1
|
Sy SKH, Ko H. Fish-on-Chips: unveiling neural processing of chemicals in small animals through precise fluidic control. Neural Regen Res 2024; 19:2351-2353. [PMID: 38526270 PMCID: PMC11090447 DOI: 10.4103/1673-5374.392876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/05/2023] [Indexed: 03/26/2024] Open
Affiliation(s)
- Samuel K H Sy
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China (Sy SKH, Ko H)
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China (Sy SKH, Ko H)
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong Special Administrative Region, China (Sy SKH)
- Advanced Biomedical Instrumentation Center, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China (Sy SKH)
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China (Sy SKH, Ko H)
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China (Sy SKH, Ko H)
- Margaret K. L. Cheung Research Center for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China (Ko H)
- Lau Tat-chuen Research Center of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China (Ko H)
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China (Ko H)
| |
Collapse
|
2
|
Dong K, Liu WC, Su Y, Lyu Y, Huang H, Zheng N, Rogers JA, Nan K. Scalable Electrophysiology of Millimeter-Scale Animals with Electrode Devices. BME FRONTIERS 2023; 4:0034. [PMID: 38435343 PMCID: PMC10907027 DOI: 10.34133/bmef.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/08/2023] [Indexed: 03/05/2024] Open
Abstract
Millimeter-scale animals such as Caenorhabditis elegans, Drosophila larvae, zebrafish, and bees serve as powerful model organisms in the fields of neurobiology and neuroethology. Various methods exist for recording large-scale electrophysiological signals from these animals. Existing approaches often lack, however, real-time, uninterrupted investigations due to their rigid constructs, geometric constraints, and mechanical mismatch in integration with soft organisms. The recent research establishes the foundations for 3-dimensional flexible bioelectronic interfaces that incorporate microfabricated components and nanoelectronic function with adjustable mechanical properties and multidimensional variability, offering unique capabilities for chronic, stable interrogation and stimulation of millimeter-scale animals and miniature tissue constructs. This review summarizes the most advanced technologies for electrophysiological studies, based on methods of 3-dimensional flexible bioelectronics. A concluding section addresses the challenges of these devices in achieving freestanding, robust, and multifunctional biointerfaces.
Collapse
Affiliation(s)
- Kairu Dong
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
- College of Biomedical Engineering & Instrument Science,
Zhejiang University, Hangzhou, 310027, China
| | - Wen-Che Liu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
| | - Yuyan Su
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- Department of Gastroenterology, Brigham and Women’s Hospital,
Harvard Medical School, Boston, MA 02115, USA
| | - Yidan Lyu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
| | - Hao Huang
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- College of Chemical and Biological Engineering,
Zhejiang University, Hangzhou 310058, China
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies,
Zhejiang University, Hangzhou 310027, China
- College of Computer Science and Technology,
Zhejiang University, Hangzhou 310027, China
- State Key Lab of Brain-Machine Intelligence,
Zhejiang University, Hangzhou 310058, China
- CCAI by MOE and Zhejiang Provincial Government (ZJU), Hangzhou 310027, China
| | - John A. Rogers
- Querrey Simpson Institute for Bioelectronics,
Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering,
Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering,
Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering,
Northwestern University, Evanston, IL 60208, USA
| | - Kewang Nan
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
3
|
Ye S, Chin WC, Ni CW. A multi-depth spiral milli fluidic device for whole mount zebrafish antibody staining. Biomed Microdevices 2023; 25:30. [PMID: 37581716 PMCID: PMC10427545 DOI: 10.1007/s10544-023-00670-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/16/2023]
Abstract
Whole mount zebrafish antibody staining (ABS) is a common staining technique used to localize protein information in a zebrafish embryo or larva. Like most biological assays, the whole mount zebrafish ABS is still largely conducted manually through labor intensive and time-consuming steps which affect both consistency and throughput of the assay. In this work, we develop a milli fluidic device that can automatically trap and immobilize the fixed chorion-less zebrafish embryos for the whole mount ABS. With just a single loading step, the zebrafish embryos can be trapped by the milli fluidic device through a chaotic hydrodynamic trapping process. Moreover, a consistent body orientation (i.e., head point inward) for the trapped zebrafish embryos can be achieved without additional orientation adjustment device. Furthermore, we employed a consumer-grade SLA 3D printer assisted method for device prototyping which is ideal for labs with limited budgets. Notably, the milli fluidic device has enabled the optimization and successful implementation of whole mount zebrafish Caspase-3 ABS. We demonstrated our device can accelerate the overall procedure by reducing at least 50% of washing time in the standard well-plate-based manual procedure. Also, the consistency is improved, and manual steps are reduced using the milli fluidic device. This work fills the gap in the milli fluidic application for whole mount zebrafish immunohistochemistry. We hope the device can be accepted by the zebrafish community and be used for other types of whole mount zebrafish ABS procedures or expanded to more complicated in situ hybridization (ISH) procedure.
Collapse
Affiliation(s)
- Songtao Ye
- Quantitative and Systems Biology, University of California Merced, Merced, US
| | - Wei-Chun Chin
- Quantitative and Systems Biology, University of California Merced, Merced, US.
- Department of Bioengineering, University of California Merced, Merced, US.
| | - Chih-Wen Ni
- Quantitative and Systems Biology, University of California Merced, Merced, US
- Department of Bioengineering, University of California Merced, Merced, US
| |
Collapse
|
4
|
Dey P, Bradley TM, Boymelgreen A. The impact of selected abiotic factors on Artemia hatching process through real-time observation of oxygen changes in a microfluidic platform. Sci Rep 2023; 13:6370. [PMID: 37076493 PMCID: PMC10115827 DOI: 10.1038/s41598-023-32873-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
Current studies on abiotic impacts on Artemia, a crustacean which is widely used in aquaculture, and ecotoxicology, often focus on endpoint analysis (e.g., hatching rates, survival). Here, we demonstrate that a mechanistic understanding can be obtained through measurement of oxygen consumption in real-time over an extended time period in a microfluidic platform. The platform enables high level control of the microenvironment and direct observation of morphological changes. As a demonstration, temperature and salinity are chosen to represent critical abiotic parameters that are also threatened by climate change. The hatching process of Artemia consists of four different stages: hydration, differentiation, emergence, and hatching. Different temperatures (20, 35, and 30 °C) and salinities (0, 25, 50, and 75 ppt) are shown to significantly alter the duration of hatching stages, metabolic rates, and hatchability. Specifically, the metabolic resumption of dormant Artemia cysts was significantly enhanced at higher temperatures and moderate salinity, however, the time needed for this resumption was only dependent on higher temperatures. Hatchability was inversely related to the duration of the differentiation stage of hatching, which persisted longer at lower temperatures and salinities. The current approach of investigation of metabolism and corresponding physical changes can be employed to study hatching processes of other aquatic species, even those with low metabolic rate.
Collapse
Affiliation(s)
- Preyojon Dey
- Department of Mechanical and Materials Engineering, Florida International University, 10555 W Flagler St, Miami, FL, 33174, USA
| | - Terence M Bradley
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, RI, 02881, USA
| | - Alicia Boymelgreen
- Department of Mechanical and Materials Engineering, Florida International University, 10555 W Flagler St, Miami, FL, 33174, USA.
| |
Collapse
|
5
|
Reilly K, Ellis LJA, Davoudi HH, Supian S, Maia MT, Silva GH, Guo Z, Martinez DST, Lynch I. Daphnia as a model organism to probe biological responses to nanomaterials-from individual to population effects via adverse outcome pathways. FRONTIERS IN TOXICOLOGY 2023; 5:1178482. [PMID: 37124970 PMCID: PMC10140508 DOI: 10.3389/ftox.2023.1178482] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
The importance of the cladoceran Daphnia as a model organism for ecotoxicity testing has been well-established since the 1980s. Daphnia have been increasingly used in standardised testing of chemicals as they are well characterised and show sensitivity to pollutants, making them an essential indicator species for environmental stress. The mapping of the genomes of D. pulex in 2012 and D. magna in 2017 further consolidated their utility for ecotoxicity testing, including demonstrating the responsiveness of the Daphnia genome to environmental stressors. The short lifecycle and parthenogenetic reproduction make Daphnia useful for assessment of developmental toxicity and adaption to stress. The emergence of nanomaterials (NMs) and their safety assessment has introduced some challenges to the use of standard toxicity tests which were developed for soluble chemicals. NMs have enormous reactive surface areas resulting in dynamic interactions with dissolved organic carbon, proteins and other biomolecules in their surroundings leading to a myriad of physical, chemical, biological, and macromolecular transformations of the NMs and thus changes in their bioavailability to, and impacts on, daphnids. However, NM safety assessments are also driving innovations in our approaches to toxicity testing, for both chemicals and other emerging contaminants such as microplastics (MPs). These advances include establishing more realistic environmental exposures via medium composition tuning including pre-conditioning by the organisms to provide relevant biomolecules as background, development of microfluidics approaches to mimic environmental flow conditions typical in streams, utilisation of field daphnids cultured in the lab to assess adaption and impacts of pre-exposure to pollution gradients, and of course development of mechanistic insights to connect the first encounter with NMs or MPs to an adverse outcome, via the key events in an adverse outcome pathway. Insights into these developments are presented below to inspire further advances and utilisation of these important organisms as part of an overall environmental risk assessment of NMs and MPs impacts, including in mixture exposure scenarios.
