1
|
Gan S, Wang Z, Zheng C, Lin Z, Zhu AB, Lai B. Enhanced Treatment of Antimony Mine Wastewater by Sulfidated Micro Zerovalent Iron (S-mZVI). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21701-21710. [PMID: 39358310 DOI: 10.1021/acs.langmuir.4c02741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Commercial micron zerovalent iron (mZVI) and sulfur were used to prepare sulfidated micro zerovalent iron (S-mZVI) through ball milling. The corrosion potentials of mZVI and S-mZVI were -0.01 and -0.37 V, respectively, indicating S-mZVI possessed a stronger electron-donating ability. The practical antimony mine wastewater (C0(Sb(V)) = 3.8296 mg/L, pH = 8.29) was treated. If meeting the national discharge standard of 5 μg/L, 2.0 g/L mZVI and 1.6 g/L S-mZVI were required within 120 min. Passing N2 or reducing wastewater pH enhanced the treatment of Sb(V) by S-mZVI, in which the wastewater acidification was more effective. Once the wastewater pH was adjusted to 3.00, only 0.7 g/L S-mZVI and 40 min long time were needed to achieve the emission below 5 μg/L. Even S-mZVI underwent four cycles, and the final concentration of Sb(V) was as low as 4.67 μg/L. As the pHzpc value was 4.09 and the corrosion potential was -0.56 V at pH 3.0, the electron-donating ability of S-mZVI as well as the electrostatic attraction between the surface of S-mZVI and Sb(V) increased. Sulfidation of mZVI and then application under the acid condition significantly improved the treatment efficiency of Sb(V).
Collapse
Affiliation(s)
- Siyu Gan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenxing Wang
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China
| | - Chunli Zheng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zishen Lin
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ai-Bin Zhu
- Institute of Robotics & Intelligent Systems, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Carneiro MA, Pintor AMA, Boaventura RAR, Botelho CMS. Arsenic and antimony desorption in water treatment processes: Scaling up challenges with emerging adsorbents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172602. [PMID: 38653411 DOI: 10.1016/j.scitotenv.2024.172602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The metalloids arsenic (As) and antimony (Sb) belong to the pnictogen group of the periodic table; they share many characteristics, including their toxic and carcinogenic properties; and rank as high-priority pollutants in the United States and the European Union. Adsorption is one of the most effective techniques for removing both elements and desorption, for further reuse, is a part of the process to make adsorption more sustainable and feasible. This review presents the current state of knowledge on arsenic and antimony desorption from exhausted adsorbents previously used in water treatment, that has been reported in the literature. The application of different types of eluents to desorb As and Sb and their desorption performance are described. The regeneration of saturated adsorbents and adsorbate recovery techniques are outlined, including the fate of spent media and possible alternatives for waste disposal of exhausted materials. Future research directions are discussed, as well as current issues including the lack of environmental impact analysis of emerging adsorbents.
Collapse
Affiliation(s)
- Mariko A Carneiro
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Ariana M A Pintor
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rui A R Boaventura
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cidália M S Botelho
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
3
|
Safeer R, Liu G, Yousaf B, Ashraf A, Haider MIS, Cheema AI, Ijaz S, Rashid A, Sikandar A, Pikoń K. Insights into the biogeochemical transformation, environmental impacts and biochar-based soil decontamination of antimony. ENVIRONMENTAL RESEARCH 2024; 251:118645. [PMID: 38485077 DOI: 10.1016/j.envres.2024.118645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/17/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
Every year, a significant amount of antimony (Sb) enters the environment from natural and anthropogenic sources like mining, smelting, industrial operations, ore processing, vehicle emissions, shooting activities, and coal power plants. Humans, plants, animals, and aquatic life are heavily exposed to hazardous Sb or antimonide by either direct consumption or indirect exposure to Sb in the environment. This review summarizes the current knowledge about Sb global occurrence, its fate, distribution, speciation, associated health hazards, and advanced biochar composites studies used for the remediation of soil contaminated with Sb to lessen Sb bioavailability and toxicity in soil. Anionic metal(loid) like Sb in the soil is significantly immobilized by pristine biochar and its composites, reducing their bioavailability. However, a comprehensive review of the impacts of biochar-based composites on soil Sb remediation is needed. Therefore, the current review focuses on (1) the fundamental aspects of Sb global occurrence, global soil Sb contamination, its transformation in soil, and associated health hazards, (2) the role of different biochar-based composites in the immobilization of Sb from soil to increase biochar applicability toward Sb decontamination. The review aids in developing advanced, efficient, and effective engineered biochar composites for Sb remediation by evaluating novel materials and techniques and through sustainable management of Sb-contaminated soil, ultimately reducing its environmental and health risks.
Collapse
Affiliation(s)
- Rabia Safeer
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Balal Yousaf
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Muhammad Irtaza Sajjad Haider
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Ayesha Imtiyaz Cheema
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Samra Ijaz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Audil Rashid
- Botany Department, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Anila Sikandar
- Department of Environmental Science, Kunming University of Science and Technology, 650500, Yunnan, PR China
| | - Krzysztof Pikoń
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| |
Collapse
|
4
|
Qin Y, Tang X, Zhong X, Zeng Y, Zhang W, Xin L, Zhang L. Superior capacity and easy separation of zirconium functionalized chitosan melamine foam for antimony(III/V) removal. Int J Biol Macromol 2024; 257:128615. [PMID: 38070798 DOI: 10.1016/j.ijbiomac.2023.128615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/27/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Nowadays, highly toxic antimony has severely posed threat to water sources and jeopardized human health. Fabricating adsorbents with the capability of easy separation, high efficiency and large adsorption capacity remains a major challenge. In this paper, zirconium functionalized chitosan melamine foam (ZCMF) was fabricated with zirconium and chitosan crosslinked onto melamine foam, then utilized for the removal of antimony(III/V) in water. The characterization of SEM and EDS collectively showed that ZCMF has a porous structure which could boost the mass transfer rate and zirconium ions on the surface could provide plentiful active adsorption sites. Systematic adsorption experiments demonstrated that the experimental data of Sb(III) and Sb(V) were consistent with the pseudo-second-order and Elovich kinetic models, respectively, and the Langmuir maximum adsorption capacities were separately 255.35 mg g-1 (Sb(III)) and 414.41 mg g-1 (Sb(V)), which displayed prominent performance among adsorbents derived from biomass. Combining the XPS and FTIR characterization with experimental data, it is rational to speculate that ZCMF could remove Sb from aqueous solution through ligand exchange, electrostatic attraction, and surface complexation mechanisms. ZCMF exhibited excellent performance, including large adsorption capacity, easy separation, facile preparation and eco-friendliness. It could be a promising new adsorbent for the treatment of antimony-containing wastewater.
Collapse
Affiliation(s)
- Yan Qin
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiangtao Tang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xingyu Zhong
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yang Zeng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wenqing Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Liu Xin
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Lingfan Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
5
|
Zhou C, Wan L, Lou Z, Wu S, Baig SA, Xu X. Comparative Sb(V) removal efficacy of different iron oxides from textile wastewater: effects of co-existing anions and dye compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120030-120043. [PMID: 37934409 DOI: 10.1007/s11356-023-30771-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Elevated Sb(V) concentration in textile wastewater is a growing environmental concern worldwide and has received wider attention in recent years. Iron oxides possess appealing characteristics as efficient and cost-effective adsorbents in large-scale applications. In the present study, Sb(V) adsorption capacity of α-Fe2O3, γ-Fe2O3, and Fe3O4 was compared under experimental conditions close to the practical textile wastewater treatment. Results demonstrated that α-Fe2O3 performed better under different pH values, reaction times, dye compounds, and co-existing ions as compared to γ-Fe2O3 and Fe3O4, and the adsorption equilibrium was achieved within 8 h. Sb(V) adsorption is found to be highly pH dependent, and higher removal was achieved in lower pH, indicating the involvement of electrostatic interactions. The pHpzc value of α-Fe2O3 was 7.15, which favored Sb(V) adsorption in practical wastewater having neutral pH value (pH ~ 7). Pseudo-first- and pseudo-second-order described the data and the simulated values of qe fitted well with the experimental values, indicating that pseudo-second-order model described the adsorption kinetics better with R2 (> 0.95) higher than of pseudo-first-order plots. The Langmuir and Freundlich models both described well the sorption data of all the adsorbents, where the R2 values were > 0.90 with a better fit in the Freundlich model for α-Fe2O3, suggesting that the adsorbent has heterogeneous surface characteristics. Similarly, characterizations revealed that the specific surface area, pore volume, and hydroxyl group content in α-Fe2O3 were higher than others, making it easier for contaminants to bind on to the active sites. Furthermore, the effect of dyes and co-existing anions on Sb(V) adsorption was negligible, except for SO42-, CO32-, and PO43- by the formation of inner-sphere complexes with iron oxides through competitive adsorption with [Sb(OH)6]-. Findings from the present study suggested that α-Fe2O3 effectively reduced Sb(V) in textile wastewater and could be a promising alternative for practical textile wastewater treatment.
