1
|
Li Y, Wang Z, Lu Y, Li H, Weng Z, Sun J, Zhang Y, Zhang T, Wang XS. Thermal Gradient-Driven Heterogeneous Actuation of Liquid Crystal Elastomers for a Crawling Robot. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9992-10003. [PMID: 39885638 DOI: 10.1021/acsami.5c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Emerging soft robots based on liquid crystal elastomers (LCEs) exhibit remarkable capabilities for large reversible shape morphing, enabling them to adapt to complex environments and perform diverse tasks such as locomotion and camouflage. Despite extensive studies, current methods for locally controlled actuation of LCE-based soft robots often involve intricate structural design, complex programming of LCEs, incorporation of multiple materials, or complex actuation methods. Here, we present a simple and efficient approach to achieve multiple deformation modes within a simply programmed LCE structure by harnessing Joule heating-induced thermal gradients across the LCE volume. Oxidized liquid metal (LM) thin films, which exhibit increased resistance, enhanced viscosity, high thermal conductivity, and large deformability, are employed for Joule heating in this study. Using an LCE strip programmed via uniaxial stretching as an example, we perform systematic studies on the effect of essential parameters, including the actuation voltage, LCE dimensions, and the LM-to-LCE thickness ratio, on the deformation behaviors of LCEs induced by three-dimensional thermal gradients across the LCE volume. In addition, concurrently actuating two adjacent surfaces of the LCE strip yields previously inaccessible coupled bending behaviors. Finally, we demonstrate a crawling robot constructed from LM-coated LCE strips with adjustable bending capabilities, which enable multimode locomotion, including forward movement and turns, enhancing biomimetic functionality akin to leg movements observed in living organisms like reptiles. The reported strategy, which is both straightforward and versatile, promises scalability and holds potential for various applications in multifunctional intelligent systems including soft robotics and biomedical devices.
Collapse
Affiliation(s)
- Yi Li
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Zizheng Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yongyu Lu
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Huijie Li
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Zhengyan Weng
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jiahan Sun
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yi Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, BioInspired Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Xueju Sophie Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
2
|
Trinh LT, To TTL, Ko P, Woo K, Kwon S, Rho J, Youn H. Highly Transmittance, Mechanical, Thermally Stable Silver Nanowires Network Using ZnO Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403702. [PMID: 39087377 DOI: 10.1002/smll.202403702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/24/2024] [Indexed: 08/02/2024]
Abstract
This research addresses challenges with silver nanowires (Ag NWs) as transparent conductive electrodes (TCEs) and heaters in commercial devices. Here, zinc oxide nanoparticles (ZnO NPs) are first reported as a protective layer for Ag NWs. Multi-physics simulations confirm enhanced thermal stability due to improved heat dissipation, temperature distribution, and thermal conductivity from ZnO. When Ag NWs are surrounded by air, heat transfers mainly through convection and radiation because of air's low conduction coefficient. Encasing Ag NWs in ZnO enhances heat transfer to the ZnO surface, accelerating cooling and dissipating more heat into the atmosphere via convection. The results show composite's efficiency in the Joule effect, maintaining a consistent temperature of 78 °C for 700 s after 500 bending cycles, a significant improvement over Ag NWs operating for only 5 s at 80 °C. Additionally, the composite film exhibited exceptional performance, including a sheet resistance of 9.8 Ω sq-1 and an optical transmittance of 96.96 %, outperforming Ag NWs, which have a sheet resistance of 12 Ω sq-1 and a transmittance of 94.11%. The combination of enhanced electrical, thermal, and mechanical stability, along with impressive optical properties, makes Ag NWs/ZnO NPs a promising candidate for transparent conductive electrode materials in various applications.
Collapse
Affiliation(s)
- Ly Thi Trinh
- Mechanical Engineering Department, Hanbat National University, Yuseong-gu, Daejeon, 34158, South Korea
| | - Thi Tu Linh To
- Mechanical Engineering Department, Hanbat National University, Yuseong-gu, Daejeon, 34158, South Korea
| | - Pyeongsam Ko
- Mechanical Engineering Department, Hanbat National University, Yuseong-gu, Daejeon, 34158, South Korea
| | - Kyoohee Woo
- Department of Advanced Battery Manufacturing Systems, Korea Institute of Machinery and Materials, Daejeon 156 Hwaam-dong, Daejeon, 34103, South Korea
| | - Sin Kwon
- Department of Advanced Battery Manufacturing Systems, Korea Institute of Machinery and Materials, Daejeon 156 Hwaam-dong, Daejeon, 34103, South Korea
| | - Jinsung Rho
- Mechanical Engineering Department, Hanbat National University, Yuseong-gu, Daejeon, 34158, South Korea
| | - Hongseok Youn
- Mechanical Engineering Department, Hanbat National University, Yuseong-gu, Daejeon, 34158, South Korea
| |
Collapse
|
3
|
Wu S, Kim D, Tang X, King MW, Zhu Y. Encapsulated stretchable amphibious strain sensors. MATERIALS HORIZONS 2024; 11:5070-5080. [PMID: 39105300 PMCID: PMC11472868 DOI: 10.1039/d4mh00757c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
Soft and stretchable strain sensors have found wide applications in health monitoring, motion tracking, and robotic sensing. There is a growing demand for strain sensors in amphibious environments, such as implantable sensors, wearable sensors for swimmers/divers, and underwater robotic sensors. However, developing a sensitive, stretchable, and robust amphibious strain sensor remains challenging. This work presents an encapsulated stretchable amphibious strain sensor. The conductive layer, made of silver nanowires embedded below the surface of polydimethylsiloxane, was sandwiched by two layers of thermoplastic polyurethane. Periodic sharp cuts were introduced to change the direction of flow from across the sensor to along the conductive path defined by the opening cracks. The crack advancing and opening is controlled by a unique combination of weak/strong interfaces within the sandwich structure. The cut design and the interfacial interactions between the layers were investigated. The strain sensor exhibited a high gauge factor up to 289, a linear sensing response, a fast response time (53 ms), excellent robustness against over-strain, and stability after 16 000 loading cycles and 20 days in an aqueous saline solution. The functionality of this amphibious strain sensor was demonstrated by tracking the motion of a robotic fish, undertaking language recognition underwater, and monitoring the blood pressure of a porcine aorta. This illustrates the promising potential for this strain sensor for both underwater use and surgically implantable applications.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Doyun Kim
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Xiaoqi Tang
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695, USA
| | - Martin W King
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
4
|
Alawneh A, Wettasinghe AP, McMullen R, Seifi MO, Breton I, Slinker JD, Kuchta RD. A Redox-Reversible Switch of DNA Hydrogen Bonding and Structure. ACS APPLIED BIO MATERIALS 2024; 7:5308-5317. [PMID: 38978451 DOI: 10.1021/acsabm.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Modulating molecular structure and function at the nanoscale drives innovation across wide-ranging technologies. Electrical control of the bonding of individual DNA base pairs endows DNA with precise nanoscale structural reconfigurability, benefiting efforts in DNA origami and actuation. Here, alloxazine DNA base surrogates were synthesized and incorporated into DNA duplexes to function as a redox-active switch of hydrogen bonding. Circular dichroism (CD) revealed that 24-mer DNA duplexes containing one or two alloxazines exhibited CD spectra and melting transitions similar to DNA with only canonical bases, indicating that the constructs adopt a B-form conformation. However, duplexes were not formed when four or more alloxazines were incorporated into a 24-mer strand. Thiolated duplexes incorporating alloxazines were self-assembled onto multiplexed gold electrodes and probed electrochemically. Square-wave voltammetry (SWV) revealed a substantial reduction peak centered at -0.272 V vs Ag/AgCl reference. Alternating between alloxazine oxidizing and reducing conditions modulated the SWV peak in a manner consistent with the formation and loss of hydrogen bonding, which disrupts the base pair stacking and redox efficiency of the DNA construct. These alternating signals support the assertion that alloxazine can function as a redox-active switch of hydrogen bonding, useful in controlling DNA and bioinspired assemblies.
