1
|
Al Tahan MA, Al-Khattawi A, Russell C. Stearic acid-capped mesoporous silica microparticles as novel needle-like-structured drug delivery carriers. Eur J Pharm Biopharm 2024:114619. [PMID: 39716609 DOI: 10.1016/j.ejpb.2024.114619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
Mesoporous silica are widely utilised as drug carriers due to their large pore volume and surface area, which facilitate effective loading. Additionally, they can be used to enhance drugs stability and protect against enzymatic degradation due to their silica framework. However, without the addition of a capping material, the loaded cargo may be prematurely released before reaching the target site. This work reports the functionalisation of a commercially available silica microparticle (SYLOID XDP 3050) with stearic acid at various stearic acid loading concentrations (20-120 % w/w). Scanning electron microscopy (SEM) analysis revealed that the pores were capped with stearic acid, with the filling ratio increasing proportionally to the loading concentration. Notably, needle-like structures appeared when the stearic acid amount exceeded 80 % w/w, surpassing the calculated theoretical maximum pore filling ratio (64.32 %). The molecular interactions were highlighted using Fourier-transform infrared spectroscopy (FTIR), as the intensity of the CH3 increased with increased stearic acid loading concentrations. The needle-structures phenomenon was corroborated by 3D confocal imaging. It utilised the autofluorescence properties of stearic acid to demonstrate its presence within the carrier, with fluorescence intensity increasing alongside the stearic acid concentration. Differential scanning calorimetry (DSC) indicated the crystalline nature of these needle structures, which was further confirmed by X-ray diffraction (XRD) analysis, validating the crystallisation of the stearic acid needles. Moreover, nitrogen porosimetry was employed to assess the pore volume and surface area, where the formulation containing 120 % stearic acid exhibited the lowest pore volume (0.59 cc). This value was smaller than unloaded SYLOID (2.1 cc), indicating near-complete filling of the carrier. This newly developed SYLOID-stearic acid carrier will now be used to enhance formulation development as a platform to enhance protein oral drug delivery.
Collapse
Affiliation(s)
- Mohamad Anas Al Tahan
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Aston Medical Research Institute, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Ali Al-Khattawi
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom.
| | - Craig Russell
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom.
| |
Collapse
|
2
|
Łętocha A, Miastkowska M, Sikora E, Michalczyk A, Liszka-Skoczylas M, Witczak M. Hybrid Systems of Oleogels and Probiotic-Loaded Alginate Carriers for Potential Application in Cosmetics. Molecules 2024; 29:5984. [PMID: 39770073 PMCID: PMC11678532 DOI: 10.3390/molecules29245984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Oleogels (organogels) are systems resembling a solid substance based on the gelation of organic solvents (oil or non-polar liquid) through components of low molecular weight or oil-soluble polymers. Such compounds are organogelators that produce a thermoreversible three-dimensional gel network that captures liquid organic solvents. Oleogels based on natural oils are attracting more attention due to their numerous advantages, such as their unsaturated fatty acid contents, ease of preparation, and safety of use. As a result of the research, two oleogels were developed, into which freeze-dried alginate carriers with a probiotic, L. casei, were incorporated. Two techniques were used to produce probiotic-loaded capsules-extrusion and emulsification. Alginate beads obtained by the extrusion process have a size of approximately 1.2 mm, while much smaller microspheres were obtained using the emulsification technique, ranging in size from 8 to 17 µm. The trehalose was added as a cryoprotectant to improve the survival rate of probiotics in freeze-dried alginate carriers. The encapsulation efficiency for both of the methods applied, the emulsification and the extrusion technique, was high, with levels of 90% and 87%, respectively. The obtained results showed that the production method of probiotic-loaded microspheres influence the bacterial viability. The better strain survival in the developed systems was achieved in the case of microspheres produced by the emulsification (reduction in bacterial cell viability in the range of 1.98-3.97 log in silica oleogel and 2.15-3.81 log in sucragel oleogel after 7 and 30 days of storage) than by the extrusion technique (after a week and a month of oleogel storage, the decrease in cell viability was 2.52-4.52 log in silica oleogel and 2.48-4.44 log in sucragel oleogel).
Collapse
Affiliation(s)
- Anna Łętocha
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, 31-155 Cracow, Poland; (M.M.); (E.S.)
| | - Małgorzata Miastkowska
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, 31-155 Cracow, Poland; (M.M.); (E.S.)
| | - Elżbieta Sikora
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, 31-155 Cracow, Poland; (M.M.); (E.S.)
| | - Alicja Michalczyk
- Lukasiewicz—Research Network-Institute of Industrial Organic Chemistry, 03-236 Warsaw, Poland;
| | - Marta Liszka-Skoczylas
- Department of Engineering and Machinery for Food Industry, University of Agriculture in Krakow, Balicka Street 122, 30-149 Cracow, Poland; (M.L.-S.); (M.W.)
| | - Mariusz Witczak
- Department of Engineering and Machinery for Food Industry, University of Agriculture in Krakow, Balicka Street 122, 30-149 Cracow, Poland; (M.L.-S.); (M.W.)
| |
Collapse
|
3
|
Sakkal M, Arafat M, Yuvaraju P, Beiram R, AbuRuz S. Preparation and Characterization of Theophylline Controlled Release Matrix System Incorporating Poloxamer 407, Stearyl Alcohol, and Hydroxypropyl Methylcellulose: A Novel Formulation and Development Study. Polymers (Basel) 2024; 16:643. [PMID: 38475326 DOI: 10.3390/polym16050643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Theophylline (THN), a bronchodilator with potential applications in emerging conditions like COVID-19, requires a controlled-release delivery system due to its narrow therapeutic range and short half-life. This need is particularly crucial as some existing formulations demonstrate impaired functionality. This study aims to develop a new 12-h controlled-release matrix system (CRMS) in the form of a capsule to optimize dosing intervals. METHODS CRMSs were developed using varying proportions of poloxamer 407 (P-407), stearyl alcohol (STA), and hydroxypropyl methylcellulose (HPMC) through the fusion technique. Their in vitro dissolution profiles were then compared with an FDA-approved THN drug across different pH media. The candidate formulation underwent characterization using X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Additionally, a comprehensive stability study was conducted. RESULTS In vitro studies showed that adjusting the concentrations of excipients effectively controlled drug release. Notably, the CRMS formulation 15 (CRMS-F15), which was composed of 30% P-407, 30% STA, and 10% HPMC, closely matched the 12 h controlled-release profile of an FDA-approved drug across various pH media. Characterization techniques verified the successful dispersion of the drug within the matrix. Furthermore, CRMS-F15 maintained a consistent controlled drug release and demonstrated stability under a range of storage conditions. CONCLUSIONS The newly developed CRMS-F15 achieved a 12 h controlled release, comparable to its FDA-approved counterpart.
