1
|
Miao X, Zhang Y, Han G, Zhu L, Yi Y. Toward Low Energetic Disorder in Organic Solar Cells: The Critical Role of Polymer Donors. J Phys Chem Lett 2025; 16:1987-1993. [PMID: 39964059 DOI: 10.1021/acs.jpclett.5c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Compared with those of inorganic and perovskite solar cells, the power conversion efficiencies of organic solar cells (OSCs) are severely limited by a large energetic disorder. However, the origin of energetic disorder for OSCs remains poorly understood. Herein, we systematically investigate the energetic disorder in representative OSCs and the effect of both the acceptors and polymer donors by combining atomistic molecular dynamics simulations with density functional theory calculations. The results indicate that regardless of whether the OSCs are based on fullerene or acceptor-donor-acceptor (A-D-A) acceptors, the energetic disorder in the ionization potentials of the polymer donors is significantly larger than that in the electron affinities of the acceptors. Moreover, the energetic disorder of the donors matched with the fullerene acceptors is noticeably greater than that of the donors matched with the A-D-A acceptors. This implies that, different from our intuition, the reduction in the energetic disorder from the fullerene-based to A-D-A acceptor-based OSCs is primarily attributed to the change in the polymer donors rather than the acceptors. This work underscores the vital importance of optimizing polymer donors toward low energetic disorder for high-efficiency OSCs.
Collapse
Affiliation(s)
- Xiaodan Miao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Yaogang Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Guangchao Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lingyun Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Niharika Bhuyan N, Shankar S S, Jyoti Panda S, Shekhar Purohit C, Singhal R, Sharma GD, Mishra A. An Asymmetric Coumarin-Anthracene Conjugate as Efficient Fullerene-Free Acceptor for Organic Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202406272. [PMID: 38739535 DOI: 10.1002/anie.202406272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Asymmetric wide-band gap fullerene-free acceptors (FFAs) play a crucial role in organic solar cells (OSCs). Here, we designed and synthesized a simple asymmetric coumarin-anthracene conjugate named CA-CN with optical band gap of 2.1 eV in a single-step condensation reaction. Single crystal X-ray structure analysis confirms various multiple intermolecular non-covalent interactions. The molecular orbital energy levels of CA-CN estimated from cyclic voltammetry were found to be suitable for its use as an acceptor for OSCs. Binary OSCs fabricated using CA-CN as acceptor and PTB7-Th as the donor achieve a power conversion efficiency (PCE) of 11.13 %. We further demonstrate that the insertion of 20 wt % of CA-CN as a third component in ternary OSCs with PTB7-Th : DICTF as the host material achieved an impressive PCE of 14.91 %, an improvement of ~43 % compared to the PTB7-Th : DICTF binary device (10.38 %). Importantly, the ternary blend enhances the absorption coverage from 400 to 800 nm and improves the morphology of the active layer. The findings highlight the efficacy of an asymmetric design approach for FFAs, which paves the way for developing high-efficiency OSCs at low cost.
Collapse
Affiliation(s)
| | - Shyam Shankar S
- Department of Physics, The LNM Institute of Information Technology, Deemed University), Rupa ki Nagal, Jamdoli, 302031, Jaipur, Rajasthan, India
| | - Subhra Jyoti Panda
- School of Chemical Sciences, National Institute of Science Education and Research, Jatni, 752050, Bhubaneswar, Orissa, India
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research, Jatni, 752050, Bhubaneswar, Orissa, India
| | - Rahul Singhal
- Department of Physics, Malaviya National Institute of Technology, 302017, Jaipur, Rajasthan, India
| | - Ganesh D Sharma
- Department of Physics, The LNM Institute of Information Technology, Deemed University), Rupa ki Nagal, Jamdoli, 302031, Jaipur, Rajasthan, India
| | - Amaresh Mishra
- School of Chemistry, Sambalpur University, 768019, Jyoti Vihar, Sambalpur, India
| |
Collapse
|
3
|
Han J, Xu H, Paleti SHK, Sharma A, Baran D. Understanding photochemical degradation mechanisms in photoactive layer materials for organic solar cells. Chem Soc Rev 2024; 53:7426-7454. [PMID: 38869459 DOI: 10.1039/d4cs00132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Over the past decades, the field of organic solar cells (OSCs) has witnessed a significant evolution in materials chemistry, which has resulted in a remarkable enhancement of device performance, achieving efficiencies of over 19%. The photoactive layer materials in OSCs play a crucial role in light absorption, charge generation, transport and stability. To facilitate the scale-up of OSCs, it is imperative to address the photostability of these electron acceptor and donor materials, as their photochemical degradation process remains a challenge during the photo-to-electric conversion. In this review, we present an overview of the development of electron acceptor and donor materials, emphasizing the crucial aspects of their chemical stability behavior that are linked to the photostability of OSCs. Throughout each section, we highlight the photochemical degradation pathways for electron acceptor and donor materials, and their link to device degradation. We also discuss the existing interdisciplinary challenges and obstacles that impede the development of photostable materials. Finally, we offer insights into strategies aimed at enhancing photochemical stability and discuss future directions for developing photostable photo-active layers, facilitating the commercialization of OSCs.
Collapse
Affiliation(s)
- Jianhua Han
- Materials Science and Engineering Program (MSE), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Han Xu
- Materials Science and Engineering Program (MSE), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Sri Harish Kumar Paleti
- Materials Science and Engineering Program (MSE), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Anirudh Sharma
- Materials Science and Engineering Program (MSE), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Derya Baran
- Materials Science and Engineering Program (MSE), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
4
|
Xu R, Jiang Y, Liu F, Ran G, Liu K, Zhang W, Zhu X. High Open-Circuit Voltage Organic Solar Cells with 19.2% Efficiency Enabled by Synergistic Side-Chain Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312101. [PMID: 38544433 DOI: 10.1002/adma.202312101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Restricted by the energy-gap law, state-of-the-art organic solar cells (OSCs) exhibit relatively low open-circuit voltage (VOC) because of large nonradiative energy losses (ΔEnonrad). Moreover, the trade-off between VOC and external quantum efficiency (EQE) of OSCs is more distinctive; the power conversion efficiencies (PCEs) of OSCs are still <15% with VOCs of >1.0 V. Herein, the electronic properties and aggregation behaviors of non-fullerene acceptors (NFAs) are carefully considered and then a new NFA (Z19) is delicately designed by simultaneously introducing alkoxy and phenyl-substituted alkyl chains to the conjugated backbone. Z19 exhibits a hypochromatic-shifted absorption spectrum, high-lying lowest unoccupied molecular orbital energy level and ordered 2D packing mode. The D18:Z19-based blend film exhibits favorable phase separation with face-on dominated molecular orientation, facilitating charge transport properties. Consequently, D18:Z19 binary devices afford an exciting PCE of 19.2% with a high VOC of 1.002 V, surpassing Y6-2O-based devices. The former is the highest PCE reported to date for OSCs with VOCs of >1.0 V. Moreover, the ΔEnonrad of Z19- (0.200 eV) and Y6-2O-based (0.155 eV) devices are lower than that of Y6-based (0.239 eV) devices. Indications are that the design of such NFA, considering the energy-gap law, could promote a new breakthrough in OSCs.
Collapse
Affiliation(s)
- Renjie Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanyuan Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, P. R. China
| | - Kerui Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Tang A, Cong P, Dai T, Wang Z, Zhou E. A 2-A 1-D-A 1-A 2-Type Nonfullerene Acceptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300175. [PMID: 37907430 DOI: 10.1002/adma.202300175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Indexed: 11/02/2023]
Abstract
The A2-A1-D-A1-A2-type molecules consist of one electron-donating (D) core flanked by two electron-accepting units (A1 and A2) and have emerged as an essential branch of nonfullerene acceptors (NFAs). These molecules generally possess higher molecular energy levels and wider optical bandgaps compared with those of the classic A-D-A- and A-DA'D-A-type NFAs, owing to the attenuated intramolecular charge transfer effect. These characteristics make them compelling choices for the fabrication of high-voltage organic photovoltaics (OPVs), ternary OPVs, and indoor OPVs. Herein, the recent progress in the A2-A1-D-A1-A2-type NFAs are reviewed, including the molecular engineering, structure-property relationships, voltage loss (Vloss), device stability, and photovoltaic performance of binary, ternary, and indoor OPVs. Finally, the challenges and provided prospects are discussed for the further development of this type of NFAs.
Collapse
Affiliation(s)
- Ailing Tang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Peiqing Cong
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Tingting Dai
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zongtao Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Erjun Zhou
- National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
6
|
Ali S, Akhter MS, Waqas M, Zubair H, Bhatti HN, Mahal A, Shawky AM, Alkhouri A, Khera RA. End-capped engineering of Quinoxaline core-based non-fullerene acceptor materials with improved power conversion efficiency. J Mol Graph Model 2024; 127:108699. [PMID: 38150839 DOI: 10.1016/j.jmgm.2023.108699] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Improving the light-harvesting efficiency and boosting open circuit voltage are crucial challenges for enhancing the efficiency of organic solar cells. This work introduces seven new molecules (SA1-SA7) to upgrade the optoelectronic and photovoltaic properties of Q-C-F molecule-based solar cells. All recently designed molecules have the same alkyl-substituted Quinoxaline core and CPDT donor but vary in the end-capped acceptor subunits. All the investigated molecules have revealed superior properties than the model (R) by having absorbance ranging from 681 nm to 782 nm in the gaseous medium while 726 nm-861 nm in chloroform solvent, with the lowest band gap ranging from 1.91 to 2.19 eV SA1 molecule demonstrated the highest λmax (861 nm) in chloroform solvent and the lowest band gap (1.91 eV). SA2 molecule has manifested highest dipole moment (4.5089 D), lower exciton binding energy in gaseous (0.33 eV) and chloroform solvent (0.47 eV), and lower charge mobility of hole (0.0077693) and electron (0.0042470). At the same time, SA7 showed the highest open circuit voltage (1.56 eV) and fill factor (0.9166) due to solid electron-pulling acceptor moieties. From these supportive outcomes, it is inferred that our computationally investigated molecules may be promising candidates to be used in advanced versions of OSCs in the upcoming period.