Collapse
Affiliation(s)
- Ayman Alawneh
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Ashan P Wettasinghe
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, SCI 10, Richardson, Texas 75080, United States
| | - Reema McMullen
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, SCI 10, Richardson, Texas 75080, United States
| | - Melodee O Seifi
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, SCI 10, Richardson, Texas 75080, United States
| | - Ivan Breton
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Jason D Slinker
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, SCI 10, Richardson, Texas 75080, United States
- Department of Chemistry, The University of Texas at Dallas, 800 West Campbell Road, SCI 10, Richardson, Texas 75080 United States
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 West Campbell Road, SCI 10, Richardson, Texas 75080, United States
| | - Robert D Kuchta
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| |
Collapse
|
5
|
Wu S, Zhao T, Zhu Y, Paulino GH. Modular multi-degree-of-freedom soft origami robots with reprogrammable electrothermal actuation. Proc Natl Acad Sci U S A 2024; 121:e2322625121. [PMID: 38709915 PMCID: PMC11098090 DOI: 10.1073/pnas.2322625121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/12/2024] [Indexed: 05/08/2024] Open
Abstract
Soft robots often draw inspiration from nature to navigate different environments. Although the inching motion and crawling motion of caterpillars have been widely studied in the design of soft robots, the steering motion with local bending control remains challenging. To address this challenge, we explore modular origami units which constitute building blocks for mimicking the segmented caterpillar body. Based on this concept, we report a modular soft Kresling origami crawling robot enabled by electrothermal actuation. A compact and lightweight Kresling structure is designed, fabricated, and characterized with integrated thermal bimorph actuators consisting of liquid crystal elastomer and polyimide layers. With the modular design and reprogrammable actuation, a multiunit caterpillar-inspired soft robot composed of both active units and passive units is developed for bidirectional locomotion and steering locomotion with precise curvature control. We demonstrate the modular design of the Kresling origami robot with an active robotic module picking up cargo and assembling with another robotic module to achieve a steering function. The concept of modular soft robots can provide insight into future soft robots that can grow, repair, and enhance functionality.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27695
| | - Tuo Zhao
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ08544
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27695
| | - Glaucio H. Paulino
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ08544
- Princeton Materials Institute, Princeton University, Princeton, NJ08544
| |
Collapse
|
6
|
Wang H, Li X, Wang X, Qin Y, Pan Y, Guo X. Somatosensory Electro-Thermal Actuator through the Laser-Induced Graphene Technology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310612. [PMID: 38087883 DOI: 10.1002/smll.202310612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Indexed: 05/25/2024]
Abstract
The biological system realizes the unity of action and perception through the muscle tissue and nervous system. Correspondingly, artificial soft actuators realize the unity of sensing and actuating functions in a single functional material, which will have tremendous potential for developing intelligent and bionic soft robotics. This paper reports the design of a laser-induced graphene (LIG) electrothermal actuator with self-sensing capability. LIG, a functional material formed by a one-step direct-write lasing procedure under ambient air, is used as electrothermal conversion materials and piezoresistive sensing materials. By transferring LIG to a flexible silicone substrate, the design ability of the LIG-based actuator unit is enriched, along with an effectively improved sensing sensitivity. Through the integration of different types of well-designed LIG-based actuator units, the transformations from multidimensional precursors to 2D and 3D structures are realized. According to the piezoresistive effect of the LIG units during the deformation process, the visual synchronous deformation state feedback of the LIG-based actuator is proposed. The multimodal crawling soft robotics and the switchable electromagnetic shielding cloak serve as the demonstrations of the self-sensing LIG-based actuator, showing the advantage of the design in remote control of the soft robot without relying on the assistance of visual devices.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuyang Li
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoyue Wang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yong Qin
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yang Pan
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaogang Guo
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
7
|
Jiao P, Zhang H, Hong L, Yang Y, Li W. Piezo-Wormbots for Continuous Crawling. Soft Robot 2024; 11:260-269. [PMID: 37792356 DOI: 10.1089/soro.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Biomimetic soft robots are typically made of soft materials with bioinspired configurations. However, their locomotion is activated and manipulated by externally controlled soft actuators. In this study, piezo-wormbots were developed by automatically triggering the mechanical metamaterial-inspired soft actuator to mimic the continuous crawling of inchworms without manipulation, where crawling was controlled by the deformation of the piezo-wormbots themselves. We designed the flexible piezo-wormbots with an actuator to generate bending deformation under continuous inflation, piezoelectric rubber to automatically create internal excitation voltage to trigger deflation, as well as true legs and prolegs to convert the bending-recovering sequence into continuous crawling. We tailored the actuator to enhance the crawling performance and found that the response was critically affected by the leg pattern, inflation-to-deflation time duration ratio, air pressure, and ground environment. We observed satisfactory locomotion performance for the following tasks (pushing boxes and approaching a predefined target) through accurate self-actuated crawling under up to 51 continuous bending cycles. The maximum crawling velocity of the piezo-wormbots was found to be 16.6 mm/s, resulting in a maximum body length per second (BL/s) of 0.13, which is comparable to those of most natural inchworms (0.1-0.3 BL/s). This study offers new insight into bioinspired soft robotics and expands its biomimetic performance to continuously autonomous locomotion.
Collapse
Affiliation(s)
- Pengcheng Jiao
- Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan, Zhejiang, China
- Engineering Research Center of Oceanic Sensing Technology and Equipment, Zhejiang University, Ministry of Education, Zhoushan, China
| | - Hao Zhang
- Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan, Zhejiang, China
| | - Luqin Hong
- Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan, Zhejiang, China
| | - Yang Yang
- Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan, Zhejiang, China
| | - Wentao Li
- Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan, Zhejiang, China
| |
Collapse
|
8
|
Gong S, Lu Y, Yin J, Levin A, Cheng W. Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chem Rev 2024; 124:455-553. [PMID: 38174868 DOI: 10.1021/acs.chemrev.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the era of Internet-of-things, many things can stay connected; however, biological systems, including those necessary for human health, remain unable to stay connected to the global Internet due to the lack of soft conformal biosensors. The fundamental challenge lies in the fact that electronics and biology are distinct and incompatible, as they are based on different materials via different functioning principles. In particular, the human body is soft and curvilinear, yet electronics are typically rigid and planar. Recent advances in materials and materials design have generated tremendous opportunities to design soft wearable bioelectronics, which may bridge the gap, enabling the ultimate dream of connected healthcare for anyone, anytime, and anywhere. We begin with a review of the historical development of healthcare, indicating the significant trend of connected healthcare. This is followed by the focal point of discussion about new materials and materials design, particularly low-dimensional nanomaterials. We summarize material types and their attributes for designing soft bioelectronic sensors; we also cover their synthesis and fabrication methods, including top-down, bottom-up, and their combined approaches. Next, we discuss the wearable energy challenges and progress made to date. In addition to front-end wearable devices, we also describe back-end machine learning algorithms, artificial intelligence, telecommunication, and software. Afterward, we describe the integration of soft wearable bioelectronic systems which have been applied in various testbeds in real-world settings, including laboratories that are preclinical and clinical environments. Finally, we narrate the remaining challenges and opportunities in conjunction with our perspectives.
Collapse
Affiliation(s)
- Shu Gong
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Lu
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jialiang Yin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Arie Levin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
9
|
Han C, Jeong Y, Ahn J, Kim T, Choi J, Ha J, Kim H, Hwang SH, Jeon S, Ahn J, Hong JT, Kim JJ, Jeong J, Park I. Recent Advances in Sensor-Actuator Hybrid Soft Systems: Core Advantages, Intelligent Applications, and Future Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302775. [PMID: 37752815 PMCID: PMC10724400 DOI: 10.1002/advs.202302775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/17/2023] [Indexed: 09/28/2023]
Abstract
The growing demand for soft intelligent systems, which have the potential to be used in a variety of fields such as wearable technology and human-robot interaction systems, has spurred the development of advanced soft transducers. Among soft systems, sensor-actuator hybrid systems are considered the most promising due to their effective and efficient performance, resulting from the synergistic and complementary interaction between their sensor and actuator components. Recent research on integrated sensor and actuator systems has resulted in a range of conceptual and practical soft systems. This review article provides a comprehensive analysis of recent advances in sensor and actuator integrated systems, which are grouped into three categories based on their primary functions: i) actuator-assisted sensors for intelligent detection, ii) sensor-assisted actuators for intelligent movement, and iii) sensor-actuator interactive devices for a hybrid of intelligent detection and movement. In addition, several bottlenecks in current studies are discussed, and prospective outlooks, including potential applications, are presented. This categorization and analysis will pave the way for the advancement and commercialization of sensor and actuator-integrated systems.
Collapse
Affiliation(s)
- Chankyu Han
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Yongrok Jeong
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery and Materials (KIMM)Daejeon34103Republic of Korea
- Radioisotope Research DivisionKorea Atomic Energy Research Institute (KAERI)Daejeon34057Republic of Korea
| | - Junseong Ahn
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery and Materials (KIMM)Daejeon34103Republic of Korea
| | - Taehwan Kim
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Jungrak Choi
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Ji‐Hwan Ha
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Hyunjin Kim
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Soon Hyoung Hwang
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery and Materials (KIMM)Daejeon34103Republic of Korea
| | - Sohee Jeon
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery and Materials (KIMM)Daejeon34103Republic of Korea
| | - Jihyeon Ahn
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Jin Tae Hong
- Radioisotope Research DivisionKorea Atomic Energy Research Institute (KAERI)Daejeon34057Republic of Korea
| | - Jin Joo Kim
- Radioisotope Research DivisionKorea Atomic Energy Research Institute (KAERI)Daejeon34057Republic of Korea
| | - Jun‐Ho Jeong
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery and Materials (KIMM)Daejeon34103Republic of Korea
| | - Inkyu Park
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
10
|
Wu S, Hong Y, Zhao Y, Yin J, Zhu Y. Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation. SCIENCE ADVANCES 2023; 9:eadf8014. [PMID: 36947625 PMCID: PMC10032605 DOI: 10.1126/sciadv.adf8014] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/21/2023] [Indexed: 06/14/2023]
Abstract