Collapse
Affiliation(s)
- Chuchen Zhou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lei Wan
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zimo Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Shuang Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shams Ali Baig
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
6
|
Peng L, Wang N, Xiao T, Wang J, Quan H, Fu C, Kong Q, Zhang X. A critical review on adsorptive removal of antimony from waters: Adsorbent species, interface behavior and interaction mechanism. CHEMOSPHERE 2023; 327:138529. [PMID: 36990360 DOI: 10.1016/j.chemosphere.2023.138529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/11/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Antimony (Sb) has raised widespread concern because of its negative effects on ecology and human health. The extensive use of antimony-containing products and corresponding Sb mining activities have discharged considerable amounts of anthropogenic Sb into the environment, especially the water environment. Adsorption has been employed as the most effective strategy for Sb sequestration from water; thus, a comprehensive understanding of the adsorption performance, behavior and mechanisms of adsorbents benefits to develop the optimal adsorbent to remove Sb and even drive its practical application. This review presents a holistic analysis of adsorbent species with the ability to remove Sb from water, with a special emphasis on the Sb adsorption behavior of various adsorption materials and their Sb-adsorbent interaction mechanisms. Herein, we summarize research results based on the characteristic properties and Sb affinities of reported adsorbents. Various interactions, including electrostatic interactions, ion exchange, complexation and redox reactions, are fully reviewed. Relevant environmental factors and adsorption models are also discussed to clarify the relevant adsorption processes. Overall, iron-based adsorbents and corresponding composite adsorbents show relatively excellent Sb adsorption performance and have received widespread attention. Sb removal mainly depends on chemical properties of the adsorbent and Sb itself, and complexation is the main driving force for Sb removal, assisted by electrostatic attraction. The future directions of Sb removal by adsorption focus on the shortcomings of current adsorbents; more attention should be given to the practicability of adsorbents and their disposal after use. This review contributes to the development of effective adsorbents for removing Sb and provides an understanding of Sb interfacial processes during Sb transport and the fate of Sb in the water environment.
Collapse
Affiliation(s)
- Linfeng Peng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Nana Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Huabang Quan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Chuanbin Fu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qingnan Kong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiangting Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
7
|
Abhishek K, Parashar N, Patel M, Hait S, Shrivastava A, Ghosh P, Sharma P, Pandey A, Kumar M. Recent advancements in antimony (Sb) removal from water and wastewater by carbon-based materials: a systematic review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:758. [PMID: 37248306 DOI: 10.1007/s10661-023-11322-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
Antimony (Sb) has been classified as a high-priority contaminant in the environment. Sb contamination resulting from the use of antimony-containing compounds in industry necessitates the development of efficient methods to remove it from water and wastewater. Adsorption is a highly efficient and reliable method for pollutants removal owing to its availability, recyclability, and low cost. Recently, carbonaceous materials and their applications for the removal of Sb from the aqueous matrices have received special attention worldwide. Herein, this review systematically summarizes the occurrence and exposure of Sb in the environment and on human health, respectively. Different carbon-based adsorbents have been classified for the adsorptive removal of Sb and their adsorption characteristics have been delineated. Recent development in the adsorption performance of the adsorbent materials for improving the Sb removal from the aqueous medium has been outlined. Further, to develop an understanding of the effect of different parameters like pH, competitive ions, and dissolved ions for Sb adsorption and subsequent removal have been discussed. A retrospective analysis of literature was conducted to present the adsorption behavior and underlying mechanisms involved in the removal of Sb using various adsorbents. Moreover, this study has identified emerging research gaps and emphasized the need for developing modified/engineered carbonaceous adsorbents to enhance Sb adsorption from various aqueous matrices.
Collapse
Affiliation(s)
- Kumar Abhishek
- Department of Environment, Forest and Climate Change, Government of Bihar, Bihar, Patna, India
| | - Neha Parashar
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, 801106, Patna, India
| | - Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Subrata Hait
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, 801106, Patna, India
| | | | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | | | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
- Centre for Energy and Environmental Sustainability, Lucknow, 226 029, India
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, India
| | - Manish Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
8
|
Álvarez-Ayuso E, Murciego A. Assessment of industrial by-products as amendments to stabilize antimony mine wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118218. [PMID: 37247551 DOI: 10.1016/j.jenvman.2023.118218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/10/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023]
Abstract
The spread of antimony from mine wastes to the environment represents a matter of great concern due to its adverse effects on impacted ecosystems. There is an urgent need for developing and adopting sustainable and inexpensive measures to deal with this type of wastes. In this study the Sb leaching behavior of mine waste rocks and mine tailings derived from the exploitation of Sb ore deposits was characterized using standard batch leaching tests (TCLP and EN-12457-4) and column leaching essays. Accordingly, these mine wastes were characterized as toxic (>0.6 mg Sb L-1) and not acceptable at hazardous waste landfills (>5 mg Sb kg-1), showing also an ongoing Sb release under prolonged leaching conditions. Two industrial by-products were evaluated as amendments to stabilize them, namely deferrisation sludge (DFS) and a by-product derived from the treatment of aluminum salt slags (BP-Al). Mine wastes were amended with different doses (0-25%) of DFS or BP-Al and the performance of these treatments was evaluated employing also batch and column leaching procedures. The effectiveness of DFS to immobilize Sb was much higher than that exhibited by BP-Al. Thus, treatments with 25% BP-Al showed Sb immobilization levels of approximately 33-53%, whereas treatments with 5 and 25% DFS already attained Sb immobilization levels up to approximately 80-90 and 90-99%, respectively. Mine tailings amended with 5% DFS and mine waste rocks amended with 25% DFS decreased their leachable Sb contents below the limit for non-hazardous waste landfill acceptance (<0.7 mg Sb kg-1). Likewise, these DFS treatments were able to revert their toxic characterization. Moreover, the 25% DFS treatment showed to be a long-lasting stabilizing system, efficient at least during a leaching period equivalent to 10-year rainfall with a great Sb leaching reduction (close to 98%). After this long-term leaching process, DFS-treated mine wastes kept their non-hazardous and non-toxic characterization. The amorphous Fe (oxyhydr)oxides composing DFS were responsible for the important Sb removal capacity showed by this by-product. Thus, when DFS was applied to mine wastes mobile Sb was importantly fixed as non-desorbable Sb, showing also a considerable Sb removal capacity in presence of strong competing anions such as phosphate. The application of DFS as amendment presents a great potential to be used as a sustainable long-term stabilizing system of Sb mine wastes.
Collapse
Affiliation(s)
- E Álvarez-Ayuso
- Department of Environmental Geochemistry. IRNASA (CSIC). C/ Cordel de Merinas 40-52, 37008, Salamanca, Spain.
| | - A Murciego
- Department of Geology. Salamanca University. Plza. de Los Caídos s/n, 37008, Salamanca, Spain
| |
Collapse
|
9
|
Dai J, Huang Z, Zhang H, Shi H, Arulmani SRB, Liu X, Huang L, Yan J, Xiao T. Promoted Sb removal with hydrogen production in microbial electrolysis cell by ZIF-67-derived modified sulfate-reducing bacteria bio-cathode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158839. [PMID: 36155030 DOI: 10.1016/j.scitotenv.2022.158839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Bio-cathode Microbial electrolysis cell (MEC) has been widely discovered for heavy metals removal and hydrogen production. However, low electron transfer efficiency and heavy metal toxicity limit MEC treatment efficiency. In this study, ZIF-67 was introduced to modify Sulfate-reducing bacteria (SRB) bio-cathode to enhance the bioreduction of sulfate and Antimony (Sb) with hydrogen production in the MEC. ZIF-67 modified bio-cathode was developed from a bio-anode microbial fuel cell (MFC) by operating with an applied voltage of 0.8 V to reverse the polarity. Cyclic voltammetry, linear sweep voltammetry and electrochemical impedance were done to confirm the performance of the ZIF-67 modified SRB bio-cathode. The synergy reduction of sulfate and Sb was accomplished by sulfide metal precipitation reaction from SRB itself. Maximum sulfate reduction rate approached 93.37 % and Sb removal efficiency could reach 92 %, which relies on the amount of sulfide concentration generated by sulfate reduction reaction, with 0.923 ± 0.04 m3 H2/m3 of hydrogen before adding Sb and 0.857 m3 H2/m3 of hydrogen after adding Sb. The hydrogen was mainly produced in this system and the result of gas chromatography (GC) indicated that 73.27 % of hydrogen was produced. Meanwhile the precipitates were analyzed by X-ray diffraction and X-ray photoelectron spectroscopy to confirm Sb2S3 was generated from Sb (V).