Collapse
Affiliation(s)
- Sajjad Ali
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Salim Akhter
- Department of Chemistry, College of Science, University of Bahrain, P. O. Box 32028, Bahrain
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Hira Zubair
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Anas Alkhouri
- College of Pharmacy, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
7
|
Zaima T, Ota W, Haruta N, Uejima M, Ohkita H, Sato T. Spontaneous-Symmetry-Breaking Charge Separation Induced by Pseudo-Jahn-Teller Distortion in Organic Photovoltaic Material. J Phys Chem Lett 2023; 14:9706-9712. [PMID: 37877625 DOI: 10.1021/acs.jpclett.3c02527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The driving force of charge separation in the initial photovoltaic conversion process is theoretically investigated using ITIC, a nonfullerene acceptor material for organic photovoltaic devices. The density functional theory calculations show that the pseudo-Jahn-Teller (PJT) distortion of the S1 excimer state induces spontaneous symmetry-breaking charge separation between the identical ITIC molecules even without the asymmetry of the surrounding environment. The strong PJT effect arises from the vibronic coupling between the pseudodegenerate S1 and S2 excited states with different irreducible representations (irreps), i.e., Au for S1 and Ag for S2, via the asymmetric vibrational mode with the Au irrep. The vibrational mode responsible for the spontaneous polarization, which is opposite in one ITIC monomer and the other, is the intramolecular C-C stretching vibration between the core IT and terminal IC units. These results suggest that controlling the PJT effect can improve the charge separation efficiency of the initial photovoltaic conversion process.
Collapse
Affiliation(s)
- Takeaki Zaima
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano Nishibiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Ota
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano Nishibiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Naoki Haruta
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano Nishibiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Motoyuki Uejima
- MOLFEX, Inc., Takano Nishibiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
| | - Hideo Ohkita
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tohru Sato
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano Nishibiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
8
|
Xiao M, Ren X, Ji K, Chung S, Shi X, Han J, Yao Z, Tao X, Zelewski SJ, Nikolka M, Zhang Y, Zhang Z, Wang Z, Jay N, Jacobs I, Wu W, Yu H, Abdul Samad Y, Stranks SD, Kang B, Cho K, Xie J, Yan H, Chen S, Sirringhaus H. Achieving ideal transistor characteristics in conjugated polymer semiconductors. SCIENCE ADVANCES 2023; 9:eadg8659. [PMID: 37267357 PMCID: PMC10413658 DOI: 10.1126/sciadv.adg8659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/28/2023] [Indexed: 06/04/2023]
Abstract
Organic thin-film transistors (OTFTs) with ideal behavior are highly desired, because nonideal devices may overestimate the intrinsic property and yield inferior performance in applications. In reality, most polymer OTFTs reported in the literature do not exhibit ideal characteristics. Supported by a structure-property relationship study of several low-disorder conjugated polymers, here, we present an empirical selection rule for polymer candidates for textbook-like OTFTs with high reliability factors (100% for ideal transistors). The successful candidates should have low energetic disorder along their backbones and form thin films with spatially uniform energetic landscapes. We demonstrate that these requirements are satisfied in the semicrystalline polymer PffBT4T-2DT, which exhibits a reliability factor (~100%) that is exceptionally high for polymer devices, rendering it an ideal candidate for OTFT applications. Our findings broaden the selection of polymer semiconductors with textbook-like OTFT characteristics and would shed light upon the molecular design criteria for next-generation polymer semiconductors.
Collapse
Affiliation(s)
- Mingfei Xiao
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
| | - Xinglong Ren
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
| | - Kangyu Ji
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
| | - Sein Chung
- Department of Chemical Engineering, Pohang University of Science and Technology Pohang, Pohang 790-784, South Korea
| | - Xiaoyu Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China
| | - Zefan Yao
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. of China
| | - Xudong Tao
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| | - Szymon J. Zelewski
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Mark Nikolka
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
| | - Youcheng Zhang
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
| | - Zhilong Zhang
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
| | - Zichen Wang
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
| | - Nathan Jay
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| | - Ian Jacobs
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
| | - Weijing Wu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. of China
| | - Han Yu
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. of China
| | - Yarjan Abdul Samad
- Department of Aerospace Engineering, Khalifa University, Abu Dhabi 127788, UAE
| | - Samuel D. Stranks
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
| | - Boseok Kang
- SKKU Advanced Institute of Nanotechnology and Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology Pohang, Pohang 790-784, South Korea
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China
| | - He Yan
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. of China
| | - Shangshang Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China
| | - Henning Sirringhaus
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK
| |
Collapse
|
9
|
Wang L, Zhang L, Kim S, Wang T, Yuan Z, Yang C, Hu Y, Zhao X, Chen Y. Halogen-Free Donor Polymers Based on Dicyanobenzotriazole with Low Energy Loss and High Efficiency in Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206607. [PMID: 36717277 DOI: 10.1002/smll.202206607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/17/2022] [Indexed: 05/04/2023]
Abstract
Halogenation of organic semiconductors is an efficient strategy for improving the performance of organic solar cells (OSCs), while the introduction of halogens usually involves complex synthetic process and serious environment pollution problems. Herein, three halogen-free ternary copolymer donors (PCNx, x = 3, 4, 5) based on electron-withdrawing dicyanobenzotriazole are reported. When blended with the Y6, PCN3 with strong interchain interactions results in appropriate crystallinity and thermodynamic miscibility of the blend film. Grazing-incidence wide-angle X-ray scattering measurements indicate that PCN3 has more ordered arrangement and stronger π-π stacking than previous PCN2. Fourier-transform photocurrent spectroscopy and external quantum efficiency of electroluminescence measurements show that PCN3-based OSCs have lower energy loss than PCN2, which leads to their higher open-circuit voltage (0.873 V). The device based on PCN3 reaches power conversion efficiency (PCE) of 15.33% in binary OSCs, one of the highest values for OSCs with halogen-free donor polymers. The PCE of 17.80% and 18.10% are obtained in PM6:PCN3:Y6 and PM6:PCN3:BTP-eC9 ternary devices, much higher than those of PM6:Y6 (16.31%) and PM6:BTP-eC9 (17.33%) devices. Additionally, this ternary OSCs exhibit superior stability compared to binary host system. This work gives a promising path for halogen-free donor polymers to achieve low energy loss and high PCE.
Collapse
Affiliation(s)
- Lei Wang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Lifu Zhang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, P. R. China
| | - Seoyoung Kim
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Tingting Wang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Zhongyi Yuan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Yu Hu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Xiaohong Zhao
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, P. R. China
| |
Collapse
|
10
|
Guo Y, Zhu L, Duan R, Han G, Yi Y. Molecular Design of A-D-A Electron Acceptors Towards Low Energy Loss for Organic Solar Cells. Chemistry 2022; 29:e202203356. [PMID: 36504417 DOI: 10.1002/chem.202203356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Low energy loss is a prerequisite for organic solar cells to achieve high photovoltaic efficiency. Electron-vibration coupling (i. e., intramolecular reorganization energy) plays a crucial role in the photoelectrical conversion and energy loss processes. In this Concept article, we summarize our recent theoretical advances on revealing the energy loss mechanisms at the molecular level of A-D-A electron acceptors. We underline the importance of electron-vibration couplings on reducing the energy loss and describe the effective molecular design strategies towards low energy loss through decreasing the electron-vibration couplings.
Collapse
Affiliation(s)
- Yuan Guo
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China.,Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lingyun Zhu
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Ruihong Duan
- School of Science, Xuchang University Xuchang, Henan, 461000, P. R. China
| | - Guangchao Han
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Zhang T, An C, Xu Y, Bi P, Chen Z, Wang J, Yang N, Yang Y, Xu B, Yao H, Hao X, Zhang S, Hou J. A Medium-Bandgap Nonfullerene Acceptor Enabling Organic Photovoltaic Cells with 30% Efficiency under Indoor Artificial Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207009. [PMID: 36070897 DOI: 10.1002/adma.202207009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The correlation between molecular structure and photovoltaic performance is lagging for constructing high-performance indoor organic photovoltaic (OPV) cells. Herein, this relationship is investigated in depth by employing two medium-bandgap nonfullerene acceptors (NFAs). The newly synthesized NFA of FTCCBr exhibits a similar bandgap and molecular energy level, but a much stronger dipole moment and larger average electrostatic potential (ESP) compared with ITCC. After blending with the polymer donor PB2, the PB2:ITCC and PB2:FTCCBr blends exhibit favorable bulk-heterojunction morphologies and the same driving force, but the PB2:FTCCBr blend exhibits a large ESP difference. In OPV cells, the PB2:ITCC-based device produces a power conversion efficiency (PCE) of 11.0%, whereas the PB2:FTCCBr-based device gives an excellent PCE of 14.8% with an open-circuit voltage (VOC ) of 1.05 V, which is the highest value among OPV cells with VOC values above 1.0 V. When both acceptor-based devices work under a 1000 lux of 3000 K light-emitting diode, the PB2:ITCC-based 1 cm2 device yields a good PCE of 25.4%; in contrast, the PB2:FTCCBr-based 1 cm2 device outputs a record PCE of 30.2%. These results suggest that a large ESP offset in photovoltaic materials is important for achieving high-performance OPV cells.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cunbin An
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ye Xu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Pengqing Bi
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhihao Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Jingwen Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ni Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bowei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huifeng Yao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Shaoqing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Development of non-fullerene electron acceptors for efficient organic photovoltaics. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AbstractCompared to fullerene based electron acceptors, n-type organic semiconductors, so-called non-fullerene acceptors (NFAs), possess some distinct advantages, such as readily tuning of optical absorption and electronic energy levels, strong absorption in the visible region and good morphological stability for flexible electronic devices. The design and synthesis of new NFAs have enabled the power conversion efficiencies (PCEs) of organic photovoltaic (OPV) devices to increase to around 19%. This review summarises the important breakthroughs that have contributed to this progress, focusing on three classes of NFAs, i.e. perylene diimide (PDI), diketopyrrolopyrrole (DPP) and acceptor–donor–acceptor (A-D-A) based NFAs. Specifically, the PCEs of PDI, DPP, and A-D-A series based non-fullerene OPVs have been reported up to 11%, 13% and 19%, respectively. Structure–property relationships of representative NFAs and their impact on OPV performances are discussed. Finally, we consider the remaining challenges and promising directions for achieving high-performing NFAs.
