1
|
Han XH, Zhao XW, Huang K, Yang L, Wang Q, Shi PF. A lysosome-targeting rhodamine fluorescent probe for Cu 2+ detection and its applications in test kits and zebrafish imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125154. [PMID: 39316859 DOI: 10.1016/j.saa.2024.125154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Tracing copper ions levels in the environment and subcellular microenvironment is crucial due to the key role copper ions play in physiological and pathological processes. Herein, a novel naphthalimide-fused rhodamine probe Rh-Naph-Cu was prepared through modification with phenylhydrazine to produce a closed and non-fluorescent spirolactam. Based on the copper-induced spirolactam ring-opening and hydrolysis process, Rh-Naph-Cu can be employed as a fluorescence off-on probe for copper ions with high selectivity, high sensitivity (limit of detection: 33.0 nM), broad pH-response range (pH: 5.0-10.0), and color change visible with the naked eye. Rh-Nap-Cu could be made into test strips for the in-situ chromogenic detection of Cu2+. Significantly, Rh-Naph-Cu can be utilized for the detection of copper ions in living HeLa cells and zebrafish, and exhibits excellent lysosomal-targeting ability with high Pearson's correlation coefficient (PCC) of 0.96.
Collapse
Affiliation(s)
- Xu-Hong Han
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, PR China
| | - Xue-Wei Zhao
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Medicine, Linyi University, Linyi 276005, PR China
| | - Kun Huang
- School of Chemistry and Chemical Engineering, Science Park, China West Normal University, Nanchong 637002, China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Medicine, Linyi University, Linyi 276005, PR China
| | - Qing Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Medicine, Linyi University, Linyi 276005, PR China.
| | - Peng-Fei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Medicine, Linyi University, Linyi 276005, PR China.
| |
Collapse
|
2
|
Sailer J, Nagel J, Akdogan B, Jauch AT, Engler J, Knolle PA, Zischka H. Deadly excess copper. Redox Biol 2024; 75:103256. [PMID: 38959622 PMCID: PMC11269798 DOI: 10.1016/j.redox.2024.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024] Open
Abstract
Higher eukaryotes' life is impossible without copper redox activity and, literally, every breath we take biochemically demonstrates this. However, this dependence comes at a considerable price to ensure target-oriented copper action. Thereto its uptake, distribution but also excretion are executed by specialized proteins with high affinity for the transition metal. Consequently, malfunction of copper enzymes/transporters, as is the case in hereditary Wilson disease that affects the intracellular copper transporter ATP7B, comes with serious cellular damage. One hallmark of this disease is the progressive copper accumulation, primarily in liver but also brain that becomes deadly if left untreated. Such excess copper toxicity may also result from accidental ingestion or attempted suicide. Recent research has shed new light into the cell-toxic mechanisms and primarily affected intracellular targets and processes of such excess copper that may even be exploited with respect to cancer therapy. Moreover, new therapies are currently under development to fight against deadly toxic copper.