Collapse
Affiliation(s)
- Katie Reilly
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Laura-Jayne A. Ellis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hossein Hayat Davoudi
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Suffeiya Supian
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Marcella T. Maia
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Gabriela H. Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Diego Stéfani T. Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Mitchell CA, Burden N, Bonnell M, Hecker M, Hutchinson TH, Jagla M, LaLone CA, Lagadic L, Lynn SG, Shore B, Song Y, Vliet SM, Wheeler JR, Embry MR. New Approach Methodologies for the Endocrine Activity Toolbox: Environmental Assessment for Fish and Amphibians. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:757-777. [PMID: 36789969 PMCID: PMC10258674 DOI: 10.1002/etc.5584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 02/06/2023] [Indexed: 06/14/2023]
Abstract
Multiple in vivo test guidelines focusing on the estrogen, androgen, thyroid, and steroidogenesis pathways have been developed and validated for mammals, amphibians, or fish. However, these tests are resource-intensive and often use a large number of laboratory animals. Developing alternatives for in vivo tests is consistent with the replacement, reduction, and refinement principles for animal welfare considerations, which are supported by increasing mandates to move toward an "animal-free" testing paradigm worldwide. New approach methodologies (NAMs) hold great promise to identify molecular, cellular, and tissue changes that can be used to predict effects reliably and more efficiently at the individual level (and potentially on populations) while reducing the number of animals used in (eco)toxicological testing for endocrine disruption. In a collaborative effort, experts from government, academia, and industry met in 2020 to discuss the current challenges of testing for endocrine activity assessment for fish and amphibians. Continuing this cross-sector initiative, our review focuses on the current state of the science regarding the use of NAMs to identify chemical-induced endocrine effects. The present study highlights the challenges of using NAMs for safety assessment and what work is needed to reduce their uncertainties and increase their acceptance in regulatory processes. We have reviewed the current NAMs available for endocrine activity assessment including in silico, in vitro, and eleutheroembryo models. New approach methodologies can be integrated as part of a weight-of-evidence approach for hazard or risk assessment using the adverse outcome pathway framework. The development and utilization of NAMs not only allows for replacement, reduction, and refinement of animal testing but can also provide robust and fit-for-purpose methods to identify chemicals acting via endocrine mechanisms. Environ Toxicol Chem 2023;42:757-777. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Natalie Burden
- National Centre for the 3Rs (NC3Rs), London, United Kingdom
| | - Mark Bonnell
- Environment and Climate Change Canada, Ottawa, Canada
| | - Markus Hecker
- Toxicology Centre and School of the Environment & Sustainability, University of Saskatchewan, Saskatoon, Canada
| | | | | | - Carlie A. LaLone
- Office of Research and Development, Great Lakes Toxicology & Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Laurent Lagadic
- Research and Development, Crop Science, Environmental Safety, Bayer, Monheim am Rhein, Germany
| | - Scott G. Lynn
- Office of Pesticide Programs, US Environmental Protection Agency, Washington, DC
| | - Bryon Shore
- Environment and Climate Change Canada, Ottawa, Canada
| | - You Song
- Norwegian Institute for Water Research, Oslo, Norway
| | - Sara M. Vliet
- Office of Research and Development, Scientific Computing and Data Curation Division, US Environmental Protection Agency, Duluth, Minnesota
| | | | - Michelle R. Embry
- The Health and Environmental Sciences Institute, Washington, DC, USA
| |
Collapse
|
7
|
Sy SKH, Chan DCW, Chan RCH, Lyu J, Li Z, Wong KKY, Choi CHJ, Mok VCT, Lai HM, Randlett O, Hu Y, Ko H. An optofluidic platform for interrogating chemosensory behavior and brainwide neural representation in larval zebrafish. Nat Commun 2023; 14:227. [PMID: 36641479 PMCID: PMC9840631 DOI: 10.1038/s41467-023-35836-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Studying chemosensory processing desires precise chemical cue presentation, behavioral response monitoring, and large-scale neuronal activity recording. Here we present Fish-on-Chips, a set of optofluidic tools for highly-controlled chemical delivery while simultaneously imaging behavioral outputs and whole-brain neuronal activities at cellular resolution in larval zebrafish. These include a fluidics-based swimming arena and an integrated microfluidics-light sheet fluorescence microscopy (µfluidics-LSFM) system, both of which utilize laminar fluid flows to achieve spatiotemporally precise chemical cue presentation. To demonstrate the strengths of the platform, we used the navigation arena to reveal binasal input-dependent behavioral strategies that larval zebrafish adopt to evade cadaverine, a death-associated odor. The µfluidics-LSFM system enables sequential presentation of odor stimuli to individual or both nasal cavities separated by only ~100 µm. This allowed us to uncover brainwide neural representations of cadaverine sensing and binasal input summation in the vertebrate model. Fish-on-Chips is readily generalizable and will empower the investigation of neural coding in the chemical senses.
Collapse
Affiliation(s)
- Samuel K H Sy
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Danny C W Chan
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Roy C H Chan
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jing Lyu
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Zhongqi Li
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Kenneth K Y Wong
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Vincent C T Mok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hei-Ming Lai
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Owen Randlett
- Institut national de la santé et de la recherche médicale, Université Claude Bernard Lyon 1, Lyon, France
| | - Yu Hu
- Department of Mathematics and Division of Life Science, Faculty of Science, Hong Kong University of Science and Technology, Clear Water Bay, New Territories, Hong Kong SAR, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
8
|
Khalili A, van Wijngaarden E, Zoidl GR, Rezai P. Simultaneous screening of zebrafish larvae cardiac and respiratory functions: a microfluidic multi-phenotypic approach. INTEGRATIVE BIOLOGY : QUANTITATIVE BIOSCIENCES FROM NANO TO MACRO 2022; 14:162-170. [PMID: 36416255 DOI: 10.1093/intbio/zyac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022]
Abstract
Multi-phenotypic screening of multiple zebrafish larvae plays an important role in enhancing the quality and speed of biological assays. Many microfluidic platforms have been presented for zebrafish phenotypic assays, but multi-organ screening of multiple larvae, from different needed orientations, in a single device that can enable rapid and large-sample testing is yet to be achieved. Here, we propose a multi-phenotypic quadruple-fish microfluidic chip for simultaneous monitoring of heart activity and fin movement of 5-7-day postfertilization zebrafish larvae trapped in the chip. In each experiment, fin movements of four larvae were quantified in the dorsal view in terms of fin beat frequency (FBF). Positioning of four optical prisms next to the traps provided the lateral views of the four larvae and enabled heart rate (HR) monitoring. The device's functionality in chemical testing was validated by assessing the impacts of ethanol on heart and fin activities. Larvae treated with 3% ethanol displayed a significant drop of 13.2 and 35.8% in HR and FBF, respectively. Subsequent tests with cadmium chloride highlighted the novel application of our device for screening the effect of heavy metals on cardiac and respiratory function at the same time. Exposure to 5 $\mu$g/l cadmium chloride revealed a significant increase of 8.2% and 39.2% in HR and FBF, respectively. The device can be employed to monitor multi-phenotypic behavioral responses of zebrafish larvae induced by chemical stimuli in various chemical screening assays, in applications such as ecotoxicology and drug discovery.