Collapse
Affiliation(s)
- Molham Sakkal
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates
| | - Priya Yuvaraju
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Salahdein AbuRuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
4
|
Cheng K, Pan Y, Han Z, Wang Z, Sun Q, Wei S, Xia Q, Liu Y, Liu S, Shao JH. A sight of self-assembly mechanism in fish oil oleogels: Phase transition, crystal structure and non-covalent interaction. Food Chem 2024; 433:137323. [PMID: 37678124 DOI: 10.1016/j.foodchem.2023.137323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Fish oils contain ω-3 polyunsaturated fatty acids (PUFAs), but easily cause quality deterioration due to the oxidation. Beeswax-based oleogels could wrap fish oils by beeswax self-assembly. The phase transition, crystal structure and non-covalent interaction were investigated to reveal the self-assembly mechanism from the perspective of beeswax and oil phase characteristics. The results indicated that high unsaturation degree, PUFAs and beeswax additions promoted phase transition, SFC and stable crystal networks. The changes of crystal structures were ascribed to the polymorphism and polymorphic transition. β-Polymorphs could form crystal networks, and β'-polymorphs could influence the size of crystal chains or clusters as well as crystalline domains. Crystalline domain sizes affected crystal morphologies and network structures, including plate-like structures and multi-layer porous structures. UFAs could involve the beeswax self-assembly to change structure characteristics by van der Waals forces and π-π stacking. The OBC remained 100%, when beeswax additions reached more than 6%. Hence, beeswax additions, PUFA contents and unsaturation degree all influenced the self-assembly mechanism and adjusted the macroscopic properties of oleogels.
Collapse
Affiliation(s)
- Kaixing Cheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yanmo Pan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qiuyu Xia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
5
|
Ribourg-Birault L, Meynier A, Vergé S, Sallan E, Kermarrec A, Falourd X, Berton-Carabin C, Fameau AL. Oleofoams: The impact of formulating air-in-oil systems from a lipid oxidation perspective. Curr Res Food Sci 2024; 8:100690. [PMID: 38328464 PMCID: PMC10847802 DOI: 10.1016/j.crfs.2024.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024] Open
Abstract
Air-in-oil foams, or oleofoams, have a great potential for food applications as they can at least partially replace animal or hydrogenated fats, without compromising on textural properties. Yet, there are some challenges to tackle before they can largely be implemented for real-life applications. One of those is the lack of data regarding their oxidative stability. This is an important point to consider, as although using oils rich in polyunsaturated fatty acids (PUFAs) is highly desirable from a nutritional perspective, these fatty acids are particularly prone to oxidation, which leads to major degradations of food quality. This work thus aimed to investigate the oxidative stability of oleofoams prepared with omega-3 PUFA-rich vegetable oils (rapeseed or flaxseed oil) and various types of high melting point lipid-based oleogelators (stearic acid, glyceryl monostearate and stearyl alcohol) when incubated at room temperature. The physical structure and stability of the oleofoams was monitored by various techniques (visual observations, microscopy, DSC, NMR, SAXS and WAXS). Lipid oxidation was assessed by combined measurements of primary (conjugated diene hydroperoxides) and secondary (thiobarbituric acid reactive substances - TBARS) products. We found that the oxidative stability of oleofoams was higher compared to that of the corresponding bulk oil. This protective effect was also found when the oil was simply mixed with the oleogelator without incorporation of air bubbles (i.e., forming an oleogel), and was somewhat modulated depending on the type of oleogelator. These results suggest that oleogelators and the structural changes that they induce limit the cascaded propagation of lipid oxidation in oil-continuous matrices, which is promising in the perspective of future applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Xavier Falourd
- INRAE, UR BIA, F-44300, Nantes, France
- INRAE, PROBE/CALIS Research Infrastructures, BIBS Facility, F-44300, Nantes, France
| | - Claire Berton-Carabin
- INRAE, UR BIA, F-44300, Nantes, France
- Wageningen University & Research, Laboratory of Food Process Engineering, 6700 AA, Wageningen, the Netherlands
| | - Anne-Laure Fameau
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMET, F-59000, Lille, France
| |
Collapse
|
6
|
Ramezani M, Salvia-Trujillo L, Martín-Belloso O. Modulating edible-oleogels physical and functional characteristics by controlling their microstructure. Food Funct 2024; 15:663-675. [PMID: 38108083 DOI: 10.1039/d3fo03491g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The influence of co-oleogelators like lecithin or hydrogenated lecithin together with the addition of dispersed water droplets to modulate the microstructure and thus the physical properties of glyceryl stearate (GS)-corn oil oleogels was investigated by thermal profile, microstructure, hardness, and oil binding capacity (OBC). The addition of β-carotene (βC) was also assessed. With lecithin, crystallization and melting temperatures were reduced, resulting in less-ordered crystal networks with a lower hardness and OBC, while with hydrogenated lecithin, the opposite effect was observed. In the presence of water, oleogels became harder but more brittle. Finally, βC acted as a crystal modifier increasing the hardness and OBC in the presence of lecithin, but decreased these parameters in hydrogenated lecithin-containing and water-filled oleogels. This study provides a better understanding on how the composition of GS-based oleogels can affect their physical properties.
Collapse
Affiliation(s)
- Mohsen Ramezani
- Department of Food Technology, Engineering and Science. University of Lleida, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain.
- Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Laura Salvia-Trujillo
- Department of Food Technology, Engineering and Science. University of Lleida, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain.
- Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Olga Martín-Belloso
- Department of Food Technology, Engineering and Science. University of Lleida, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain.
- Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| |
Collapse
|
7
|
Zhang J, Dong L, Zheng Q, Xiao J, Cao Y, Lan Y. Surfactant-free oleogel-based emulsion stabilized by co-assembled ceramide/lecithin crystals with controlled digestibility. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3812-3821. [PMID: 36268716 DOI: 10.1002/jsfa.12285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND There is increasing interest in the development of oleogel-based emulsions. However, they usually contained surfactants for stabilization, especially small-molecular weight surfactants, which may have adverse health impacts. RESULTS Herein, a surfactant-free oleogel-based emulsion stabilized by co-assembled ceramide/lecithin (CER/LEC) crystals was developed. The formation and stabilization mechanisms were explored. The different molar ratios of gelator (LEC and CER) in emulsions resulted in different crystal morphology, crystallinity as well as different emulsion properties. This suggested that appropriate crystallinity, crystal size, and interfacial distribution of these crystals provided higher surface coverage against droplets coalescence, thus better emulsion stabilization. Both X-ray diffractograms and contact angle results confirmed that the crystals which were primarily responsible for emulsion stabilization, are co-assembled crystals consisted of both gelators (CER and LEC). Furthermore, the percentage of free fatty acids (FFAs%) results revealed a negative relationship between lipid digestibility and crystal concentration. CONCLUSIONS This strategy greatly enriched surfactant-free oleogel-based emulsion formulations, as well as their potential applications in healthy lipid-based products and novel food delivery systems with controlled lipid digestibility. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Lulu Dong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Sciences, South China Agricultural University, Guangzhou, China
- Guangzhou Shuke Industrial Co. Ltd, Guangzhou, China
| | - Qianwang Zheng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Sarkisyan V, Frolova Y, Sobolev R, Kochetkova A. On the Role of Beeswax Components in the Regulation of Sunflower Oil Oleogel Properties. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