Many inspirations for soft robotics are from the natural world, such as octopuses, snakes, and caterpillars. Here, we report a caterpillar-inspired, energy-efficient crawling robot with multiple crawling modes, enabled by joule heating of a patterned soft heater consisting of silver nanowire networks in a liquid crystal elastomer (LCE)-based thermal bimorph actuator. With patterned and distributed heaters and programmable heating, different temperature and hence curvature distribution along the body of the robot are achieved, enabling bidirectional locomotion as a result of the friction competition between the front and rear end with the ground. The thermal bimorph behavior is studied to predict and optimize the local curvature of the robot under thermal stimuli. The bidirectional actuation modes with the crawling speeds are investigated. The capability of passing through obstacles with limited spacing are demonstrated. The strategy of distributed and programmable heating and actuation with thermal responsive materials offers unprecedented capabilities for smart and multifunctional soft robots.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yaoye Hong
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yao Zhao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Wu S, Moody K, Kollipara A, Zhu Y. Highly Sensitive, Stretchable, and Robust Strain Sensor Based on Crack Propagation and Opening. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1798-1807. [PMID: 36548931 PMCID: PMC10403976 DOI: 10.1021/acsami.2c16741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Soft and stretchable strain sensors have been attracting significant attention. However, the trade-off between the sensitivity (gauge factor) and the sensing range has been a major challenge. In this work, we report a soft stretchable resistive strain sensor with an unusual combination of high sensitivity, large sensing range, and high robustness. The sensor is made of a silver nanowire network embedded below the surface of an elastomeric matrix (e.g., poly(dimethylsiloxane)). Periodic mechanical cuts are applied to the top surface of the sensor, changing the current flow from uniformly across the sensor to along the conducting path defined by the open cracks. Both experiment and finite element analysis are conducted to study the effect of the slit depth, slit length, and pitch between the slits. The stretchable strain sensor can be integrated into wearable systems for monitoring physiological functions and body motions associated with different levels of strain, such as blood pressure and lower back health. Finally, a soft three-dimensional (3D) touch sensor that tracks both normal and shear stresses is developed for human-machine interfaces and tactile sensing for robotics.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
| | - Katherine Moody
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
| | - Abhiroop Kollipara
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Chapel Hill, North Carolina27599, United States
| |
Collapse
|
12
|
Abstract
Thermal actuation is a common actuation method for soft robots. However, a major limitation is the relatively slow actuation speed. Here we report significant increase in the actuation speed of a bimorph thermal actuator by harnessing the snap-through instability. The actuator is made of silver nanowire/polydimethylsiloxane composite. The snap-through instability is enabled by simply applying an offset displacement to part of the actuator structure. The effects of thermal conductivity of the composite, offset displacement, and actuation frequency on the actuator speed are investigated using both experiments and finite element analysis. The actuator yields a bending speed as high as 28.7 cm-1/s, 10 times that without the snap-through instability. A fast crawling robot with locomotion speed of 1.04 body length per second and a biomimetic Venus flytrap were demonstrated to illustrate the promising potential of the fast bimorph thermal actuators for soft robotic applications.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering and North Carolina State University, Raleigh, North Carolina, USA
| | - Gregory Langston Baker
- Department of Mechanical and Aerospace Engineering and North Carolina State University, Raleigh, North Carolina, USA
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering and North Carolina State University, Raleigh, North Carolina, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering and North Carolina State University, Raleigh, North Carolina, USA.,Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina, USA.,Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Chapel Hill, North Carolina, USA
| |
Collapse
|
13
|
Booth RE, Khanna C, Schrickx HM, Siddika S, Al Shafe A, O'Connor BT. Electrothermally Actuated Semitransparent Shape Memory Polymer Composite with Application as a Wearable Touch Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53129-53138. [PMID: 36383747 DOI: 10.1021/acsami.2c10290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A semitransparent shape memory polymer (SMP):silver nanowire (AgNW) composite is demonstrated to be capable of low-temperature actuation, thus making it attractive for wearable electronics applications that require intimate contact with the human body. We demonstrate that the SMP:AgNW composite has tunable electrical and optical transparency through variation of the AgNW loading and that the AgNW loading did not significantly change the mechanical behavior of the SMP. The SMP composite is also capable of electrical actuation through Joule heating, where applying a 4 V bias across the AgNWs resulted in full shape recovery. The SMP was found to have high strain sensitivity at both small (<1%) and large (over 10%) applied strain. The SMP could sense strains as low as 0.6% with a gauge factor of 8.2. The SMP composite was then utilized as a touch sensor, able to sense and differentiate tapping and pressing. Finally, the composite was applied as a wearable ring that was thermally actuated to conformably fit onto a finger as a touch sensor. The ring sensor was able to sense finger tapping, pressing, and bending with high signal-to-noise ratios. These results demonstrate that SMP:AgNW composites are a promising design approach for application in wearable electronics.
Collapse
Affiliation(s)
- Ronald E Booth
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronic Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Chetna Khanna
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronic Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Harry M Schrickx
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronic Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Salma Siddika
- Department of Materials Science and Engineering and ORaCEL, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Abdullah Al Shafe
- Department of Materials Science and Engineering and ORaCEL, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Brendan T O'Connor
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronic Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
14
|
Li X, Shi Q, Wei H, Zhao X, Tong Z, Zhu X. Soft Gripper with Electro-Thermally Driven Artificial Fingers Made of Tri-layer Polymers and a Dry Adhesive Surface. Biomimetics (Basel) 2022; 7:biomimetics7040167. [PMID: 36278724 PMCID: PMC9624333 DOI: 10.3390/biomimetics7040167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Soft grippers have attracted great interest in the soft robotics research field. Due to their lack of deformability and control over compliance, it can be challenging for them to pick up objects that are too large or too small in size. In particular, compliant objects are vulnerable to the large grasping force. Therefore, it is crucial to be able to adjust the stiffness of the gripper materials. In this study, a soft gripper consisting of three artificial fingers is reported on. Each of the artificial fingers is made of a tri-layer polymer structure. An exterior layer, made of an ecoflex–graphene composite is embedded with electric wires as a heating source, by applying direct-current potential. The Joule heat not only allows for deformation of the exterior layer, but also transfers heat to the middle layer of the thermoplastic polyurethane (TPU) elastomer. As a result, the stiffness of the TPU layer can be adjusted using electro-thermal heating. Meanwhile, the third layer consists of a polydimethylsiloxane replica as a supporting layer with a gecko-inspired dry adhesive structure. By applying voltage through electric wires, the artificial fingers can bend and, thus, the soft gripper can hold the objects, with the help of the dry adhesive layer. Finally, objects like a shuttlecock, tennis ball and a glass beaker, can be picked up by the soft gripper. This research may provide an insight for the design and fabrication of soft robotic manipulators.
Collapse
Affiliation(s)
- Xiangmeng Li
- Shanxi Provincial Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (X.L.); (H.W.)
| | - Qiangshengjie Shi
- Shanxi Provincial Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| | - Huifen Wei
- Shanxi Provincial Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
- Correspondence: (X.L.); (H.W.)
| | - Xiaodong Zhao
- Shanxi Provincial Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| | - Zhe Tong
- Shanxi Provincial Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| | - Xijing Zhu
- Shanxi Provincial Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| |
Collapse
|
15
|
Naseri I, Yourdkhani M. Rapid and Energy-Efficient Frontal Curing of Multifunctional Composites Using Integrated Nanostructured Heaters. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50215-50224. [PMID: 36226889 DOI: 10.1021/acsami.2c15415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Current technologies for the manufacture of fiber-reinforced polymer composites are energy-intensive, environmentally unfriendly, and time-consuming and require expensive equipment and resources. In addition, composites typically lack key nonstructural functionalities (e.g., electrical conductivity for deicing, lightning strike protection, and structural health monitoring), which are crucial to many applications such as aerospace and wind energy. Here, we present a new approach for rapid and energy-efficient manufacturing of multifunctional composites without using traditional expensive autoclaves, ovens, or heated molds used for curing of composites. Our approach is predicated on embedding a thin conductive nanostructured paper in the composite layup to act as a resistive heater for triggering frontal polymerization of the matrix thermosetting resin of the composite laminate. Upon passing electric current, the nanostructured paper quickly heats up and initiates frontal polymerization, which then rapidly propagates through the thickness of the laminate, resulting in rapid curing of composites (within seconds to few minutes) irrespective of the size of the composite laminate. The integrated nanostructured paper remains advantageous during the service of the composite part by imparting new functionalities (e.g., deicing) to the cured composite, owing to its excellent electrical conductivity and electrothermal properties. In this work, we first study the influence of several composite processing parameters on the electrothermal properties of the nanostructured paper and determine the power required for rapid initiation of frontal polymerization. We then successfully fabricate a 10 cm × 10 cm composite panel within 1 min using only 4.49 kJ of energy, which is 4 orders of magnitude less than the energy consumed by the traditional bulk, oven-curing technique. Detailed experiments are conducted to provide an in-depth understanding of the effect of heater position, tooling material, and input power on frontal curing of composite laminates. The multifunctional response of produced composites is demonstrated by performing a deicing experiment, where a 50 × 50 × 3 mm3 cube of ice is completely melted within 3 min using an input power of 77 W.
Collapse
Affiliation(s)
- Iman Naseri
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado80523, United States
| | - Mostafa Yourdkhani
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado80523, United States
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado80523, United States
| |
Collapse
|
16
|
Basarir F, De S, Daghigh Shirazi H, Vapaavuori J. Ultra-long silver nanowires prepared via hydrothermal synthesis enable efficient transparent heaters. NANOSCALE ADVANCES 2022; 4:4410-4417. [PMID: 36321145 PMCID: PMC9552902 DOI: 10.1039/d2na00560c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Ultra-long silver nanowires (AgNWs) with an aspect ratio of >2000 were prepared by the hydrothermal synthesis method. The influence of reaction time (4-32 h), reaction temperature (150-180 °C), polyvinylpyrrolidone (PVP) molecular weight (10 000-1 300 000 g mol-1), PVP concentration (50-125 mM), glucose concentration (5.6-22.4 mM) and CuCl2 concentration (2-20 μM) on the AgNW length was investigated systematically. The optimum conditions provided nanowires with an average diameter of 207 nm, an average length of 234 μm and a maximum length of 397 μm. Finally, a AgNW electrode was prepared on a glass substrate and used in transparent heater application. The transparent heater enabled outstanding heat-generating properties, reaching >200 °C within 70 s with an applied voltage of 5 V. Our results demonstrate how increasing the aspect ratio of ultra-long AgNWs is beneficial for both optical and electronic applications in terms of increased transmission and a more efficient Joule effect in the heater application. In addition, our results show that AgNWs with different lengths can be simply obtained by tuning synthesis parameters.