Collapse
Affiliation(s)
- Arezoo Khalili
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | | | - Georg R Zoidl
- Department of Biology, York University, Toronto, ON, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
9
|
Feng J, Neuzil J, Manz A, Iliescu C, Neuzil P. Microfluidic trends in drug screening and drug delivery. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Chen Z, Liu X, Tang X, Li Y, Liu D, Li Y, Huang Q, Arai T. On-Chip Automatic Trapping and Rotating for Zebrafish Embryo Injection. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3194959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhuo Chen
- State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing, China
| | - Xiaoming Liu
- State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing, China
| | - Xiaoqing Tang
- State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing, China
| | - Yuyang Li
- State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing, China
| | - Dan Liu
- State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing, China
| | - Yuke Li
- State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing, China
| | - Qiang Huang
- State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing, China
| | - Tatsuo Arai
- State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing, China
| |
Collapse
|
11
|
Aubry G, Milisavljevic M, Lu H. Automated and Dynamic Control of Chemical Content in Droplets for Scalable Screens of Small Animals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200319. [PMID: 35229457 PMCID: PMC9050880 DOI: 10.1002/smll.202200319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Screening functional phenotypes in small animals is important for genetics and drug discovery. Multiphase microfluidics has great potential for enhancing throughput but has been hampered by inefficient animal encapsulation and limited control over the animal's environment in droplets. Here, a highly efficient single-animal encapsulation unit, a liquid exchanger system for controlling the droplet chemical environment dynamically, and an automation scheme for the programming and robust execution of complex protocols are demonstrated. By careful use of interfacial forces, the liquid exchanger unit allows for adding and removing chemicals from a droplet and, therefore, generating chemical gradients inaccessible in previous multiphase systems. Using Caenorhabditis elegans as an example, it is demonstrated that these advances can serve to analyze dynamic phenotyping, such as behavior and neuronal activity, perform forward genetic screen, and are scalable to manipulate animals of different sizes. This platform paves the way for large-scale screens of complex dynamic phenotypes in small animals.
Collapse
Affiliation(s)
- Guillaume Aubry
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Marija Milisavljevic
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
12
|
SUZUKI M, IWAKI Y, TERAO K, KUNIKATA R, SUDA A, Y. INOUE K, INO K, MATSUE T, YASUKAWA T. Simultaneous Monitoring of Oxygen Consumption and Movement of Zebrafish Embryos Based on an LSI-based Electrochemical Multiple-biosensor. BUNSEKI KAGAKU 2021. [DOI: 10.2116/bunsekikagaku.70.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Yuka IWAKI
- Graduate School of Science, University of Hyogo
| | | | | | | | - Kumi Y. INOUE
- Faculty of Engineering, Graduate Faculty of Interdisciplinary Research, University of Yamanashi
| | - Kosuke INO
- Graduate School of Environmental Studies, Tohoku University
| | | | | |
Collapse
|
13
|
Khalili A, van Wijngaarden E, Youssef K, Zoidl GR, Rezai P. Microfluidic devices for behavioral screening of multiple Zebrafish Larvae: Design investigation process. Biotechnol J 2021; 17:e2100076. [PMID: 34480402 DOI: 10.1002/biot.202100076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/11/2022]
Abstract
Microfluidic devices have been introduced for phenotypic screening of zebrafish larvae in both fundamental and pre-clinical research. One of the remaining challenges for the broad use of microfluidic devices is their limited throughput, especially in behavioural assays. Previously, we introduced the tail locomotion of a semi-mobile zebrafish larva evoked on-demand with electric signal in a microfluidic device. Here, we report the lessons learned for increasing the number of specimens from one to four larvae in this device. Multiple parameters including loading and testing time per fish and loading and orientation efficiencies were refined to optimize the performance of modified designs. Simulations of the flow and electric field within the final device provided insight into the flow behavior and functionality of traps when compared to previous single-larva devices. Outcomes led to a new design which decreased the testing time per larva by approximately 60%. Further, loading and orientation efficiencies increased by more than 80%. Critical behavioural parameters such as response duration and tail beat frequency were similar in both single and quadruple-fish devices. The developed microfluidic device has significant advantages for greater throughput and efficiency when behavioral phenotyping is required in various applications, including chemical testing in toxicology and gene screening. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Arezoo Khalili
- Department of Mechanical Engineering, York University, Toronto, Ontario, Canada
| | | | - Khaled Youssef
- Department of Mechanical Engineering, York University, Toronto, Ontario, Canada
| | - Georg R Zoidl
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Zhang G, Yu X, Huang G, Lei D, Tong M. An improved automated zebrafish larva high-throughput imaging system. Comput Biol Med 2021; 136:104702. [PMID: 34352455 DOI: 10.1016/j.compbiomed.2021.104702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022]
Abstract
As a typical multicellular model organism, the zebrafish has been increasingly used in biological research. Despite the efforts to develop automated zebrafish larva imaging systems, existing ones are still defective in terms of reliability and automation. This paper presents an improved zebrafish larva high-throughput imaging system, which makes improvements to the existing designs in the following aspects. Firstly, a single larva extraction strategy is developed to make larva loading more reliable. The aggregated larvae are identified, classified by their numbers and patterns, and separated by the aspiration pipette or water stream. Secondly, the dynamic model of larva motion in the capillary is established and an adaptive robust controller is designed for decelerating the fast-moving larva to ensure the survival rate. Thirdly, rotating the larva to the desired orientation is automated by developing an algorithm to estimate the larva's initial rotation angle. For validating the improved larva imaging system, a real-time heart rate monitoring experiment is conducted as an application example. Experimental results demonstrate that the goals of the improvements have been achieved. With these improvements, the improved zebrafish larva imaging system remarkably reduces human intervention and increases the efficiency and success/survival rates of larva imaging.
Collapse
Affiliation(s)
- Gefei Zhang
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, 150001, China
| | - Xinghu Yu
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, 150001, China; Ningbo Institute of Intelligent Equipment Technology Co. Ltd., Ningbo, China
| | - Gang Huang
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, 150001, China
| | - Dongxu Lei
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, 150001, China
| | - Mingsi Tong
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
15
|
Raveshi MR, Abdul Halim MS, Agnihotri SN, O'Bryan MK, Neild A, Nosrati R. Curvature in the reproductive tract alters sperm-surface interactions. Nat Commun 2021; 12:3446. [PMID: 34103509 PMCID: PMC8187733 DOI: 10.1038/s41467-021-23773-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 05/17/2021] [Indexed: 01/21/2023] Open
Abstract
The fallopian tube is lined with a highly complex folded epithelium surrounding a lumen that progressively narrows. To study the influence of this labyrinthine complexity on sperm behavior, we use droplet microfluidics to create soft curved interfaces over a range of curvatures corresponding to the in vivo environment. We reveal a dynamic response mechanism in sperm, switching from a progressive surface-aligned motility mode at low curvatures (larger droplets), to an aggressive surface-attacking mode at high curvatures (smaller droplets of <50 µm-radius). We show that sperm in the attacking mode swim ~33% slower, spend 1.66-fold longer at the interface and have a 66% lower beating amplitude than in the progressive mode. These findings demonstrate that surface curvature within the fallopian tube alters sperm motion from a faster surface aligned locomotion in distal regions to a prolonged physical contact with the epithelium near the site of fertilization, the latter being known to promote capacitation and fertilization competence.