Collapse
Affiliation(s)
- Junxi Dai
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zhongyi Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China.
| | - Huihui Shi
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Samuel Raj Babu Arulmani
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Xianjie Liu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 60174, Sweden
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
10
|
Li H, Gong K, Jin X, Owens G, Chen Z. Mechanism for the simultaneous removal of Sb(III) and Sb(V) from mining wastewater by phytosynthesized iron nanoparticles. CHEMOSPHERE 2022; 307:135778. [PMID: 35863409 DOI: 10.1016/j.chemosphere.2022.135778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/19/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Since antimony (Sb) is a toxic metalloid cost-effective method for the simultaneous removal of the two major Sb species from mining wastewater has attracted much attention. In this study, phytosynthesized iron nanoparticles (nFe) prepared using a eucalyptus leaf extract were successfully used to simultaneously remove Sb(III) and Sb(V) via an adsorption and oxidation mechanism with removal efficiencies of 100 and 97.7% for Sb(III) and Sb(V), respectively. Advanced analysis using X-ray photoelectron spectroscopy (XPS), ion chromatography-atomic fluorescence spectroscopy (IC-AFS), and electrochemical analysis confirmed that Sb(III) was oxidized to Sb(V) by Fe(III) on the nFe surface while Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) indicated that both Sb(III) and Sb(V) were adsorbed onto nFe. Adsorption of both Sb(III) and Sb(V) best fit the Langmuir adsorption model with R2 of 0.999 and 0.989, respectively and both followed pseudo-second-order kinetics with R2 of 0.999 and 0.981, respectively. Furthermore, the adsorption rate of Sb(III) was faster than that of Sb(V) due to inner-sphere complex formation, and the Fe-O bonds in the asymmetric tetrahedron structure of Sb(III) were easier to break due to a lower energy barrier (0.863 eV). Consequently, a simultaneous removal mechanism of Sb(III) and Sb(V) was proposed. Finally, nFe was used practically to remove Sb in mining wastewater with a removal efficiency of 93.5%, demonstrating that nFe have significant potential to remove Sb in contaminated mining wastewaters.
Collapse
Affiliation(s)
- Heng Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Kaisheng Gong
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Xiaoying Jin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA, 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
11
|
Cheng Q, Li Q, Huang X, Li X, Wang Y, Liu W, Lin Z. The high efficient Sb(III) removal by cauliflower like amorphous nanoscale zero-valent iron (A-nZVI). JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129056. [PMID: 35569373 DOI: 10.1016/j.jhazmat.2022.129056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
In this study, cauliflower like amorphous nanoscale zero-valent iron (A-nZVI) was prepared and its performance on the removal of Sb(III) was investigated and compared with that of nZVI. The results indicated that the removal of Sb(III) by nZVI and A-nZVI followed the pseudo-second-order kinetic model and Langmuir isotherm model, but the removal of Sb(III) by A-nZVI was more stable and its removal capacity (558.2 mg/g) is much higher than that of nZVI (91.3 mg/g). Moreover, the effects of initial Sb(III) concentration, initial pH and anions such as Cl-, NO3-, SO42-, PO43-, and AsO43- were also investigated. A-nZVI showed extremely high selectivity towards Sb(III) in that 500 mg/L of AsO43- and PO43- shows little impact on its removal, while the removal of Sb(III) by nZVI was almost inhibited under the same condition. The combination of SEM-EDS, XPS, XRD and FTIR revealed the removal of Sb(III) by nZVI and A-nZVI were synergistic effects of oxidation and adsorption, but less Sb(III) (39.5%) was oxidized by A-nZVI. More γ-FeOOH and γ-Fe2O3 were formed at the surface of A-nZVI during the reaction. Both oxides have high affinity toward Sb(III), which might cause the higher removal capacity and selectivity for the removal of Sb(III) by A-nZVI. In conclusion, A-nZVI showed great potential for the remediation of Sb(III) in groundwater.
Collapse
Affiliation(s)
- Qi Cheng
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou 510006, PR China
| | - Qingrui Li
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou 510006, PR China
| | - Xiaojie Huang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoqin Li
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou 510006, PR China.
| | - Yunyan Wang
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China.
| | - Weizhen Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou 510006, PR China
| | - Zhang Lin
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China
| |
Collapse
|
12
|
Xie LX, Zhong Y, Chen YY, Zhou GY, Yang C. Effective adsorption of antimony (V) from contaminated water by a novel composite manganese oxide/oxyhydroxide as an adsorbent. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2463-2478. [PMID: 35576248 DOI: 10.2166/wst.2022.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To obtain an efficient and low-cost adsorbent for the Sb(V) removal in Sb(V)-contaminated water, a novel composite manganese oxide/oxyhydroxide (CMO) was synthesized by a simple hydrothermal synthesis method. The synthesized adsorbent was characterized via scanning electron microscopy, X-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area, Fourier transform infrared, and X-ray photoelectron spectroscopy analyses. The results revealed that the as-prepared CMO adsorbent possessed a porous structure consisting of Mn3O4 nanoparticles and MnOOH nanorods. Batch experiments showed that the adsorption behaviours were well fitted by the Langmuir isotherm and the pseudo-second-order kinetic model, reaching the maximum adsorption capacity of 119.63 mg/g at 25 °C. The application of CMO adsorbent showed that the Sb(V) removal efficiency in 6.24 L Sb(V)-containing water with a concentration of 3.6 mg/L was more than 90%. The reusability of CMO adsorbent demonstrated that the Sb(V) removal efficiency was still more than 80% even after five times of regeneration. The adsorption mechanism for Sb(V) can be described as ligand exchange between hydroxyl groups on the adsorbent surface and hydroxyl groups in Sb(OH)6- molecules by forming inner-sphere complexes. Those results suggested that the CMO adsorbent can be considered as a potential adsorbent to remove Sb(V) from contaminated water.
Collapse
Affiliation(s)
- L X Xie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Y Zhong
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha 410004, China E-mail:
| | - Y Y Chen
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha 410004, China E-mail:
| | - G Y Zhou
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - C Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
13
|
Cheng M, Fang Y, Li H, Yang Z. Review of recently used adsorbents for antimony removal from contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26021-26044. [PMID: 35072873 DOI: 10.1007/s11356-022-18653-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
As prior pollutants, antimony (Sb) and its compounds are carcinogenic to threaten human health. With the development of the industry, various Sb-contained pollutants have been released into nature, thus heavily damaging the ecological environment. Effectively treating Sb-polluted waterbodies is very important and have obtained ever-growing attention. In this review, we have summarized and classified the adsorbents used for removing Sb from water in recent two decades as natural and synthetic biological adsorbents, mineral adsorbents, natural and synthetic carbon materials, metal-based adsorbents, and metal-organic frameworks. We focus on the adsorption behavior of various adsorbents for Sb, including adsorption capacity, isotherms, kinetics, thermodynamics, and effects of environmental factors (e.g., pH, coexisting anions, and natural organic matter). Meanwhile, the involved adsorption mechanisms of Sb by different adsorbents are discussed. Finally, we have outlined the development of adsorbents over the last two decades and summarized the performance characteristics of effective adsorbents, such as the rich functional groups on the surface of the adsorbents (i.e., hydroxyl, carboxyl and amino groups), and the presence of metal elements to coordinate with Sb in (i.e., iron and manganese). We hope this review give enlightenment to design adsorbents for effective removal of Sb.
Collapse
Affiliation(s)
- Mengsi Cheng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Ying Fang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China.
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China.
| |
Collapse
|
14
|
Liang W, Wang G, Peng C, Tan J, Wan J, Sun P, Li Q, Ji X, Zhang Q, Wu Y, Zhang W. Recent advances of carbon-based nano zero valent iron for heavy metals remediation in soil and water: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127993. [PMID: 34920223 DOI: 10.1016/j.jhazmat.2021.127993] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Heavy metal pollution in soil and water has presented a new challenge for the environmental remediation technology. Nano zero valent iron (nZVI) has excellent adsorbent properties for heavy metals, and thus, exhibits great potential in environmental remediation. Used as supporting materials for nZVI, carbon-based materials, such as activated carbon (AC), biochar (BC), carbon nanotubes (CNTs), and graphene (GNs) with aromatic rings formed by carbon atoms as the skeleton, have a large specific surface area and porous structure. This paper provides a comprehensive review on the advancement of carbon-based nano zero valent iron (C-nZVI) particles for heavy metal remediation in soil and water. First, different types of carbon-based materials and their combination with nZVI, as well as the synthesis methods and common characterization techniques of C-nZVI, are reviewed. Second, the mechanisms for the interactions between contaminants and C-nZVI, including adsorption, reduction, and oxidation reactions are detailed. Third, the environmental factors affecting the remediation efficiency, such as pH, coexisting constituents, oxygen, contact time, and temperature, are highlighted. Finally, perspectives on the challenges for utilization of C-nZVI in the actual contaminated soil and water and on the long-term efficacy and safety evaluation of C-nZVI have been proposed for further development.
Collapse
Affiliation(s)
- Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gehui Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jiang Wan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pengfei Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Qiannan Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaowen Ji
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| |
Collapse
|
15
|
Wang N, Jiang Y, Xia T, Xu F, Zhang C, Zhang D, Wu Z. Antimony Immobilization in Primary-Explosives-Contaminated Soils by Fe-Al-Based Amendments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1979. [PMID: 35206172 PMCID: PMC8872522 DOI: 10.3390/ijerph19041979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023]
Abstract
Soils at primary explosives sites have been contaminated by high concentrations of antimony (Sb) and co-occurring heavy metals (Cu and Zn), and are largely overlooked and neglected. In this study, we investigated Sb concentrations and species and studied the effect of combined Fe- and Fe-Al-based sorbent application on the mobility of Sb and co-occurring metals. The content of Sb in soil samples varied from 26.7 to 4255.0 mg/kg. In batch experiments, FeSO4 showed ideal Sb sorption (up to 97% sorption with 10% FeSO4·7H2O), whereas the sorptions of 10% Fe0 and 10% goethite were 72% and 41%, respectively. However, Fe-based sorbents enhanced the mobility of co-occurring Cu and Zn to varying levels, especially FeSO4·7H2O. Al(OH)3 was required to prevent Cu and Zn mobilization. In this study, 5% FeSO4·7H2O and 4% Al(OH)3 mixed with soil was the optimal combination to solve this problem, with Sb, Zn, and Cu stabilizations of 94.6%, 74.2%, and 82.2%, respectively. Column tests spiked with 5% FeSO4·7H2O, and 4% Al(OH)3 showed significant Sb (85.85%), Zn (83.9%), and Cu (94.8%) retention. The pH-regulated results indicated that acid conditioning improved Sb retention under alkaline conditions. However, no significant difference was found between the acidification sets and those without pH regulation. The experimental results showed that 5% FeSO4·7H2O + 4% Al(OH)3 without pH regulation was effective for the stabilization of Sb and co-occurring metals in primary explosive soils.