9
|
Guo J, Cui L, Meng Z. Oleogels/emulsion gels as novel saturated fat replacers in meat products: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
10
|
Silva PM, Cerqueira MA, Martins AJ, Fasolin LH, Cunha RL, Vicente AA. Oleogels and bigels as alternatives to saturated fats: A review on their application by the food industry. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pedro M. Silva
- Centre of Biological Engineering University of Minho Braga Portugal
- International Iberian Nanotechnology Laboratory Braga Portugal
| | | | | | - Luiz H. Fasolin
- Department of Food Engineering and Technology School of Food Engineering, University of Campinas – UNICAMP Campinas São Paulo Brazil
| | - Rosiane L. Cunha
- Department of Food Engineering and Technology School of Food Engineering, University of Campinas – UNICAMP Campinas São Paulo Brazil
| | | |
Collapse
|
11
|
Fameau A, Marangoni AG. Back to the future: Fatty acids, the green genie to design smart soft materials. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anne‐Laure Fameau
- Université Lille, CNRS, Centrale Lille, UMET INRAe Villeneuve d'Ascq France
| | | |
Collapse
|
12
|
Wilkinson J, Ajulo D, Tamburrini V, Gall GL, Kimpe K, Holm R, Belton P, Qi S. Lipid based intramuscular long-acting injectables: current state of the art. Eur J Pharm Sci 2022; 178:106253. [DOI: 10.1016/j.ejps.2022.106253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/03/2022]
|
13
|
Tang TO, Holmes S, Boyd BJ, Simon GP. Extrusion and 3D printing of novel lipid-polymer blends for oral drug applications. BIOMATERIALS ADVANCES 2022; 137:212818. [PMID: 35929236 DOI: 10.1016/j.bioadv.2022.212818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022]
Abstract
Lipids are interesting biological materials that can offer a number of pharmaceutical benefits when used as carriers for drug delivery. However, 3D printing of lipids alone by fused deposition processing techniques is very difficult as they have very poor mechanical properties that cause their filaments to fail when they are loaded into a fused deposition 3D printer. If this problem could be overcome, then lipids could be 3D printed into bespoke tablets and assist progress towards such personalised medicines. This work aims to improve the mechanical properties of lipid filaments by developing novel lipid-EVA (ethylene vinyl acetate) blends suitable for 3D printing. Different types of lipids in varying proportions were melt blended with EVA and extruded using a micro compounder. The ultimate printability of the materials was tested by feeding the filaments into a material extrusion 3D printer. Flexural testing of the extruded blends demonstrates that a good balance between the strength and flexibility is required for a material to be printable and it was found that a filament has to have a modulus/strength ratio between 8 and 25 in order to be printable. SEM analysis of the fracture surface shows a network structure within the lipid matrix that could be playing a role in the improved properties of the best performing blends. DSC thermograms show a shift in thermal transitions, suggesting some level of miscibility of the components that could have contributed to a more robust structure. The TGA results show an onset of degradation of the blends greater than 200 °C, indicating that the materials can readily withstand the extrusion and printing temperatures. This study demonstrates the successful extrusion and 3D printing of novel EVA-lipid blends with lipid contents of up to 90%.
Collapse
Affiliation(s)
- Tiffany O Tang
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia; Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Research Way, Clayton, VIC 3168, Australia.
| | - Susan Holmes
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Research Way, Clayton, VIC 3168, Australia.
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, 3052 Victoria, Australia.
| | - George P Simon
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
14
|
Sivakanthan S, Fawzia S, Madhujith T, Karim A. Synergistic effects of oleogelators in tailoring the properties of oleogels: A review. Compr Rev Food Sci Food Saf 2022; 21:3507-3539. [PMID: 35591753 DOI: 10.1111/1541-4337.12966] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/24/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
Abstract
Conventional solid fats play a crucial role as an ingredient in many processed foods. However, these fats contain a high amount of saturated fats and trans fats. Legislations and dietary recommendations related to these two types of fats set forth as a consequence of evidence showing their deleterious health impact have triggered the attempts to find alternate tailor-made lipids for these solid fats. Oleogels is considered as a novel alternative, which has reduced saturated fat and no trans fat content. In addition to mimicking the distinctive characteristics of solid fats, oleogels can be developed to contain a high amount of polyunsaturated fatty acids and used to deliver bioactives. Although there has been a dramatic rise in the interest in developing oleogels for food applications over the past decade, none of them has been commercially used in foods so far due to the deficiency in their crystal network structure, particularly in monocomponent gels. Very recently, there is a surge in the interest in using of combination of gelators due to the synergistic effects that aid in overcoming the drawbacks in monocomponent gels. However, currently, there is no comprehensive insight into synergism among oleogelators reported in recent studies. Therefore, a comprehensive intuition into the findings reported on synergism is crucial to fill this gap. The objective of this review is to give a comprehensive insight into synergism among gelators based on recent literature. This paper also identifies the future research propositions towards developing oleogels capable of exactly mimicking the properties of conventional solid fats to bridge the gap between laboratory research and the food industry.
Collapse
Affiliation(s)
- Subajiny Sivakanthan
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.,Department of Agricultural Chemistry, Faculty of Agriculture, University of Jaffna, Kilinochchi, Sri Lanka.,Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Sabrina Fawzia
- School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Terrence Madhujith
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Azharul Karim
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Lassila P, Valoppi F, Tommiska O, Hyvönen J, Holmström A, Hietala S, Salmi A, Haeggström E. Practical scale modification of oleogels by ultrasonic standing waves. ULTRASONICS SONOCHEMISTRY 2022; 85:105970. [PMID: 35367736 PMCID: PMC8983462 DOI: 10.1016/j.ultsonch.2022.105970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Lipid-based materials, such as substitutes for saturated fats (oleogels) structurally modified with ultrasonic standing waves (USW), have been developed by our group. To enable their potential application in food products, pharmaceuticals, and cosmetics, practical and economical production methods are needed. Here, we report scale-up of our procedure of structurally modifying oleogels via the use of USW by a factor of 200 compared to our previous microfluidic chamber. To this end, we compared three different USW chamber prototypes through finite element simulations (FEM) and experimental work. Imaging of the internal structure of USW-treated oleogels was used as feedback for successful development of chambers, i.e., the formation of band-like structures was the guiding factor in chamber development. We then studied the bulk mechanical properties by a uniaxial compression test of the sonicated oleogels obtained with the most promising USW chamber, and sampled local mechanical properties using scanning acoustic microscopy. The results were interpreted using a hyperelastic foam model. The stability of the sonicated oleogels was compared to control samples using automated image analysis oil-release tests. This work enabled the effective mechanical-structural manipulation of oleogels in volumes of 10-100 mL, thus paving the way for USW treatments of large-scale lipid-based materials.
Collapse
Affiliation(s)
- Petri Lassila
- Electronics Research Laboratory, Department of Physics, University of Helsinki, P.O. Box 64 (Gustaf Hällströmin katu 2), FI-00014, Finland
| | - Fabio Valoppi
- Electronics Research Laboratory, Department of Physics, University of Helsinki, P.O. Box 64 (Gustaf Hällströmin katu 2), FI-00014, Finland; Department of Food and Nutrition, University of Helsinki, P.O. Box 66 (Agnes Sjöbergin katu 2), FI-00014, Finland; Helsinki Institute of Sustainability Science, Faculty of Agriculture and Forestry, University of Helsinki, FI-00014, Finland.