Collapse
|
13
|
Bertrandie J, Han J, De Castro CSP, Yengel E, Gorenflot J, Anthopoulos T, Laquai F, Sharma A, Baran D. The Energy Level Conundrum of Organic Semiconductors in Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202575. [PMID: 35789000 DOI: 10.1002/adma.202202575] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The frontier molecular energy levels of organic semiconductors are decisive for their fundamental function and efficiency in optoelectronics. However, the precise determination of these energy levels and their variation when using different techniques makes it hard to compare and establish design rules. In this work, the energy levels of 33 organic semiconductors via cyclic voltammetry (CV), density functional theory, ultraviolet photoelectron spectroscopy, and low-energy inverse photoelectron spectroscopy are determined. Solar cells are fabricated to obtain key device parameters and relate them to the significant differences in the energy levels and offsets obtained from different methods. In contrast to CV, the photovoltaic gap measured using photoelectron spectroscopy (PES) correlates well with the experimental device VOC . It is demonstrated that high-performing systems such as PM6:Y6 and WF3F:Y6, which are previously reported to have negligible ionization energy (IE) offsets (ΔIE), possess sizable ΔIE of ≈0.5 eV, determined by PES. Using various D-A blends, it is demonstrated that ΔIE plays a key role in charge generation. In contrast to earlier reports, it is shown that a vanishing ΔIE is detrimental to device performance. Overall, these findings establish a solid base for reliably evaluating material energetics and interpreting property-performance relationships in organic solar cells.
Collapse
Affiliation(s)
- Jules Bertrandie
- Material Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jianhua Han
- Material Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Catherine S P De Castro
- Material Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Emre Yengel
- Material Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Julien Gorenflot
- Material Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Thomas Anthopoulos
- Material Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Frederic Laquai
- Material Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Anirudh Sharma
- Material Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Derya Baran
- Material Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Zhang G, Lin FR, Qi F, Heumüller T, Distler A, Egelhaaf HJ, Li N, Chow PCY, Brabec CJ, Jen AKY, Yip HL. Renewed Prospects for Organic Photovoltaics. Chem Rev 2022; 122:14180-14274. [PMID: 35929847 DOI: 10.1021/acs.chemrev.1c00955] [Citation(s) in RCA: 228] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic photovoltaics (OPVs) have progressed steadily through three stages of photoactive materials development: (i) use of poly(3-hexylthiophene) and fullerene-based acceptors (FAs) for optimizing bulk heterojunctions; (ii) development of new donors to better match with FAs; (iii) development of non-fullerene acceptors (NFAs). The development and application of NFAs with an A-D-A configuration (where A = acceptor and D = donor) has enabled devices to have efficient charge generation and small energy losses (Eloss < 0.6 eV), resulting in substantially higher power conversion efficiencies (PCEs) than FA-based devices. The discovery of Y6-type acceptors (Y6 = 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]-thiadiazolo[3,4-e]-thieno[2″,3″:4',5']thieno-[2',3':4,5]pyrrolo-[3,2-g]thieno-[2',3':4,5]thieno-[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) with an A-DA' D-A configuration has further propelled the PCEs to go beyond 15% due to smaller Eloss values (∼0.5 eV) and higher external quantum efficiencies. Subsequently, the PCEs of Y6-series single-junction devices have increased to >19% and may soon approach 20%. This review provides an update of recent progress of OPV in the following aspects: developments of novel NFAs and donors, understanding of the structure-property relationships and underlying mechanisms of state-of-the-art OPVs, and tasks underpinning the commercialization of OPVs, such as device stability, module development, potential applications, and high-throughput manufacturing. Finally, an outlook and prospects section summarizes the remaining challenges for the further development of OPV technology.
Collapse
Affiliation(s)
- Guichuan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Francis R Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Feng Qi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Thomas Heumüller
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Andreas Distler
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany
| | - Hans-Joachim Egelhaaf
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Ning Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Philip C Y Chow
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| |
Collapse
|
15
|
Akin Kara D, Burnett EK, Kara K, Usluer O, Cherniawski BP, Barron EJ, Gultekin B, Kus M, Briseno AL. Rubrene single crystal solar cells and the effect of crystallinity on interfacial recombination. Phys Chem Chem Phys 2022; 24:10869-10876. [PMID: 35450982 DOI: 10.1039/d2cp00985d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single crystal studies provide a better understanding of the basic properties of organic photovoltaic devices. Therefore, in this work, rubrene single crystals with a thickness of 250 nm to 1000 nm were used to produce an inverted bilayer organic solar cell. Subsequently, polycrystalline rubrene (orthorhombic, triclinic) and amorphous bilayer solar cells of the same thickness as single crystals were studied to make comparisons across platforms. To investigate how single crystal, polycrystalline (triclinic-orthorhombic) and amorphous forms alter the charge carrier recombination mechanism at the rubrene/PCBM interface, light intensity measurements were carried out. The light intensity dependency of the JSC, VOC and FF parameters in organic solar cells with different forms of rubrene was determined. Monomolecular (Shockley Read Hall) recombination is observed in devices employing amorphous and polycrystalline rubrene in addition to bimolecular recombination, whereas the single crystal device is weakly affected by trap assisted SRH recombination due to reduced trap states at the donor acceptor interface. To date, the proposed work is the only systematic study examining transport and interface recombination mechanisms in organic solar cells produced by different structure forms of rubrene.
Collapse
Affiliation(s)
- Duygu Akin Kara
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.,Solar Energy Institute, Ege University, 35000, Izmir, Turkey
| | - Edmund K Burnett
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Koray Kara
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.,Izmir Graphene Application and Research Center, Izmir Katip Celebi University, 35000, Izmir, Turkey
| | - Ozlem Usluer
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Benjamin P Cherniawski
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Edward J Barron
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Burak Gultekin
- Solar Energy Institute, Ege University, 35000, Izmir, Turkey
| | - Mahmut Kus
- Department of Chemical Engineering, Konya Technical University, 42000, Konya, Turkey
| | - Alejandro L Briseno
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.,US NAVY, NAWCWD, Research Office, China Lake, California 93555, USA
| |
Collapse
|
16
|
Mapping the energy level alignment at donor/acceptor interfaces in non-fullerene organic solar cells. Nat Commun 2022; 13:2046. [PMID: 35440117 PMCID: PMC9018783 DOI: 10.1038/s41467-022-29702-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
Energy level alignment (ELA) at donor (D) -acceptor (A) heterojunctions is essential for understanding the charge generation and recombination process in organic photovoltaic devices. However, the ELA at the D-A interfaces is largely underdetermined, resulting in debates on the fundamental operating mechanisms of high-efficiency non-fullerene organic solar cells. Here, we systematically investigate ELA and its depth-dependent variation of a range of donor/non-fullerene-acceptor interfaces by fabricating and characterizing D-A quasi bilayers and planar bilayers. In contrast to previous assumptions, we observe significant vacuum level (VL) shifts existing at the D-A interfaces, which are demonstrated to be abrupt, extending over only 1–2 layers at the heterojunctions, and are attributed to interface dipoles induced by D-A electrostatic potential differences. The VL shifts result in reduced interfacial energetic offsets and increased charge transfer (CT) state energies which reconcile the conflicting observations of large energy level offsets inferred from neat films and large CT energies of donor - non-fullerene-acceptor systems. Energy level alignment (ELA) at donor-acceptor heterojunctions is of vital importance yet largely undetermined in organic solar cells. Here, authors determine the heterojunction ELA with (mono) layer-by-layer precision to understand the co-existence of efficient charge.