Collapse
Affiliation(s)
- Ningning Wang
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China; (N.W.); (D.Z.); (Z.W.)
| | - Yucong Jiang
- Beijing Institute of Mineral Resources and Geology, Beijing 101500, China;
| | - Tianxiang Xia
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China; (N.W.); (D.Z.); (Z.W.)
| | - Feng Xu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China;
| | - Chengjun Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China;
| | - Dan Zhang
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China; (N.W.); (D.Z.); (Z.W.)
| | - Zhiyuan Wu
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China; (N.W.); (D.Z.); (Z.W.)
| |
Collapse
|
16
|
Xu R, Li Q, Nan X, Yang Y, Xu B, Li K, Wang L, Zhang Y, Jiang T. Synthesis of nano-silica and biogenic iron (oxyhydr)oxides composites mediated by iron oxidizing bacteria to remove antimonite and antimonate from aqueous solution: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126821. [PMID: 34419843 DOI: 10.1016/j.jhazmat.2021.126821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Removal of antimony from wastewater is essential because of its potential harm to the environment and human health. Nano-silica and biogenic iron (oxyhydr)oxides composites (BS-Fe) were prepared by iron oxidizing bacteria (IOB) mediation and the batch adsorption experiments were applied to investigate antimonite (Sb(III)) and antimonate (Sb(V)) removal behaviors. By contrast, the synthetic BS-Fe calcined at 400 ℃ (BS-Fe-400) exhibited a large specific surface area (157.353 m2/g). The maximum adsorption capacities of BS-Fe-400 were 102.10 and 337.31 mg/g for Sb(III) and Sb(V), respectively, and experimental data fit well to the Langmuir isotherm and Temkin models, and followed the pseudo-second order kinetic model. Additionally, increasing pH promoted Sb(III) adsorption, while inhibited the adsorption of Sb(V), indicating that electrostatic attraction made a contribution to Sb(V) adsorption. Moreover, different co-existing ions showed different effects on adsorption. Characterization techniques of FTIR and XPS indicated that the main functional groups involved in the adsorption were -OH, C-O, CO, C-C, etc. and Sb(III) and Sb(V) may bind to iron (oxyhydr)oxides via the formation of inner-sphere complexes. The present work revealed that the synthetic BS-Fe-400 by nano-silica and biogenic iron (oxyhydr)oxides held great application potential in antimony removal from wastewater.
Collapse
Affiliation(s)
- Rui Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Qian Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Xiaolong Nan
- 306 Bridge of Hunan Nuclear Geology, Changsha 410083, China.
| | - Yongbin Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Bin Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Ke Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Limin Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yuanbo Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Tao Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
17
|
Bagherifam S, Komarneni S, van Hullebusch ED, Stjepanović M. Removal of antimonate (Sb(V)) from aqueous solutions and its immobilization in soils with a novel Fe(III)-modified montmorillonite sorbent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2073-2083. [PMID: 34365602 DOI: 10.1007/s11356-021-15765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Over the past decades, contamination of terrestrial environments with antimony (Sb) has aroused a great deal of public concern. In this research, the efficacy of Fe(III)-modified montmorillonite (Mt) (Fe-Mt) for the removal of Sb(V) from aqueous solutions with Sb(V) concentration in the range of 0.2-1 mmol L-1 and immobilization of Sb(V) in soils spiked with 250 mg Sb(V) kg-1 was investigated. The immobilizing mechanisms of the modified clay were assessed by fitting the experimental sorption data with the Langmuir and Freundlich sorption models and a series of single and sequential extraction studies. The results showed that the adsorption data had a better fit with the Langmuir equation (R2: 0.99) and Fe-Mt could efficiently remove up to 95% of Sb(V) at lower concentration ranges. The concentrations of Sb(V) in exchangeable fraction of modified Community Bureau of Reference (BCR) sequential extraction and distilled water extracts of the amended soils decreased dramatically by up to 60% and 92%, respectively. Furthermore, the bioaccessibility of Sb(V) in simulated human gastric juice reduced remarkably by 52% to 60%, depending upon the soil fraction sizes. The results confirmed that Fe-Mt could be a promising candidate for the removal of Sb(V) from aqueous solutions and immobilization of Sb(V) in terrestrial environments.
Collapse
Affiliation(s)
- Saeed Bagherifam
- Chemistry - School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia.
| | - Sridhar Komarneni
- Department of Ecosystem Science and Management and Materials Research Institute, 204 Energy and the Environment Laboratory, Pennsylvania State University, University Park, PA, 16802, USA
| | - Eric D van Hullebusch
- Université de Paris, Institut de physique du globe de Paris, CNRS, UMR 7154, F-75238, Paris, France.
| | - Marija Stjepanović
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000, Osijek, Croatia
| |
Collapse
|
18
|
Bolan N, Kumar M, Singh E, Kumar A, Singh L, Kumar S, Keerthanan S, Hoang SA, El-Naggar A, Vithanage M, Sarkar B, Wijesekara H, Diyabalanage S, Sooriyakumar P, Vinu A, Wang H, Kirkham MB, Shaheen SM, Rinklebe J, Siddique KHM. Antimony contamination and its risk management in complex environmental settings: A review. ENVIRONMENT INTERNATIONAL 2022; 158:106908. [PMID: 34619530 DOI: 10.1016/j.envint.2021.106908] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Antimony (Sb) is introduced into soils, sediments, and aquatic environments from various sources such as weathering of sulfide ores, leaching of mining wastes, and anthropogenic activities. High Sb concentrations are toxic to ecosystems and potentially to public health via the accumulation in food chain. Although Sb is poisonous and carcinogenic to humans, the exact mechanisms causing toxicity still remain unclear. Most studies concerning the remediation of soils and aquatic environments contaminated with Sb have evaluated various amendments that reduce Sb bioavailability and toxicity. However, there is no comprehensive review on the biogeochemistry and transformation of Sb related to its remediation. Therefore, the present review summarizes: (1) the sources of Sb and its geochemical distribution and speciation in soils and aquatic environments, (2) the biogeochemical processes that govern Sb mobilization, bioavailability, toxicity in soils and aquatic environments, and possible threats to human and ecosystem health, and (3) the approaches used to remediate Sb-contaminated soils and water and mitigate potential environmental and health risks. Knowledge gaps and future research needs also are discussed. The review presents up-to-date knowledge about the fate of Sb in soils and aquatic environments and contributes to an important insight into the environmental hazards of Sb. The findings from the review should help to develop innovative and appropriate technologies for controlling Sb bioavailability and toxicity and sustainably managing Sb-polluted soils and water, subsequently minimizing its environmental and human health risks.
Collapse
Affiliation(s)
- Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia.
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Ekta Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Aman Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - S Keerthanan
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Son A Hoang
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya 70140, Sri Lanka
| | - Saranga Diyabalanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Prasanthi Sooriyakumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea.
| | - Kadambot H M Siddique
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
19
|
Cao W, Zhu R, Gong J, Yang T, Zeng G, Song B, Li J, Fang S, Qin M, Qin L, Chen Z, Mao X. Evaluating the metabolic functional profiles of the microbial community and alfalfa (Medicago sativa) traits affected by the presence of carbon nanotubes and antimony in drained and waterlogged sediments. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126593. [PMID: 34271448 DOI: 10.1016/j.jhazmat.2021.126593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Antimony (Sb) is the ubiquitous re-emerging contaminant greatly accumulated in sediments which has been revealed risky to ecological environment. However, the impacts of Sb (III/V) on microbes and plants in sediments, under different water management with presence of engineering materials are poorly understood. This study conducted sequential incubation of sediments (flooding, draining and planting) with presence of multiwall carbon nanotubes (MWCNTs) and Sb to explore the influence on microbial functional diversity, Sb accumulation and alfalfa traits. Results showed that water management and planting led to greater impacts of sediment enzyme activities and microbial community metabolic function and bioavailable Sb fractions (defined as sum of acid-soluble fraction and reducible fraction, F1 + F2). Available fractions of Sb (V) showed higher correlation to microbial metabolism (r = 0.933) than that of Sb (III) (r = -0.480) in planting stage. MWCNTs with increasing concentrations (0.011%, w/w) positively correlated to microbial community metabolic function in planting stage whereas resulted in decreasing of Sb (III/V) concentrations in alfalfa, although 0.01% MWCNT led to increase of Sb (V) and decrease of Sb (V) by 50.97% and 32.68% respectively. This study provided information for investigating combined ecological impacts of heavy metal and engineering materials under different water managing sediments.