Collapse
Affiliation(s)
- Judith Sailer
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Judith Nagel
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Banu Akdogan
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Adrian T Jauch
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Jonas Engler
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany; Institute of Molecular Toxicology and Pharmacology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
3
|
Wu M, Wang C, Ke L, Chen D, Qin Y, Han J. Correlation between copper speciation and transport pathway in Caco-2 cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1895-1900. [PMID: 36287610 DOI: 10.1002/jsfa.12292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/11/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Previous studies have demonstrated that, in contrast to the properties of food-derived copper, water-derived copper exerts neurotoxic effects and exhibits different speciation during digestion. The cellular uptake efficiencies of different speciation of copper are distinct. However, it is unclear whether these different speciation share the same transport pathway in intestinal epithelial cells. In the present study, the intracellular accumulation of copper derived from copper ion and copper complex solutions was investigated in Caco-2 cells. RESULTS The cellular accumulation of copper derived from copper ions was higher than that of copper derived from the copper complex. Treatment with carboplatin and Ag+ , which are copper transporter receptor 1 (Ctr1, LC31A1) inhibitors, did not inhibit copper accumulation in Caco-2 cells, but inhibited copper accumulation in HepG2 cells. Zinc ion significantly decreased the intracellular copper content from 114 ± 7 μg g-1 protein to 88 ± 4 μg g-1 protein in the copper ion-treated Caco-2 cells, but not in the copper complex-treated Caco-2 cells (84.6 ± 14 μg g-1 protein versus 87.7 ± 20 μg g-1 protein, P > 0.05). Additionally, copper accumulation in Caco-2 and HepG2 cells significantly differed depending on different solvents (Hanks' balanced salt solution and NaNO3 , P < 0.05). CONCLUSION These results indicate that the intracellular accumulation of copper derived from copper ion and copper complex is mediated by distinct copper transport pathways. Copper speciation may be an important factor that affects copper absorption and toxicity. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Wu
- Hangzhou Vocational and Technical College, Ecology and Health Institute, Hangzhou, China
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Cong Wang
- Hangzhou Vocational and Technical College, Ecology and Health Institute, Hangzhou, China
| | - Leqin Ke
- Hangzhou Vocational and Technical College, Ecology and Health Institute, Hangzhou, China
| | - Dewen Chen
- Hangzhou Vocational and Technical College, Ecology and Health Institute, Hangzhou, China
| | - Yumei Qin
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
4
|
Wu M, Zhi M, Liu Y, Han J, Qin Y. In situ analysis of copper speciation during in vitro digestion: Differences between copper in drinking water and food. Food Chem 2022; 371:131388. [PMID: 34808779 DOI: 10.1016/j.foodchem.2021.131388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 11/28/2022]
Abstract
In recent years, the safety of copper in drinking water has increasingly been questioned. Copper speciation is an important factor that affects its bioavailability and toxicity; thus, it is critical to investigate the speciation of copper that is ingested from food and drinking water during in vitro digestion. After digestion, water- and food-derived copper formed 60 ± 4% 0.1-1 kDa and 49 ± 6% 10-1,000 kDa copper complexes, respectively. Under simulated fasting drinking water conditions, up to 90 ± 2% 0.1-1 kDa copper complexes formed. In addition, using ion selective electrode analysis, water-derived copper was detected that contained higher Cu2+ concentrations after digestion than those of food-derived copper. These results indicate that water-derived copper forms smaller-sized species and exhibits higher Cu2+ concentrations during digestion than those of food-derived copper, thereby highlighting the importance of reassessing the safety limit for copper in drinking water.
Collapse
Affiliation(s)
- Min Wu
- Hangzhou Vocational & Technical College, Ecology and Health Institute. Hangzhou 310018, PR China; Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, PR China
| | - Mingyu Zhi
- Hangzhou Vocational & Technical College, Ecology and Health Institute. Hangzhou 310018, PR China
| | - Ying Liu
- Hangzhou Vocational & Technical College, Ecology and Health Institute. Hangzhou 310018, PR China
| | - Jianzhong Han
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, PR China
| | - Yumei Qin
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, PR China.
| |
Collapse
|
5
|
Liao J, Hu Z, Li Q, Li H, Chen W, Huo H, Han Q, Zhang H, Guo J, Hu L, Pan J, Li Y, Tang Z. Endoplasmic Reticulum Stress Contributes to Copper-Induced Pyroptosis via Regulating the IRE1α-XBP1 Pathway in Pig Jejunal Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1293-1303. [PMID: 35075900 DOI: 10.1021/acs.jafc.1c07927] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Copper (Cu) is a common additive in food products, which poses a potential concern to animal and human health when it is in excess. Here, we investigated the relationship between endoplasmic reticulum (ER) stress and pyroptosis in Cu-induced toxicity of jejunum in vivo and in vitro. In in vivo experiments, excess intake of dietary Cu caused ER cavity expansion, elevated fluorescence signals of GRP78 and Caspase-1, and increased the mRNA and protein expression levels related to ER stress and pyroptosis in pig jejunal epithelium. Simultaneously, similar effects were observed in IPEC-J2 cells under excess Cu treatment. Importantly, 4-phenylbutyric acid (ER stress inhibitor) and MKC-3946 (IRE1α inhibitor) significantly inhibited the ER stress-triggered IRE1α-XBP1 pathway, which also alleviated the Cu-induced pyroptosis in IPEC-J2 cells. In general, these results suggested that ER stress participated in regulating Cu-induced pyroptosis in jejunal epithelial cells via the IRE1α-XBP1 pathway, which provided a novel view into the toxicology of Cu.