Collapse
|
17
|
Jacoutot P, Scaccabarozzi AD, Zhang T, Qiao Z, Aniés F, Neophytou M, Bristow H, Kumar R, Moser M, Nega AD, Schiza A, Dimitrakopoulou-Strauss A, Gregoriou VG, Anthopoulos TD, Heeney M, McCulloch I, Bakulin AA, Chochos CL, Gasparini N. Infrared Organic Photodetectors Employing Ultralow Bandgap Polymer and Non-Fullerene Acceptors for Biometric Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200580. [PMID: 35246948 DOI: 10.1002/smll.202200580] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Recent efforts in the field of organic photodetectors (OPD) have been focused on extending broadband detection into the near-infrared (NIR) region. Here, two blends of an ultralow bandgap push-pull polymer TQ-T combined with state-of-the-art non-fullerene acceptors, IEICO-4F and Y6, are compared to obtain OPDs for sensing in the NIR beyond 1100 nm, which is the cut off for benchmark Si photodiodes. It is observed that the TQ-T:IEICO-4F device has a superior IR responsivity (0.03 AW-1 at 1200 nm and -2 V bias) and can detect infrared light up to 1800 nm, while the TQ-T:Y6 blend shows a lower responsivity of 0.01 AW-1 . Device physics analyses are tied with spectroscopic and morphological studies to link the superior performance of TQ-T:IEICO-4F OPD to its faster charge separation as well as more favorable donor-acceptor domains mixing. In the polymer blend with Y6, the formation of large agglomerates that exceed the exciton diffusion length, which leads to high charge recombination, is observed. An application of these devices as biometric sensors for real-time heart rate monitoring via photoplethysmography, utilizing infrared light, is demonstrated.
Collapse
Affiliation(s)
- Polina Jacoutot
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Alberto D Scaccabarozzi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955, Saudi Arabia
| | - Tianyi Zhang
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Zhuoran Qiao
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Filip Aniés
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Marios Neophytou
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Helen Bristow
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Rhea Kumar
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Maximilian Moser
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Alkmini D Nega
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Andriana Schiza
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| | | | - Vasilis G Gregoriou
- Advent Technologies SA, Stadiou Street, Platani, Rio, Patras, 26504, Greece
- National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955, Saudi Arabia
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Iain McCulloch
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Artem A Bakulin
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Christos L Chochos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
- Advent Technologies SA, Stadiou Street, Platani, Rio, Patras, 26504, Greece
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| |
Collapse
|
18
|
Quantum chemical study of end-capped acceptor and bridge on triphenyl diamine based molecules to enhance the optoelectronic properties of organic solar cells. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Zhang W, Huang J, Lv X, Zhang M, Liu W, Xu T, Ning J, Hexig A, Liu F, Xu A, Zhan C. Chlorinated phthalimide polymer donor as ultra-wide bandgap and deep HOMO guest for achieving highly eficient polymer solar cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Lee YR, Huang CC, Huang WY, Chen CT, Huang PT, Wang JK. Nanometer-scaled landscape of polymer: fullerene blends mapped with visible s-SNOM. NANOTECHNOLOGY 2022; 33:165702. [PMID: 34963107 DOI: 10.1088/1361-6528/ac46b5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Bulk heterojunction is one key concept leading to breakthrough in organic photovoltaics. The active layer is expectantly formed of distinct morphologies that carry out their respective roles in photovoltaic performance. The morphology-performance relationship however remains stymied, because unequivocal morphology at the nanoscale is not available. We used scattering-type scanning near-field optical microscopy operating with a visible light source (visibles-SNOM) to disclose the nanomorphology of P3HT:PCBM and pBCN:PCBM blends. Donor and acceptor domain as well as intermixed phase were identified and their intertwined distributions were mapped. We proposed energy landscapes of the BHJ active layer to shed light on the roles played by these morphologies in charge separation, transport and recombination. This study shows that visibles-SNOM is capable of profiling the morphological backdrop pertaining to the operation of high performance organic solar cells.
Collapse
Affiliation(s)
- Ya-Rong Lee
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Chia Huang
- Department of Physics, National Taiwan University, Taipei, Taiwan
| | - Wen-Yu Huang
- Department of Physics, National Taiwan University, Taipei, Taiwan
| | - Chin-Ti Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ping-Tsung Huang
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Juen-Kai Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
21
|
Liu Y, Zheng Z, Coropceanu V, Brédas JL, Ginger DS. Lower limits for non-radiative recombination loss in organic donor/acceptor complexes. MATERIALS HORIZONS 2022; 9:325-333. [PMID: 34842253 DOI: 10.1039/d1mh00529d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the factors controlling radiative and non-radiative transition rates for charge transfer states in organic systems is important for applications ranging from organic photovoltaics (OPV) to lasers and LEDs. We explore the role of charge-transfer (CT) energetics, lifetimes, and photovoltaic properties in the limit of very slow non-radiative rates by using a model donor/acceptor system with photoluminescence dominated by thermally activated delayed fluorescence (TADF). This blend exhibits an extremely high photoluminescence quantum efficiency (PLQY = ∼22%) and comparatively long PL lifetime, while simultaneously yielding appreciable amounts of free charge generation (photocurrent external quantum efficiency EQE of 24%). In solar cells, this blend exhibits non-radiative voltage losses of only ∼0.1 V, among the lowest reported for an organic system. Notably, we find that the non-radiative decay rate, knr, is on the order of 105 s-1, approximately 4-5 orders of magnitude slower than typical OPV blends, thereby confirming that high radiative efficiency and low non-radiative voltage losses are achievable by reducing knr. Furthermore, despite the high radiative efficiency and already comparatively slow knr, we find that knr is nevertheless much faster than predicted by Marcus-Levich-Jortner two-state theory and we conclude that CT-local exciton (LE) hybridization is present. Our findings highlight that it is crucial to evaluate how radiative and non-radiative rates of the LE states individually influence the PLQY of charge-transfer states, rather than solely focusing on the PLQY of the LE. This conclusion will guide material selection in achieving low non-radiative voltage loss in organic solar cells and high luminescence efficiency in organic LEDs.
Collapse
Affiliation(s)
- Yun Liu
- Department of Chemistry, University of Washington, Seattle, WA, 98195-2120, USA.
| | - Zilong Zheng
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332-0400, USA
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Veaceslav Coropceanu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332-0400, USA
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721-0088, USA
| | - Jean-Luc Brédas
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332-0400, USA
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721-0088, USA
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, WA, 98195-2120, USA.
| |
Collapse
|
22
|
Wu J, Cha H, Du T, Dong Y, Xu W, Lin C, Durrant JR. A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101833. [PMID: 34773315 PMCID: PMC11469080 DOI: 10.1002/adma.202101833] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The charge carrier dynamics in organic solar cells and organic-inorganic hybrid metal halide perovskite solar cells, two leading technologies in thin-film photovoltaics, are compared. The similarities and differences in charge generation, charge separation, charge transport, charge collection, and charge recombination in these two technologies are discussed, linking these back to the intrinsic material properties of organic and perovskite semiconductors, and how these factors impact on photovoltaic device performance is elucidated. In particular, the impact of exciton binding energy, charge transfer states, bimolecular recombination, charge carrier transport, sub-bandgap tail states, and surface recombination is evaluated, and the lessons learned from transient optical and optoelectronic measurements are discussed. This perspective thus highlights the key factors limiting device performance and rationalizes similarities and differences in design requirements between organic and perovskite solar cells.
Collapse
Affiliation(s)
- Jiaying Wu
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | - Hyojung Cha
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
- Department of Hydrogen & Renewable EnergyKyungpook National UniversityDaegu41566South Korea
| | - Tian Du
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | - Yifan Dong
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | - Weidong Xu
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | - Chieh‐Ting Lin
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | - James R. Durrant
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
- SPECIFIC IKCCollege of EngineeringSwansea UniversityBay Campus, Fabian WaySwanseaWalesSA1 8ENUK
| |
Collapse
|
23
|
Guo L, Liu K, Tan X, Wang X, Huang J, Wei Z, Chen G. B ← N Coordination Enables Efficient p-Doping in a Pyrazine-Based Polymer Donor Toward Enhanced Photovoltaic Performance. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liang Guo
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Kaikai Liu
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Institute of Luminescent Materials and Information Displays, Huaqiao University, Xiamen 361021, P. R. China
| | - Xueyan Tan
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Xiaoling Wang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Jianhua Huang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Zhanhua Wei
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Institute of Luminescent Materials and Information Displays, Huaqiao University, Xiamen 361021, P. R. China
| | - Guohua Chen
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
24
|
Godin R, Durrant JR. Dynamics of photoconversion processes: the energetic cost of lifetime gain in photosynthetic and photovoltaic systems. Chem Soc Rev 2021; 50:13372-13409. [PMID: 34786578 DOI: 10.1039/d1cs00577d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The continued development of solar energy conversion technologies relies on an improved understanding of their limitations. In this review, we focus on a comparison of the charge carrier dynamics underlying the function of photovoltaic devices with those of both natural and artificial photosynthetic systems. The solar energy conversion efficiency is determined by the product of the rate of generation of high energy species (charges for solar cells, chemical fuels for photosynthesis) and the energy contained in these species. It is known that the underlying kinetics of the photophysical and charge transfer processes affect the production yield of high energy species. Comparatively little attention has been paid to how these kinetics are linked to the energy contained in the high energy species or the energy lost in driving the forward reactions. Here we review the operational parameters of both photovoltaic and photosynthetic systems to highlight the energy cost of extending the lifetime of charge carriers to levels that enable function. We show a strong correlation between the energy lost within the device and the necessary lifetime gain, even when considering natural photosynthesis alongside artificial systems. From consideration of experimental data across all these systems, the emprical energetic cost of each 10-fold increase in lifetime is 87 meV. This energetic cost of lifetime gain is approx. 50% greater than the 59 meV predicted from a simple kinetic model. Broadly speaking, photovoltaic devices show smaller energy losses compared to photosynthetic devices due to the smaller lifetime gains needed. This is because of faster charge extraction processes in photovoltaic devices compared to the complex multi-electron, multi-proton redox reactions that produce fuels in photosynthetic devices. The result is that in photosynthetic systems, larger energetic costs are paid to overcome unfavorable kinetic competition between the excited state lifetime and the rate of interfacial reactions. We apply this framework to leading examples of photovoltaic and photosynthetic devices to identify kinetic sources of energy loss and identify possible strategies to reduce this energy loss. The kinetic and energetic analyses undertaken are applicable to both photovoltaic and photosynthetic systems allowing for a holistic comparison of both types of solar energy conversion approaches.