Collapse
Affiliation(s)
- Mohammad Reza Raveshi
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
| | - Melati S Abdul Halim
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
| | - Sagar N Agnihotri
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
- IITB-Monash Research Academy, IIT Bombay, Mumbai, India
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- School of BioSciences, Faculty of Science, University of Melbourne, Parkville, VIC, Australia
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia.
| | - Reza Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
16
|
Chen C, Gu Y, Philippe J, Zhang P, Bachman H, Zhang J, Mai J, Rufo J, Rawls JF, Davis EE, Katsanis N, Huang TJ. Acoustofluidic rotational tweezing enables high-speed contactless morphological phenotyping of zebrafish larvae. Nat Commun 2021; 12:1118. [PMID: 33602914 PMCID: PMC7892888 DOI: 10.1038/s41467-021-21373-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
Modern biomedical research and preclinical pharmaceutical development rely heavily on the phenotyping of small vertebrate models for various diseases prior to human testing. In this article, we demonstrate an acoustofluidic rotational tweezing platform that enables contactless, high-speed, 3D multispectral imaging and digital reconstruction of zebrafish larvae for quantitative phenotypic analysis. The acoustic-induced polarized vortex streaming achieves contactless and rapid (~1 s/rotation) rotation of zebrafish larvae. This enables multispectral imaging of the zebrafish body and internal organs from different viewing perspectives. Moreover, we develop a 3D reconstruction pipeline that yields accurate 3D models based on the multi-view images for quantitative evaluation of basic morphological characteristics and advanced combinations of metrics. With its contactless nature and advantages in speed and automation, our acoustofluidic rotational tweezing system has the potential to be a valuable asset in numerous fields, especially for developmental biology, small molecule screening in biochemistry, and pre-clinical drug development in pharmacology.
Collapse
Affiliation(s)
- Chuyi Chen
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Yuyang Gu
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Julien Philippe
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Peiran Zhang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Hunter Bachman
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Jinxin Zhang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - John Mai
- Alfred E. Mann Institute for Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Joseph Rufo
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
- Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
- Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA.
| |
Collapse
|
17
|
Neuroscience Research using Small Animals on a Chip: From Nematodes to Zebrafish Larvae. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00012-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Microfluidics in Biotechnology: Quo Vadis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 179:355-380. [PMID: 33495924 DOI: 10.1007/10_2020_162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The emerging technique of microfluidics offers new approaches for precisely controlling fluidic conditions on a small scale, while simultaneously facilitating data collection in both high-throughput and quantitative manners. As such, the so-called lab-on-a-chip (LOC) systems have the potential to revolutionize the field of biotechnology. But what needs to happen in order to truly integrate them into routine biotechnological applications? In this chapter, some of the most promising applications of microfluidic technology within the field of biotechnology are surveyed, and a few strategies for overcoming current challenges posed by microfluidic LOC systems are examined. In addition, we also discuss the intensifying trend (across all biotechnology fields) of using point-of-use applications which is being facilitated by new technological achievements.
Collapse
|
19
|
Subendran S, Kang CW, Chen CY. Comprehensive Hydrodynamic Investigation of Zebrafish Tail Beats in a Microfluidic Device with a Shape Memory Alloy. MICROMACHINES 2021; 12:mi12010068. [PMID: 33435330 PMCID: PMC7827268 DOI: 10.3390/mi12010068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
Abstract
The zebrafish is acknowledged as a reliable species of choices for biomechanical-related investigations. The definite quantification of the hydrodynamic flow physics caused by behavioral patterns, particularly in the zebrafish tail beat, is critical for a comprehensive understanding of food toxicity in this species, and it can be further interpreted for possible human responses. The zebrafish’s body size and swimming speed place it in the intermediate flow regime, where both viscous and inertial forces play significant roles in the fluid–structure interaction. This pilot work highlighted the design and development of a novel microfluidic device coupled with a shape memory alloy (SMA) actuator to immobilize the zebrafish within the observation region for hydrodynamic quantification of the tail-beating behavioral responses, which may be induced by the overdose of food additive exposure. This study significantly examined behavioral patterns of the zebrafish in early developmental stages, which, in turn, generated vortex circulation. The presented findings on the behavioral responses of the zebrafish through the hydrodynamic analysis provided a golden protocol to assess the zebrafish as an animal model for new drug discovery and development.
Collapse
|
20
|
Panuška P, Nejedlá Z, Smejkal J, Aubrecht P, Liegertová M, Štofik M, Havlica J, Malý J. A millifluidic chip for cultivation of fish embryos and toxicity testing fabricated by 3D printing technology. RSC Adv 2021; 11:20507-20518. [PMID: 35479895 PMCID: PMC9033994 DOI: 10.1039/d1ra00846c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
A novel design of 3D printed zebrafish millifluidic system for embryonic long-term cultivation and toxicity screening has been developed. The chip unit provides 24 cultivation chambers and a selective individual embryo removal functionality.
Collapse
Affiliation(s)
- Petr Panuška
- Department of Biology
- Faculty of Science
- University of J.E. Purkyne
- 400 96 Usti nad Labem
- Czech Republic
| | - Zuzana Nejedlá
- Department of Biology
- Faculty of Science
- University of J.E. Purkyne
- 400 96 Usti nad Labem
- Czech Republic
| | - Jiří Smejkal
- Department of Biology
- Faculty of Science
- University of J.E. Purkyne
- 400 96 Usti nad Labem
- Czech Republic
| | - Petr Aubrecht
- Department of Biology
- Faculty of Science
- University of J.E. Purkyne
- 400 96 Usti nad Labem
- Czech Republic
| | - Michaela Liegertová
- Department of Biology
- Faculty of Science
- University of J.E. Purkyne
- 400 96 Usti nad Labem
- Czech Republic
| | - Marcel Štofik
- Department of Biology
- Faculty of Science
- University of J.E. Purkyne
- 400 96 Usti nad Labem
- Czech Republic
| | - Jaromír Havlica
- Department of Chemistry
- Faculty of Science
- University of J.E. Purkyne
- 400 96 Usti nad Labem
- Czech Republic
| | - Jan Malý
- Department of Biology
- Faculty of Science
- University of J.E. Purkyne
- 400 96 Usti nad Labem
- Czech Republic
| |
Collapse
|
21
|
Zhang G, Tong M, Zhuang S, Yu X, Sun W, Lin W, Gao H. Zebrafish Larva Orientation and Smooth Aspiration Control for Microinjection. IEEE Trans Biomed Eng 2021; 68:47-55. [DOI: 10.1109/tbme.2020.2999896] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Wan J, Lu H. Enabling high-throughput single-animal gene-expression studies with molecular and micro-scale technologies. LAB ON A CHIP 2020; 20:4528-4538. [PMID: 33237042 PMCID: PMC7769683 DOI: 10.1039/d0lc00881h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gene expression and regulation play diverse and important roles across all living systems. By quantifying the expression, whether in a sample of single cells, a specific tissue, or in a whole animal, one can gain insights into the underlying biology. Many biological questions now require single-animal and tissue-specific resolution, such as why individuals, even within an isogenic population, have variations in development and aging across different tissues and organs. The popular techniques that quantify the transcriptome (e.g. RNA-sequencing) process populations of animals and cells together and thus, have limitations in both individual and spatial resolution. There are single-animal assays available (e.g. fluorescent reporters); however, they suffer other technical bottlenecks, such as a lack of robust sample-handling methods. Microfluidic technologies have demonstrated various improvements throughout the years, and it is likely they can enhance the impact of these single-animal gene-expression assays. In this perspective, we aim to highlight how the engineering/method-development field have unique opportunities to create new tools that can enable us to robustly answer the next set of important questions in biology that require high-density, high-quality gene expression data.
Collapse
Affiliation(s)
- Jason Wan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA.
| | - Hang Lu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA. and School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
23
|
A Microfluidic System for Stable and Continuous EEG Monitoring from Multiple Larval Zebrafish. SENSORS 2020; 20:s20205903. [PMID: 33086704 PMCID: PMC7590171 DOI: 10.3390/s20205903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/03/2023]
Abstract
Along with the increasing popularity of larval zebrafish as an experimental animal in the fields of drug screening, neuroscience, genetics, and developmental biology, the need for tools to deal with multiple larvae has emerged. Microfluidic channels have been employed to handle multiple larvae simultaneously, even for sensing electroencephalogram (EEG). In this study, we developed a microfluidic chip capable of uniform and continuous drug infusion across all microfluidic channels during EEG recording. Owing to the modular design of the microfluidic channels, the number of animals under investigation can be easily increased. Using the optimized design of the microfluidic chip, liquids could be exchanged uniformly across all channels without physically affecting the larvae contained in the channels, which assured a stable environment maintained all the time during EEG recording, by eliminating environmental artifacts and leaving only biological effects to be seen. To demonstrate the usefulness of the developed system in drug screening, we continuously measured EEG from four larvae without and with pentylenetetrazole application, up to 60 min. In addition, we recorded EEG from valproic acid (VPA)-treated zebrafish and demonstrated the suppression of seizure by VPA. The developed microfluidic system could contribute to the mass screening of EEG for drug development to treat neurological disorders such as epilepsy in a short time, owing to its handy size, cheap fabrication cost, and the guaranteed uniform drug infusion across all channels with no environmentally induced artifacts.