Collapse
Affiliation(s)
- Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Zhuoying Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Hongji Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Weijin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Haihua Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| |
Collapse
|
6
|
Liao J, Li Q, Lei C, Yu W, Deng J, Guo J, Han Q, Hu L, Li Y, Pan J, Zhang H, Chang YF, Tang Z. Toxic effects of copper on the jejunum and colon of pigs: mechanisms related to gut barrier dysfunction and inflammation influenced by the gut microbiota. Food Funct 2021; 12:9642-9657. [PMID: 34664585 DOI: 10.1039/d1fo01286j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Copper (Cu) is an essential trace mineral, but its excessive intake can lead to potentially toxic effects on host physiology. The mammalian intestine harbors various microorganisms that are associated with intestinal barrier function and inflammation. In this study, the influences of Cu on barrier function, microbiota, and its metabolites were examined in the jejunum and colon of pigs. Here, we identified that the physical and chemical barrier functions were impaired both in the jejunum and colon, as evidenced by the decreased expression of tight junction proteins (ZO-1, Occludin, Claudin-1, and JAM-1) and mucous secretion-related genes, positive rate of Muc2, and secretion of SIgA and SIgG. Additionally, inflammatory cytokines were overexpressed in the jejunum and colon. Furthermore, Cu might increase the abundances of Mycoplasma, Actinobacillus and unidentified_Enterobacteriaceae in the jejunum, which significantly affected pentose and glucoronate interconversions, histidine metabolism, folate biosynthesis, porphyrin metabolism, and purine metabolism. Meanwhile, the abundances of Lactobacillus and Methanobrevibacter were remarkably decreased and Streptococcus, unidentified_Enterobacteriaceae, and unidentified_Muribaculaceae were significantly increased in the colon, with an evident impact on glycerophospholipid metabolism, retinol metabolism, and steroid hormone biosynthesis. These findings revealed that excess Cu had significant effects on the microbiota and metabolites in the jejunum and colon, which were involved in intestinal barrier dysfunction and inflammation.
Collapse
Affiliation(s)
- Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Chaiqin Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Jichang Deng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Science, Cornell University, Ithaca, NY, USA
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| |
Collapse
|
7
|
Wu M, Ke L, Zhi M, Qin Y, Han J. The influence of gastrointestinal pH on speciation of copper in simulated digestive juice. Food Sci Nutr 2021; 9:5174-5182. [PMID: 34532026 PMCID: PMC8441336 DOI: 10.1002/fsn3.2490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/29/2022] Open
Abstract
Speciation can provide knowledge about absorption, reactivity to binding sites, bioavailability, toxicity, and excretion of elements. In this study, the speciation of copper in different model solutions under the influence of gastrointestinal (GI) pH was studied by ion selective electrode (ISE) and inductively coupled plasma optical emission spectrometry (ICP OES). It was found that the electrode response (mV) against Cu2+ decreased with the increase in pH and dropped to the lowest point at pH 7.5 in all model solutions. When amino acids and organic acids were present, the ratio of filtered copper (0.45 μm, pH 7.5) was more than 90%. When casein was present, whey protein, pancreatin, and starch were added, and the ratio of filtered copper was 85.6 ± 0.3, 56.7 ± 8.8, 38.5 ± 5.1, and 1.0 ± 0.3%, respectively. When there is not enough organic ligand, excessive copper will form copper hydroxide precipitation with the increase in pH, but it got the highest electrode response (mV) against Cu2+. From this study, it can be concluded that the speciation of copper in GI tract is strongly influenced by the pH and the composition of food. When there are few ligands coexisting in the GI tract, the concentration of copper ion may be relatively high.