Collapse
Affiliation(s)
- Robert Godin
- Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, British Columbia, V1V 1V7, Canada. .,Clean Energy Research Center, University of British Columbia, 2360 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada.,Okanagan Institute for Biodiversity, Resilience, and Ecosystem Services, University of British Columbia, Kelowna, British Columbia, Canada
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| |
Collapse
|
25
|
Dela Peña TA, Khan JI, Chaturvedi N, Ma R, Xing Z, Gorenflot J, Sharma A, Ng FL, Baran D, Yan H, Laquai F, Wong KS. Understanding the Charge Transfer State and Energy Loss Trade-offs in Non-fullerene-Based Organic Solar Cells. ACS ENERGY LETTERS 2021; 6:3408-3416. [DOI: 10.1021/acsenergylett.1c01574] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Top Archie Dela Peña
- Department of Physics, William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology (HKUST), 000000 Kowloon, Hong Kong, P.R. China
| | - Jafar I. Khan
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Neha Chaturvedi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Ruijie Ma
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology (HKUST), 000000 Kowloon, Hong Kong, P.R. China
| | - Zengshan Xing
- Department of Physics, William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology (HKUST), 000000 Kowloon, Hong Kong, P.R. China
| | - Julien Gorenflot
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Anirudh Sharma
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Fai Lun Ng
- Department of Electrical and Electronic Engineering, Hong Kong University of Science and Technology (HKUST), 000000 Kowloon, Hong Kong, P.R. China
| | - Derya Baran
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - He Yan
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology (HKUST), 000000 Kowloon, Hong Kong, P.R. China
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Kam Sing Wong
- Department of Physics, William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology (HKUST), 000000 Kowloon, Hong Kong, P.R. China
| |
Collapse
|
26
|
Jahandar M, Kim S, Lim DC. Indoor Organic Photovoltaics for Self-Sustaining IoT Devices: Progress, Challenges and Practicalization. CHEMSUSCHEM 2021; 14:3449-3474. [PMID: 34056847 PMCID: PMC8519124 DOI: 10.1002/cssc.202100981] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/28/2021] [Indexed: 06/01/2023]
Abstract
Indoor photovoltaics (IPVs) have great potential to provide a self-sustaining power source for Internet-of-Things (IoT) devices. The rapid growth in demand for low-power IoT devices for indoor application not only boosts the development of high-performance IPVs, but also promotes the electronics and semiconductor industry for the design and development of ultra-low-power IoT systems. In this Review, the recent progress in IPV technologies, design rules, market trends, and future prospects for highly efficient indoor photovoltaics are discussed. Special attention is given to the progress and development of organic photovoltaics (OPVs), which demonstrate great possibilities for IPVs, owing to their bandgap tunability, high absorbance coefficient, semitransparency, solution processability, and easy large-area manufacturing on flexible substrates. Highly efficient indoor organic photovoltaics (IOPVs) can be realized through designing efficient donor and acceptor absorber materials that have good spectral responses in the visible region and better energy-aligned interfacial layers, and through modulation of optical properties. Interfacial engineering, photovoltage losses, device stability, and large-area organic photovoltaic modules are surveyed to understand the mechanisms of efficient power conversion and challenges for IOPVs under indoor conditions as a self-sustaining power source for IoT devices. Finally, the prospects for further improve in IOPV device performance and practical aspects of integrating IOPVs in low-power IoT devices are discussed.
Collapse
Affiliation(s)
- Muhammad Jahandar
- Energy and Electronic Materials CenterKorea Institute of Materials Science (KIMS), KoreaChangwon51508Republic of Korea
| | - Soyeon Kim
- Energy and Electronic Materials CenterKorea Institute of Materials Science (KIMS), KoreaChangwon51508Republic of Korea
| | - Dong Chan Lim
- Energy and Electronic Materials CenterKorea Institute of Materials Science (KIMS), KoreaChangwon51508Republic of Korea
| |
Collapse
|
27
|
Liu X, Liu Y, Ni Y, Fu P, Wang X, Yang Q, Guo X, Li C. Reducing non-radiative recombination energy loss via a fluorescence intensifier for efficient and stable ternary organic solar cells. MATERIALS HORIZONS 2021; 8:2335-2342. [PMID: 34846439 DOI: 10.1039/d1mh00868d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Increasing electroluminescene quantum efficiency (EQEEL) of the photoactive layer to reduce non-radiative recombination energy loss (Eloss) has been demonstrated as an effective strategy to improve open-circuit voltage (Voc) of organic solar cells (OSCs). Meanwhile, incorporating a third component into the active-layer film can improve power conversion efficiency (PCE) of resultant ternary OSCs, mostly contributed from increments in short-circuit current density and fill factor but less in the Voc. Herein, we report a highly fluorescent molecule (IT-MCA) as a third component to reduce the Eloss and enhance the Voc for ternary OSCs. Applying the IT-MCA to three binary hosts, a significant increase of Voc (41 mV) is acquired and a best PCE of 16.7% is obtained with outstanding device stability. This work provides a new guideline to design the third-component molecule by enhancing its fluorescence for efficient and stable ternary OSCs with improved Voc.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian 116023, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Dai T, Lei P, Zhang B, Zhou J, Tang A, Geng Y, Zeng Q, Zhou E. Tricyclic or Pentacyclic D Units: Design of D-π-A-Type Copolymers for High VOC Organic Photovoltaic Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30756-30765. [PMID: 34180228 DOI: 10.1021/acsami.1c08487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although there are several electron-donating (D) units, only the classic benzo[1,2-b:4,5-b']dithiophenes (BDT) unit was utilized to develop D-π-A-type copolymers for high-voltage organic photovoltaic (OPV) cells. Hence, in this work, we chose two tricyclic D units, BDT and benzo[1,2-b:4,5-b']difurans (BDF), together with one pentacyclic ring, dithieno[2,3-d;2',3'-d']benzo[1,2-b;4,5-b']dithiophenes (DTBDT), to comprehensively study the effect of different D units on the optoelectronic properties and photovoltaic performance. By copolymerized with the benzo[1,2,3]triazole (BTA) electron-accepting unit, the final copolymers J52-Cl, F11, and PE52 were combined with a nonfullerene acceptor (NFA) F-BTA3 according to the "Same-A-Strategy." As we preconceived, all the three single-junction OPV cells can obtain high open-circuit voltage (VOC) over 1.10 V. Although the tricyclic D unit of BDF exhibits a slightly lower VOC of 1.12 V because of its mildly larger energy loss of 0.698 eV, its higher carrier mobilities and exciton dissociation efficiency strikingly boost the short-circuit current (JSC) and fill factor, which contribute to a comparable PCE of 10.04% with J52-Cl (10.10%). However, the DTBDT-based polymer PE52 shows the worst performance with a PCE of 6.78% and a VOC of 1.14 V, owing to the higher bimolecular recombination and disordered molecular stacking. Our results indicate that tricyclic D units should be a better choice for constructing D-π-A-type polymers for high-voltage photovoltaic materials than the pentacyclic analogues.
Collapse
Affiliation(s)
- Tingting Dai
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Lei
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Zhang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Jialing Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ailing Tang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yanfang Geng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qingdao Zeng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Erjun Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Chow PCY, Chan CCS, Ma C, Zou X, Yan H, Wong KS. Factors That Prevent Spin-Triplet Recombination in Non-fullerene Organic Photovoltaics. J Phys Chem Lett 2021; 12:5045-5051. [PMID: 34019416 DOI: 10.1021/acs.jpclett.1c01214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Managing the dynamics of spin-triplet electronic states is crucial for achieving high-performance organic photovoltaics. Here we show that the replacement of fullerene with non-fullerene acceptor (NFA) molecules leads to suppression of triplet recombination and thus more efficient charge generation. This indicates that the relaxation of charges to the local triplet exciton state, although energetically allowed, is outcompeted by the thermally activated separation of interfacial charge-transfer excitons (CTEs) in the NFA-based system. By rationalizing our results with Marcus theory, we propose that triplet recombination in the fullerene system is driven by the small energy difference and strong electronic couplings between the CTE state and the lowest-lying triplet exciton state (T1) of fullerene acceptor molecules. In contrast, the large energy difference and small electronic couplings between these states in the NFA-based blends lead to sufficiently slow triplet relaxation rate compared to the charge separation rate (≪1010 s-1), thus preventing triplet recombination.
Collapse
Affiliation(s)
- Philip C Y Chow
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Christopher C S Chan
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Chao Ma
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Xinhui Zou
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - He Yan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Kam Sing Wong
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
30
|
A comparative study of PffBT4T-2OD/EH-IDTBR and PffBT4T-2OD/PC71BM organic photovoltaic heterojunctions. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Dong Y, Cha H, Bristow HL, Lee J, Kumar A, Tuladhar PS, McCulloch I, Bakulin AA, Durrant JR. Correlating Charge-Transfer State Lifetimes with Material Energetics in Polymer:Non-Fullerene Acceptor Organic Solar Cells. J Am Chem Soc 2021; 143:7599-7603. [PMID: 33891817 DOI: 10.1021/jacs.1c00584] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Minimizing the energy offset between the lowest exciton and charge-transfer (CT) states is a widely employed strategy to suppress the energy loss (Eg/q - VOC) in polymer:non-fullerene acceptor (NFA) organic solar cells (OSCs). In this work, transient absorption spectroscopy is employed to determine CT state lifetimes in a series of low energy loss polymer:NFA blends. The CT state lifetime is observed to show an inverse energy gap law dependence and decreases as the energy loss is reduced. This behavior is assigned to increased mixing/hybridization between these CT states and shorter-lived singlet excitons of the lower gap component as the energy offset ΔECT-S1 is reduced. This study highlights how achieving longer exciton and CT state lifetimes has the potential for further enhancement of OSC efficiencies.