| | - Oskari Tommiska
- Electronics Research Laboratory, Department of Physics, University of Helsinki, P.O. Box 64 (Gustaf Hällströmin katu 2), FI-00014, Finland
| | - Jere Hyvönen
- Electronics Research Laboratory, Department of Physics, University of Helsinki, P.O. Box 64 (Gustaf Hällströmin katu 2), FI-00014, Finland
| | - Axi Holmström
- Electronics Research Laboratory, Department of Physics, University of Helsinki, P.O. Box 64 (Gustaf Hällströmin katu 2), FI-00014, Finland
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, P.O. Box 55 (Virtasen aukio 1), FI-00014, Finland
| | - Ari Salmi
- Electronics Research Laboratory, Department of Physics, University of Helsinki, P.O. Box 64 (Gustaf Hällströmin katu 2), FI-00014, Finland
| | - Edward Haeggström
- Electronics Research Laboratory, Department of Physics, University of Helsinki, P.O. Box 64 (Gustaf Hällströmin katu 2), FI-00014, Finland
| |
Collapse
|
16
|
Wang L, Wen Y, Su C, Gao Y, Li Q, Du S, Yu X. Effect of water content on the physical properties and structure of walnut oleogels. RSC Adv 2022; 12:8987-8995. [PMID: 35424844 PMCID: PMC8985134 DOI: 10.1039/d2ra00920j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
This study aimed to investigate the effect of water content on the properties and structure of oleogels by developing walnut oleogel based on potato starch and candelilla wax (CW). Physical, thermal, rheological and microstructure characteristics of the walnut oleogel were determined by texture analyzer, differential scanning calorimeter, rotary rheometer, X-ray diffractometer and optical microscope. Results showed that with increased water content, the hardness of the oleogel increased from 123.35 g to 158 g, whereas the oil loss rate decreased from 24.64% to 10.91%. However, these two values decreased slightly when the ratio of oil to water was 1 : 1. The prepared oleogels have a high elastic modulus, and the flow behavior of all walnut oleogels conformed to that of a non-flowing fluid. Microstructure observation indicated that the crystal size and quantity increased with an increase in water content, and the liquid oil was wrapped in the crystal network by CW and potato starch, forming solidified droplets to further promote gelation. In conclusion, when the ratio of oil to water is 39%, the oleogel has good physical properties and stable crystal structure. These findings can provide an indication of water content in the composition of oleogels.
Collapse
Affiliation(s)
- Liqian Wang
- College of Food Science and Engineering, Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China +86-29-87092486 +86-29-87092308
- Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province 22 Xinong Road Yangling 712100 Shaanxi P. R. China
| | - Yuxiu Wen
- College of Food Science and Engineering, Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China +86-29-87092486 +86-29-87092308
- Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province 22 Xinong Road Yangling 712100 Shaanxi P. R. China
| | - Caihong Su
- College of Food Science and Engineering, Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China +86-29-87092486 +86-29-87092308
- Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province 22 Xinong Road Yangling 712100 Shaanxi P. R. China
| | - Yuan Gao
- College of Food Science and Engineering, Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China +86-29-87092486 +86-29-87092308
- Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province 22 Xinong Road Yangling 712100 Shaanxi P. R. China
| | - Qi Li
- College of Food Science and Engineering, Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China +86-29-87092486 +86-29-87092308
- Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province 22 Xinong Road Yangling 712100 Shaanxi P. R. China
| | - Shuangkui Du
- College of Food Science and Engineering, Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China +86-29-87092486 +86-29-87092308
- Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province 22 Xinong Road Yangling 712100 Shaanxi P. R. China
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China +86-29-87092486 +86-29-87092308
- Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province 22 Xinong Road Yangling 712100 Shaanxi P. R. China
| |
Collapse
|
17
|
da Silva TLT, Danthine S. High-intensity Ultrasound as a Tool to Form Water in Oleogels Emulsions Structured by Lipids Oleogelators. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Abstract
AbstractIn this contribution, the effect of cooling rates on a wide compositional range of waxes as oleogel structurants was systematically investigated. The different waxes exhibited varying levels of wax esters (WE), fatty acids (FA), fatty alcohols (FaOH) and hydrocarbons (HC) and were systematically altered by combinations of sunflower wax (SFW), bees wax (BW) and their hydrolyzed variants (SFWh, BWh). By applying slow, medium and high cooling rates, the resulting gel properties were investigated in terms of firmness, calorimetry and microstructure. It was found that the calorimetrical signal is mainly affected by the waxes’ composition. However, due to enlarged dynamic induction times upon crystallization, a shift in dissolution temperature could be observed in heating scans. In our latest work we were able to formulate the degree of homogeneity (DoH), with which it was possible to predict the undercooling in SFW mixtures. The introduction of a novel method emerged for firmness measurements of oleogels treated with the different rates. Thus, it was possible to detect with high sensitivity for all waxes for applied cooling rates, caused by modification of microstructure. Combination of different methods further elucidated that higher rates need to be applied to further scale firmness of oleogels in industrial processes.
Collapse
|
19
|
Liu W, Yao Y, Li C. Effect of tempered procedures on the crystallization behavior of different positions of cocoa butter products. Food Chem 2022; 370:131002. [PMID: 34500296 DOI: 10.1016/j.foodchem.2021.131002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/28/2021] [Accepted: 08/29/2021] [Indexed: 11/17/2022]
Abstract
The effects of tempered procedures (well and under-tempered) on the crystalline behaves of cocoa butter were elaborated through detecting crystalline structure and compositions of crystals located at different positions of cocoa butter products in this study. The under-tempered products couldn't form crystalline structures as uniform as the well-tempered ones, whose internal contained more low saturated triacylglycerol and structurally unstable crystals. The low saturated triacylglycerol further created the diverse microstructure and thermal properties between center and outer part of cocoa butter products. During storage, the concentration differences drive migration of low saturated triacylglycerol from center to outer part of the product. Although this reduces the differences in triacylglycerol composition, it results in the polymorphism conversion between β'-IV and β-VI form and the fat bloom formation. This work indicates that the monitor for crystalline properties of different positions in cocoa butter products helps the chocolate industry to control formation of fat bloom.
Collapse
Affiliation(s)
- Wentao Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yunping Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Changmo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
20
|
Wang Z, Chandrapala J, Truong T, Farahnaky A. Oleogels prepared with low molecular weight gelators: Texture, rheology and sensory properties, a review. Crit Rev Food Sci Nutr 2022; 63:6069-6113. [PMID: 35057682 DOI: 10.1080/10408398.2022.2027339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There is a growing need for healthier foods with no trans and reduced saturated fat. However, solid fats play critical roles in texture and sensory attributes of food products, making it challenging to eliminate them in foods. Recently, the concept of oleogelation as a novel oil structuring technique has received numerous attentions owing to their great potential to mimic the properties of solid fats. Understanding textural, rheological and sensory properties of oleogels helps predict the techno-functionalities of oleogels to replace solid fats in food products. This research critically reviews the textural and rheological properties of oleogels prepared by low molecular weight oleogelators (LMWGs) and functional characteristics of foods formulated by these oleogels. The mechanical properties of LMWG-containing oleogels are comprehensively discussed against conventional solid fats. The interactions between the oleogel and its surrounding food matrix are explained, and the sensory attributes of oleogel containing reformulated products are highlighted. Scientific insights into the texture and rheological properties of oleogels manufactured with a wide range of low molecular gelators and their related products are provided in order to boost their implication for creating healthier foods with high consumer acceptability. Future research opportunities on low molecular weight gelators are also discussed.