Collapse
Affiliation(s)
- Weicheng Cao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Rilong Zhu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha 410082, PR China.
| | - TingYu Yang
- School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Juan Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Siyuan Fang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Meng Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zengping Chen
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaoqian Mao
- Hunan Ecological and Environmental Affairs Center, Changsha 410082, PR China
| |
Collapse
|
20
|
Nundy S, Ghosh A, Nath R, Paul A, Tahir AA, Mallick TK. Reduced graphene oxide (rGO) aerogel: Efficient adsorbent for the elimination of antimony (III) and (V) from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126554. [PMID: 34252676 DOI: 10.1016/j.jhazmat.2021.126554] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 05/27/2023]
Abstract
3D porous, thin sheet-like rGO aerogel was fabricated to explore its antimony (Sb) removal potential from wastewater. Langmuir isothermal and pseudo-second-order kinetic model best-suited the adsorption process. The maximum adsorption capacities were 168.59 and 206.72 mg/g for Sb (III and V) at pH 6.0 respectively. The thermodynamic parameters designated the process to be thermodynamically spontaneous, endothermic reaction, a result of dissociative chemisorption. The rGO aerogel bestowed good selectively among competing ions and reusability with 95% efficiency. rGO posed excellent practicability with Sb-spiked tap water and fixed-bed column experiments showing 97.6% of Sb (III) (3.6 μg/L) and 96.8% of Sb (V) (4.7 μg/L) removal from tap water and from fixed column bed experiments breakthrough volumes (BV) for the Sb (III) and Sb (V) ions were noted to be 540 BV and 925 BV respectively, until 5 ppb, which are below the requirement of MCL for Sb in drinking water (6 μg/L). XPS and DFT analyses explained adsorption mechanism and depicted a higher affinity of Sb (V) towards rGO surface than Sb (III).
Collapse
Affiliation(s)
- Srijita Nundy
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK
| | - Aritra Ghosh
- College of Engineering, Mathematics and Physical Sciences, Renewable Energy, University of Exeter, Cornwall TR10 9FE, UK.
| | - Rounak Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ankan Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Asif Ali Tahir
- Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK
| | - Tapas K Mallick
- Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK
| |
Collapse
|
21
|
Wang X, Zhang Y, Wang Z, Xu C, Tratnyek PG. Advances in metal(loid) oxyanion removal by zerovalent iron: Kinetics, pathways, and mechanisms. CHEMOSPHERE 2021; 280:130766. [PMID: 34162087 DOI: 10.1016/j.chemosphere.2021.130766] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 06/13/2023]
Abstract
Metal(loid) oxyanions in groundwater, surface water, and wastewater can have harmful effects on human or ecological health due to their high toxicity, mobility, and lack of degradation. In recent years, the removal of metal(loid) oxyanions using zerovalent iron (ZVI) has been the subject of many studies, but the full scope of this literature has not been systematically reviewed. The main elements that form metal(loid) oxyanions under environmental conditions are Cr(VI), As(V and III), Sb(V and III), Tc(VII), Re(VII), Mo(VI), V(V), etc. The removal mechanisms of metal(loid) oxyanions by ZVI may involve redox reactions, adsorption, precipitation, and coprecipitation, usually with one of these mechanisms being the main reaction pathway and the other playing auxiliary roles. However, the removal mechanisms are coupled to the reactions involved in corrosion of Fe(0) and reaction conditions. The layer of iron oxyhydroxides that forms on ZVI during corrosion mediates the sequestration of metal(loid) oxyanions. This review summarizes most of the currently available data on mechanisms and performance (e.g., kinetics) of removal of the most widely studies metal(loid) oxyanion contaminants (Cr, As, Sb) by different types of ZVI typically used in wastewater treatment, as well as ZVI that has been sulfidated or combination with catalytic bimetals.
Collapse
Affiliation(s)
- Xiao Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhiwei Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Paul G Tratnyek
- OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| |
Collapse
|
22
|
Zhang X, Xie N, Guo Y, Niu D, Sun HB, Yang Y. Insights into adsorptive removal of antimony contaminants: Functional materials, evaluation and prospective. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126345. [PMID: 34329037 DOI: 10.1016/j.jhazmat.2021.126345] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
The application of antimony containing compounds in the industry has generated considerable antimony contaminants, which requires to develop methods that are as efficient as possible to remove antimony from water in the view of human health. The adsorption is among the most high-efficiency and reliable purification methods for hazardous materials due to the simple operation, convenient recycling and low cost. Herein, this review systematically summarizes the functional materials that are used to adsorb antimony from water, including metal (oxides) based materials, carbon-based materials, MOFs and molecular sieves, layered double hydroxides, natural materials, and organic-inorganic hybrids. The iron-based adsorbents stand out among these adsorbents because of their excellent performance. Moreover, the interaction between antimony and different functional materials is discussed in detail, while the inner-sphere complexation, hydrogen bond as well as ligand exchange are the main impetus during antimony adsorption. In addition, the desorption methods in adsorbents recycling are also comprehensively summarized. Furthermore, we propose an adsorption capacity balanced evaluation function (ABEF) based on the reported results to evaluate the performance of the antimony adsorption materials for both Sb(III) and Sb(V), as antimony usually has two valence forms of Sb(III) and Sb(V) in wastewater. Another original insight in this review is that we put forward a potential application prospect for the antimony-containing waste adsorbents. The feasible future development includes the utilization of the recycled antimony-containing waste adsorbents in catalysis and energy storage, and this will provide a green and sustainable pathway for both antimony removal and resourization.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Chemistry, Northeastern University, Shenyang 110819, PR China; School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Nianyi Xie
- Department of Chemistry, Northeastern University, Shenyang 110819, PR China
| | - Ying Guo
- Department of Chemistry, Northeastern University, Shenyang 110819, PR China
| | - Dun Niu
- Department of Chemistry, Northeastern University, Shenyang 110819, PR China.
| | - Hong-Bin Sun
- Department of Chemistry, Northeastern University, Shenyang 110819, PR China.
| | - Yang Yang
- NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, Renewable Energy and Chemical Transformation Cluster, University of Central Florida, Orlando 32826, FL, United States.
| |
Collapse
|
23
|
Rehman S, Huang Z, Wu P, Ahmed Z, Ye Q, Liu J, Zhu N. Adsorption of lead and antimony in the presence and absence of EDTA by a new vermiculite product with potential recyclability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49112-49124. [PMID: 33932217 DOI: 10.1007/s11356-021-13949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
A new two-step modification method has been proposed where 1.8% HCl and 3.1% HNO3 were applied to modify the interlayer of vermiculite (VMT). This product was given 90 °C of heat in 30% H2SO4 solution that was used for Pb (II) and Sb (III) adsorption. The EDTA presence on the individual adsorption was assessed. X-ray diffraction revealed that the VMT inter-stratified reflection through acid intercalation within the interlayer decreased the parallel gaps between the atoms, witnessing on the outer-sphere adsorption. The driving force was found electrostatic, which fits well with pseudo-second-order kinetics and Langmuir isotherm. The Pb (II) and Sb (III) uptake followed descending order adsorption with increasing concentration of chelating EDTA. Three consecutive desorption cycles revealed that the prepared adsorbent was suitable that may be regarded as a good candidate for complex wastewaters.
Collapse
Affiliation(s)
- Saeed Rehman
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zhiyan Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, People's Republic of China.
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou, 510006, People's Republic of China.
| | - Zubair Ahmed
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Department of Energy and Environment Engineering , Dawood University of Engineering and Technology , Karachi, 74800, Pakistan
| | - Quanyun Ye
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Junqin Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, People's Republic of China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
24
|
Nishad PA, Bhaskarapillai A. Antimony, a pollutant of emerging concern: A review on industrial sources and remediation technologies. CHEMOSPHERE 2021; 277:130252. [PMID: 33780676 DOI: 10.1016/j.chemosphere.2021.130252] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Technologies for remediation of industrial effluents and natural sources contaminated with antimony - a pollutant of emerging concern - are just emerging. The complex speciation of antimony makes it challenging to devise effective remediation technologies. Antimony is used in several industrial applications and comes into the environment majorly through human induced activities such as antimony mining and other activities involving the use of various products containing antimony. Many researchers are working on the important task of developing methodologies to stop or limit the release of antimony into the environment through these activities. Antimony removal is an important requirement in nuclear industry as well due to the formation of its radioactive isotopes during power plant operations. Thus, better antimony remediation or removal techniques can have wider applications ranging from domestic water treatment and industrial effluent remediation to safe isolation of radioactive waste in the nuclear industry. Proper understanding of the problem is very important in designing the source appropriate remediation technique. Treatment methodologies needed for antimony effluents from antimony mining and smelting industries are different from antimony decontamination in nuclear reactors. The problem of antimony leaching from a polyethylene terephthalate bottle is very much different from the leaching of antimony from mining wastes. Each process necessitates custom-made treatment methodologies by taking into account various factors including the speciation and concentration. The current review is focused on this aspect. The review attempts to bring out a clear understanding on various industry specific sources of antimony pollution and the available antimony removal/remediation technologies.