Collapse
Affiliation(s)
- Yifan Dong
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, United Kingdom
| | - Hyojung Cha
- Department of Hydrogen & Renewable Energy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Helen L Bristow
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Jinho Lee
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, United Kingdom
| | - Aditi Kumar
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, United Kingdom
| | - Pabitra Shakya Tuladhar
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, United Kingdom
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, United Kingdom.,KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Artem A Bakulin
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, United Kingdom
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, United Kingdom.,SPECIFIC, College of Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, United Kingdom
| |
Collapse
|
32
|
Adjusting the energy of interfacial states in organic photovoltaics for maximum efficiency. Nat Commun 2021; 12:1772. [PMID: 33741966 PMCID: PMC7979693 DOI: 10.1038/s41467-021-22032-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 02/22/2021] [Indexed: 11/09/2022] Open
Abstract
A critical bottleneck for improving the performance of organic solar cells (OSC) is minimising non-radiative losses in the interfacial charge-transfer (CT) state via the formation of hybrid energetic states. This requires small energetic offsets often detrimental for high external quantum efficiency (EQE). Here, we obtain OSC with both non-radiative voltage losses (0.24 V) and photocurrent losses (EQE > 80%) simultaneously minimised. The interfacial CT states separate into free carriers with ≈40-ps time constant. We combine device and spectroscopic data to model the thermodynamics of charge separation and extraction, revealing that the relatively high performance of the devices arises from an optimal adjustment of the CT state energy, which determines how the available overall driving force is efficiently used to maximize both exciton splitting and charge separation. The model proposed is universal for donor:acceptor (D:A) with low driving forces and predicts which D:A will benefit from a morphology optimization for highly efficient OSC.
Collapse
|
33
|
Karuthedath S, Gorenflot J, Firdaus Y, Chaturvedi N, De Castro CSP, Harrison GT, Khan JI, Markina A, Balawi AH, Peña TAD, Liu W, Liang RZ, Sharma A, Paleti SHK, Zhang W, Lin Y, Alarousu E, Lopatin S, Anjum DH, Beaujuge PM, De Wolf S, McCulloch I, Anthopoulos TD, Baran D, Andrienko D, Laquai F. Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. NATURE MATERIALS 2021; 20:378-384. [PMID: 33106652 DOI: 10.1038/s41563-020-00835-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 09/17/2020] [Indexed: 05/20/2023]
Abstract
In bulk heterojunction (BHJ) organic solar cells (OSCs) both the electron affinity (EA) and ionization energy (IE) offsets at the donor-acceptor interface should equally control exciton dissociation. Here, we demonstrate that in low-bandgap non-fullerene acceptor (NFA) BHJs ultrafast donor-to-acceptor energy transfer precedes hole transfer from the acceptor to the donor and thus renders the EA offset virtually unimportant. Moreover, sizeable bulk IE offsets of about 0.5 eV are needed for efficient charge transfer and high internal quantum efficiencies, since energy level bending at the donor-NFA interface caused by the acceptors' quadrupole moments prevents efficient exciton-to-charge-transfer state conversion at low IE offsets. The same bending, however, is the origin of the barrier-less charge transfer state to free charge conversion. Our results provide a comprehensive picture of the photophysics of NFA-based blends, and show that sizeable bulk IE offsets are essential to design efficient BHJ OSCs based on low-bandgap NFAs.
Collapse
Affiliation(s)
- Safakath Karuthedath
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Julien Gorenflot
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Yuliar Firdaus
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Neha Chaturvedi
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Catherine S P De Castro
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - George T Harrison
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Jafar I Khan
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | | | - Ahmed H Balawi
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Top Archie Dela Peña
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Wenlan Liu
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Ru-Ze Liang
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Anirudh Sharma
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Sri H K Paleti
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Weimin Zhang
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Yuanbao Lin
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Erkki Alarousu
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Sergei Lopatin
- Imaging and Characterization Core Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Dalaver H Anjum
- Imaging and Characterization Core Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Pierre M Beaujuge
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Stefaan De Wolf
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Iain McCulloch
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Thomas D Anthopoulos
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Derya Baran
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | | | - Frédéric Laquai
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
34
|
Beuel S, Hartnagel P, Kirchartz T. The Influence of Photo‐Induced Space Charge and Energetic Disorder on the Indoor and Outdoor Performance of Organic Solar Cells. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202000319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian Beuel
- Faculty of Engineering and CENIDE University of Duisburg‐Essen Carl‐Benz‐Str. 199 Duisburg 47057 Germany
| | - Paula Hartnagel
- IEK5‐Photovoltaik Forschungszentrum Jülich Jülich 52425 Germany
| | - Thomas Kirchartz
- Faculty of Engineering and CENIDE University of Duisburg‐Essen Carl‐Benz‐Str. 199 Duisburg 47057 Germany
- IEK5‐Photovoltaik Forschungszentrum Jülich Jülich 52425 Germany
| |
Collapse
|
35
|
Sun Y, Gao HH, Wu S, Meng L, Wan X, Li M, Ma Z, Guo Z, Li S, Zhang H, Li C, Chen Y. Improving current and mitigating energy loss in ternary organic photovoltaics enabled by two well-compatible small molecule acceptors. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9921-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Zhao C, Wang J, Zhao X, Du Z, Yang R, Tang J. Recent advances, challenges and prospects in ternary organic solar cells. NANOSCALE 2021; 13:2181-2208. [PMID: 33480942 DOI: 10.1039/d0nr07788g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The past decade has seen a tremendous development of organic solar cells (OSCs). To date, high-performance OSCs have boosted power conversion efficiencies (PCEs) over 17%, showing bright prospects toward commercial applications. Compared with binary OSCs, ternary OSCs, by introducing a third component as a second donor or acceptor into the active layer, have great potential in realizing outstanding photovoltaic performance. Herein, a comprehensive review of the recent advances of ternary solar cells is presented. According to the chemical components of active layer materials, we classify the ternary systems into four categories, including polymer/small molecule/small molecule, polymer/polymer/small molecule, all-polymer and all-small-molecule types. The relationships among the photovoltaic materials structure and weight ratio, active layer morphology and photovoltaic performance are systematically analyzed and summarized. The features and design strategies of each category are also discussed and summarized. Key issues and challenges faced in ternary OSCs are pointed out, and potential strategies and solutions are proposed. This review may provide guidance for the field of ternary OSCs.
Collapse
Affiliation(s)
- Congcong Zhao
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Jiuxing Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Xuanyi Zhao
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Zhonglin Du
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China.
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
37
|
Wang T, Brédas JL. Organic Photovoltaics: Understanding the Preaggregation of Polymer Donors in Solution and Its Morphological Impact. J Am Chem Soc 2021; 143:1822-1835. [DOI: 10.1021/jacs.0c09542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tonghui Wang
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0088, United States
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0088, United States
| |
Collapse
|
38
|
Zhang M, Zhu L, Zhou G, Hao T, Qiu C, Zhao Z, Hu Q, Larson BW, Zhu H, Ma Z, Tang Z, Feng W, Zhang Y, Russell TP, Liu F. Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nat Commun 2021; 12:309. [PMID: 33436638 PMCID: PMC7803987 DOI: 10.1038/s41467-020-20580-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/02/2020] [Indexed: 11/27/2022] Open
Abstract
The chemical structure of donors and acceptors limit the power conversion efficiencies achievable with active layers of binary donor-acceptor mixtures. Here, using quaternary blends, double cascading energy level alignment in bulk heterojunction organic photovoltaic active layers are realized, enabling efficient carrier splitting and transport. Numerous avenues to optimize light absorption, carrier transport, and charge-transfer state energy levels are opened by the chemical constitution of the components. Record-breaking PCEs of 18.07% are achieved where, by electronic structure and morphology optimization, simultaneous improvements of the open-circuit voltage, short-circuit current and fill factor occur. The donor and acceptor chemical structures afford control over electronic structure and charge-transfer state energy levels, enabling manipulation of hole-transfer rates, carrier transport, and non-radiative recombination losses.