Collapse
Affiliation(s)
- Ziyu Wang
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Jayani Chandrapala
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Tuyen Truong
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Asgar Farahnaky
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Xia T, Wei Z, Xue C. Impact of composite gelators on physicochemical properties of oleogels and astaxanthin delivery of oleogel-based nanoemulsions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Shimizu T, Tanabe T, Kachi H, Shibata M. Enhancement of the Gel Hardness of Candelilla Wax through the Addition of Long-chain Ester Wax Behenyl Behenate. J Oleo Sci 2022; 71:1725-1733. [DOI: 10.5650/jos.ess22175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Taiki Shimizu
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Takaya Tanabe
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | | | - Masashi Shibata
- School of Bioscience and Biotechnology, Tokyo University of Technology
| |
Collapse
|
23
|
Wettlaufer T, Brykczynski H, Flöter E. Wax‐Based Oleogels—Properties in Medium Chain Triglycerides and Canola Oil. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Till Wettlaufer
- Faculty III Process Sciences Department of Food Technology and Food Chemistry Food Process Engineering Technische Universität Berlin Strasse des 17. Juni 135 Berlin 10623 Germany
| | - Henriette Brykczynski
- Faculty III Process Sciences Department of Food Technology and Food Chemistry Food Process Engineering Technische Universität Berlin Strasse des 17. Juni 135 Berlin 10623 Germany
| | - Eckhard Flöter
- Faculty III Process Sciences Department of Food Technology and Food Chemistry Food Process Engineering Technische Universität Berlin Strasse des 17. Juni 135 Berlin 10623 Germany
| |
Collapse
|
24
|
Woern C, Marangoni AG, Weiss J, Barbut S. Effects of partially replacing animal fat by ethylcellulose based organogels in ground cooked salami. Food Res Int 2021; 147:110431. [PMID: 34399448 DOI: 10.1016/j.foodres.2021.110431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022]
Abstract
Partial fat replacement in cooked salamis was formulated using organogels made with canola oil, ethylcellulose (EC; 6, 8, 9, 10, 11, 12 and 14%) and three types of surfactants; i.e., glycerol monostearate (GMS), stearyl alcohol/stearic acid (SOSA) and soybean lecithin (Lec). Texture profile analysis (TPA) and back extrusion tests indicated that increasing EC polymer concentration leads to harder gels regardless of the surfactant used. However, using GMS resulted in the hardest gel, whereas Lec did not strengthen the gel (mechanical stress test), but plasticized it. In general, gel hardness had a distinct effect on the binding of the organogel particle to the meat matrix, with softer gels adhering better under progressive compression. Substituting animal fat with organogel did not affect the main TPA parameters in most salami formulations, and canola oil by itself was also not significantly different from the pork and beef fat control. Using canola oil resulted in very small oil globules compared to the animal fat control, while structuring the oil yielded a microstructure with larger fat particles/globules, similar to the control. Color evaluation revealed a shift to yellow of the treatments with organogels compared to the control, but lightness and redness were not altered. The results demonstrate the potential use of structured vegetable oil to manufacture coarse ground meat products with lower saturated fat and a more favorable nutritional profile while resembling the traditional ground products.
Collapse
Affiliation(s)
- Carlos Woern
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 25, 70599 Stuttgart, Germany
| | | | - Jochen Weiss
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 25, 70599 Stuttgart, Germany
| | - Shai Barbut
- Department of Food Science, University of Guelph, N1G 2W1 Guelph, Ontario, Canada.
| |
Collapse
|
25
|
Wettlaufer T, Hetzer B, Flöter E. Characterization of Oleogels Based on Waxes and Their Hydrolyzates. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Till Wettlaufer
- Department of Food Process Engineering Technische Universität Seestraße 13 Berlin Berlin 13353 Germany
| | - Birgit Hetzer
- Department of Food Technology and Bioprocess Engineering Max Rubner‐Institut Karlsruhe 76131 Germany
| | - Eckhard Flöter
- Department of Food Process Engineering Technische Universität Seestraße 13 Berlin Berlin 13353 Germany
| |
Collapse
|
26
|
Pușcaș A, Mureșan V, Muste S. Application of Analytical Methods for the Comprehensive Analysis of Oleogels-A Review. Polymers (Basel) 2021; 13:polym13121934. [PMID: 34200945 PMCID: PMC8230493 DOI: 10.3390/polym13121934] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Numerous empirical studies have already been conducted on the innovative fat-replacing system defined as oleogel, creating a real urge for setting up a framework for future research, rather than conducting studies with arbitrary methods. This study re-evaluates the utility of some analyses and states some conclusions in order to eliminate the reluctance of food processors and consumers towards the utilization of oleogels as ingredients. The review presents extensively the methods applied for the characterization of various oleogels, while highlighting their addressability or inconveniences. The discussed methods were documented from the research published in the last five years. A classification of the methods is proposed based on their aims or the utility of the results, which either describe the nano-structure and the network formation, the quality of the resulting oleogel or its suitability as food ingredient or other edible purposes. The general conclusions drawn for some classes of oleogels were also revisited, in order to ease the understanding of the oleogel behaviour, to encourage innovative research approaches and to stimulate the progress in the state of art of knowledge.
Collapse
|
27
|
Kulawik-Pióro A, Miastkowska M. Polymeric Gels and Their Application in the Treatment of Psoriasis Vulgaris: A Review. Int J Mol Sci 2021; 22:ijms22105124. [PMID: 34066105 PMCID: PMC8151792 DOI: 10.3390/ijms22105124] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
Psoriasis is a chronic skin disease, and it is especially characterized by the occurrence of red, itchy, and scaly eruptions on the skin. The quality of life of patients with psoriasis is decreased because this disease remains incurable, despite the rapid progress of therapeutic methods and the introduction of many innovative antipsoriatic drugs. Moreover, many patients with psoriasis are dissatisfied with their current treatment methods and the form with which the drug is applied. The patients complain about skin irritation, clothing stains, unpleasant smell, or excessive viscosity of the preparation. The causes of these issues should be linked with little effectiveness of the therapy caused by low permeation of the drug into the skin, as well as patients’ disobeying doctors’ recommendations, e.g., concerning regular application of the preparation. Both of these factors are closely related to the physicochemical form of the preparation and its rheological and mechanical properties. To improve the quality of patients’ lives, it is important to gain knowledge about the specific form of the drug and its effect on the safety and efficacy of a therapy as well as the patients’ comfort during application. Therefore, we present a literature review and a detailed analysis of the composition, rheological properties, and mechanical properties of polymeric gels as an alternative to viscous and greasy ointments. We discuss the following polymeric gels: hydrogels, oleogels, emulgels, and bigels. In our opinion, they have many characteristics (i.e., safety, effectiveness, desired durability, acceptance by patients), which can contribute to the development of an effective and, at the same time comfortable, method of local treatment of psoriasis for patients.