Collapse
|
24
|
NeuroExaminer: an all-glass microfluidic device for whole-brain in vivo imaging in zebrafish. Commun Biol 2020; 3:311. [PMID: 32546816 PMCID: PMC7298014 DOI: 10.1038/s42003-020-1029-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/18/2020] [Indexed: 11/29/2022] Open
Abstract
While microfluidics enables chemical stimuli application with high spatio-temporal precision, light-sheet microscopy allows rapid imaging of entire zebrafish brains with cellular resolution. Both techniques, however, have not been combined to monitor whole-brain neural activity yet. Unlike conventional microfluidics, we report here an all-glass device (NeuroExaminer) that is compatible with whole-brain in vivo imaging using light-sheet microscopy and can thus provide insights into brain function in health and disease. Kai Mattern, Jakob W. von Trotha, et al. develop NeuroExaminer, an all glass device for whole-brain in vivo imaging in zebrafish. The method is based on light-sheet microscopy and microfluidics and provides insights on brain function in live zebrafish.
Collapse
|
25
|
Khalili A, Peimani AR, Safarian N, Youssef K, Zoidl G, Rezai P. Phenotypic chemical and mutant screening of zebrafish larvae using an on-demand response to electric stimulation. Integr Biol (Camb) 2020; 11:373-383. [PMID: 31851358 DOI: 10.1093/intbio/zyz031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
Behavioral responses of zebrafish larvae to environmental cues are important functional readouts that should be evoked on-demand and studied phenotypically in behavioral, genetical and developmental investigations. Very recently, it was shown that zebrafish larvae execute a voluntary and oriented movement toward the positive electrode of an electric field along a microchannel. Phenotypic characterization of this response was not feasible due to larva's rapid movement along the channel. To overcome this challenge, a microfluidic device was introduced to partially immobilize the larva's head while leaving its mid-body and tail unrestrained in a chamber to image motor behaviors in response to electric stimulation, hence achieving quantitative phenotyping of the electrically evoked movement in zebrafish larvae. The effect of electric current on the tail-beat frequency and response duration of 5-7 days postfertilization zebrafish larvae was studied. Investigations were also performed on zebrafish exposed to neurotoxin 6-hydroxydopamine and larvae carrying a pannexin1a (panx1a) gene knockout, as a proof of principle applications to demonstrate on-demand movement behavior screening in chemical and mutant assays. We demonstrated for the first time that 6-hydroxydopamine leads to electric response impairment, levodopa treatment rescues the response and panx1a is involved in the electrically evoked movement of zebrafish larvae. We envision that our technique is broadly applicable as a screening tool to quantitatively examine zebrafish larvae's movements in response to physical and chemical stimulations in investigations of Parkinson's and other neurodegenerative diseases, and as a tool to combine recent advances in genome engineering of model organisms to uncover the biology of electric response.
Collapse
Affiliation(s)
- Arezoo Khalili
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Amir Reza Peimani
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | | | - Khaled Youssef
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Georg Zoidl
- Department of Biology, York University, Toronto, ON, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
26
|
Chen P, Li S, Guo Y, Zeng X, Liu BF. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis. Anal Chim Acta 2020; 1125:94-113. [PMID: 32674786 DOI: 10.1016/j.aca.2020.05.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Spatiotemporal manipulation of extracellular chemical environments with simultaneous monitoring of cellular responses plays an essential role in exploring fundamental biological processes and expands our understanding of underlying mechanisms. Despite the rapid progress and promising successes in manipulation strategies, many challenges remain due to the small size of cells and the rapid diffusion of chemical molecules. Fortunately, emerging microfluidic technology has become a powerful approach for precisely controlling the extracellular chemical microenvironment, which benefits from its integration capacity, automation, and high-throughput capability, as well as its high resolution down to submicron. Here, we summarize recent advances in microfluidics manipulation of the extracellular chemical microenvironment, including the following aspects: i) Spatial manipulation of chemical microenvironments realized by convection flow-, diffusion-, and droplet-based microfluidics, and surface chemical modification; ii) Temporal manipulation of chemical microenvironments enabled by flow switching/shifting, moving/flowing cells across laminar flows, integrated microvalves/pumps, and droplet manipulation; iii) Spatiotemporal manipulation of chemical microenvironments implemented by a coupling strategy and open-space microfluidics; and iv) High-throughput manipulation of chemical microenvironments. Finally, we briefly present typical applications of the above-mentioned technical advances in cell-based analyses including cell migration, cell signaling, cell differentiation, multicellular analysis, and drug screening. We further discuss the future improvement of microfluidics manipulation of extracellular chemical microenvironments to fulfill the needs of biological and biomedical research and applications.
Collapse
Affiliation(s)
- Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiran Guo
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuemei Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
27
|
Recent Advances on Thermal Management of Flexible Inorganic Electronics. MICROMACHINES 2020; 11:mi11040390. [PMID: 32283609 PMCID: PMC7231351 DOI: 10.3390/mi11040390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/27/2020] [Accepted: 04/05/2020] [Indexed: 12/16/2022]
Abstract
Flexible inorganic electronic devices (FIEDs) consisting of functional inorganic components on a soft polymer substrate have enabled many novel applications such as epidermal electronics and wearable electronics, which cannot be realized through conventional rigid electronics. The low thermal dissipation capacity of the soft polymer substrate of FIEDs demands proper thermal management to reduce the undesired thermal influences. The biointegrated applications of FIEDs pose even more stringent requirements on thermal management due to the sensitive nature of biological tissues to temperature. In this review, we take microscale inorganic light-emitting diodes (μ-ILEDs) as an example of functional components to summarize the recent advances on thermal management of FIEDs including thermal analysis, thermo-mechanical analysis and thermal designs of FIEDs with and without biological tissues. These results are very helpful to understand the underlying heat transfer mechanism and provide design guidelines to optimize FIEDs in practical applications.
Collapse
|
28
|
Zhang S, Markey M, Pena CD, Venkatesh T, Vazquez M. A Micro-Optic Stalk (μOS) System to Model the Collective Migration of Retinal Neuroblasts. MICROMACHINES 2020; 11:mi11040363. [PMID: 32244321 PMCID: PMC7230939 DOI: 10.3390/mi11040363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/18/2022]
Abstract
Contemporary regenerative therapies have introduced stem-like cells to replace damaged neurons in the visual system by recapitulating critical processes of eye development. The collective migration of neural stem cells is fundamental to retinogenesis and has been exceptionally well-studied using the fruit fly model of Drosophila Melanogaster. However, the migratory behavior of its retinal neuroblasts (RNBs) has been surprisingly understudied, despite being critical to retinal development in this invertebrate model. The current project developed a new microfluidic system to examine the collective migration of RNBs extracted from the developing visual system of Drosophila as a model for the collective motile processes of replacement neural stem cells. The system scales with the microstructure of the Drosophila optic stalk, which is a pre-cursor to the optic nerve, to produce signaling fields spatially comparable to in vivo RNB stimuli. Experiments used the micro-optic stalk system, or μOS, to demonstrate the preferred sizing and directional migration of collective, motile RNB groups in response to changes in exogenous concentrations of fibroblast growth factor (FGF), which is a key factor in development. Our data highlight the importance of cell-to-cell contacts in enabling cell cohesion during collective RNB migration and point to the unexplored synergy of invertebrate cell study and microfluidic platforms to advance regenerative strategies.