Collapse
Affiliation(s)
- Min Wu
- Hangzhou Vocational & Technical CollegeEcology and Health InstituteHangzhouChina
- Food Safety Key Laboratory of Zhejiang ProvinceSchool of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina
| | - Leqin Ke
- Hangzhou Vocational & Technical CollegeEcology and Health InstituteHangzhouChina
| | - Mingyu Zhi
- Hangzhou Vocational & Technical CollegeEcology and Health InstituteHangzhouChina
| | - Yumei Qin
- Food Safety Key Laboratory of Zhejiang ProvinceSchool of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina
| | - Jianzhong Han
- Food Safety Key Laboratory of Zhejiang ProvinceSchool of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina
| |
Collapse
|
8
|
Squitti R, Faller P, Hureau C, Granzotto A, White AR, Kepp KP. Copper Imbalance in Alzheimer's Disease and Its Link with the Amyloid Hypothesis: Towards a Combined Clinical, Chemical, and Genetic Etiology. J Alzheimers Dis 2021; 83:23-41. [PMID: 34219710 DOI: 10.3233/jad-201556] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cause of Alzheimer's disease (AD) is incompletely defined. To date, no mono-causal treatment has so far reached its primary clinical endpoints, probably due to the complexity and diverse neuropathology contributing to the neurodegenerative process. In the present paper, we describe the plausible etiological role of copper (Cu) imbalance in the disease. Cu imbalance is strongly associated with neurodegeneration in dementia, but a complete biochemical etiology consistent with the clinical, chemical, and genetic data is required to support a causative association, rather than just correlation with disease. We hypothesize that a Cu imbalance in the aging human brain evolves as a gradual shift from bound metal ion pools, associated with both loss of energy production and antioxidant function, to pools of loosely bound metal ions, involved in gain-of-function oxidative stress, a shift that may be aggravated by chemical aging. We explain how this may cause mitochondrial deficits, energy depletion of high-energy demanding neurons, and aggravated protein misfolding/oligomerization to produce different clinical consequences shaped by the severity of risk factors, additional comorbidities, and combinations with other types of pathology. Cu imbalance should be viewed and integrated with concomitant genetic risk factors, aging, metabolic abnormalities, energetic deficits, neuroinflammation, and the relation to tau, prion proteins, α-synuclein, TAR DNA binding protein-43 (TDP-43) as well as systemic comorbidity. Specifically, the Amyloid Hypothesis is strongly intertwined with Cu imbalance because amyloid-β protein precursor (AβPP)/Aβ are probable Cu/Zn binding proteins with a potential role as natural Cu/Zn buffering proteins (loss of function), and via the plausible pathogenic role of Cu-Aβ.