Collapse
Affiliation(s)
| | - Małgorzata Miastkowska
- Correspondence: (A.K.-P.); (M.M.); Tel.: +48-1-2628-2740 (A.K.-P.); +48-1-2628-3072 (M.M.)
| |
Collapse
|
28
|
Shakeel A, Farooq U, Gabriele D, Marangoni AG, Lupi FR. Bigels and multi-component organogels: An overview from rheological perspective. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106190] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Callau M, Sow-Kébé K, Jenkins N, Fameau AL. Effect of the ratio between fatty alcohol and fatty acid on foaming properties of whipped oleogels. Food Chem 2020; 333:127403. [DOI: 10.1016/j.foodchem.2020.127403] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/05/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023]
|
30
|
Perkins RJ, Vazquez de Vasquez MG, Beasley EE, Hill TCJ, Stone EA, Allen HC, DeMott PJ. Relating Structure and Ice Nucleation of Mixed Surfactant Systems Relevant to Sea Spray Aerosol. J Phys Chem A 2020; 124:8806-8821. [PMID: 32924483 DOI: 10.1021/acs.jpca.0c05849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ice nucleating particles (INPs) influence weather and climate by their effect on cloud phase state. Fatty alcohols present within aerosol particles confer a potentially important source of ice nucleation activity to sea spray aerosol produced in oceanic regions. However, their interactions with other aerosol components and the influence on freezing were previously largely unknown. Here, we report quantitative measurements of fatty alcohols in model sea spray aerosol and examine the relationships between the composition and structure of the surfactants and subphase in the context of these measurements. Deposited mixtures of surfactants retain the ability to nucleate ice, even in fatty acid-dominant compositions. Strong refreezing effects are also observed, where previously frozen water-surfactant samples nucleate more efficiently. Structural sources of refreezing behavior are identified as either kinetically trapped film states or three-dimensional (3D) solid surfactant particles. Salt effects are especially important for surfactant INPs, where high salt concentrations suppress freezing. A simple water uptake model suggests that surfactant-containing aerosol requires either very low salt content or kinetic trapping as solid particles to act as INPs in the atmosphere. These types of INPs could be identified through comparison of different INP instrument responses.
Collapse
Affiliation(s)
- Russell J Perkins
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Maria G Vazquez de Vasquez
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Emma E Beasley
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas C J Hill
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Elizabeth A Stone
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Heather C Allen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Paul J DeMott
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
31
|
Rosen-Kligvasser J, Davidovich-Pinhas M. The role of hydrogen bonds in TAG derivative-based oleogel structure and properties. Food Chem 2020; 334:127585. [PMID: 32711275 DOI: 10.1016/j.foodchem.2020.127585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022]
Abstract
Glycerol monosterate (GMS) and stearic acid (SA) share a similar carbon chain structure while SA has a carboxyl head group and GMS has two free hydroxyl groups. The current research focuses on the relationship between GMS and SA chemical structure, nano and mesoscale crystal structure, and the oleogel macroscopic characteristics. Molecular analysis revealed the formation of different types of hydrogen bonds, which disappear upon temperature increase at different temperatures. Nano-structural analysis exhibited tight and ordered lamellar structures for SA compared with loosely packed short lamellar structures in GMS oleogel, presumably due to its larger hydrophilic head group. Microstructure imaging revealed ordered anisotropically orientated needle-like crystals in SA and isotopically ordered braid-like crystals in GMS oleogels. Mechanical analysis revealed that gel strength is enhanced when crystal structure is isotropically oriented, similar behavior seen is composite materials, where the structuring agent crystals behave like a reinforcing agent within the oil matrix.
Collapse
Affiliation(s)
- Jasmine Rosen-Kligvasser
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Maya Davidovich-Pinhas
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
32
|
Development of behenic acid-ethyl cellulose oleogel stabilized Pickering emulsions as low calorie fat replacer. Int J Biol Macromol 2020; 150:974-981. [DOI: 10.1016/j.ijbiomac.2019.10.205] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 01/08/2023]
|
33
|
Jiang Z, Lu X, Geng S, Ma H, Liu B. Structuring of sunflower oil by stearic acid derivatives: Experimental and molecular modelling studies. Food Chem 2020; 324:126801. [PMID: 32353654 DOI: 10.1016/j.foodchem.2020.126801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/20/2020] [Accepted: 04/12/2020] [Indexed: 02/08/2023]
Abstract
Structuring of vegetable oils has potential application in food, pharmaceutical and cosmetic products. In this study, structuring effects of stearic acid derivatives on sunflower seed oil were systematically investigated by experimental and molecular simulation methods. Stearic acid (SA), 12-hydroxy stearic acid (HSA) and 2-hydroxyethyl stearate (HES) were able to structure sunflower seed oil, among which the structuring ability of HES was reported for the first time. The oleogel formed with HSA exhibited good mechanical properties (such as hardness, fracturability, adhesiveness, chewiness and storage modulus), which coincided with its highest solid fat content and degree of crystallinity. Oleogels containing SA and HES showed similar mechanical properties. Both the molecular dynamics (MD) simulation and independent gradient model (IGM) confirmed that the HSA dimer possessed the strongest interaction during the self-assembly process while the dimers of HES and SA had similar interactions, which could explain their structuring performance.
Collapse
Affiliation(s)
- Zhaojing Jiang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xuanxuan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, United States
| | - Sheng Geng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
34
|
Pakseresht S, Mazaheri Tehrani M. Advances in Multi-component Supramolecular Oleogels- a Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1742153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Somaye Pakseresht
- Department of Food Science and Technology, Ferdowsi University of Mashhad (FUM), Mashhad, Korasan Razavi, Iran
| | - Mostafa Mazaheri Tehrani
- Research Chair, Department of Food Science and Technology, Ferdowsi University of Mashhad (FUM), Mashhad, Korasan Razavi, Iran
| |
Collapse
|
35
|
Bollom MA, Clark S, Acevedo NC. Development and characterization of a novel soy lecithin-stearic acid and whey protein concentrate bigel system for potential edible applications. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105570] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Schaink HM. The Solid–Liquid Phase Diagram of Binary Mixtures Dissolved in an Inert Oil: Application to Ternary Blends that Can Form Organogels. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
da Silva TLT, Cooper Z, Lee J, Gibon V, Martini S. Tailoring Crystalline Structure Using High‐Intensity Ultrasound to Reduce Oil Migration in a Low Saturated Fat. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Thais L. T. da Silva
- Department of Nutrition, Dietetics, and Food SciencesUtah State University Logan UT 84322‐8700 USA
| | - Zachary Cooper
- Department of Nutrition, Dietetics, and Food SciencesUtah State University Logan UT 84322‐8700 USA
| | - Juhee Lee
- Department of Nutrition, Dietetics, and Food SciencesUtah State University Logan UT 84322‐8700 USA
| | - Veronique Gibon
- Desmet Ballestra R&D CenterDesmet Ballestra Group Zaventem 1930 Belgium
| | - Silvana Martini
- Department of Nutrition, Dietetics, and Food SciencesUtah State University Logan UT 84322‐8700 USA
| |
Collapse
|
38
|
Effect of the ratio between behenyl alcohol and behenic acid on the oleogel properties. J Colloid Interface Sci 2019; 560:874-884. [PMID: 31711663 DOI: 10.1016/j.jcis.2019.10.111] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 11/19/2022]
Abstract
HYPOTHESIS In oleogel food systems (based on the mixture between stearic acid and stearyl alcohol) the strong effect of the weight ratio (R) between these two components on the textural and structural properties is well described. The effect of R for other fatty acids and fatty alcohols is less explored. Moreover, they do not show an enhancement of the oleogel properties for specific R. The effect of R on the oleogel properties, for a mixture of fatty acid and fatty alcohol with longer alkyl chains (behenyl alcohol and behenic acid) in sunflower and soybean oils, which are raw materials widely used in cosmetic and pharmaceutical industries, was investigated. EXPERIMENTS We characterized the oleogel properties as a function of R in terms of structuring potential: hardness, oil loss and gel stability. This information was correlated with microstructural data obtained at different length scales by coupling optical microscopy, DSC, SFC, SAXS and WAXS experiments. FINDINGS Our results highlight that R tunes the oleogel properties in a comparable manner to previous results obtained for stearic acid and stearyl alcohol-based oleogels. Two specific R (8:2 and 7:3) close to the 3:1 molecular ratio gave oleogels with both the highest hardness and stability. The morphology and size of the mixed crystals obtained for these R cannot solely explain why they are stronger gels with low oil loss in comparison to the other R. The almost complete crystallization for these two R is one of the key parameters controlling the oleogel properties. As described in the literature, we also suggest that the differences in oleogel properties come from the spatial distribution of the crystalline mass. In this study, we confirm that the effect of the 3:1 molecular ratio in mixed surfactant systems described more than 50 years ago for foams, emulsions and Langmuir monolayers occurs also on the crystallization of mixed fatty alcohol and fatty acid in oils leading to better oleogels properties.
