retain 96.85% of its initial current after continuous working for about 10 h in 1.0 M KOH aqueous solution, along with a small Tafel slope of 45.66 mV/dec, outperforming a commercial RuO2 catalyst. The results in this work enrich the method to tailor the catalytic activity of transition metal sulfides for electrochemical energy technologies.
Collapse
|
44
|
Debata S, Banerjee S, Sharma PK. Marigold shaped N-rGO-MoS2-Ni(OH)2 nanocomposite as a bifunctional electrocatalyst for the promotion of overall water splitting in alkaline medium. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Zhou Q, Li TT, Wang J, Guo F, Zheng YQ. Hierarchical Cu2S NRs@CoS core-shell structure and its derivative towards synergistic electrocatalytic water splitting. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.183] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Jin W, Liu F, Guo X, Zhang J, Zheng L, Hu Y, Mao J, Liu H, Xue Y, Tang C. Self-supported CoFe LDH/Co0.85Se nanosheet arrays as efficient electrocatalysts for the oxygen evolution reaction. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01440c] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Self-supported binary hybrid heterogeneous CoFe LDH/Co0.85Se nanosheet array catalyst for efficient oxygen evolution reaction.
Collapse
|
47
|
Hassan MH, Soliman AB, Elmehelmey WA, Abugable AA, Karakalos SG, Elbahri M, Hassanien A, Alkordi MH. A Ni-loaded, metal–organic framework–graphene composite as a precursor for in situ electrochemical deposition of a highly active and durable water oxidation nanocatalyst. Chem Commun (Camb) 2019; 55:31-34. [DOI: 10.1039/c8cc07120a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
UiO-66-NH2 was constructed on G sheets, metallated with Ni(ii) ions, and used as a precursor to deposit a highly active water oxidation catalyst in an electrochemical surface restructuring process.
Collapse
Affiliation(s)
- Mohamed H. Hassan
- Center for Materials Science
- Zewail City of Science and Technology
- Giza
- Egypt
| | - Ahmed B. Soliman
- Nanochemistry and Nanoengineering
- School of Chemical Engineering
- Department of Chemistry and Materials Science
- Aalto University
- 00076 Aalto
| | | | - Arwa A. Abugable
- Center for Materials Science
- Zewail City of Science and Technology
- Giza
- Egypt
| | - Stavros G. Karakalos
- College of Engineering and Computing
- Swearingen Engineering Center
- University of South Carolina
- Columbia
- USA
| | - Mady Elbahri
- Nanochemistry and Nanoengineering
- School of Chemical Engineering
- Department of Chemistry and Materials Science
- Aalto University
- 00076 Aalto
| | - Abdou Hassanien
- Jozef Stefan Institute
- Condensed Matter Physics Dept. (F5)
- Ljubljana 1000
- Slovenia
| | - Mohamed H. Alkordi
- Center for Materials Science
- Zewail City of Science and Technology
- Giza
- Egypt
| |
Collapse
|
48
|
Gunjakar JL, Hou B, Inamdar AI, Pawar SM, Ahmed ATA, Chavan HS, Kim J, Cho S, Lee S, Jo Y, Hwang SJ, Kim TG, Cha S, Kim H, Im H. Two-Dimensional Layered Hydroxide Nanoporous Nanohybrids Pillared with Zero-Dimensional Polyoxovanadate Nanoclusters for Enhanced Water Oxidation Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703481. [PMID: 30371003 DOI: 10.1002/smll.201703481] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/11/2018] [Indexed: 06/08/2023]
Abstract
The oxygen-evolution reaction (OER) is critical in electrochemical water splitting and requires an efficient, sustainable, and cheap catalyst for successful practical applications. A common development strategy for OER catalysts is to search for facile routes for the synthesis of new catalytic materials with optimized chemical compositions and structures. Here, nickel hydroxide Ni(OH)2 2D nanosheets pillared with 0D polyoxovanadate (POV) nanoclusters as an OER catalyst that can operate in alkaline media are reported. The intercalation of POV nanoclusters into Ni(OH)2 induces the formation of a nanoporous layer-by-layer stacking architecture of 2D Ni(OH)2 nanosheets and 0D POV with a tunable chemical composition. The nanohybrid catalysts remarkably enhance the OER activity of pristine Ni(OH)2 . The present findings demonstrate that the intercalation of 0D POV nanoclusters into Ni(OH)2 is effective for improving water oxidation catalysis and represents a potential method to synthesize novel, porous hydroxide-based nanohybrid materials with superior electrochemical activities.