Collapse
Affiliation(s)
- Fevzihan Basarir
- Department of Chemistry and Materials Science, Aalto University P.O. Box 16100 FI-00076 Aalto Finland
| | - Swarnalok De
- Department of Chemistry and Materials Science, Aalto University P.O. Box 16100 FI-00076 Aalto Finland
| | - Hamidreza Daghigh Shirazi
- Department of Chemistry and Materials Science, Aalto University P.O. Box 16100 FI-00076 Aalto Finland
| | - Jaana Vapaavuori
- Department of Chemistry and Materials Science, Aalto University P.O. Box 16100 FI-00076 Aalto Finland
| |
Collapse
|
17
|
Direct and remote induced actuation in artificial muscles based on electrospun fiber networks. Sci Rep 2022; 12:13084. [PMID: 35906458 PMCID: PMC9338295 DOI: 10.1038/s41598-022-16872-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
The present work reports a new configuration of soft artificial muscle based on a web of metal covered nylon 6/6 micrometric fibers attached to a thin polydimethylsiloxane (PDMS) film. The preparation process is simple and implies the attachment of metalized fiber networks to a PDMS sheet substrate while heating and applying compression. The resulting composite is versatile and can be cut in different shapes as a function of the application sought. When an electric current passes through the metallic web, heat is produced, leading to local dilatation and to subsequent controlled deformation. Because of this, the artificial muscle displays a fast and ample movement (maximum displacement of 0.8 cm) when applying a relatively low voltage (2.2 V), a consequence of the contrast between the thermal expanse coefficients of the PDMS substrate and of the web-like electrode. It was shown that the electrical current producing this effect can originate from both direct electric contacts, and untethered configurations i.e. radio frequency induced. Usually, for thermal activated actuators the heating is produced by using metallic films or conductive carbon-based materials, while here a fast heating/cooling process is obtained by using microfiber-based heaters. This new approach for untethered devices is an interesting path to follow, opening a wide range of applications were autonomous actuation and remote transfer of energy are needed.
Collapse
|
18
|
Qiu W, Li Z, Wang G, Peng Y, Zhang M, Wang X, Zhong J, Lin L. A Moisture-Resistant Soft Actuator with Low Driving Voltages for Haptic Stimulations in Virtual Games. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31257-31266. [PMID: 35776539 DOI: 10.1021/acsami.2c06209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Strong and robust stimulations to human skins with low driving voltages under high moisture working conditions are desirable for wearable haptic feedback applications. Here, a soft actuator based on the "air bubble" electret structure is developed to work in high-moisture environments and produce haptic sensations to human skin with low driving voltages. Experimentally, the water soaking and drying process has been conducted repeatedly for the first time and the 20th time to test the antimoisture ability of the actuator as it recovers its output force up 90 and 65% of the initial value, respectively. The threshold voltages for sensible haptic sensations for the fingertip and palm of volunteers have been characterized as 7 and 10 V, respectively. Furthermore, a demonstration example has been designed and conducted in a virtual boxing game to generate the designated haptic sensations according to the gaming conditions with an accuracy of 98% for more than 100 tests. As such, the design principle, performance characteristic, and demonstration example in this work could inspire various applications with improved reliability for wearable haptic devices.
Collapse
Affiliation(s)
- Wenying Qiu
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Tsinghua Shenzhen International School, Tsinghua University, Shenzhen 518055, China
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720, United States
- China Academy of Industrial Internet, Beijing 100020, China
| | - Zhaoyang Li
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau, SAR 999078, China
| | - Guocheng Wang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Tsinghua Shenzhen International School, Tsinghua University, Shenzhen 518055, China
| | - Yande Peng
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Min Zhang
- Tsinghua Shenzhen International School, Tsinghua University, Shenzhen 518055, China
| | - Xiaohao Wang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Tsinghua Shenzhen International School, Tsinghua University, Shenzhen 518055, China
| | - Junwen Zhong
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau, SAR 999078, China
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Liwei Lin
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Sun M, Wang P, Zheng G, Dai K, Liu C, Shen C. Multi-stimuli-responsive actuator based on bilayered thermoplastic film. SOFT MATTER 2022; 18:5052-5059. [PMID: 35758137 DOI: 10.1039/d2sm00605g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, soft actuators have attracted considerable interest owing to their biomimetic performance. Unfortunately, it remains a great challenge to fabricate multi-stimuli-responsive soft actuators by a facile but low-cost method. Herein, a thermoplastic film with bilayered architecture was designed and fabricated by a one-step method. This bilayered thermoplastic film can act as a soft actuator, demonstrating versatile shape-programmable performance in response to acetone vapor exposure and temperature change. Interestingly, diverse biomimetic devices including a worm-like self-walker, crawler-type robot and soft gripper can be realized, which highlights its promising applications in biomimetic robots, artificial muscles and automatic devices. Considering the one-step preparation process and the low-cost raw materials, this approach can be cost-effectively scaled up for practical production.
Collapse
Affiliation(s)
- Mengdi Sun
- College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
| | - Panlong Wang
- College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
| | - Guoqiang Zheng
- College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
| | - Kun Dai
- College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
| | - Chuntai Liu
- College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
| | - Changyu Shen
- College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
20
|
Heng W, Solomon S, Gao W. Flexible Electronics and Devices as Human-Machine Interfaces for Medical Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107902. [PMID: 34897836 PMCID: PMC9035141 DOI: 10.1002/adma.202107902] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/08/2021] [Indexed: 05/02/2023]
Abstract
Medical robots are invaluable players in non-pharmaceutical treatment of disabilities. Particularly, using prosthetic and rehabilitation devices with human-machine interfaces can greatly improve the quality of life for impaired patients. In recent years, flexible electronic interfaces and soft robotics have attracted tremendous attention in this field due to their high biocompatibility, functionality, conformability, and low-cost. Flexible human-machine interfaces on soft robotics will make a promising alternative to conventional rigid devices, which can potentially revolutionize the paradigm and future direction of medical robotics in terms of rehabilitation feedback and user experience. In this review, the fundamental components of the materials, structures, and mechanisms in flexible human-machine interfaces are summarized by recent and renowned applications in five primary areas: physical and chemical sensing, physiological recording, information processing and communication, soft robotic actuation, and feedback stimulation. This review further concludes by discussing the outlook and current challenges of these technologies as a human-machine interface in medical robotics.
Collapse
Affiliation(s)
- Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Samuel Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
21
|
Ji Y, Zhou D, Wang N, Ding N, Xu W, Song H. Flexible double narrowband near-infrared photodetector based on PMMA/core–shell upconversion nanoparticle composites. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2020.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Naseri I, Ziaee M, Nilsson ZN, Lustig DR, Yourdkhani M. Electrothermal Performance of Heaters Based on Laser-Induced Graphene on Aramid Fabric. ACS OMEGA 2022; 7:3746-3757. [PMID: 35128283 PMCID: PMC8811899 DOI: 10.1021/acsomega.1c06572] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/11/2022] [Indexed: 05/26/2023]
Abstract
Nanostructured heaters based on laser-induced graphene (LIG) are promising for heat generation and temperature control in a variety of applications due to their high efficiency as well as a fast, facile, and highly scalable fabrication process. While recent studies have shown that LIG can be written on a wide range of precursors, the reports on LIG-based heaters are mainly limited to polyimide film substrates. Here, we develop and characterize nanostructured heaters by direct writing of laser-induced graphene on nonuniform and structurally porous aramid woven fabric. The synthesis and writing of graphene on aramid fabric is conducted using a 10.6 μm CO2 laser. The quality of laser-induced graphene and electrical properties of the heater fabric is tuned by controlling the lasing process parameters. Produced heaters exhibit good electrothermal efficiency with steady-state temperatures up to 170 °C when subjected to an input power density of 1.5 W cm-2. In addition, the permeable texture of LIG-aramid fabric heaters allows for easy impregnation with thermosetting resins. We demonstrate the encapsulation of fabric heaters with two different types of thermosetting resins to develop both flexible and stiff composites. A flexible heater is produced by the impregnation of LIG-aramid fabric by silicone rubber. While the flexible composite heater exhibits inferior electrothermal performance compared to neat LIG-aramid fabric, it shows consistent electrothermal performance under various electrical and mechanical loading conditions. A multifunctional fiber-reinforced composite panel with integrated de-icing functionality is also manufactured using one ply of LIG-aramid fabric heater as part of the composite layup. The results of de-icing experiments show excellent de-icing capability, where a 5 mm thick piece of ice is completely melted away within 2 min using an input power of 12.8 W.
Collapse
Affiliation(s)
- Iman Naseri
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Morteza Ziaee
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Zach N. Nilsson
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Danielle R. Lustig
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Mostafa Yourdkhani
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
- School
of Advanced Materials Discovery, Colorado
State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
23
|
Boundary curvature guided programmable shape-morphing kirigami sheets. Nat Commun 2022; 13:530. [PMID: 35082311 PMCID: PMC8792031 DOI: 10.1038/s41467-022-28187-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/07/2022] [Indexed: 12/22/2022] Open
Abstract
Kirigami, a traditional paper cutting art, offers a promising strategy for 2D-to-3D shape morphing through cut-guided deformation. Existing kirigami designs for target 3D curved shapes rely on intricate cut patterns in thin sheets, making the inverse design challenging. Motivated by the Gauss-Bonnet theorem that correlates the geodesic curvature along the boundary with the Gaussian curvature, here, we exploit programming the curvature of cut boundaries rather than the complex cut patterns in kirigami sheets for target 3D curved morphologies through both forward and inverse designs. The strategy largely simplifies the inverse design. Leveraging this strategy, we demonstrate its potential applications as a universal and nondestructive gripper for delicate objects, including live fish, raw egg yolk, and a human hair, as well as dynamically conformable heaters for human knees. This study opens a new avenue to encode boundary curvatures for shape-programing materials with potential applications in soft robotics and wearable devices.
Collapse
|
24
|
Huang Q, Zhu Y. Patterning of Metal Nanowire Networks: Methods and Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60736-60762. [PMID: 34919389 DOI: 10.1021/acsami.1c14816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the advance in flexible and stretchable electronics, one-dimensional nanomaterials such as metal nanowires have drawn much attention in the past 10 years or so. Metal nanowires, especially silver nanowires, have been recognized as promising candidate materials for flexible and stretchable electronics. Owing to their high electrical conductivity and high aspect ratio, metal nanowires can form electrical percolation networks, maintaining high electrical conductivity under deformation (e.g., bending and stretching). Apart from coating metal nanowires for making large-area transparent conductive films, many applications require patterned metal nanowires as electrodes and interconnects. Precise patterning of metal nanowire networks is crucial to achieve high device performances. Therefore, a high-resolution, designable, and scalable patterning of metal nanowire networks is important but remains a critical challenge for fabricating high-performance electronic devices. This review summarizes recent advances in patterning of metal nanowire networks, using subtractive methods, additive methods of nanowire dispersions, and printing methods. Representative device applications of the patterned metal nanowire networks are presented. Finally, challenges and important directions in the area of the patterning of metal nanowire networks for device applications are discussed.