Collapse
|
39
|
Shiino K, Oshima T, Sonoda R, Kimura SI, Itai S, Iwao Y. Controlled-Release Fine Particles Prepared by Melt Adsorption for Orally Disintegrating Tablets. Chem Pharm Bull (Tokyo) 2019; 67:1152-1159. [PMID: 31582635 DOI: 10.1248/cpb.c19-00554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melt adsorption is a manufacturing method that offers precise control of particle size distribution of granules and circumvents the disadvantages of conventional melt granulation. However, drug release from particles adsorbed with hydrophobic materials has not been fully investigated, and there are missing details as to whether particles manufactured by this technique can be applied to orally disintegrating tablets (ODT). In this report, we aimed to optimize process parameters and formulation to manufacture ODT containing melt adsorption-particles with the specific characteristic of sustained release. Melt adsorption particles containing Neusilin US2 as the adsorbent were prepared by using various waxes to determine the most suitable material for controlled release formulation. Glycerol fatty acid ester (Poem TR-FB: TR-FB) was the optimal wax examined because of its drug release pattern and tabletability. We then optimized manufacturing conditions by examining granulation time, disintegrant amount per tablet and compression force on the tablet for ODT that meet the criteria of controlled drug release, tensile strength and disintegration of the tablet. Multiple regression analysis revealed the effect of process parameters on tablet properties and drug release with increasing the granulation time affording sustained release of the drug. The analysis also showed that a high compression force crushed the granules coated by TR-FB, which impaired sustained drug release. From the regression model the optimal manufacturing conditions were determined, and the tablet prepared under these conditions concurred with the predicted values and met all criteria. This new technique should contribute to the development of ODT to improve medication adherence.
Collapse
Affiliation(s)
- Kai Shiino
- Formulation Department, CMC center, Kaken Pharmaceutical Co., Ltd.,Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, University of Shizuoka
| | - Takao Oshima
- Formulation Department, CMC center, Kaken Pharmaceutical Co., Ltd
| | - Ryoichi Sonoda
- Formulation Department, CMC center, Kaken Pharmaceutical Co., Ltd
| | - Shin-Ichiro Kimura
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, University of Shizuoka
| | - Shigeru Itai
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yasunori Iwao
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
40
|
da Silva TLT, Arellano DB, Martini S. Interactions between candelilla wax and saturated triacylglycerols in oleogels. Food Res Int 2019; 121:900-909. [DOI: 10.1016/j.foodres.2019.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/21/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
|
41
|
Harris L, Rosen-Kligvasser J, Davidovich-Pinhas M. Gelation of oil using combination of different free fatty acids. FOOD STRUCTURE 2019. [DOI: 10.1016/j.foostr.2019.100121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Structure and rheology of oleogels made from rice bran wax and rice bran oil. Food Res Int 2018; 112:199-208. [PMID: 30131129 DOI: 10.1016/j.foodres.2018.06.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 11/23/2022]
Abstract
Structural and rheological properties of oleogels consisting of 0.5-25 wt% rice bran wax (RBX) in rice bran oil (RBO) were explored. RBX was an efficient, thermoreversible oleogelator capable of structuring RBO at concentrations as low as 0.5 wt% RBX. A qualitative temperature-composition phase diagram showed that oleogels containing higher concentrations of RBX were expectedly the most resistant to melting. In oleogels at higher RBX concentrations, polarized light microscopy revealed the presence of a network of interlinked, long aspect ratio wax crystal needles up to 50 μm long. Upon heating, RBX crystals did not undergo any structural transition, based on the constant short spacings at ~ 4.16 and ~ 3.73 Å, indicative of an orthorhombic subcell, and d001 long spacing at 74-76 Å that persisted until RBX fusion. This long spacing was ascribed to the presence of wax esters consisting of long-chain saturated fatty acids (C24 and C22) esterified to C28 - C34 saturated fatty alcohols. During cooling from 90 to 20 °C, the increase in oleogel viscosity resulting from the RBX liquid-solid phase transition was corroborated by DSC-based crystallization onset and enthalpy data. Similarly, elastic moduli and hardness both rose with increasing RBX concentration. This study, which demonstrated that RBX can structure RBO with distinct concentration-dependent properties, serves as the foundation for the development of oleogel-based approaches to saturated and trans fats replacement in processed foods.
Collapse
|
43
|
Lecithin and phytosterols-based mixtures as hybrid structuring agents in different organic phases. Food Res Int 2018; 111:168-177. [PMID: 30007673 DOI: 10.1016/j.foodres.2018.05.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/17/2022]
Abstract
In this study the effect of lecithin (L) addition and solvent quality in a well-established oleogel system formed by β-sitosterol and γ-oryzanol (BG) was investigated. Medium chain triglycerides (MCT) and sunflower oil (SFO) were used as triglycerides and hexadecane (HEX) as a model of linear hydrocarbon. Lecithin was proposed due to its natural and versatile properties, showing different functionalities such as emulsifier and co-oleogelator. A study based on hierarchical organization of structured oil was performed applying techniques for bulk, meso and nanoscale. Self-sustained structures could no longer be observed after 40 wt% of BG replacement by lecithin. Small-angle X-ray scattering showed that the formed nanostructures (building blocks) were dependent on type of solvent and BG:L ratio in the mixture of oleogelators. Differential scanning calorimetry showed that stability against temperature was improved decreasing the polarity of the oil, and a time-dependent self-assembly of hybrid systems was observed from thermal and rheological measurements. Microscopy images exhibited changes on typical fibril aggregation of BG as lecithin was added, which promoted to a certain extent the suppression of ribbons. Oscillatory shear and uniaxial compression measurements were influenced by BG:L ratio and solvent mainly at higher lecithin amount. The combination of BG and MCT appeared to be the most affected by lecithin incorporation whereas SFO rendered harder oleogels. These results could contribute to understand the role of both lecithin and solvent type influencing the host oleogelator structure. It was hypothesized that intermolecular BG complex formation is hindered by lecithin, besides this phospholipid also might coexist as a different phase, causing structural changes in the gel network. Addressing the role of co-oleogelator it can provide the opportunity to tune soft materials with adjusted properties.