Collapse
Affiliation(s)
- Ming Zhang
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Lei Zhu
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Guanqing Zhou
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Tianyu Hao
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Chaoqun Qiu
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zhe Zhao
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qin Hu
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Bryon W Larson
- Chemistry & Nanoscience Department, National Renewable Energy Laboratory, Golden, Colorado, 80401, USA
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zaifei Ma
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Wei Feng
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, 256401, Shandong Province, People's Republic of China
| | - Yongming Zhang
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, 256401, Shandong Province, People's Republic of China
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, 256401, Shandong Province, People's Republic of China.
| |
Collapse
|
39
|
Bai Y, Xue LW, Wang HQ, Zhang ZG. Research Advances on Benzotriazole-based Organic Photovoltaic Materials. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21050193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Kirkey A, Luber EJ, Cao B, Olsen BC, Buriak JM. Optimization of the Bulk Heterojunction of All-Small-Molecule Organic Photovoltaics Using Design of Experiment and Machine Learning Approaches. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54596-54607. [PMID: 33226763 DOI: 10.1021/acsami.0c14922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
All-small-molecule organic photovoltaic (OPV) cells based upon the small-molecule donor, DRCN5T, and nonfullerene acceptors, ITIC, IT-M, and IT-4F, were optimized using Design of Experiments (DOE) and machine learning (ML) approaches. This combination enables rational sampling of large parameter spaces in a sparse but mathematically deliberate fashion and promises economies of precious resources and time. This work focused upon the optimization of the core layer of the OPV device, the bulk heterojunction (BHJ). Many experimental processing parameters play critical roles in the overall efficiency of a given device and are often correlated and thus are difficult to parse individually. DOE was applied to the (i) solution concentration of the donor and acceptor ink used for spin-coating, (ii) the donor fraction, (iii) the temperature, and (iv) duration of the annealing of these films. The ML-based approach was then used to derive maps of the power conversion efficiencies (PCE) landscape for the first and second rounds of optimization to be used as guides to determine the optimal values of experimental processing parameters with respect to PCE. This work shows that with little knowledge of a potential combination of components for a given BHJ, a large parameter space can be effectively screened and investigated to rapidly determine its potential for high-efficiency OPVs.
Collapse
Affiliation(s)
- Aaron Kirkey
- Department of Chemistry, University of Alberta, 11227-Saskatchewan Drive, Edmonton AB T6G 2G2, Canada
| | - Erik J Luber
- Department of Chemistry, University of Alberta, 11227-Saskatchewan Drive, Edmonton AB T6G 2G2, Canada
| | - Bing Cao
- Department of Chemistry, University of Alberta, 11227-Saskatchewan Drive, Edmonton AB T6G 2G2, Canada
| | - Brian C Olsen
- Department of Chemistry, University of Alberta, 11227-Saskatchewan Drive, Edmonton AB T6G 2G2, Canada
| | - Jillian M Buriak
- Department of Chemistry, University of Alberta, 11227-Saskatchewan Drive, Edmonton AB T6G 2G2, Canada
| |
Collapse
|
41
|
Park S, Kim T, Yoon S, Koh CW, Woo HY, Son HJ. Progress in Materials, Solution Processes, and Long-Term Stability for Large-Area Organic Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002217. [PMID: 33020976 DOI: 10.1002/adma.202002217] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/09/2020] [Indexed: 05/20/2023]
Abstract
Organic solar cells based on bulk heterojunctions (BHJs) are attractive energy-conversion devices that can generate electricity from absorbed sunlight by dissociating excitons and collecting charge carriers. Recent breakthroughs attained by development of nonfullerene acceptors result in significant enhancement in power conversion efficiency (PCEs) exceeding 17%. However, most of researches have focused on pursuing high efficiency of small-area (<1 cm2 ) unit cells fabricated usually with spin coating. For practical application of organic photovoltaics (OPVs) from lab-scale unit cells to industrial products, it is essential to develop efficient technologies that can extend active area of devices with minimized loss of performance and ensured operational stability. In this progress report, an overview of recent advancements in materials and processing technologies is provided for transitioning from small-area laboratory-scale devices to large-area industrial scale modules. First, development of materials that satisfy requirements of high tolerability in active layer thickness and large-area adaptability is introduced. Second, morphology control using various coating techniques in a large active area is discussed. Third, the recent research progress is also underlined for understanding mechanisms of OPV degradation and studies for improving device long-term stability along with reliable evaluation procedures.
Collapse
Affiliation(s)
- Sungmin Park
- Advanced Photovoltaics Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Taehee Kim
- Advanced Photovoltaics Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seongwon Yoon
- Advanced Photovoltaics Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Chang Woo Koh
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hae Jung Son
- Advanced Photovoltaics Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
42
|
Qiu D, Adil MA, Lu K, Wei Z. The Crystallinity Control of Polymer Donor Materials for High-Performance Organic Solar Cells. Front Chem 2020; 8:603134. [PMID: 33330397 PMCID: PMC7732501 DOI: 10.3389/fchem.2020.603134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Bulk heterojunction (BHJ) organic solar cells (OSCs) can be regarded as one of the most promising energy generation technologies for large-scale applications. Despite their several well-known drawbacks, the devices where polymers are employed as the donor are still leading the OSC universe in terms of performance. Such performance generally depends upon various critical factors such as the crystallinity of the material, the crystallization process during the film formation, and also the final film morphology. Despite a few reviews on the structure of the polymer donor materials and device performance, not enough attention has been paid toward the crystallinity problem. Herein, the structure and crystallinity of the representative polymer donor materials and the corresponding device properties have been briefly reviewed. Furthermore, several typical methods for controlling the crystallinity of materials have been summarized and illustrated as well. Moreover, the obstacles lying in the way of successful commercialization of such polymer solar cells have been systematically discussed. The in-depth interpretation of the crystallinity of the polymer donors in this article may stimulate novel ideas in material design and device fabrication.
Collapse
Affiliation(s)
- Dingding Qiu
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Muhammad Abdullah Adil
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Kun Lu
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhixiang Wei
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Bristow H, Jacoutot P, Scaccabarozzi AD, Babics M, Moser M, Wadsworth A, Anthopoulos TD, Bakulin A, McCulloch I, Gasparini N. Nonfullerene-Based Organic Photodetectors for Ultrahigh Sensitivity Visible Light Detection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48836-48844. [PMID: 33054156 DOI: 10.1021/acsami.0c14016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is well established that for organic photodetectors (OPDs) to compete with their inorganic counterparts, low dark currents at reverse bias must be achieved. Here, two rhodanine-terminated nonfullerene acceptors O-FBR and O-IDTBR are shown to deliver low dark currents at -2 V of 0.17 and 0.84 nA cm-2, respectively, when combined with the synthetically scalable polymer PTQ10 in OPD. These low dark currents contribute to the excellent sensitivity to low light of the detectors, reaching values of 0.57 μW cm-2 for PTQ10:O-FBR-based OPD and 2.12 μW cm-2 for PTQ10:O-IDTBR-based OPD. In both cases, this sensitivity exceeds that of a commercially available silicon photodiode. The responsivity of the PTQ10:O-FBR-based OPD of 0.34 AW-1 under a reverse bias of -2 V also exceeds that of a silicon photodiode. Meanwhile, the responsivity of the PTQ10:O-IDTBR of 0.03 AW-1 is limited by the energetic offset of the blend. The OPDs deliver high specific detectivities of 9.6 × 1012 Jones and 3.3 × 1011 Jones for O-FBR- and O-IDTBR-based blends, respectively. Both active layers are blade-coated in air, making them suitable for high-throughput methods. Finally, all three of the materials can be synthesized at low cost and on a large scale, making these blends good candidates for commercial OPD applications.
Collapse
Affiliation(s)
- Helen Bristow
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London SW72AZ, U.K
| | - Polina Jacoutot
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London SW72AZ, U.K
| | - Alberto D Scaccabarozzi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Maxime Babics
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London SW72AZ, U.K
| | - Maximilian Moser
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London SW72AZ, U.K
| | - Andrew Wadsworth
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London SW72AZ, U.K
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Artem Bakulin
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London SW72AZ, U.K
| | - Iain McCulloch
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London SW72AZ, U.K
| |
Collapse
|
44
|
Su D, Li K, Liu W, Zhang W, Li X, Wu Y, Shen F, Huo S, Fu H, Zhan C. High-Performance Ternary Polymer Solar Cells Enabled by a New Narrow Bandgap Nonfullerene Small Molecule Acceptor with a Higher LUMO Level. Macromol Rapid Commun 2020; 41:e2000393. [PMID: 33089640 DOI: 10.1002/marc.202000393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/04/2020] [Indexed: 11/06/2022]
Abstract
Obtaining a large open-circuit voltage (VOC ) and high short-circuit current density (JSC ) simultaneously is important in improving power conversion efficiency (PCE) of organic photovoltaics. The ternary strategy with using a higher lowest unoccupied molecular orbital (LUMO) level nonfullerene acceptor (NFA) guest can achieve increased VOC , yet JSC is decreased or maintained, so it's still a challenge to offer increased VOC and JSC values concurrently via the newly presented VOC -increased ternary strategy. To overcome this issue, a new narrow bandgap NFA TT-S-4F is reported by introducing 3,6-dimethoxylthieno[3,2-b]thiophene (TT) as π-spacers to connect electron-rich core with terminal groups, so as to upshift the LUMO level and extend π-system. When adding 10% TT-S-4F into binary system based on PTB7-Th:IEICO-4F, the higher-LUMO-level of TT-S-4F, the increased charge mobilities, the reduced trap-assisted combination loss, and a finer nanofiber structure and increased phase separation size are obtained, which simultaneously promotes JSC , VOC , and fill factor (FF), thus obtaining an optimal PCE (12.5% vs 11.5%). This work illustrates that an extending conjugated backbone with large π-spacers and inclusion of alkylthiophenyl side-chains is a concept to synthesize NFA guests for use on the VOC -increased ternary strategy that enables to realize simultaneously increased JSC , VOC , and FF.