Collapse
Affiliation(s)
- Qijin Huang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| |
Collapse
|
25
|
Wu S, Cui Z, Baker GL, Mahendran S, Xie Z, Zhu Y. A Biaxially Stretchable and Self-Sensing Textile Heater Using Silver Nanowire Composite. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59085-59091. [PMID: 34860492 DOI: 10.1021/acsami.1c17651] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wearable heaters have garnered significant attention from academia and industry for their great potential in thermotherapy. Silver nanowire (AgNW) is a promising conductive material for flexible and stretchable electrodes. Here, a resistive, biaxially stretchable heater based on AgNW composite is reported for the first time, where a AgNW percolation network is encased in a thin polyimide (PI) film and integrated with a highly stretchable textile. AgNW/PI is patterned with a 2D Kirigami structure, which enables constant resistance under a large tensile strain (up to uniaxial 100% strain and 50% biaxial strain). The heater can achieve a high temperature of ∼140 °C with a low current of 0.125 A, fast heating and cooling rates of ∼16.5 and ∼14.1 °C s-1, respectively, and stable performance over 400 heating cycles. A feedback control system is developed to provide constant heating temperature under a temperature change of the surrounding environment. Demonstrated applications in applying thermotherapy at the curvilinear surface of the knee using the stretchable heater illustrate its promising potential for wearable applications.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zheng Cui
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - G Langston Baker
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Siddarth Mahendran
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ziyang Xie
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
26
|
Yang K, Tang Z, Ye Y, Ding M, Zhang P, Zhu Y, Guo Q, Chen G, Weng M. Dual‐responsive and bidirectional bending actuators based on a graphene oxide composite for bionic soft robotics. J Appl Polym Sci 2021. [DOI: 10.1002/app.52014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kaihuai Yang
- School of Mechanical and Intelligent Manufacturing Fujian Chuanzheng Communications College Fuzhou Fujian China
| | - Zhendong Tang
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou Fujian China
| | - Yuanji Ye
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou Fujian China
| | - Min Ding
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou Fujian China
| | - Peiqian Zhang
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou Fujian China
| | - Yongkang Zhu
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou Fujian China
| | - Qiaohang Guo
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou Fujian China
| | - Guiqing Chen
- School of Mechanical and Intelligent Manufacturing Fujian Chuanzheng Communications College Fuzhou Fujian China
| | - Mingcen Weng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou Fujian China
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials Fujian Normal University Fuzhou Fujian China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials Fujian Agriculture and Forestry University Fuzhou Fujian China
| |
Collapse
|
27
|
Lin J, Zhou P, Wen Z, Zhang W, Luo Z, Chen L. Chinese ink: a programmable, dual-responsive and self-sensing actuator using a healing-assembling method. NANOSCALE 2021; 13:20134-20143. [PMID: 34846409 DOI: 10.1039/d1nr06111a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Actuators have wide applications in soft robotics and bionic devices. Since the healing ability not only makes actuators have longer service lives, but also allows them to be programmable through welding and assembling, it is regarded as an important feature for state-of-the-art actuators. Nevertheless, it remains a great challenge to integrate multi-functional merits, such as multi-responsiveness, programmable shape-morphing, healing and self-sensing function, simultaneously into a monolithic actuating material. Here, we introduce Chinese ink, a carbon-based material used in traditional calligraphy, to develop programmable, dual-responsive and self-sensing actuators by a healing-assembling method. The ink is combined with graphene oxide (GO) to fabricate a double-layer ink/GO actuator, which shows bi-directional bending under near-infrared light or humidity, owing to the mismatch of the volume change between ink and GO films. The maximal bending curvature is up to 5.2 cm-1. Importantly, the entire ink/GO actuator can be healed with the aid of ink solution. Using the healing-assembling method to fabricate advanced structures including a Mobius ring, triangular rings and square rings, diverse actuating modes and complex 3D deformations such as a wavy shape and saddle shape are realized. This method also enables the construction of an artificial mimosa that shows a biomimetic stimulus-responsive behavior. In addition, the ink/GO actuator shows a self-sensing function, which is attributed to the thermoresistivity of the ink film. This research shows the huge potential of Chinese-ink-based actuators for use in smart materials, providing a new idea for the development of new generation multi-functional actuators.
Collapse
Affiliation(s)
- Jian Lin
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China.
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117, China
| | - Peidi Zhou
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China.
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117, China
| | - Zhiyuan Wen
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China.
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
| | - Wei Zhang
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China.
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117, China
| | - Zhiling Luo
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China.
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117, China
| | - Luzhuo Chen
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China.
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117, China
| |
Collapse
|
28
|
Abstract
Colloidal self-assembly refers to a solution-processed assembly of nanometer-/micrometer-sized, well-dispersed particles into secondary structures, whose collective properties are controlled by not only nanoparticle property but also the superstructure symmetry, orientation, phase, and dimension. This combination of characteristics makes colloidal superstructures highly susceptible to remote stimuli or local environmental changes, representing a prominent platform for developing stimuli-responsive materials and smart devices. Chemists are achieving even more delicate control over their active responses to various practical stimuli, setting the stage ready for fully exploiting the potential of this unique set of materials. This review addresses the assembly of colloids into stimuli-responsive or smart nanostructured materials. We first delineate the colloidal self-assembly driven by forces of different length scales. A set of concepts and equations are outlined for controlling the colloidal crystal growth, appreciating the importance of particle connectivity in creating responsive superstructures. We then present working mechanisms and practical strategies for engineering smart colloidal assemblies. The concepts underpinning separation and connectivity control are systematically introduced, allowing active tuning and precise prediction of the colloidal crystal properties in response to external stimuli. Various exciting applications of these unique materials are summarized with a specific focus on the structure-property correlation in smart materials and functional devices. We conclude this review with a summary of existing challenges in colloidal self-assembly of smart materials and provide a perspective on their further advances to the next generation.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
29
|
Repon MR, Mikučionienė D. Progress in Flexible Electronic Textile for Heating Application: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6540. [PMID: 34772066 PMCID: PMC8585370 DOI: 10.3390/ma14216540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023]
Abstract
Intelligent textiles are predicted to see a 'surprising' development in the future. The consequence of this revived interest has been the growth of industrial goods and the improvement of innovative methods for the incorporation of electrical features into textiles materials. Conductive textiles comprise conductive fibres, yarns, fabrics, and finished goods produced using them. Present perspectives to manufacture electrically conductive threads containing conductive substrates, metal wires, metallic yarns, and intrinsically conductive polymers. This analysis concentrates on the latest developments of electro-conductivity in the area of smart textiles and heeds especially to materials and their assembling processes. The aim of this work is to illustrate a potential trade-off between versatility, ergonomics, low energy utilization, integration, and heating properties.
Collapse
Affiliation(s)
- Md. Reazuddin Repon
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu 56, LT-51424 Kaunas, Lithuania;
| | | |
Collapse
|
30
|
Zhang S, Wang J, Hayashi K, Sassa F. Monolithic processing of a layered flexible robotic actuator film for kinetic electronics. Sci Rep 2021; 11:20015. [PMID: 34625622 PMCID: PMC8501038 DOI: 10.1038/s41598-021-99500-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
Low-invasive soft robotic techniques can potentially be used for developing next-generation body-machine interfaces. Most soft robots require complicated fabrication processes involving 3D printing and bonding/assembling. In this letter, we describe a monolithic soft microrobot fabrication process for the mass production of soft film robots with a complex structure by simple 2D processing of a robotic actuator film. The 45 µg/mm2 lightweight film robot can be driven at a voltage of CMOS compatible 5 V with 0.15 mm-1 large curvature changes; it can generate a force 5.7 times greater than its self-weight. In a durability test, actuation could be carried out over 8000 times without degradation. To further demonstrate this technique, three types of film robots with multiple degrees of freedom and a moving illuminator robot were fabricated. This technique can easily integrate various electrical circuits developed in the past to robotic systems and can be used for developing advanced wearable sensing devices; it can be called "Kinetic electronics".
Collapse
Affiliation(s)
- Shiyi Zhang
- grid.177174.30000 0001 2242 4849Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 Japan
| | - Joseph Wang
- grid.266100.30000 0001 2107 4242Department of Nanoengineering, Center of Wearable Sensors, University of California San Diego, La Jolla, CA USA
| | - Kenshi Hayashi
- grid.177174.30000 0001 2242 4849Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 Japan
| | - Fumihiro Sassa
- grid.177174.30000 0001 2242 4849Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 Japan
| |
Collapse
|
31
|
Zhang YF, Li Z, Li H, Li H, Xiong Y, Zhu X, Lan H, Ge Q. Fractal-Based Stretchable Circuits via Electric-Field-Driven Microscale 3D Printing for Localized Heating of Shape Memory Polymers in 4D Printing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41414-41423. [PMID: 33779155 DOI: 10.1021/acsami.1c03572] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermally responsive shape memory polymers (SMPs) used in 4D printing are often reported to be activated by external heat sources or embedded stiff heaters. However, such heating strategies impede the practical application of 4D printing due to the lack of precise control over heating or the limited ability to accommodate the stretching during shape programming. Herein, we propose a novel 4D printing paradigm by fabricating stretchable heating circuits with fractal motifs via electric-field-driven microscale 3D printing of conductive paste for seamless integration into 3D printed structures with SMP components. By regulating the fractal order and printing/processing parameters, the overall electrical resistance and areal coverage of the circuits can be tuned to produce an efficient and uniform heating performance. Compared with serpentine structures, the resistance of fractal-based circuits remains relatively stable under both uniaxial and biaxial stretching. In practice, steady-state and transient heating modes can be respectively used during the shape programming and actuation phases. We demonstrate that this approach is suitable for 4D printed structures with shape programming by either uniaxial or biaxial stretching. Notably, the biaxial stretchability of fractal-based heating circuits enables the shape change between a planar structure and a 3D one with double curvature. The proposed strategy would offer more freedom in designing 4D printed structures and enable the manipulation of the latter in a controlled and selective manner.