Collapse
Affiliation(s)
- Padala Abdul Nishad
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, 603 102, India.
| | - Anupkumar Bhaskarapillai
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, 603 102, India; HomiBhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
25
|
A Novel Manganese-Rich Pokeweed Biochar for Highly Efficient Adsorption of Heavy Metals from Wastewater: Performance, Mechanisms, and Potential Risk Analysis. Processes (Basel) 2021. [DOI: 10.3390/pr9071209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A novel manganese-rich pokeweed biochar was prepared at different temperatures from manganese-rich pokeweed plants collected at manganese tailings, resulting in materials identified as BC300, BC400, and BC500. The synthetized biochar materials were investigated as regards their potential for removing Cu2+, Pb2+, and Cd2+, specifically in terms of adsorption performances, adsorption kinetics, adsorption isotherms, and potential environmental pollution risk. The results showed that the sorption process fitted well to the pseudo-second-order kinetic and Langmuir models, and the maximum adsorption capacities of BC500 were 246, 326, and 310 mg·g−1 for Cu2+, Pb2+, and Cd2+ respectively. The physicochemical characteristics of the biochars, and the adsorption mechanisms, were revealed by using scanning electron microscopy-energy spectrometer, elemental analysis, Brunauer–Emmett–Teller techniques, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The sorption mechanism of these three heavy metal ions onto biochars included ion exchange, electrostatic adsorption, chemical adsorption, and precipitation. Besides, the potential pollution risk of manganese-rich pokeweed biochars was significantly reduced after pyrolysis. Therefore, it is feasible to transform manganese-rich pokeweed biomass into manganese-rich pokeweed biochar with potential for heavy metals removal, showing high adsorption capacity, recyclability, and low environmental pollution.
Collapse
|
26
|
Arulmani SRB, Dai J, Li H, Chen Z, Zhang H, Yan J, Xiao T, Sun W. Efficient reduction of antimony by sulfate-reducer enriched bio-cathode with hydrogen production in a microbial electrolysis cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145733. [PMID: 33609841 DOI: 10.1016/j.scitotenv.2021.145733] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Bio-cathode Microbial electrolysis cell (MEC) is a promising and eco-friendly technology for concurrent hydrogen production and heavy metal reduction. However, the bioreduction of Antimony (Sb) in a bio-electrochemical system with H2 production is not explored. In this study, two efficient sulfate-reducing bacterial (SRB) strains were used to investigate the enhanced bioreduction of sulfate and Sb with H2 production in the MEC. SRB Bio-cathode MEC was developed from the microbial fuel cell (MFC) and operated with an applied voltage of 0.8 V. The performance of the SRB bio-cathode was confirmed by cyclic voltammetry, linear sweep voltammetry and electrochemical impedance spectroscopy. SRB strains of BY7 and SR10 supported the synergy reduction of sulfate and Sb by sulfide metal precipitation reaction. Hydrogen gas was the main product of SRB bio-cathode, with 86.9%, and 83.6% of H2 is produced by SR10 and BY7, respectively. Sb removal efficiency reached up to 88.2% in BY7 and 96.3% in SR10 with a sulfate reduction rate of 92.3 ± 2.6 and 98.4 ± 1.6 gm-3d-1 in BY7 and SR10, respectively. The conversion efficiency of Sb (V) to Sb (III) reached up to 70.1% in BY7 and 89.2% in SR10. It was concluded that the total removal efficiency of Sb relies on the amount of sulfide concentration produced by the sulfate reduction reaction. The hydrogen production rate was increased up to 1.25 ± 0.06 (BY7) and 1.36 ± 0.02 m3 H2/(m3·d) (SR10) before addition of Sb and produced up to 0.893 ± 0.03 and 0.981 ± 0.02 m3H2/(m3·d) after addition of Sb. The precipitates were characterized by X-ray diffraction and X-ray photoelectron spectroscopy, which confirmed Sb (V) was reduced to Sb2S3.
Collapse
Affiliation(s)
- Samuel Raj Babu Arulmani
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Junxi Dai
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Han Li
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhenxin Chen
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongguo Zhang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China.
| | - Jia Yan
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| |
Collapse
|
27
|
Bessaies H, Iftekhar S, Asif MB, Kheriji J, Necibi C, Sillanpää M, Hamrouni B. Characterization and physicochemical aspects of novel cellulose-based layered double hydroxide nanocomposite for removal of antimony and fluoride from aqueous solution. J Environ Sci (China) 2021; 102:301-315. [PMID: 33637256 DOI: 10.1016/j.jes.2020.09.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 06/12/2023]
Abstract
A series of novel adsorbents composed of cellulose (CL) with Ca/Al layered double hydroxide (CCxA; where x represent the Ca/Al molar ratio) were prepared for the adsorption of antimony (Sb(V)) and fluoride (F-) ions from aqueous solutions. The CCxA was characterized by Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), elemental analysis (CHNS/O), thermogravimetric analysis (TGA-DTA), zeta potential, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) analysis. The effects of varying parameters such as dose, pH, contact time, temperature and initial concentration on the adsorption process were investigated. According to the obtained results, the adsorption processes were described by a pseudo-second-order kinetic model. Langmuir adsorption isotherm model provided the best fit for the experimental data and was used to describe isotherm constants. The maximum adsorption capacity was found to be 77.2 and 63.1 mg/g for Sb(V) and F-, respectively by CC3A (experimental conditions: pH 5.5, time 60 min, dose 15 mg/10 mL, temperature 298 K). The CC3A nanocomposite was able to reduce the Sb(V) and F- ions concentration in synthetic solution to lower than 6 μg/L and 1.5 mg/L, respectively, which are maximum contaminant levels of these elements in drinking water according to WHO guidelines.
Collapse
Affiliation(s)
- Hanen Bessaies
- Laboratory of Desalination and Water Treatment LR19ES01, Faculty of Sciences of Tunis, Tunis El Manar University, El Manar I 2092, Tunisia
| | - Sidra Iftekhar
- Department of Environmental Engineering, University of Engineering and Technology Taxila, Taxila 47050, Pakistan; Department of Applied Physics, University of Eastern Finland, Kuopio 70210, Finland.
| | - Muhammad Bilal Asif
- A lnstitute of Environmental Engineering and Nano-Technology, Tsinghua Shezhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jamel Kheriji
- Laboratory of Desalination and Water Treatment LR19ES01, Faculty of Sciences of Tunis, Tunis El Manar University, El Manar I 2092, Tunisia
| | - Chaker Necibi
- International Water Research Institute, Mohammed VI Polythechnic University, Green City Ben Guerir 43150, Morocco
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, QLD 4350, Australia; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein 2028, South Africa
| | - Bechir Hamrouni
- Laboratory of Desalination and Water Treatment LR19ES01, Faculty of Sciences of Tunis, Tunis El Manar University, El Manar I 2092, Tunisia
| |
Collapse
|
28
|
Cao W, Gong J, Zeng G, Song B, Zhang P, Li J, Fang S, Tang S, Qin L, Ye J, Cai Z. Abiotic mediation of common ions on the co-exposure of CeO 2 NPs with Sb (III) or Sb (V) to Glycine max (Linn.) Merrill. (Soybean): Impacts on uptake, accumulation and physiochemical characters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115594. [PMID: 33254729 DOI: 10.1016/j.envpol.2020.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/13/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
With the most active Sb mines, the "dominance" on Sb production of China lead to increasingly release and omnipresence of Sb in environment through mining activities as well as the life cycle of Sb-containing productions. The introduction of engineered nanoparticles (ENPs) accidentally or intentionally (such as NP-containing sludge as fertilizer) might increase the probability of co-exposed with Sb to plants. In this study, CeO2 NPs, one of the most widely used nanomaterials in industries with potential oxidizing or reducing properties, was selected and co-exposed with Sb (III) or Sb (V) to investigate their mutual effects on uptake, accumulation and physiological effects in soybeans. The results showed that CeO2 NPs increased the Sb (III) and Sb (V) concentrations in roots by 36.7% and 14.0% respectively, while Sb (III) and Sb (V) inhibited the concentration of Ce in roots by 97.1% and 86.9% respectively. In addition, the impacts of extra common ions (Mn2+, Cu2+, Fe3+ and Zn2+) on the fate of Ce and Sb in soybeans in co-exposure of CeO2 NPs with Sb were investigated as well. Mn2+ and Fe3+ increased the accumulations of Ce and Sb (III) in the co-exposure of CeO2 NPs with Sb (III), but reduced that in the co-exposure of CeO2 NPs with Sb (V). Notably, the addition of Cu2+ and Zn2+ consistently increased the uptake and accumulation of Ce and Sb in the co-exposure treatments. Moreover, the effects of Sb on the dissolved portion of CeO2 NPs in soybean roots were also investigated. This study provided a perspective that extra ingredient (mineral elements, organic element or other nutrients) might regulated the interactions in ENPs-heavy metals-plants system which need further explorations.