Collapse
|
44
|
Gravelle AJ, Marangoni AG. Ethylcellulose Oleogels: Structure, Functionality, and Food Applications. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 84:1-56. [PMID: 29555066 DOI: 10.1016/bs.afnr.2018.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The structuring edible oils by nontraditional means has become a popular strategy for improving the lipid profile of food products while retaining the functionality of a crystalline triglyceride network. Although numerous oleogelator systems have now been identified, the polymer gelator ethylcellulose (EC) may present the greatest potential for applications in a diverse range of food systems which require unique physical attributes and structuring properties in the fat phase. The first portion of this chapter will provide a brief overview of oleogelation strategies, outline the basic physical characteristics of the polymer EC, and describe the mechanism of gelation and some basic physical characteristics of EC oleogels. The subsequent sections will highlight different strategies which have been identified to manipulate the rheological and mechanical properties of these gels, including the addition of food-grade surfactants and other amphiphilic molecules, modulating bulk solvent polarity, and through the formation of EC/hybrid gelator systems. The final section will highlight various applications in food systems reported in the literature, outline recent work investigating the effect of structuring edible oils with EC on digestibility, and the potential applicability of these oleogels as a delivery vehicle for lipid-soluble molecules. The potential applications for EC oleogels in complex food systems are quite promising, and the strategies for manipulating their physical properties may also extend their applicability into the pharmaceutical, cosmetic, and manufacturing industries.
Collapse
|
45
|
Okuro PK, Tavernier I, Bin Sintang MD, Skirtach AG, Vicente AA, Dewettinck K, Cunha RL. Synergistic interactions between lecithin and fruit wax in oleogel formation. Food Funct 2018; 9:1755-1767. [PMID: 29508864 DOI: 10.1039/c7fo01775h] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the effect of lecithin (LEC) on the crystallization and gelation of fruit wax (FW) with sunflower oil was researched. A synergistic effect on the gel strength was observed at FW : LEC ratios of 75 : 25 and 50 : 50, compared to the corresponding single component formulations (100 : 0 and 0 : 100). Even below the critical gelling concentration (Cg) of FW, the addition of lecithin enabled gel formation. Lecithin affected the thermal behavior of the structure by delaying both crystallization and gel formation. The phospholipid acted as a crystal habit modifier changing the microstructure of the oleogel, as was observed by polarized light microscopy. Cryo-scanning electron microscopy revealed a similar platelet-like arrangement for both FW as a single oleogelator and FW in combination with LEC. However, a denser structure could be observed in the FW : LEC oleogelator mixture. Both the oil-binding capacity and the thixotropic recovery were enhanced upon lecithin addition. These improvements were attributed to the hydrogen bonding between FW and LEC, as suggested by Raman spectroscopy. We hypothesized that lecithin alters the molecular assembly properties of the FW due to the interactions between the polar moieties of the oleogelators, which consequently impacts the hydrophobic tail (re)arrangement in gelator-gelator and solvent-gelator interactions. The lipid crystal engineering approach followed here offered prospects of obtaining harder self-standing structures at a lower oleogelator concentration. These synergistic interactions provide an opportunity to reduce the wax concentration and, as such, the waxy mouthfeel without compromising the oleogel properties.
Collapse
Affiliation(s)
- Paula K Okuro
- Laboratory of Process Engineering, Department of Food Engineering, Faculty of Food Engineering, University of Campinas, UNICAMP, CEP: 13083-862, Campinas, SP, Brazil.
| | - Iris Tavernier
- Vandemoortele Centre Lipid Science and Technology, Laboratory of Food Technology and Engineering, Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Mohd D Bin Sintang
- Vandemoortele Centre Lipid Science and Technology, Laboratory of Food Technology and Engineering, Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, 9000 Gent, Belgium and Department of Food Technology and Bioprocess, Faculty of Food Science and Nutrition, University Malaysia, Sabah, Malaysia
| | - Andre G Skirtach
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - António A Vicente
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Koen Dewettinck
- Vandemoortele Centre Lipid Science and Technology, Laboratory of Food Technology and Engineering, Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Rosiane L Cunha
- Laboratory of Process Engineering, Department of Food Engineering, Faculty of Food Engineering, University of Campinas, UNICAMP, CEP: 13083-862, Campinas, SP, Brazil.
| |
Collapse
|
46
|
Bin Sintang MD, Danthine S, Brown A, Van de Walle D, Patel AR, Tavernier I, Rimaux T, Dewettinck K. Phytosterols-induced viscoelasticity of oleogels prepared by using monoglycerides. Food Res Int 2017; 100:832-840. [PMID: 28873756 DOI: 10.1016/j.foodres.2017.07.079] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 11/25/2022]
Abstract
Monoglycerides (MGs) and phytosterols (PS) are known to form firm oleogels with liquid oil. However, the oleogels are prone to undergo polymorphic transition over time that lead to crystals' aggregation thus, compromises physical properties. Thus, we combined MGs with PS to control the crystallization and modify the morphology of the combination oleogels, as both components are reported to interact together. The oleogels were prepared at different ratio combinations and characterized in their rheological, thermal, morphology, and diffraction properties. The results showed that the 8:2 MGP:PS exhibited higher storage modulus (G') than the MGP mono-component. The combination oleogels exhibited effects on the crystallization and polymorphic transition. Consequently, the effects led to change in the morphology of the combination oleogels which was visualized using optical and electron microscope. The resultant effect on the morphology is associated with crystal defect. Due to observable crystals of MGP and PS, it is speculated that the combination oleogels formed a mixed crystal system. This was confirmed with diffraction analysis in which the corresponding peaks from MGP and PS were observed in the combination oleogels. However, the 8:2 oleogel exhibited additional peak at 35.41Å. Ultimately, the 8:2 was the optimum combination observed in our study. Interestingly, this combination is inspired by nature as sterols (phytosterols) are natural component of lipid membrane whilst MGP has properties similar to phospholipids. Hence, the results of our study not only beneficial for oil structuring, but also for the fields of biophysical and pharmaceutical.
Collapse
Affiliation(s)
- Mohd Dona Bin Sintang
- Vandemoortele Center Lipid Science and Technology, Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Belgium; Department of Food Technology and Bioprocess, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Malaysia.
| | - Sabine Danthine
- Department of Food Science and Formulation, Universite de Liege, Passage des Deportes, Gembloux, Belgium
| | - Allison Brown
- Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Davy Van de Walle
- Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ashok R Patel
- Vandemoortele Center Lipid Science and Technology, Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Iris Tavernier
- Vandemoortele Center Lipid Science and Technology, Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Belgium
| | | | - Koen Dewettinck
- Vandemoortele Center Lipid Science and Technology, Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Belgium; Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
47
|
Gravelle AJ, Blach C, Weiss J, Barbut S, Marangoni AG. Structure and properties of an ethylcellulose and stearyl alcohol/stearic acid (EC/SO:SA) hybrid oleogelator system. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700069] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Carolin Blach
- Department of Food Physics and Meat Science; University of Hohenheim; Stuttgart Germany
| | - Jochen Weiss
- Department of Food Physics and Meat Science; University of Hohenheim; Stuttgart Germany
| | - Shai Barbut
- Department of Food Science; University of Guelph; Guelph ON Canada
| | | |
Collapse
|
48
|
|
49
|
Yadav I, Kasiviswanathan U, Soni C, Paul SR, Nayak SK, Sagiri SS, Anis A, Pal K. Stearic Acid Modified Stearyl Alcohol Oleogel: Analysis of the Thermal, Mechanical and Drug Release Properties. J SURFACTANTS DETERG 2017. [DOI: 10.1007/s11743-017-1974-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Gravelle AJ, Davidovich-Pinhas M, Barbut S, Marangoni AG. Influencing the crystallization behavior of binary mixtures of stearyl alcohol and stearic acid (SOSA) using ethylcellulose. Food Res Int 2017; 91:1-10. [DOI: 10.1016/j.foodres.2016.11.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
|