Collapse
Affiliation(s)
- Yuan-Fang Zhang
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Zhenghao Li
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, China
| | - Hongke Li
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, China
| | - Honggeng Li
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore 487372, Singapore
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055 P. R. China
| | - Yi Xiong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, PR China
| | - Xiaoyang Zhu
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, China
| | - Hongbo Lan
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, China
| | - Qi Ge
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055 P. R. China
| |
Collapse
|
32
|
Liu Z, Zhang R, Xiao Y, Li J, Chang W, Qian D, Liu Z. Somatosensitive film soft crawling robots driven by artificial muscle for load carrying and multi-terrain locomotion. MATERIALS HORIZONS 2021; 8:1783-1794. [PMID: 34846507 DOI: 10.1039/d1mh00457c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Somatosensitive soft crawling robotics is highly desired for load carrying and multi-terrain locomotion. The motor-driven skeleton robots and pneumatic robots are effective and well-developed, while the bulk size, rigidity, or complexity limit their applications. In this paper, a somatosensitive film soft crawling robot driven by an artificial muscle was developed, which can carry heavy loads and crawl on multiple terrains. A bow-shaped film skeleton connected with a twisted-fiber artificial muscle is not easily deformed while carrying a load. A strain sensor coating on the film skeleton was used to detect the body deformation of the robot and a controller was designed for feedback control to make the robot self-crawling. This film soft crawling robot was demonstrated to crawl on the multi-terrain such as flat, mountainous, and underwater, as well as surfaces with different roughness. This work provides a new design strategy for multi-functional compact soft crawling robotics.
Collapse
Affiliation(s)
- Zhongsheng Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Liu Q, Tian B, Liang J, Wu W. Recent advances in printed flexible heaters for portable and wearable thermal management. MATERIALS HORIZONS 2021; 8:1634-1656. [PMID: 34846496 DOI: 10.1039/d0mh01950j] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flexible resistive heaters (FRHs) with high heating performance, large-area thermal homogeneity, and excellent thermal stability are very desirable in modern life, owing to their tremendous potential for portable and wearable thermal management applications, such as body thermotherapy, on-demand drug delivery, and artificial intelligence. Printed electronic (PE) technologies, as emerging methods combining conventional printing techniques with solution-processable functional ink have been proposed to be promising strategies for the cost-effective, large-scale, and high-throughput fabrication of printed FRHs. This review summarizes recent progress in the main components of FRHs, including conductive materials and flexible or stretchable substrates, focusing on the formulation of conductive ink systems for making printed FRHs by a variety of PE technologies including screen printing, inkjet printing, roll-to-roll (R2R) printing and three-dimensional (3D) printing. Various challenges facing the commercialization of printed FRHs and improved methods for portable and wearable thermal management applications have been discussed in detail to overcome these problems.
Collapse
Affiliation(s)
- Qun Liu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | |
Collapse
|
34
|
Won P, Kim KK, Kim H, Park JJ, Ha I, Shin J, Jung J, Cho H, Kwon J, Lee H, Ko SH. Transparent Soft Actuators/Sensors and Camouflage Skins for Imperceptible Soft Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002397. [PMID: 33089569 DOI: 10.1002/adma.202002397] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/31/2020] [Indexed: 05/21/2023]
Abstract
The advent of soft robotics has led to great advancements in robots, wearables, and even manufacturing processes by employing entirely soft-bodied systems that interact safely with any random surfaces while providing great mechanical compliance. Moreover, recent developments in soft robotics involve advances in transparent soft actuators and sensors that have made it possible to construct robots that can function in a visually and mechanically unobstructed manner, assisting the operations of robots and creating more applications in various fields. In this aspect, imperceptible soft robotics that mainly consist of optically transparent imperceptible hardware components is expected to constitute a new research focus in the forthcoming era of soft robotics. Here, the recent progress regarding extended imperceptible soft robotics is provided, including imperceptible transparent soft robotics (transparent soft actuators/sensors) and imperceptible nontransparent camouflage skins. Their principles, materials selections, and working mechanisms are discussed so that key challenges and perspectives in imperceptible soft robotic systems can be explored.
Collapse
Affiliation(s)
- Phillip Won
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kyun Kyu Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyeonseok Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jung Jae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Inho Ha
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jaeho Shin
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jinwook Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyunmin Cho
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jinhyeong Kwon
- Manufacturing System R&D Group, Korea Institute of Industrial Technology (KITECH), 89 Yangdaegiro-gil, Ipjang-myon, Seobuk-gu, Cheonan, Chungcheongnam-do, 31056, South Korea
| | - Habeom Lee
- School of Mechanical Engineering, Pusan National University, 2 Busandaehag-ro, 63 Beon-gil, Geumjeong-gu, Busan, 46241, South Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Institute of Advanced Machines and Design/Institute of Engineering Research, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
35
|
Cao Y, Dong J. Programmable soft electrothermal actuators based on free-form printing of the embedded heater. SOFT MATTER 2021; 17:2577-2586. [PMID: 33514995 DOI: 10.1039/d0sm02062a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, there has been an increasing interest in the research in soft actuators that exhibit complex programmable deformations. Soft electrothermal actuators use electricity as the stimulus to generate heat, and the mismatch between the thermal expansions of the two structural layers causes the actuator to bend. Complex programmable deformations of soft electrothermal actuators are difficult due to the limitations of the conventional fabrication methods. In this article, we report a new approach to fabricate soft electrothermal actuators, in which the resistive heater of the electrothermal actuator is directly printed using electrohydrodynamic (EHD) printing. The direct patterning capabilities of EHD printing allow the free-form design of the heater. By changing the design of the heating pattern on the actuator, different heat distributions can be achieved and utilized to realize complex programmable deformations, including uniform bending, customized bending, folding, and twisting. Finite element analysis (FEA) was used to validate the thermal distribution and deformation for different actuator designs. Lastly, several integrated demonstrations are presented, including complex structures obtained from folding, a two-degree-of-freedom soft robotic arm, and soft walkers.
Collapse
Affiliation(s)
- Yang Cao
- Edward P Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Jingyan Dong
- Edward P Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
36
|
Jiao D, Lossada F, Guo J, Skarsetz O, Hoenders D, Liu J, Walther A. Electrical switching of high-performance bioinspired nanocellulose nanocomposites. Nat Commun 2021; 12:1312. [PMID: 33637751 PMCID: PMC7910463 DOI: 10.1038/s41467-021-21599-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
Nature fascinates with living organisms showing mechanically adaptive behavior. In contrast to gels or elastomers, it is profoundly challenging to switch mechanical properties in stiff bioinspired nanocomposites as they contain high fractions of immobile reinforcements. Here, we introduce facile electrical switching to the field of bioinspired nanocomposites, and show how the mechanical properties adapt to low direct current (DC). This is realized for renewable cellulose nanofibrils/polymer nanopapers with tailor-made interactions by deposition of thin single-walled carbon nanotube electrode layers for Joule heating. Application of DC at specific voltages translates into significant electrothermal softening via dynamization and breakage of the thermo-reversible supramolecular bonds. The altered mechanical properties are reversibly switchable in power on/power off cycles. Furthermore, we showcase electricity-adaptive patterns and reconfiguration of deformation patterns using electrode patterning techniques. The simple and generic approach opens avenues for bioinspired nanocomposites for facile application in adaptive damping and structural materials, and soft robotics.
Collapse
Affiliation(s)
- Dejin Jiao
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Francisco Lossada
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Jiaqi Guo
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Oliver Skarsetz
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Daniel Hoenders
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
- A3BMS Lab, Department of Chemistry, University of Mainz, Mainz, Germany
| | - Jin Liu
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Andreas Walther
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany.
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany.
- A3BMS Lab, Department of Chemistry, University of Mainz, Mainz, Germany.
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
37
|
Ni Y, Huang J, Li S, Wang X, Liu L, Wang M, Chen Z, Li X, Lai Y. Underwater, Multifunctional Superhydrophobic Sensor for Human Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4740-4749. [PMID: 33370088 DOI: 10.1021/acsami.0c19704] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Superhydrophobic conductive materials have received a great amount of interest due to their wide applications in oil-water separation, electrically driven smart surface, electromagnetic shielding, and body motion detection. Herein, a highly conductive superhydrophobic cotton cloth is prepared by a facile method. A layer of polydopamine/reduced graphene oxide (PDA/rGO) was first coated on the cotton fabric, and then copper nanoparticles were in situ grown on the prepared surface. After further modification with stearic acid (STA), the wettability of the cotton surface changed from superhydrophilic to superhydrophobic (water contact angle (WCA) = 153°). The electrical conductivity of the PDA/rGO/Cu/STA cotton is as high as 6769 S·m-1, while the stearic acid effectively protects Cu NPs from oxidation. As a result, the superhydrophobic PDA/rGO/Cu/STA cotton has shown excellent electrical stability and can be used in detecting human motions in both ambient and underwater conditions. The sensor can recognize human motion from air into water and other underwater activities (e.g., underwater bending, stretching, and ultrasound). This multifunctional cotton device can be used as an ideal sensor for underwater intelligent devices and provides a basis for further research.