Collapse
Affiliation(s)
- Dan Su
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, 071002, China
| | - Kun Li
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Wanru Liu
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, 071002, China
| | - Weichao Zhang
- Key Laboratory of Excitonic Materials Chemistry and Devices (EMC&D), College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot, 010022, China
| | - Xiaofang Li
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, 071002, China
| | - Yishi Wu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Fugang Shen
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, 071002, China
| | - Shuying Huo
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, 071002, China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Chuanlang Zhan
- Key Laboratory of Excitonic Materials Chemistry and Devices (EMC&D), College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot, 010022, China
| |
Collapse
|
45
|
Khan M, Hussain R, Yasir Mehboob M, Khalid M, Shafiq Z, Aslam M, Al-Saadi AA, Jamil S, Janjua MRSA. In Silico Modeling of New "Y-Series"-Based Near-Infrared Sensitive Non-Fullerene Acceptors for Efficient Organic Solar Cells. ACS OMEGA 2020; 5:24125-24137. [PMID: 32984735 PMCID: PMC7513551 DOI: 10.1021/acsomega.0c03796] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/27/2020] [Indexed: 05/21/2023]
Abstract
This work was inspired by a previous report [Janjua, M. R. S. A. Inorg. Chem. 2012, 51, 11306-11314] in which the optoelectronic properties were improved with an acceptor bearing heteroaromatic rings. Herein, we have designed four novel Y-series non-fullerene acceptors (NFAs) by end-capped acceptor modifications of a recently synthesized 15% efficient Y21 molecule for better optoelectronic properties and their potential use in solar cell applications. Density functional theory (DFT) along with time-dependent density functional theory (TDDFT) at the B3LYP/6-31G(d,p) level of theory is used to calculate the band gap, exciton binding energy along with transition density matrix (TDM) analysis, reorganizational energy of electrons and holes, and absorption maxima and open-circuit voltage of investigated molecules. In addition, the PM6:YA1 complex is also studied to understand the charge shifting from the donor polymer PM6 to the NFA blend. Results of all parameters suggest that the DA'D electron-deficient core and effective end-capped acceptors in YA1-YA4 molecules form a perfect combination for effective tuning of optoelectronic properties by lowering frontier molecular orbital (FMO) energy levels, reorganization energy, and binding energy and increasing the absorption maximum and open-circuit voltage values in selected molecules (YA1-YA4). The combination of extended conjugation and excellent electron-withdrawing capability of the end-capped acceptor moiety in YA1 makes YA1 an excellent organic solar cell (OSC) candidate owing to promising photovoltaic properties including the lowest energy gap (1.924 eV), smallest electron mobility (λe = 0.0073 eV) and hole mobility (λh = 0.0083 eV), highest λmax values (783.36 nm (in gas) and 715.20 nm (in chloroform) with lowest transition energy values (E x) of 1.58 and 1.73 eV, respectively), and fine open-circuit voltage (V oc = 1.17 V) with respect to HOMOPM6-LUMOacceptor. Moreover, selected molecules are observed to have better photovoltaic properties than Y21, thus paving the way for experimentalists to look for future developments of Y-series-based highly efficient solar cells.
Collapse
Affiliation(s)
- Muhammad
Usman Khan
- Department
of Chemistry, University of Okara, Okara 56300, Pakistan
- Department
of Applied Chemistry, Government College
University, Faisalabad 38000, Pakistan
| | - Riaz Hussain
- Department
of Chemistry, University of Okara, Okara 56300, Pakistan
| | | | - Muhammad Khalid
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Zahid Shafiq
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Muhammad Aslam
- Department
of Chemistry, University of Education, Lahore 54000, Pakistan
| | - Abdulaziz A. Al-Saadi
- Department
of Chemistry, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Kingdom of Saudi Arabia
| | - Saba Jamil
- Super
Light Materials and Nanotechnology Laboratory, Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| | | |
Collapse
|
46
|
Wadsworth A, Hamid Z, Kosco J, Gasparini N, McCulloch I. The Bulk Heterojunction in Organic Photovoltaic, Photodetector, and Photocatalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001763. [PMID: 32754970 DOI: 10.1002/adma.202001763] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Organic semiconductors require an energetic offset in order to photogenerate free charge carriers efficiently, owing to their inability to effectively screen charges. This is vitally important in order to achieve high power conversion efficiencies in organic solar cells. Early heterojunction-based solar cells were limited to relatively modest efficiencies (<4%) owing to limitations such as poor exciton dissociation, limited photon harvesting, and high recombination losses. The development of the bulk heterojunction (BHJ) has significantly overcome these issues, resulting in dramatic improvements in organic photovoltaic performance, now exceeding 18% power conversion efficiencies. Here, the design and engineering strategies used to develop the optimal bulk heterojunction for solar-cell, photodetector, and photocatalytic applications are discussed. Additionally, the thermodynamic driving forces in the creation and stability of the bulk heterojunction are presented, along with underlying photophysics in these blends. Finally, new opportunities to apply the knowledge accrued from BHJ solar cells to generate free charges for use in promising new applications are discussed.
Collapse
Affiliation(s)
- Andrew Wadsworth
- Department of Chemistry and Centre for Plastic Electronics, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, UK
| | - Zeinab Hamid
- Department of Chemistry and Centre for Plastic Electronics, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, UK
| | - Jan Kosco
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Nicola Gasparini
- Department of Chemistry and Centre for Plastic Electronics, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, UK
| | - Iain McCulloch
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| |
Collapse
|
47
|
Hartnagel P, Kirchartz T. Understanding the Light‐Intensity Dependence of the Short‐Circuit Current of Organic Solar Cells. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Paula Hartnagel
- IEK5‐Photovoltaik Forschungszentrum Jülich Jülich 52425 Germany
| | - Thomas Kirchartz
- IEK5‐Photovoltaik Forschungszentrum Jülich Jülich 52425 Germany
- Faculty of Engineering and CENIDE University of Duisburg‐Essen Carl‐Benz‐Str. 199 Duisburg 47057 Germany
| |
Collapse
|
48
|
Xu Y, Yao H, Ma L, Wang J, Hou J. Efficient charge generation at low energy losses in organic solar cells: a key issues review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:082601. [PMID: 32375132 DOI: 10.1088/1361-6633/ab90cf] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Light absorption generates strongly bound excitons in organic solar cells (OSCs). To obtain efficient charge generation, a large driving force is required, which causes a large energy loss (E loss) and severely hinders the improvement in the power conversion efficiencies (PCEs) of OSCs. Recently, the development of non-fullerene OSCs has seen great success, and the resulting OSCs can yield highly efficient charge generation with a negligible driving force, which raises a fundamental question about how the excitons split into free charges. From a chemical structure perspective, the molecular electrostatic potential differences between donors and acceptors may play a critical role in facilitating charge separation. Although the E loss caused by charge generation has been suppressed, charge recombination, particularly via non-radiative pathways, severely limits further improvements in the PCEs. In OSCs with negligible driving forces, the lowest excited state, a hybrid local exciton-charge transfer state, is believed to have a strong association with the non-radiative E loss. This review discusses the efficient charge generation at low E loss values in highly efficient OSCs and highlights the issues that should be tackled to further improve the PCEs to new levels (∼20%).
Collapse
Affiliation(s)
- Ye Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China. University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | | | | | |
Collapse
|
49
|
Yao Q, Xue Q, Li Z, Zhang K, Zhang T, Li N, Yang S, Brabec CJ, Yip HL, Cao Y. Graded 2D/3D Perovskite Heterostructure for Efficient and Operationally Stable MA-Free Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000571. [PMID: 32449209 DOI: 10.1002/adma.202000571] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/19/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally unstable methylammonium (MA) molecule. MA-free perovskites are an intrinsically more stable optoelectronic material for use in solar cells but compromise the performance of PVSCs with relatively large energy loss. Here, the open-circuit voltage (Voc ) deficit is circumvented by the incorporation of β-guanidinopropionic acid (β-GUA) molecules into an MA-free bulk perovskite, which facilitates the formation of quasi-2D structure with face-on orientation. The 2D/3D hybrid perovskites embed at the grain boundaries of the 3D bulk perovskites and are distributed through half the thickness of the film, which effectively passivates defects and minimizes energy loss of the PVSCs through reduced charge recombination rates and enhanced charge extraction efficiencies. A PCE of 22.2% (certified efficiency of 21.5%) is achieved and the operational stability of the MA-free PVSCs is improved.
Collapse
Affiliation(s)
- Qin Yao
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Qifan Xue
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
- Innovation Center of Printed Photovoltaics, South China Institute of Collaborative Innovation, Dongguan, 523808, P. R. China
| | - Zhenchao Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Kaicheng Zhang
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-University Erlangen-Nuremberg, Martensstraße 7, Erlangen, 91058, Germany
| | - Teng Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Ning Li
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-University Erlangen-Nuremberg, Martensstraße 7, Erlangen, 91058, Germany
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Shihe Yang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Xili University Town, Shenzhen, 518055, P. R. China
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-University Erlangen-Nuremberg, Martensstraße 7, Erlangen, 91058, Germany
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
- Innovation Center of Printed Photovoltaics, South China Institute of Collaborative Innovation, Dongguan, 523808, P. R. China
| | - Yong Cao
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| |
Collapse
|
50
|
Duan T, Hou L, Fu J, Kan Z, Yang Q, Chen Q, Zhong C, Xiao Z, Yu D, Lu S. An asymmetric end-capping strategy enables a new non-fullerene acceptor for organic solar cells with efficiency over 10. Chem Commun (Camb) 2020; 56:6531-6534. [PMID: 32395735 DOI: 10.1039/d0cc01739f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two different terminal groups, rhodanine-flanked benzo[c][1,2,5]thiadiazole (BR) and 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IM2F), were connected to an indaceno[1,2-b:5,6-b']dithiophene (IDT) core to construct a new non-fullerene acceptor (IDTBF). Solar cells based on this acceptor exhibited promising photovoltaic performances with a power conversion efficiency (PCE) of up to 10.43%.
Collapse
Affiliation(s)
- Tainan Duan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|