Collapse
Affiliation(s)
- Weicheng Cao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Peng Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Juan Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Siyuan Fang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Siqun Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Jun Ye
- Hunan Qing Zhi Yuan Environmental Protection Technology Co., Ltd, Changsha, 410082, PR China
| | - Zhe Cai
- Hunan Qing Zhi Yuan Environmental Protection Technology Co., Ltd, Changsha, 410082, PR China
| |
Collapse
|
29
|
Dashairya L, Das D, Jena S, Mitra A, Saha P. Controlled scalable synthesis of yolk‐shell antimony with porous carbon anode for superior Na‐ion storage. NANO SELECT 2020. [DOI: 10.1002/nano.202000171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Love Dashairya
- Department of Ceramic Engineering National Institute of Technology Rourkela Odisha India
| | - Debasish Das
- School of Nano Science and Technology Indian Institute of Technology Kharagpur West Bengal India
| | - Sambedan Jena
- School of Nano Science and Technology Indian Institute of Technology Kharagpur West Bengal India
| | - Arijit Mitra
- Structural Characterization of Materials Laboratory Department of Metallurgical and Materials Engineering Indian Institute of Technology Kharagpur West Bengal India
| | - Partha Saha
- Department of Ceramic Engineering National Institute of Technology Rourkela Odisha India
- Centre for Nanomaterials National Institute of Technology Rourkela Odisha India
| |
Collapse
|
30
|
Liu S, Feng H, Tang L, Dong H, Wang J, Yu J, Feng C, Liu Y, Luo T, Ni T. Removal of Sb(III) by sulfidated nanoscale zerovalent iron: The mechanism and impact of environmental conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139629. [PMID: 32474279 DOI: 10.1016/j.scitotenv.2020.139629] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Pollution of Sb(III) in water has caused great concern in recent years. Nanoscale zero-valent iron (nZVI) can detoxify Sb(III) polluted water, but the rapid passivation and low adsorption capacity limit its practical application. Hence, this study provides a new and efficient nanotechnology to remove Sb(III) using the sulfidated nanoscale zero-valent iron (S-nZVI). The S-nZVI exhibits higher Sb(III)-removal efficiency than pristine nZVI under both aerobic and anoxic conditions. The adsorption capacity of Sb(III) by optimized S-nZVI (465.1 mg/g) is 6 times as high as that of the pristine nZVI (83.3 mg/g) under aerobic conditions. The results indicate that Sb(III) and Sb(V) can be immobilized on the surface of S-nZVI by forming Fe-S-Sb precipitates. Moreover, characterization results demonstrate that the existence of S2- can not only activate H2O2 to produce hydroxyl radical, but also accelerate the cycle of Fe3+/Fe2+ to improve the efficiency of Fenton reaction. Therefore, S-nZVI can produce more hydroxyl radicals to oxidize Sb (III) to Sb (V) and results in 2.3-fold higher oxidation rate of Sb(III) compared to pristine nZVI. The formed FeS layer on the S-nZVI surface can also improve the release ability of Fe2+ and accelerate the formation of nZVI corrosion products. S-nZVI thus holds great potential to be applied in antimony removal.
Collapse
Affiliation(s)
- Sishi Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Haopeng Feng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Chengyang Feng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yani Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Ting Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Ting Ni
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| |
Collapse
|
31
|
Wei D, Li B, Luo L, Zheng Y, Huang L, Zhang J, Yang Y, Huang H. Simultaneous adsorption and oxidation of antimonite onto nano zero-valent iron sludge-based biochar: Indispensable role of reactive oxygen species and redox-active moieties. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122057. [PMID: 32044627 DOI: 10.1016/j.jhazmat.2020.122057] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/29/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
The nano zero-valent iron sludge-based biochar (nZVI-SBC) was prepared in this study to eliminate Sb(III) from aqueous solutions, which was characterized by BET, SEM, XRD, TEM, FTIR, XPS. Our results proved that the incorporated nZVI on SBC matrix could significantly enhance eliminating Sb(III), and the max-adsorption capacity (160.40 mg g-1) can be achieved at pH = 4.8 ± 0.2 and temperature of 298 K. The effect of co-existing anions and natural organic matters on the Sb(III) adsorption efficiencies were systematically investigated. The surface complexation is the possible adsorption mechanisms by FTIR and XPS. Furthermore, mechanistic investigation revealed that •OH and hydroquinone radical (H-SQ•-) could be the primary oxidants for the transformation of Sb(III) under oxic conditions, while 9,10-phenanthrene quinone radical (P-SQ•-) were responsible under anoxic conditions. Thus, the enhanced elimination of Sb(III) from aqueous solution was ascribed to the combined adsorption and oxidation. The potential engineering application of nZVI-SBC can be proved through three actual water matrix experiments, including lake water, river water and acid mine drainage. Our present findings proved that nZVI-SBC could be a potential adsorbent, given the excellent performance in the adsorption processes, as well as the toxicity alleviating ability and economic advantages, especially under sub-surface water.
Collapse
Affiliation(s)
- Dongning Wei
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Changsha, 410128, China
| | - Bingyu Li
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Changsha, 410128, China.
| | - Yongxin Zheng
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Changsha, 410128, China
| | - Liuhui Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Changsha, 410128, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Changsha, 410128, China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Changsha, 410128, China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Changsha, 410128, China.
| |
Collapse
|
32
|
Long X, Wang X, Guo X, He M. A review of removal technology for antimony in aqueous solution. J Environ Sci (China) 2020; 90:189-204. [PMID: 32081315 DOI: 10.1016/j.jes.2019.12.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 05/27/2023]
Abstract
Antimony (Sb) and its compounds, toxic metalloid, have been classified as high-priority pollutants. Increasing Sb released into the water environment by natural processes and anthropogenic activities, which exposure threatens to human health and ecosystems. Therefore, it is of unquestionable importance to remove Sb from polluted water. Keeping in view the extreme importance of this issue, we summarize the source, chemistry, speciation, distribution, toxicity, and polluted situation of Sb about aqueous solution. Then, we provide the recent and common technology to remove Sb, which are based on adsorption, coagulation/flocculation, electrochemical technology, membrane technology, ion exchange, etc. In this review, we focus in detail on the adsorption method, researchers at present have been investigating to discover more advanced, cost-effective, eco-friendly, reusable adsorbents. However, to date the Sb-containing wastewater treatment technologies are not sufficiently developed and most of research have been tested only in controlled lab conditions. Few reports are available that include field studies and applications. We critically analyzed the salient features and removal mechanisms, evaluating benefits and limitations of these technologies, hoping to provide more references for further research. Finally, we considered the Fe- or Mn-based technologies was the most promising technique to remove Sb for field application.
Collapse
Affiliation(s)
- Xiaojing Long
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xin Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xuejun Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
33
|
Zhang W, Li N, Xiao T, Tang W, Xiu G. Removal of antimonite and antimonate from water using Fe-based metal-organic frameworks: The relationship between framework structure and adsorption performance. J Environ Sci (China) 2019; 86:213-224. [PMID: 31787186 DOI: 10.1016/j.jes.2019.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 05/27/2023]
Abstract
We investigated the adsorption performance of five Fe-based MOFs (Fe-BTC, MIL-100(Fe), MIL-101(Fe), MIL-53(Fe) and MIL-88C(Fe)) for removal of antimonite (Sb(III)) and antimonate (Sb(V)) from water. Among these MOFs, MIL-101(Fe) exhibited the best adsorption capacities for both Sb(III) and Sb(V) (151.8 and 472.8mg/g, respectively) which were higher than those of most adsorbents previously reported. The effect of steric hindrance was evident during Sb removal using the Fe-based MOFs, and the proper diameter of the smallest cage windows/channels should be considered an important parameter during the evaluation and selection of MOFs. Additionally, the adsorption capacities of MIL-101(Fe) for Sb(V) decreased with increasing initial pH values (from 3.0 to 8.0), while the opposite trend was observed for Sb(III). Chloride, nitrate and sulfate ions had a negligible influence on Sb(V) adsorption, while NO3- and SO42- improved Sb(III) adsorption. This result implies that inner sphere complexes might form during both Sb(III) and Sb(V) adsorption.
Collapse
Affiliation(s)
- Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China; Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science and Technology, Shanghai 200237, China.
| | - Na Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China; Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science and Technology, Shanghai 200237, China
| | - Ting Xiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China; Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science and Technology, Shanghai 200237, China
| | - Wenting Tang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China; Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science and Technology, Shanghai 200237, China
| | - Guangli Xiu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China; Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
34
|
Liu Y, Liu F, Qi Z, Shen C, Li F, Ma C, Huang M, Wang Z, Li J. Simultaneous oxidation and sorption of highly toxic Sb(III) using a dual-functional electroactive filter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:72-80. [PMID: 31071635 DOI: 10.1016/j.envpol.2019.04.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
One of the topics gaining lots of recent attention is the antimony (Sb) pollution. We have designed a dual-functional electroactive filter consisting of one-dimensional (1-D) titanate nanowires and carbon nanotubes for simultaneous oxidation and sorption of Sb(III). Applying an external limited DC voltage assist the in-situ conversion of highly toxic Sb(III) to less toxic Sb(V). The Sb(III) removal kinetics and efficiency were enhanced with flow rate and applied voltage (e.g., the Sb(III) removal efficiency increased from 87.5% at 0 V to 96.2% at 2 V). This enhancement in kinetics and efficiency are originated from the flow-through design, more exposed sorption sites, electrochemical reactivity, and limited pore size on the filter. The titanate-CNT hybrid filters perform effectively across a wide pH range of 3-11. Only negligible inhibition was observed in the presence of nitrate, chloride, and carbonate at varying concentrations. Our analyses using STEM, XPS, or AFS demonstrate that Sb were mainly adsorbed by Ti. DFT calculations suggest that the Sb(III) oxidation kinetics can be accelerated by the applied electric field. Exhausted titanate-CNT filters can be effectively regenerated by using NaOH solution. Moreover, the Sb(III)-spiked tap water generated ∼2400 bed volumes with a >90% removal efficiency. This study provides new insights for rational design of continuous-flow filters for the decontamination of Sb and other similar heavy metal ions.