Collapse
Affiliation(s)
- Stephanie Zhang
- Department of Biomedical Engineering, Binghamton University, 4400 Vestal Pkwy E, Binghamton, NY 13902, USA;
| | - Miles Markey
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA;
| | - Caroline D. Pena
- Department of Biomedical Engineering, City College of New York, New York City, NY 10031, USA;
| | - Tadmiri Venkatesh
- Department of Biology, City College of New York, New York City, NY 10031, USA;
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA;
- Correspondence:
| |
Collapse
|
29
|
Wang H, Yang Z, Li X, Huang D, Yu S, He J, Li Y, Yan J. Single-cell in vivo imaging of cellular circadian oscillators in zebrafish. PLoS Biol 2020; 18:e3000435. [PMID: 32168317 PMCID: PMC7069618 DOI: 10.1371/journal.pbio.3000435] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/10/2020] [Indexed: 12/22/2022] Open
Abstract
The circadian clock is a cell-autonomous time-keeping mechanism established gradually during embryonic development. Here, we generated a transgenic zebrafish line carrying a destabilized fluorescent protein driven by the promoter of a core clock gene, nr1d1, to report in vivo circadian rhythm at the single-cell level. By time-lapse imaging of this fish line and 3D reconstruction, we observed the sequential initiation of the reporter expression starting at photoreceptors in the pineal gland, then spreading to the cells in other brain regions at the single-cell level. Even within the pineal gland, we found heterogeneous onset of nr1d1 expression, in which each cell undergoes circadian oscillation superimposed over a cell type–specific developmental trajectory. Furthermore, we found that single-cell expression of nr1d1 showed synchronous circadian oscillation under a light–dark (LD) cycle. Remarkably, single-cell oscillations were dramatically dampened rather than desynchronized in animals raised under constant darkness, while the developmental trend still persists. It suggests that light exposure in early zebrafish embryos has significant effect on cellular circadian oscillations. A transgenic zebrafish line, nr1d1-VNP, enables the monitoring of single-cell circadian rhythms in live zebrafish; using this fish line, the authors find that light exposure in early development initializes rather than synchronizes single-cell oscillators.
Collapse
Affiliation(s)
- Haifang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Zeyong Yang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Xingxing Li
- Department of Anesthesiology, First Affiliated Hospital of AnHui Medical University, Hefei, Anhui, China
| | - Dengfeng Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Shuguang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Jie He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
- * E-mail: (JY); (YL); (JH)
| | - Yuanhai Li
- Department of Anesthesiology, First Affiliated Hospital of AnHui Medical University, Hefei, Anhui, China
- * E-mail: (JY); (YL); (JH)
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (JY); (YL); (JH)
| |
Collapse
|
30
|
Ashammakhi N, Darabi MA, Çelebi-Saltik B, Tutar R, Hartel MC, Lee J, Hussein S, Goudie MJ, Cornelius MB, Dokmeci MR, Khademhosseini A. Microphysiological Systems: Next Generation Systems for Assessing Toxicity and Therapeutic Effects of Nanomaterials. SMALL METHODS 2020; 4:1900589. [PMID: 33043130 PMCID: PMC7546538 DOI: 10.1002/smtd.201900589] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Indexed: 05/27/2023]
Abstract
Microphysiological systems, also known as organ-on-a-chip platforms, show promise for the development of new testing methods that can be more accurate than both conventional two-dimensional cultures and costly animal studies. The development of more intricate microphysiological systems can help to better mimic the human physiology and highlight the systemic effects of different drugs and materials. Nanomaterials are among a technologically important class of materials used for diagnostic, therapeutic, and monitoring purposes; all of which and can be tested using new organ-on-a-chip systems. In addition, the toxicity of nanomaterials which have entered the body from ambient air or diet can have deleterious effects on various body systems. This in turn can be studied in newly developed microphysiological systems. While organ-on-a-chip models can be useful, they cannot pick up secondary and systemic toxicity. Thus, the utilization of multi-organ-on-a-chip systems for advancing nanotechnology will largely be reflected in the future of drug development, toxicology studies and precision medicine. Various aspects of related studies, current challenges, and future perspectives are discussed in this paper.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Betül Çelebi-Saltik
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Sihhiye, Ankara, Turkey
| | - Rumeysa Tutar
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Chemistry, Faculty of Engineering, Istanbul University Cerrahpasa, Avcilar-Istanbul, Turkey
| | - Martin C. Hartel
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California, USA
| | - Junmin Lee
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Saber Hussein
- Wright State University, Boonshoft School of Medicine, 3640 Colonel Glenn Hwy, Dayton, OH 45435, Ohio, USA
| | - Marcus J. Goudie
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Mercedes Brianna Cornelius
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California, USA
- Department of Chemistry, University of California, Los Angeles, California, USA
| | - Mehmet R. Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
31
|
Panigrahi B, Chen CY. Microfluidic Transportation Control of Larval Zebrafish through Optomotor Regulations under a Pressure-Driven Flow. MICROMACHINES 2019; 10:mi10120880. [PMID: 31847405 PMCID: PMC6953065 DOI: 10.3390/mi10120880] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 01/19/2023]
Abstract
To perform zebrafish larvae-related experiments within a microfluidic environment, the larvae need to be anesthetized and subsequently transported into respective test sections through mechanical or manual means. However, anesthetization tends to affect larval sensory perceptions, hindering their natural behaviors. Taking into account that juvenile larvae move naturally within their environment by accessing visual as well as hydromechanical cues, this work proposes an experimental framework to transport nonanesthetized larvae within a microfluidic environment by harmonically tuning both of the aforementioned cues. To provide visual cues, computer-animated moving gratings were provided through an in-house-developed control interface that drove the larval optomotor response. In the meantime, to provide hydromechanical cues, the flow rate was tuned using a syringe pump that affected the zebrafish larvae’s lateral line movement. The results obtained (corresponding to different test conditions) suggest that the magnitude of both modalities plays a crucial role in larval transportation and orientation control. For instance, with a flow rate tuning of 0.1 mL/min along with grating parameters of 1 Hz temporal frequency, the average transportation time for larvae that were 5 days postfertilization was recorded at 1.29 ± 0.49 s, which was approximately three times faster than the transportation time required only in the presence of hydromechanical cues.
Collapse
|
32
|
Zhu D, Long Q, Xu Y, Xing J. Evaluating Nanoparticles in Preclinical Research Using Microfluidic Systems. MICROMACHINES 2019; 10:mi10060414. [PMID: 31234335 PMCID: PMC6631852 DOI: 10.3390/mi10060414] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Nanoparticles (NPs) have found a wide range of applications in clinical therapeutic and diagnostic fields. However, currently most NPs are still in the preclinical evaluation phase with few approved for clinical use. Microfluidic systems can simulate dynamic fluid flows, chemical gradients, partitioning of multi-organs as well as local microenvironment controls, offering an efficient and cost-effective opportunity to fast screen NPs in physiologically relevant conditions. Here, in this review, we are focusing on summarizing key microfluidic platforms promising to mimic in vivo situations and test the performance of fabricated nanoparticles. Firstly, we summarize the key evaluation parameters of NPs which can affect their delivery efficacy, followed by highlighting the importance of microfluidic-based NP evaluation. Next, we will summarize main microfluidic systems effective in evaluating NP haemocompatibility, transport, uptake and toxicity, targeted accumulation and general efficacy respectively, and discuss the future directions for NP evaluation in microfluidic systems. The combination of nanoparticles and microfluidic technologies could greatly facilitate the development of drug delivery strategies and provide novel treatments and diagnostic techniques for clinically challenging diseases.
Collapse
Affiliation(s)
- Derui Zhu
- Research Center of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| | - Qifu Long
- Research Center of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| | - Yuzhen Xu
- Department of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| | - Jiangwa Xing
- Research Center of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| |
Collapse
|
33
|
Khalili A, Rezai P. Microfluidic devices for embryonic and larval zebrafish studies. Brief Funct Genomics 2019; 18:419-432. [DOI: 10.1093/bfgp/elz006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/09/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
Abstract
Zebrafish or Danio rerio is an established model organism for studying the genetic, neuronal and behavioral bases of diseases and for toxicology and drug screening. The embryonic and larval stages of zebrafish have been used extensively in fundamental and applied research due to advantages offered such as body transparency, small size, low cost of cultivation and high genetic homology with humans. However, the manual experimental methods used for handling and investigating this organism are limited due to their low throughput, labor intensiveness and inaccuracy in delivering external stimuli to the zebrafish while quantifying various neuronal and behavioral responses. Microfluidic and lab-on-a-chip devices have emerged as ideal technologies to overcome these challenges. In this review paper, the current microfluidic approaches for investigation of behavior and neurobiology of zebrafish at embryonic and larval stages will be reviewed. Our focus will be to provide an overview of the microfluidic methods used to manipulate (deliver and orient), immobilize and expose or inject zebrafish embryos or larvae, followed by quantification of their responses in terms of neuron activities and movement. We will also provide our opinion in terms of the direction that the field of zebrafish microfluidics is heading toward in the area of biomedical engineering.