Collapse
Affiliation(s)
- Yimeng Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shuhui Li
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiaoqin Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Lexin Liu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Mengyao Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Xiao Li
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
38
|
Li Z, Ye Z, Han L, Fan Q, Wu C, Ding D, Xin HL, Myung NV, Yin Y. Polarization-Modulated Multidirectional Photothermal Actuators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006367. [PMID: 33296108 DOI: 10.1002/adma.202006367] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Photothermal actuators have attracted increasing attention due to their ability to convert light energy into mechanical deformation and locomotion. This work reports a freestanding, multidirectional photothermal robot that can walk along a predesigned pathway by modulating laser polarization and on-off switching. Magnetic-plasmonic hybrid Fe3 O4 /Ag nanorods are synthesized using an unconventional templating approach. The coupled magnetic and plasmonic anisotropy allows control of the rod orientation, plasmonic excitation, and photothermal conversion by simply applying a magnetic field. Once the rods are fixed with desirable orientations in a bimorph actuator by magnetic-field-assisted lithography, the bending of the actuator can be controlled by switching the laser polarization. A bipedal robot is created by coupling the rod orientation with the alternating actuation of its two legs. Irradiating the robot by a laser with alternating or fixed polarization synergistically results in basic movement (backward and forward) and turning (including left-, right-, and U-turn), respectively. A complex walk along predesigned pathways can be potentially programmed by combining the movement and turning modes of the robots. This strategy provides an alternative driving mechanism for preparing functional soft robots, thus breaking through the limitations in the existing systems in terms of light sources and actuation manners.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Zuyang Ye
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Lili Han
- Department of Physics and Astronomy, University of California-Irvine, Irvine, CA, 92697, USA
| | - Qingsong Fan
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Chaolumen Wu
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Deng Ding
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - Huolin L Xin
- Department of Physics and Astronomy, University of California-Irvine, Irvine, CA, 92697, USA
| | - Nosang Vincent Myung
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - Yadong Yin
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
39
|
Guo X, Ni X, Li J, Zhang H, Zhang F, Yu H, Wu J, Bai Y, Lei H, Huang Y, Rogers JA, Zhang Y. Designing Mechanical Metamaterials with Kirigami-Inspired, Hierarchical Constructions for Giant Positive and Negative Thermal Expansion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004919. [PMID: 33289278 DOI: 10.1002/adma.202004919] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/14/2020] [Indexed: 06/12/2023]
Abstract
Advanced mechanical metamaterials with unusual thermal expansion properties represent an area of growing interest, due to their promising potential for use in a broad range of areas. In spite of previous work on metamaterials with large or ultralow coefficient of thermal expansion (CTE), achieving a broad range of CTE values with access to large thermally induced dimensional changes in structures with high filling ratios remains a key challenge. Here, design concepts and fabrication strategies for a kirigami-inspired class of 2D hierarchical metamaterials that can effectively convert the thermal mismatch between two closely packed constituent materials into giant levels of biaxial/uniaxial thermal expansion/shrinkage are presented. At large filling ratios (>50%), these systems offer not only unprecedented negative and positive biaxial CTE (i.e., -5950 and 10 710 ppm K-1 ), but also large biaxial thermal expansion properties (e.g., > 21% for 20 K temperature increase). Theoretical modeling of thermal deformations provides a clear understanding of the microstructure-property relationships and serves as a basis for design choices for desired CTE values. An Ashby plot of the CTE versus density serves as a quantitative comparison of the hierarchical metamaterials presented here to previously reported systems, indicating the capability for substantially enlarging the accessible range of CTE.
Collapse
Affiliation(s)
- Xiaogang Guo
- AML, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoyue Ni
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Jiahong Li
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hang Zhang
- AML, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Fan Zhang
- AML, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Huabin Yu
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Jun Wu
- AML, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yun Bai
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hongshuai Lei
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yonggang Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - John A Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Neurological Surgery, Northwestern University, Evanston, IL, 60208, USA
| | - Yihui Zhang
- AML, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
40
|
Liu J, Xu L, He C, Lu X, Wang F. Transparent low-voltage-driven soft actuators with silver nanowires Joule heaters. Polym Chem 2021. [DOI: 10.1039/d1py00837d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transparent soft actuators with silver nanowire Joule heaters embedded in liquid crystal elastomer and PDMS layer was prepared, and it can perform reversible large bending deformation driven by low voltage.
Collapse
Affiliation(s)
- Jian Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Lulu Xu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Chaobin He
- Polymer Composites, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, 138634 Singapore
- Department of Materials Science and Engineering, National University of Singapore, 117574, Singapore
| | - Xuehong Lu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - FuKe Wang
- Polymer Composites, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, 138634 Singapore
| |
Collapse
|
41
|
Programmable Stimuli-Responsive Actuators for Complex Motions in Soft Robotics: Concept, Design and Challenges. ACTUATORS 2020. [DOI: 10.3390/act9040131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the last years, great progress was made in material science in terms of concept, design and fabrication of new composite materials with conferred properties and desired functionalities. The scientific community paid particular interest to active soft materials, such as soft actuators, for their potential as transducers responding to various stimuli aiming to produce mechanical work. Inspired by this, materials engineers today are developing multidisciplinary approaches to produce new active matters, focusing on the kinematics allowed by the material itself more than on the possibilities offered by its design. Traditionally, more complex motions beyond pure elongation and bending are addressed by the robotics community. The present review targets encompassing and rationalizing a framework which will help a wider scientific audience to understand, sort and design future soft actuators and methods enabling complex motions. Special attention is devoted to recent progress in developing innovative stimulus-responsive materials and approaches for complex motion programming for soft robotics. In this context, a challenging overview of the new materials as well as their classification and comparison (performances and characteristics) are proposed. In addition, the great potential of soft transducers are outlined in terms of kinematic capabilities, illustrated by the related application. Guidelines are provided to design actuators and to integrate asymmetry enabling motions along any of the six basic degrees of freedom (translations and rotations), and strategies towards the programming of more complex motions are discussed. As a final note, a series of manufacturing methods are described and compared, from molding to 3D and 4D printing. The review ends with a Perspectives section, from material science and microrobotic points of view, on the soft materials’ future and close future challenges to be overcome.
Collapse
|
42
|
Oh B, Park YG, Jung H, Ji S, Cheong WH, Cheon J, Lee W, Park JU. Untethered Soft Robotics with Fully Integrated Wireless Sensing and Actuating Systems for Somatosensory and Respiratory Functions. Soft Robot 2020; 7:564-573. [DOI: 10.1089/soro.2019.0066] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Byungkook Oh
- Department of Materials Science and Engineering, Nano Science Technology Institute, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Young-Geun Park
- Department of Materials Science and Engineering, Nano Science Technology Institute, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Hwaebong Jung
- Department of Materials Science and Engineering, Nano Science Technology Institute, Yonsei University, Seoul, Republic of Korea
| | - Sangyoon Ji
- Department of Materials Science and Engineering, Nano Science Technology Institute, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Woon Hyung Cheong
- Department of Materials Science and Engineering, Nano Science Technology Institute, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Wooyoung Lee
- Department of Materials Science and Engineering, Nano Science Technology Institute, Yonsei University, Seoul, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Nano Science Technology Institute, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
| |
Collapse
|
43
|
Wu S, Yao S, Liu Y, Hu X, Huang HH, Zhu Y. Buckle-Delamination-Enabled Stretchable Silver Nanowire Conductors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41696-41703. [PMID: 32808757 DOI: 10.1021/acsami.0c09775] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlled buckling and delamination of thin films on a compliant substrate has attracted much attention for applications ranging from micro/nanofabrication to flexible and stretchable electronics to bioengineering. Here, a highly conductive and stretchable conductor is fabricated by attaching a polymer composite film (with a thin layer of silver nanowires embedded below the surface of the polymer matrix) on top of a prestretched elastomer substrate followed with releasing the prestrain. A partially delaminated wavy geometry of the polymer film is created. During the evolution of the buckle-delamination, the blisters pop-up randomly but self-adjust into a uniform distribution, which effectively reduces the local strain in the silver nanowires. The resistance change of the conductor is less than 3% with the applied strain up to 100%. A theoretical model on the buckle-delamination structure is developed to predict the geometrical evolution, which agrees well with experimental observation. Finally, an integrated silver nanowire/elastomer sensing module and a stretchable thermochromic device are developed to demonstrate the utility of the stretchable conductor. This work highlights the important relevance of mechanics-based design in nanomaterial-enabled stretchable devices.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Shanshan Yao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Chapel Hill, North Carolina 27599, United States
| | - He Helen Huang
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Chapel Hill, North Carolina 27599, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
44
|
Tian Y, Li YT, Tian H, Yang Y, Ren TL. Recent Progress of Soft Electrothermal Actuators. Soft Robot 2020; 8:241-250. [PMID: 32668187 DOI: 10.1089/soro.2019.0164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Developing soft electrothermal actuators (ETAs) has drawn extensive concern in recent years. This article presents a comprehensive review on recent progress of soft ETAs through five sections: device design on structure and materials, property, fabrication methods, applications, and prospects. It's found that the fabrication process can be divided into standard surface complementary metal oxide semiconductor technology, novel laser scribing, and inkjet printing method. Moreover, current applications involve three aspects: mechanical applications, optical applications, and biomimetic applications. It will develop in the direction of increasing electrothermal efficiency and response speed emphatically. This review encourages achievement of its higher performance and broad applications in the future.
Collapse
Affiliation(s)
- Ye Tian
- Institute of Microelectronics, Tsinghua University, Beijing, China.,Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Yu-Tao Li
- Institute of Microelectronics, Tsinghua University, Beijing, China.,Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - He Tian
- Institute of Microelectronics, Tsinghua University, Beijing, China.,Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Yi Yang
- Institute of Microelectronics, Tsinghua University, Beijing, China.,Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Tian-Ling Ren
- Institute of Microelectronics, Tsinghua University, Beijing, China.,Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| |
Collapse
|
45
|
Ma JN, Zhang YL, Han DD, Mao JW, Chen ZD, Sun HB. Programmable deformation of patterned bimorph actuator swarm. Natl Sci Rev 2020; 7:775-785. [PMID: 34692096 PMCID: PMC8288920 DOI: 10.1093/nsr/nwz219] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Graphene-based actuators featuring fast and reversible deformation under various external stimuli are promising for soft robotics. However, these bimorph actuators are incapable of complex and programmable 3D deformation, which limits their practical application. Here, inspired from the collective coupling and coordination of living cells, we fabricated a moisture-responsive graphene actuator swarm that has programmable shape-changing capability by programming the SU-8 patterns underneath. To get better control over the deformation, we fabricated SU-8 micropattern arrays with specific geometries and orientations on a continuous graphene oxide film, forming a swarm of bimorph actuators. In this way, predictable and complex deformations, including bending, twisting, coiling, asymmetric bending, 3D folding, and combinations of these, have been achieved due to the collective coupling and coordination of the actuator swarm. This work proposes a new way to program the deformation of bilayer actuators, expanding the capabilities of existing bimorph actuators for applications in various smart devices.