Collapse
Affiliation(s)
- Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, PR China; State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, 399 Binshuixi Avenue, Tianjin, 300387, PR China.
| | - Fuqiang Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| | - Zenglu Qi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, PR China
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, PR China
| | - Chunyan Ma
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| | - Manhong Huang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, PR China
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Junjing Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, 399 Binshuixi Avenue, Tianjin, 300387, PR China
| |
Collapse
|
35
|
Abstract
The presence of antimony in water remains a major problem for drinking water technology, defined by the difficulty of available adsorbents to comply with the very low regulation limit of 5 μg/L for the dominant Sb(V) form. This study attempts to develop a new class of water adsorbents based on the combination of amorphous iron oxy-hydroxide with Fe3O4 nanoparticles and optimized to the sufficient uptake of Sb(V). Such a Fe3O4/FeOOH nanocomposite is synthesized by a two-step aqueous precipitation route from iron salts under different oxidizing and acidity conditions. A series of materials with various contents of Fe3O4 nanoparticles in the range 0–100 wt % were prepared and tested for their composition, and structural and morphological features. In order to evaluate the performance of prepared adsorbents, the corresponding adsorption isotherms, in the low concentration range for both Sb(III) and Sb(V), were obtained using natural-like water. The presence of a reducing agent such as Fe3O4 results in the improvement of Sb(V) uptake capacity, which is found around 0.5 mg/g at a residual concentration of 5 μg/L. The intermediate reduction of Sb(V) to Sb(III) followed by Sb(III) adsorption onto FeOOH is the possible mechanism that explains experimental findings.
Collapse
|
36
|
He M, Wang N, Long X, Zhang C, Ma C, Zhong Q, Wang A, Wang Y, Pervaiz A, Shan J. Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects. J Environ Sci (China) 2019; 75:14-39. [PMID: 30473279 DOI: 10.1016/j.jes.2018.05.023] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 05/14/2023]
Abstract
Antimony (Sb) is a toxic metalloid, and its pollution has become a global environmental problem as a result of its extensive use and corresponding Sb-mining activities. The toxicity and mobility of Sb strongly depend on its chemical speciation. In this review, we summarize the current knowledge on the biogeochemical processes (including emission, distribution, speciation, redox, metabolism and toxicity) that trigger the mobilization and transformation of Sb from pollution sources to the surrounding environment. Natural phenomena such as weathering, biological activity and volcanic activity, together with anthropogenic inputs, are responsible for the emission of Sb into the environment. Sb emitted in the environment can adsorb and undergo redox reactions on organic or inorganic environmental media, thus changing its existing form and exerting toxic effects on the ecosystem. This review is based on a careful and systematic collection of the latest papers during 2010-2017 and our research results, and it illustrates the fate and ecological effects of Sb in the environment.
Collapse
Affiliation(s)
- Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Ningning Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaojing Long
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chengjun Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Congli Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Qianyun Zhong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Aihua Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ying Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Aneesa Pervaiz
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jun Shan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
37
|
Liu Y, Yao J, Liu F, Shen C, Li F, Yang B, Huang M, Sand W. Nanoscale iron (oxyhydr)oxide-modified carbon nanotube filter for rapid and effective Sb(iii) removal. RSC Adv 2019; 9:18196-18204. [PMID: 35515251 PMCID: PMC9064765 DOI: 10.1039/c9ra02988e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/22/2019] [Indexed: 11/21/2022] Open
Abstract
Herein, nanoscale iron (oxyhydr)oxide-coated carbon nanotube (CNT) filters were rationally designed for rapid and effective removal of Sb(iii) from water. These iron (oxyhydr)oxide particles (<5 nm) were uniformly coated onto the CNT sidewalls. The as-fabricated hybrid filter demonstrated improved sorption kinetics and capacity compared with the conventional batch system. At a flow rate of 6 mL min−1, a Sb(iii) pseudo-first-order adsorption rate constant of 0.051 and a removal efficiency of >99% was obtained when operated in the recirculation mode. The improved Sb(iii) sorption performance can be ascribed to the synergistic effects of convection-enhanced mass transport, limited pore size, and more exposed active sorption sites of the filters. The presence of 1–10 mmol L−1 of carbonate, sulfate, and chloride inhibits Sb(iii) removal negligibly. Exhausted hybrid filters can be effectively regenerated by an electrical field-assisted chemical washing method. STEM characterization confirmed that Sb was mainly sequestered by iron (oxyhydr)oxides. XPS, AFS and XAFS results suggest that a certain amount of Sb(iii) was converted to Sb(v) during filtration. DFT calculations further indicate that the bonding energy for Sb(iii) onto the iron (oxyhydr)oxides was 2.27–2.30 eV, and the adsorbed Sb(iii) tends to be oxidized. Herein, nanoscale iron (oxyhydr)oxide-coated carbon nanotube (CNT) filters were rationally designed for rapid and effective removal of Sb(iii) from water.![]()
Collapse
Affiliation(s)
- Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection
- College of Environmental Science and Engineering
- Donghua University
- Shanghai 201620
- PR China
| | - Jinyu Yao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection
- College of Environmental Science and Engineering
- Donghua University
- Shanghai 201620
- PR China
| | - Fuqiang Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection
- College of Environmental Science and Engineering
- Donghua University
- Shanghai 201620
- PR China
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection
- College of Environmental Science and Engineering
- Donghua University
- Shanghai 201620
- PR China
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection
- College of Environmental Science and Engineering
- Donghua University
- Shanghai 201620
- PR China
| | - Bo Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection
- College of Environmental Science and Engineering
- Donghua University
- Shanghai 201620
- PR China
| | - Manhong Huang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection
- College of Environmental Science and Engineering
- Donghua University
- Shanghai 201620
- PR China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection
- College of Environmental Science and Engineering
- Donghua University
- Shanghai 201620
- PR China
| |
Collapse
|
38
|
Mishra S, Sankararamakrishnan N. Characterization, evaluation, and mechanistic insights on the adsorption of antimonite using functionalized carbon nanotubes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12686-12701. [PMID: 29468398 DOI: 10.1007/s11356-018-1347-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
Floating catalytic chemical vapor deposition technique was used for synthesizing carbon nanotubes (CNTs) using ferrocene in benzene as the hydrocarbon source. The functionalization of CNTs was carried out by oxidation followed by grafting of potassium iodide (KI) and mercaptoethanol (HS(CH2)2OH) ligands to produce iodide-grafted CNTs (CNT-I) and thiol-functionalized CNTs (CNT-SH), respectively. The resulting adsorbents have been thoroughly characterized by various techniques. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) studies revealed the efficient grafting of the ligands. Further, their adsorption capacities towards antimonite have been assessed. The adsorption kinetics fitted the pseudo-second-order model for both the adsorbents. Moreover, the adsorption of Sb(III) followed Langmuir and Freundlich's model. The maximum adsorption capacity of CNT-I and CNT-SH for Sb(III) at pH 7 was found to be 200 and 140.85 mg/g, respectively. The interference effect of various ions on the adsorption of antimonite was studied. A suitable mechanism for Sb(III) adsorption has been postulated using TEM, XRD, XPS, and FTIR. The adaptability of the adsorbents was demonstrated by the removal capacity of Sb(III) at parts per billion levels from nuclear decontamination formulation (NAC) and tap water matrix as well.
Collapse
Affiliation(s)
- Shruti Mishra
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Nalini Sankararamakrishnan
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
39
|
Wu D, Yao J, Lu G, Liu F, Zhou C, Zhang P, Nkoom M. Adsorptive removal of aqueous bezafibrate by magnetic ferrite modified carbon nanotubes. RSC Adv 2017. [DOI: 10.1039/c7ra07260k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
MFe2O4/CNTs were synthesized and successfully applied for the removal of aqueous bezafibrate. The adsorption behavior and mechanism were elucidated in detail.
Collapse
Affiliation(s)
- Donghai Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education
- College of Environment
- Hohai University
- Nanjing 210098
- China
| | - Jingjing Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education
- College of Environment
- Hohai University
- Nanjing 210098
- China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education
- College of Environment
- Hohai University
- Nanjing 210098
- China
| | - Fuli Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education
- College of Environment
- Hohai University
- Nanjing 210098
- China
| | - Chao Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education
- College of Environment
- Hohai University
- Nanjing 210098
- China
| | - Pei Zhang
- Henan Province Hydrology and Water Resources Bureau
- Zhengzhou
- China
| | - Matthew Nkoom
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education
- College of Environment
- Hohai University
- Nanjing 210098
- China
| |
Collapse
|