Collapse
Affiliation(s)
- Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, Strasbourg, France
| | | | - Alberto Granzotto
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.,Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences (DNISC), Laboratory of Molecular Neurology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Anthony R White
- Mental Health Program, QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
9
|
Squitti R, Ventriglia M, Simonelli I, Bonvicini C, Costa A, Perini G, Binetti G, Benussi L, Ghidoni R, Koch G, Borroni B, Albanese A, Sensi SL, Rongioletti M. Copper Imbalance in Alzheimer's Disease: Meta-Analysis of Serum, Plasma, and Brain Specimens, and Replication Study Evaluating ATP7B Gene Variants. Biomolecules 2021; 11:960. [PMID: 34209820 PMCID: PMC8301962 DOI: 10.3390/biom11070960] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
Evidence indicates that patients with Alzheimer's dementia (AD) show signs of copper (Cu) dyshomeostasis. This study aimed at evaluating the potential of Cu dysregulation as an AD susceptibility factor. We performed a meta-analysis of 56 studies investigating Cu biomarkers in brain specimens (pooled total of 182 AD and 166 healthy controls, HC) and in serum/plasma (pooled total of 2929 AD and 3547 HC). We also completed a replication study of serum Cu biomarkers in 97 AD patients and 70 HC screened for rs732774 and rs1061472 ATP7B, the gene encoding for the Cu transporter ATPase7B. Our meta-analysis showed decreased Cu in AD brain specimens, increased Cu and nonbound ceruloplasmin (Non-Cp) Cu in serum/plasma samples, and unchanged ceruloplasmin. Serum/plasma Cu excess was associated with a three to fourfold increase in the risk of having AD. Our replication study confirmed meta-analysis results and showed that carriers of the ATP7B AG haplotype were significantly more frequent in the AD group. Overall, our study shows that AD patients fail to maintain a Cu metabolic balance and reveals the presence of a percentage of AD patients carrying ATP7B AG haplotype and presenting Non-Cp Cu excess, which suggest that a subset of AD subjects is prone to Cu imbalance. This AD subtype can be the target of precision medicine-based strategies tackling Cu dysregulation.
Collapse
Affiliation(s)
- Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.B.); (L.B.); (R.G.)
| | - Mariacarla Ventriglia
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome, Italy; (M.V.); (I.S.)
| | - Ilaria Simonelli
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome, Italy; (M.V.); (I.S.)
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.B.); (L.B.); (R.G.)
| | - Alfredo Costa
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, 27100 Pavia, Italy; (A.C.); (G.P.)
- Department of Brain and Behavior, University of Pavia, 27100 Pavia, Italy
| | - Giulia Perini
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, 27100 Pavia, Italy; (A.C.); (G.P.)
- Department of Brain and Behavior, University of Pavia, 27100 Pavia, Italy
| | - Giuliano Binetti
- MAC Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy;
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.B.); (L.B.); (R.G.)
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.B.); (L.B.); (R.G.)
| | - Giacomo Koch
- Section of Human Physiology, University of Ferrara, 44121 Ferrara, Italy;
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
| | - Alberto Albanese
- Department of Neurology, IRCCS, Istituto Clinico Humanitas, Rozzano, 20089 Milan, Italy;
| | - Stefano L. Sensi
- Department of Neuroscience, Imaging and Clinical Science, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Institute for Mind Impairments and Neurological Disorders—iMIND, University of California—Irvine, Irvine, CA 92697, USA
- Molecular Neurology Units, Center for Advanced Studies and Technology (CAST), University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome, Italy;
| |
Collapse
|
10
|
Apoceruloplasmin: Abundance, Detection, Formation, and Metabolism. Biomedicines 2021; 9:biomedicines9030233. [PMID: 33669134 PMCID: PMC7996503 DOI: 10.3390/biomedicines9030233] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Ceruloplasmin, the main copper-binding protein in blood and some other fluids, is well known for its copper-dependent enzymatic functions and as a source of copper for cells. What is generally unknown or ignored is that, at least in the case of blood plasma and serum, about half of ceruloplasmin is in the apo (copper-free) form. This has led to some misconceptions about the amounts and variations of other copper-binding proteins and so-called “free copper” in the blood that might be indicators of disease states. What is known about the levels, sources, and metabolism of apo versus holo ceruloplasmin and the problems associated with measurements of the two forms is reviewed here.