Collapse
Affiliation(s)
- Jayavant L Gunjakar
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, South Korea
- D. Y. Patil Education society (Deemed to be University), Kolhapur, MS, 416006, India
| | - Bo Hou
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, UK
| | - Akbar I Inamdar
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, South Korea
| | - Sambhaji M Pawar
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, South Korea
| | - Abu Talha Aqueel Ahmed
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, South Korea
| | - Harish S Chavan
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, South Korea
| | - Jongmin Kim
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, South Korea
| | - Sangeun Cho
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, South Korea
| | - Seongwoo Lee
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, South Korea
| | - Yongcheol Jo
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, South Korea
| | - Seong-Ju Hwang
- Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Sciences, Ewha Womans University, Seoul, 03670, South Korea
| | - Tae Geun Kim
- School of Electrical Engineering, Korea University, Seongbuk-gu, Seoul, 02841, South Korea
| | - SeungNam Cha
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, UK
| | - Hyungsang Kim
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, South Korea
| | - Hyunsik Im
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, South Korea
| |
Collapse
|
49
|
Rana M, Mondal S, Sahoo L, Chatterjee K, Karthik PE, Gautam UK. Emerging Materials in Heterogeneous Electrocatalysis Involving Oxygen for Energy Harvesting. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33737-33767. [PMID: 30222309 DOI: 10.1021/acsami.8b09024] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Water-based renewable energy cycle involved in water splitting, fuel cells, and metal-air batteries has been gaining increasing attention for sustainable generation and storage of energy. The major challenges in these technologies arise due to the poor kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reactions (OER), besides the high cost of the catalysts. Attempts to address these issues have led to the development of many novel and inexpensive catalysts as well as newer mechanistic insights, particularly so in the last three-four years when more catalysts have been investigated than ever before. With the growing emphasis on bifunctionality, that is, materials that can facilitate both reduction and evolution of oxygen, this review is intended to discuss all major families of ORR, OER, and bifunctional catalysts such as metals, alloys, oxides, other chalcogenides, pnictides, and metal-free materials developed during this period in a single platform, while also directing the readers to specific and detailed review articles dealing with each family. In addition, each section highlights the latest theoretical and experimental insights that may further improve ORR/OER performances. The bifunctional catalysts being sufficiently new, no consensus appears to have emerged about the efficiencies. Therefore, a statistical analysis of their performances by considering nearly all literature reports that have appeared in this period is presented. The current challenges in rational design of these catalysts as well as probable strategies to improve their performances are presented.
Collapse
Affiliation(s)
- Moumita Rana
- IMDEA Materials Institute , C/Eric Kandel 2, Parque de Tecnogetafe , Getafe 28906 , Spain
| | - Sanjit Mondal
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Mohali , Sector 81 , Mohali, SAS Nagar , Punjab 140306 , India
| | - Lipipuspa Sahoo
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Mohali , Sector 81 , Mohali, SAS Nagar , Punjab 140306 , India
| | - Kaustav Chatterjee
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Mohali , Sector 81 , Mohali, SAS Nagar , Punjab 140306 , India
| | - Pitchiah E Karthik
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Mohali , Sector 81 , Mohali, SAS Nagar , Punjab 140306 , India
| | - Ujjal K Gautam
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Mohali , Sector 81 , Mohali, SAS Nagar , Punjab 140306 , India
| |
Collapse
|
50
|
Ahn HJ, Goswami A, Riboni F, Kment S, Naldoni A, Mohajernia S, Zboril R, Schmuki P. Hematite Photoanode with Complex Nanoarchitecture Providing Tunable Gradient Doping and Low Onset Potential for Photoelectrochemical Water Splitting. CHEMSUSCHEM 2018; 11:1873-1879. [PMID: 29644796 DOI: 10.1002/cssc.201800256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Over the past years, α-Fe2 O3 (hematite) has re-emerged as a promising photoanode material in photoelectrochemical (PEC) water splitting. In spite of considerable success in obtaining relatively high solar conversion efficiency, the main drawbacks hindering practical application of hematite are its intrinsically hampered charge transport and sluggish oxygen evolution reaction (OER) kinetics on the photoelectrode surface. In the present work, we report a strategy that synergistically addresses both of these critical limitations. Our approach is based on three key features that are applied simultaneously: i) a careful nanostructuring of the hematite photoanode in the form of nanorods, ii) doping of hematite by Sn4+ ions using a controlled gradient, and iii) surface decoration of hematite by a new class of layered double hydroxide (LDH) OER co-catalysts based on Zn-Co LDH. All three interconnected forms of functionalization result in an extraordinary cathodic shift of the photocurrent onset potential by more than 300 mV and a PEC performance that reaches a photocurrent density of 2.00 mA cm-2 at 1.50 V vs. the reversible hydrogen electrode.
Collapse
Affiliation(s)
- Hyo-Jin Ahn
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Anandarup Goswami
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
- Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, 522 213, Andhra Pradesh, India
| | - Francesca Riboni
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Stepan Kment
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Alberto Naldoni
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Shiva Mohajernia
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Patrik Schmuki
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
| |
Collapse
|