Collapse
Affiliation(s)
- Jia-Nan Ma
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yong-Lai Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Dong-Dong Han
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Jiang-Wei Mao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Zhao-Di Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Hong-Bo Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
Tibi G, Sachyani Keneth E, Layani M, Magdassi S, Degani A. Three-Layered Design of Electrothermal Actuators for Minimal Voltage Operation. Soft Robot 2020; 7:649-662. [PMID: 32160139 DOI: 10.1089/soro.2018.0160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
By designing an actuator composed of thin layers with different coefficients of thermal expansion (CTE) together with an electrically conductive layer, the CTE mismatch can be utilized to produce soft electrothermal actuators (ETAs). These actuators have been typically implemented using only two layers, commonly relying on Timoshenko's analytic model that correlates the temperature to the actuator's curvature. In this study, we extend the analytic model to include the thermoelectric relation present in ETAs, that is, the conductive layer's properties with respect to the operation temperature. By applying the thermoelectric relation, a minimal voltage optimization can be applied to the analytic model. Using dimensionless analysis, we optimize the ETAs performance for both bi- and tri-layer ETAs with and without the thermal modeling. The bi-layer optimization not only predicts the maximal value for the bi-layer performance but also provides the optimal thickness of each layer for any couple of materials. We validate the tri-layer analytic model experimentally by measuring the curvature for different third layer thicknesses. Finally, we optimize the tri-layer design based on the analytic model, which can achieve an improvement in curvature per voltage of >3000% over the optimal bi-layer ETA.
Collapse
Affiliation(s)
- Gal Tibi
- Technion Autonomous Systems Program, Technion Israel Institute of Technology, Haifa, Israel
| | - Ela Sachyani Keneth
- Casali Center of Applied Chemistry, Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Layani
- Casali Center of Applied Chemistry, Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shlomo Magdassi
- Casali Center of Applied Chemistry, Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amir Degani
- Technion Autonomous Systems Program, Technion Israel Institute of Technology, Haifa, Israel.,Department of Environmental, Water and Agricultural Engineering, Faculty of Civil and Environmental Engineering, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
47
|
Jiang S, Guo W, Liu S, Huang X, Li Y, Li Z, Wu H, Yin Z. Grab and Heat: Highly Responsive and Shape Adaptive Soft Robotic Heaters for Effective Heating of Objects of Three-Dimensional Curvilinear Surfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47476-47484. [PMID: 31765119 DOI: 10.1021/acsami.9b19889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Soft actuators have received great research attention because of the recent rise of soft robotics. However, these actuators could perform only relatively simple deformations (such as bending, twisting, etc.) for manipulation, limiting their functionality. Here, we develop highly responsive and shape adaptive soft robotic heaters which not only can achieve large degree of deformation but also can grab and heat objects of three-dimensional (3D) curvilinear surfaces. With intentionally synthesized and selected materials for device fabrication, a U-shaped soft robotic heater exhibits a deformation angle of more than 860° and a curvature of 4.0 cm-1 at a very low voltage of 2 V, and its curvature can quickly reach 1.31 cm-1 within 6 s. Moreover, the device can also function as a stable heat source with temperature of 203 °C upon actuation, demonstrating a maximum energy efficiency of 7.44% as a heater. Importantly, the soft robotic heaters can deform to enclose 3D curvilinear surfaces with pressure to enable intimate contact for more effective heat transfer. The unique utility of the soft robotic heaters is illustrated through the heating of objects of various 3D shapes, showcasing their potential applications in soft robotics, advanced thermal therapy, food handling and processing, etc.
Collapse
Affiliation(s)
- Shan Jiang
- Flexible Electronics Research Center, School of Mechanical Science and Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , P.R. China
| | - Wei Guo
- Flexible Electronics Research Center, School of Mechanical Science and Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , P.R. China
| | - Shaoyu Liu
- Flexible Electronics Research Center, School of Mechanical Science and Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , P.R. China
| | - Xin Huang
- Flexible Electronics Research Center, School of Mechanical Science and Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , P.R. China
| | - Yangyang Li
- Flexible Electronics Research Center, School of Mechanical Science and Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , P.R. China
| | - Zhuo Li
- Department of Materials Science , Fudan University , Shanghai 200433 , China
| | - Hao Wu
- Flexible Electronics Research Center, School of Mechanical Science and Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , P.R. China
- Guangdong Sygole Intelligent Technology Co., Ltd , 523808 Dongguan , Guangdong , China
| | - Zhouping Yin
- Flexible Electronics Research Center, School of Mechanical Science and Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , P.R. China
| |
Collapse
|
48
|
Ji Y, Xing Y, Li X, Shao LH. Dual-Stimuli Responsive Carbon Nanotube Sponge-PDMS Amphibious Actuator. NANOMATERIALS 2019; 9:nano9121704. [PMID: 31795263 PMCID: PMC6956020 DOI: 10.3390/nano9121704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 01/24/2023]
Abstract
A dual-stimuli responsive soft actuator based on the three-dimensional (3D) porous carbon nanotube (CNT) sponge and its composite with polydimethylsiloxane (PDMS) was developed, which can realize both electrothermal and electrochemical actuation. The bimorph actuator exhibited a bending curvature of 0.32 cm−1·W−1 under electrothermal stimulation on land. The displacement of the electrochemical actuator could reach 4 mm under a 5 V applied voltage in liquid. The dual-responsive actuator has demonstrated the applications on multi-functional amphibious soft robots as a crawling robot like an inchworm, a gripper to grasp and transport the cargo and an underwater robot kicking a ball. Our study presents the versatility of the CNT sponge-based actuator, which can be used both on land and in water.
Collapse
|
49
|
Li Q, Liu C. Fast-response, agile and functional soft actuators based on highly-oriented carbon nanotube thin films. NANOTECHNOLOGY 2019; 31:085501. [PMID: 31627200 DOI: 10.1088/1361-6528/ab4f2b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Highly-oriented carbon nanotube (CNT) film, which is made from super-aligned CNT array, is an even, tough and soft material. This CNT film has strong anisotropy in electrical and mechanical properties. The electrical conductivity and Young's modulus of the CNT film (2.8 × 104S m-1, 3000 MPa) along the CNT aligned direction are one magnitude larger than those (2.3 × 103S m-1, 200 MPa) along the vertical direction. In virtue of easy preparation and good processability, it is competent as high-performance flexible electrodes for soft actuators, advanced film capacitors and batteries. Here, we use this highly-oriented CNT film as a heating electrode to make fast-response soft actuators. The actuator has a thin bilayer composite structure and is driven by current heating. It takes a typical miniaturized actuator only 0.9 s to perform fast and large-angle deformations (270° bending, curvature 4.8 cm-1), and its bending speed can reach 300° s-1by low power driving (2.4 W). Based on this CNT film, graphical designs and fine processing were carried out to make patterned electrodes and functional actuators, such as cross-shaped and hand-shaped ones. Notably, a well-designed gripper-like actuator can even deftly grab and manipulate some tiny things, e.g. a grain of rice. Moreover, the anisotropic properties of the CNT film also effectively influence and regulate the deformation forms of the actuators. In virtue of good and unique performances in electrical, mechanical and thermal aspects, the high-oriented CNT film would have promising application prospects in various emerging soft devices.
Collapse
Affiliation(s)
- Qingwei Li
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Changhong Liu
- Tsinghua-Foxconn Nanotechnology Research Center and Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
50
|
Sachyani Keneth E, Scalet G, Layani M, Tibi G, Degani A, Auricchio F, Magdassi S. Pre-Programmed Tri-Layer Electro-Thermal Actuators Composed of Shape Memory Polymer and Carbon Nanotubes. Soft Robot 2019; 7:123-129. [PMID: 31580782 DOI: 10.1089/soro.2018.0159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Due to their high deformability, lightness, and safe interaction with the surrounding environment, flexible actuators are key ingredients in soft robotics technologies. Among these, electro-thermal actuators (ETAs), based on carbon nanotubes (CNTs), are used to generate agile movements when current is applied. The extent of movement is determined mostly by the coefficient of thermal expansion (CTE) of the materials arranged in a bi-/tri-layer structure. However, current CNT-based ETAs usually accomplish only simple actions with limited movements. In this work, we successfully developed novel ETAs that are capable of carrying out various controllable movements, such as extremely high bending curvature or unique actuations mimicking a wheel and a worm. These superior functionalities are achieved by adding a third layer or hinges composed of a thermo-responsive shape memory polymer (SMP) onto a bi-layer CNT-kapton ETA. To predict the unique movements of the "triangle" and "worm" actuators, finite element simulations were performed. The combination of SMP and electro-thermal behavior demonstrates its potential for applications in the field of soft actuators and robotics.
Collapse
Affiliation(s)
- Ela Sachyani Keneth
- Casali Center of Applied Chemistry, Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Giulia Scalet
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Michael Layani
- Casali Center of Applied Chemistry, Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gal Tibi
- Faculty of Civil and Environmental Engineering, Technion I.I.T., Haifa, Israel
| | - Amir Degani
- Faculty of Civil and Environmental Engineering, Technion I.I.T., Haifa, Israel.,Technion Autonomous Systems Program (TASP), Technion I.I.T., Haifa, Israel
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Shlomo Magdassi
- Casali Center of Applied Chemistry, Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|