Collapse
|
11
|
Wu X, Zhu M, Jiang Q, Wang L. Effects of Copper Sources and Levels on Lipid Profiles, Immune Parameters, Antioxidant Defenses, and Trace Element Residues in Broilers. Biol Trace Elem Res 2020; 194:251-258. [PMID: 31119639 DOI: 10.1007/s12011-019-01753-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/13/2019] [Indexed: 01/23/2023]
Abstract
The study was conducted to investigate the effects of copper sources and levels on lipid profiles, immune parameters, antioxidant defenses, and trace element contents of meat and liver in Arbor Acres broilers. A total of 504 male broilers were randomly divided into 7 groups with 6 replicates per group and 12 broilers per replicate. The experiment was used in a 3 × 2 + 1 factorial experiment design; broilers in the control group were fed a basal diet, and broilers in the other six groups were fed basal diets supplemented with 3 sources (copper sulfate, tribasic copper chloride, and copper methionate) and 2 levels (10 and 20 mg/kg). The results showed that the levels of cholesterol and low-density lipoprotein cholesterol in broilers were significantly decreased with the increase of dietary copper level (P < 0.05). Serum IL-6 and IgA contents, ceruloplasmin and GSH-Px activities, and liver copper contents of broilers increased significantly with dietary copper levels (P < 0.05). Compared with the control group, dietary copper supplementation significantly decreased serum cholesterol (P < 0.05) and significantly increased serum IL-6, ceruloplasmin, SOD, GSH-Px, and liver copper (P < 0.05). Dietary supplementation of basic copper chloride and copper methionate significantly decreased low-density lipoprotein cholesterol content and liver iron content (P < 0.05). In conclusion, dietary copper supplementation can effectively reduce serum cholesterol content and improve immune and antioxidant functions in broilers. Adding 20 mg/kg copper to broiler diet can increase the copper content in the liver, but it will not affect the copper content in the chicken.
Collapse
Affiliation(s)
- Xuezhuang Wu
- College of Animal Science, Anhui Science and Technology University, 1501 Huangshan Avenue, Bengbu, 233100, Anhui, China
| | - Mingxia Zhu
- College of Agronomy, Liaocheng University, 1 Hunan Road, Liaocheng, 252059, Shandong, China.
| | - Qingkui Jiang
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers-The State University of New Jersey, 225 Warren Street, Newark, NJ, 07103, USA.
| | - Lixin Wang
- College of Animal Science, Anhui Science and Technology University, 1501 Huangshan Avenue, Bengbu, 233100, Anhui, China
| |
Collapse
|
12
|
Chang J, Yoo S, Lee W, Kim D, Kang T. Spontaneous Phase Transfer-Mediated Selective Removal of Heavy Metal Ions Using Biocompatible Oleic Acid. Sci Rep 2017; 7:16727. [PMID: 29196737 PMCID: PMC5711890 DOI: 10.1038/s41598-017-17092-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/21/2017] [Indexed: 11/13/2022] Open
Abstract
Here, we propose an environmentally benign removal technique for heavy metal ions based on selective and spontaneous transfer to oleic acid. The ions can be removed via (1) the selective and rapid complexation with the carboxylic end of oleic acid at an oleic acid/water interface, and (2) the diffusion of such complex into the oleic acid layer. A wide variety of heavy metal ions such as Cu2+, Pb2+, Zn2+, and Ni2+ can be selectively removed over K+ and Na+. For example, the concentration of Cu2+ is reduced to below 1.3 ppm within 24 h, which corresponds to the level of Cu2+ permitted by the Environmental Protection Agency. The addition of ethylenediamine ligand to the metal ion solutions is also shown to enhance the phase transfer. The removal efficiency is increased by up to 6 times when compared with that in the absence of the ligand and follows the order, Cu2+ (99%) > Pb2+ (96%) > Zn2+ (95%) > Ni2+ (65%). Moreover, the removal time can be shortened from 24 h to 1 h. The effect of an emulsion induced by a mechanical agitation on the removal of heavy metal ion is also studied.
Collapse
Affiliation(s)
- Jeehan Chang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Korea
| | - Sooyeon Yoo
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Korea
| | - Wooju Lee
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, Korea
| | - Dongchoul Kim
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Korea.
| |
Collapse
|