Collapse
Affiliation(s)
- Arezoo Khalili
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
34
|
Wu Q, Kumar N, Velagala V, Zartman JJ. Tools to reverse-engineer multicellular systems: case studies using the fruit fly. J Biol Eng 2019; 13:33. [PMID: 31049075 PMCID: PMC6480878 DOI: 10.1186/s13036-019-0161-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/07/2019] [Indexed: 01/08/2023] Open
Abstract
Reverse-engineering how complex multicellular systems develop and function is a grand challenge for systems bioengineers. This challenge has motivated the creation of a suite of bioengineering tools to develop increasingly quantitative descriptions of multicellular systems. Here, we survey a selection of these tools including microfluidic devices, imaging and computer vision techniques. We provide a selected overview of the emerging cross-talk between engineering methods and quantitative investigations within developmental biology. In particular, the review highlights selected recent examples from the Drosophila system, an excellent platform for understanding the interplay between genetics and biophysics. In sum, the integrative approaches that combine multiple advances in these fields are increasingly necessary to enable a deeper understanding of how to analyze both natural and synthetic multicellular systems.
Collapse
Affiliation(s)
- Qinfeng Wu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Nilay Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Vijay Velagala
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Jeremiah J. Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
35
|
A Bubble-Free Microfluidic Device for Easy-to-Operate Immobilization, Culturing and Monitoring of Zebrafish Embryos. MICROMACHINES 2019; 10:mi10030168. [PMID: 30823425 PMCID: PMC6470713 DOI: 10.3390/mi10030168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/10/2023]
Abstract
The development of miniaturized devices for studying zebrafish embryos has been limited due to complicated fabrication and operation processes. Here, we reported on a microfluidic device that enabled the capture and culture of zebrafish embryos and real-time monitoring of dynamic embryonic development. The device was simply fabricated by bonding two layers of polydimethylsiloxane (PDMS) structures replicated from three-dimensional (3D) printed reusable molds onto a flat glass substrate. Embryos were easily loaded into the device with a pipette, docked in traps by gravity, and then retained in traps with hydrodynamic forces for long-term culturing. A degassing chamber bonded on top was used to remove air bubbles from the embryo-culturing channel and traps so that any embryo movement caused by air bubbles was eliminated during live imaging. Computational fluid dynamics simulations suggested this embryo-trapping and -retention regime to exert low shear stress on the immobilized embryos. Monitoring of the zebrafish embryogenesis over 20 h during the early stages successfully verified the performance of the microfluidic device for culturing the immobilized zebrafish embryos. Therefore, this rapid-prototyping, low-cost and easy-to-operate microfluidic device offers a promising platform for the long-term culturing of immobilized zebrafish embryos under continuous medium perfusion and the high-quality screening of the developmental dynamics.
Collapse
|
36
|
Kim AA, Nekimken AL, Fechner S, O'Brien LE, Pruitt BL. Microfluidics for mechanobiology of model organisms. Methods Cell Biol 2018; 146:217-259. [PMID: 30037463 PMCID: PMC6418080 DOI: 10.1016/bs.mcb.2018.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mechanical stimuli play a critical role in organ development, tissue homeostasis, and disease. Understanding how mechanical signals are processed in multicellular model systems is critical for connecting cellular processes to tissue- and organism-level responses. However, progress in the field that studies these phenomena, mechanobiology, has been limited by lack of appropriate experimental techniques for applying repeatable mechanical stimuli to intact organs and model organisms. Microfluidic platforms, a subgroup of microsystems that use liquid flow for manipulation of objects, are a promising tool for studying mechanobiology of small model organisms due to their size scale and ease of customization. In this work, we describe design considerations involved in developing a microfluidic device for studying mechanobiology. Then, focusing on worms, fruit flies, and zebrafish, we review current microfluidic platforms for mechanobiology of multicellular model organisms and their tissues and highlight research opportunities in this developing field.
Collapse
Affiliation(s)
- Anna A Kim
- University of California, Santa Barbara, CA, United States; Uppsala University, Uppsala, Sweden; Stanford University, Stanford, CA, United States
| | | | | | | | - Beth L Pruitt
- University of California, Santa Barbara, CA, United States; Stanford University, Stanford, CA, United States.
| |
Collapse
|
37
|
Current developments and applications of microfluidic technology toward clinical translation of nanomedicines. Adv Drug Deliv Rev 2018; 128:54-83. [PMID: 28801093 DOI: 10.1016/j.addr.2017.08.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/21/2017] [Accepted: 08/04/2017] [Indexed: 11/23/2022]
Abstract
Nanoparticulate drug delivery systems hold great potential for the therapy of many diseases, especially cancer. However, the translation of nanoparticulate drug delivery systems from academic research to industrial and clinical practice has been slow. This slow translation can be ascribed to the high batch-to-batch variations and insufficient production rate of the conventional preparation methods, and the lack of technologies for rapid screening of nanoparticulate drug delivery systems with high correlation to the in vivo tests. These issues can be addressed by the microfluidic technologies. For example, microfluidics can not only produce nanoparticles in a well-controlled, reproducible, and high-throughput manner, but also create 3D environments with continuous flow to mimic the physiological and/or pathological processes. This review provides an overview of the microfluidic devices developed to prepare nanoparticulate drug delivery systems, including drug nanosuspensions, polymer nanoparticles, polyplexes, structured nanoparticles and theranostic nanoparticles. We also highlight the recent advances of microfluidic systems in fabricating the increasingly realistic models of the in vivo milieu for rapid screening of nanoparticles. Overall, the microfluidic technologies offer a promise approach to accelerate the clinical translation of nanoparticulate drug delivery systems.
Collapse
|
38
|
Peimani AR, Zoidl G, Rezai P. A microfluidic device to study electrotaxis and dopaminergic system of zebrafish larvae. BIOMICROFLUIDICS 2018; 12:014113. [PMID: 29464011 PMCID: PMC5803004 DOI: 10.1063/1.5016381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
The zebrafish is a lower vertebrate model organism offering multiple applications for both fundamental and biomedical research into the nervous system from genes to behaviour. Investigation of zebrafish larvae's movement in response to various stimuli, which involves the dopaminergic system, is of interest in the field of sensory-motor integration. Nevertheless, the conventional methods of movement screening in Petri dishes and multi-well plates are mostly qualitative, uncontrollable, and inaccurate in terms of stimulus delivery and response analysis. We recently presented a microfluidic device built as a versatile platform for fluid flow stimulation and high speed time-lapse imaging of rheotaxis behaviour of zebrafish larvae. Here, we describe for the first time that this microfluidic device can also be used to test zebrafish larvae's sense of the electric field and electrotaxis in a systemic manner. We further show that electrotaxis is correlated with the dopamine signalling pathway in a time of day dependent manner and by selectively involving the D2-like dopamine receptors. The primary outcomes of this research opens avenues to study the molecular and physiological basis of electrotaxis, the effects of known agonist and antagonist compounds on the dopaminergic system, and the screen of novel pharmacological tools in the context of neurodegenerative disorders. We propose that this microfluidic device has broad application potential, including the investigation of complex stimuli, biological pathways, behaviors, and brain disorders.
Collapse
Affiliation(s)
- Amir Reza Peimani
- Department of Mechanical Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| | - Georg Zoidl
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
39
|
Huang D, Li H, He Q, Yuan W, Chen Z, Yang H. Developmental Toxicity of Diethylnitrosamine in Zebrafish Embryos/Juveniles Related to Excessive Oxidative Stress. WATER, AIR, AND SOIL POLLUTION 2018; 229:81. [PMID: 29503482 PMCID: PMC5823957 DOI: 10.1007/s11270-018-3739-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/07/2018] [Indexed: 05/18/2023]
Abstract
Diethylnitrosamine (DEN) is present in food, water, and daily supplies and is regarded as a toxicant of carcinogenicity. The developmental toxicity of DEN has been rarely reported as yet. In this study, zebrafish were exposed to different concentrations of DEN at 6 h post-fertilization (hpf) to access embryonic toxicity of the compound. The results show that DEN resulted in negative effects of hatching rate, heartbeat, body length, and spontaneous movement. Deformities, including notochord malformation, pericardium edema, embryonic membrane turbidity, tail hypoplasia, yolk sac deformity, and growth retardation, happened during exposure period. Moreover, production of reactive oxygen species (ROS) significantly increased after DEN treatment. Then, alterations of the expression level of oxidative stress-related genes were observed in our results. To our knowledge, this is the first study concerning the effect of DEN on zebrafish. And from the information of our research, we speculated that development toxicity of DEN should be related to the excessive oxidative stress.
Collapse
Affiliation(s)
- Danping Huang
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Tianhe Road No. 600, Guangzhou, 510000 China
| | - Hanmin Li
- Hubei Provincial Hospital of Traditional Chinese Medicine, Garden Hill No. 4 Wuchang District, Wuhan, 430061 China
- Hubei Province Academy of Traditional Chinese Medicine, No.856 Luoyu Road, Hongshan District, Wuhan, 430074 China
| | - Qidi He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Weiqu Yuan
- The fourth Clinical Medical College of Guangzhou University Chinese Med, Shen zhen, 518000 China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Hongzhi Yang
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Tianhe Road No. 600, Guangzhou, 510000 China
| |
Collapse
|
40
|
Miniaturized Sensors and Actuators for Biological Studies on Small Model Organisms of Disease. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2018. [DOI: 10.1007/978-981-10-7751-7_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Strange K. Drug Discovery in Fish, Flies, and Worms. ILAR J 2017; 57:133-143. [PMID: 28053067 DOI: 10.1093/ilar/ilw034] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 10/21/2016] [Indexed: 12/22/2022] Open
Abstract
Nonmammalian model organisms such as the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the zebrafish Danio rerio provide numerous experimental advantages for drug discovery including genetic and molecular tractability, amenability to high-throughput screening methods and reduced experimental costs and increased experimental throughput compared to traditional mammalian models. An interdisciplinary approach that strategically combines the study of nonmammalian and mammalian animal models with diverse experimental tools has and will continue to provide deep molecular and genetic understanding of human disease and will significantly enhance the discovery and application of new therapies to treat those diseases. This review will provide an overview of C. elegans, Drosophila, and zebrafish biology and husbandry and will discuss how these models are being used for phenotype-based drug screening and for identification of drug targets and mechanisms of action. The review will also describe how these and other nonmammalian model organisms are uniquely suited for the discovery of drug-based regenerative medicine therapies.
Collapse
Affiliation(s)
- Kevin Strange
- Kevin Strange, Ph.D., is President and CEO of the MDI Biological Laboratory and CEO of Novo Biosciences, Inc
| |
Collapse
|
42
|
Ellett F, Irimia D. Microstructured Devices for Optimized Microinjection and Imaging of Zebrafish Larvae. J Vis Exp 2017. [PMID: 29286475 DOI: 10.3791/56498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Zebrafish have emerged as a powerful model of various human diseases and a useful tool for an increasing range of experimental studies, spanning fundamental developmental biology through to large-scale genetic and chemical screens. However, many experiments, especially those related to infection and xenograft models, rely on microinjection and imaging of embryos and larvae, which are laborious techniques that require skill and expertise. To improve the precision and throughput of current microinjection techniques, we developed a series of microstructured devices to orient and stabilize zebrafish embryos at 2 days post fertilization (dpf) in ventral, dorsal, or lateral orientation prior to the procedure. To aid in the imaging of embryos, we also designed a simple device with channels that orient 4 zebrafish laterally in parallel against a glass cover slip. Together, the tools that we present here demonstrate the effectiveness of photolithographic approaches to generate useful devices for the optimization of zebrafish techniques.
Collapse
Affiliation(s)
- Felix Ellett
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital-Harvard Medical School-Shriners Burns Hospital;
| | - Daniel Irimia
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital-Harvard Medical School-Shriners Burns Hospital
| |
Collapse
|
43
|
Abstract
Zebrafish is a model organism for various sensory-motor biological studies. Rheotaxis, or the ability of zebrafish to orient and swim against the water stream, is a common behavior that involves multiple sensory-motor processes such as their lateral line and visual systems. Due to the lack of a controllable and easy-to-use assay, zebrafish rheotaxis at larval stages is not well-understood. In this paper, we report a microfluidic device that can be used to apply the flow stimulus precisely and repeatedly along the longitudinal axis of individual zebrafish larvae to study their coaxial rheotaxis. We quantified rheotaxis in terms of the response rate and location along the channel at various flow velocities (9.5-38 mm.sec-1). The larvae effectively exhibited a similarly high rheotactic response at low and medium velocities (9.5 and 19 mm.sec-1); however, at high velocity of 38 mm.sec-1, despite sensing the flow, their rheotactic response decreased significantly. The flow velocity also affected the response location along the channel. At 9.5 mm.sec-1, responses were distributed evenly along the channel length while, at 19 and 38 mm.sec-1, the larvae demonstrated higher rheotaxis responses at the anterior and posterior ends of the channel, respectively. This result shows that although the response is similarly high at low and medium flow velocities, zebrafish larvae become more sensitive to the flow at medium velocity, demonstrating a modulated rheotactic behavior. Employing our device, further investigations can be conducted to study the sensory-motor systems involved in rheotaxis of zebrafish larvae and other fish species.
Collapse
|
44
|
Utilizing Zebrafish Visual Behaviors in Drug Screening for Retinal Degeneration. Int J Mol Sci 2017; 18:ijms18061185. [PMID: 28574477 PMCID: PMC5486008 DOI: 10.3390/ijms18061185] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/14/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022] Open
Abstract
Zebrafish are a popular vertebrate model in drug discovery. They produce a large number of small and rapidly-developing embryos. These embryos display rich visual-behaviors that can be used to screen drugs for treating retinal degeneration (RD). RD comprises blinding diseases such as Retinitis Pigmentosa, which affects 1 in 4000 people. This disease has no definitive cure, emphasizing an urgency to identify new drugs. In this review, we will discuss advantages, challenges, and research developments in using zebrafish behaviors to screen drugs in vivo. We will specifically discuss a visual-motor response that can potentially expedite discovery of new RD drugs.
Collapse
|
45
|
|
46
|
Mani K, Chang Chien TC, Panigrahi B, Chen CY. Manipulation of zebrafish's orientation using artificial cilia in a microchannel with actively adaptive wall design. Sci Rep 2016; 6:36385. [PMID: 27821862 PMCID: PMC5099576 DOI: 10.1038/srep36385] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/12/2016] [Indexed: 12/15/2022] Open
Abstract
The zebrafish is a powerful genetic model organism especially in the biomedical chapter for new drug discovery and development. The genetic toolbox which this vertebrate possesses opens a new window to investigate the etiology of human diseases with a high degree genetic similarity. Still, the requirements of laborious and time-consuming of contemporary zebrafish processing assays limit the procedure in carrying out such genetic screen at high throughput. Here, a zebrafish control scheme was initiated which includes the design and validation of a microfluidic platform to significantly increase the throughput and performance of zebrafish larvae manipulation using the concept of artificial cilia actuation. A moving wall design was integrated into this microfluidic platform first time in literature to accommodate zebrafish inside the microchannel from 1 day post-fertilization (dpf) to 6 dpf and can be further extended to 9 dpf for axial orientation control in a rotational range between 0 to 25 degrees at the minimum step of 2-degree increment in a stepwise manner. This moving wall feature was performed through the deflection of shape memory alloy wire embedded inside the microchannel controlled by the electrical waveforms with high accuracy.
Collapse
Affiliation(s)
- Karthick Mani
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Tsung-Chun Chang Chien
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Bivas Panigrahi
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Chia-Yuan Chen
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|