1
|
Zhou W, Liu YC, Liu GJ, Zhang Y, Feng GL, Xing GW. Glycosylated AIE-active Red Light-triggered Photocage with Precisely Tumor Targeting Capability for Synergistic Type I Photodynamic Therapy and CPT Chemotherapy. Angew Chem Int Ed Engl 2025; 64:e202413350. [PMID: 39266462 DOI: 10.1002/anie.202413350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
Photocaging is an emerging protocol for precisely manipulating spatial and temporal behaviors over biological activity. However, the red/near-infrared light-triggered photolysis process of current photocage is largely singlet oxygen (1O2)-dependent and lack of compatibility with other reactive oxygen species (ROS)-activated techniques, which has proven to be the major bottleneck in achieving efficient and precise treatment. Herein, we reported a lactosylated photocage BT-LRC by covalently incorporating camptothecin (CPT) into hybrid BODIPY-TPE fluorophore via the superoxide anion radical (O2 -⋅)-cleavable thioketal bond for type I photodynamic therapy (PDT) and anticancer drug release. Amphiphilic BT-LRC could be self-assembled into aggregation-induced emission (AIE)-active nanoparticles (BT-LRCs) owing to the regulation of carbohydrate-carbohydrate interactions (CCIs) among neighboring lactose units in the nanoaggregates. BT-LRCs could simultaneously generate abundant O2 -⋅ through the aggregation modulated by lactose interactions, and DNA-damaging agent CPT was subsequently and effectively released. Notably, the type I PDT and CPT chemotherapy collaboratively amplified the therapeutic efficacy in HepG2 cells and tumor-bearing mice. Furthermore, the inherent AIE property of BT-LRCs endowed the photocaged prodrug with superior bioimaging capability, which provided a powerful tool for real-time tracking and finely tuning the PDT and photoactivated drug release behavior in tumor therapy.
Collapse
Affiliation(s)
- Wei Zhou
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yi-Chen Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guang-Jian Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuan Zhang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Gai-Li Feng
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guo-Wen Xing
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
2
|
Wang Y, Chen Z, An X, Li J, Li J, Pei Z, Pei Y. A DNA damage-amplifying nanoagent for cancer treatment via two-way regulation of redox dyshomeostasis and downregulation of tetrahydrofolate. Int J Biol Macromol 2024; 277:134276. [PMID: 39084430 DOI: 10.1016/j.ijbiomac.2024.134276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
DNA damage-based therapy is widely used in cancer treatment, yet its therapeutic efficacy is constrained by the redox homeostasis and DNA damage repair mechanisms of tumor cells. To address these limitations and enhance the efficacy of DNA damage-based therapy, HA-CuH@MTX, a copper-histidine metal-organic complex (CuH) loaded with methotrexate (MTX) and modified with hyaluronic acid (HA), was developed to amplify the DNA damage induced. In vitro experiments demonstrated that the presence of both Cu+ and Cu2+ in HA-CuH@MTX enables two-way regulated redox dyshomeostasis (RDH), achieved through Cu+-catalyzed generation of •OH and Cu2+-mediated consumption of glutathione, thereby facilitating efficient DNA oxidative damage. In addition, DNA damage repair is synergistically inhibited by impairing nucleotide synthesis via histidine metabolism and MTX downregulation of tetrahydrofolate, a crucial raw material in nucleotide synthesis. In vivo experiments with 4T1 tumor-bearing mice demonstrate 83.6 % inhibition of tumor growth by HA-CuH@MTX. This work provides a new strategy to amplify the DNA damage caused by DNA damage-based cancer therapies, and holds great potential for improving their therapeutic efficacy.
Collapse
Affiliation(s)
- Yi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zelong Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xingwang An
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiahui Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaxuan Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuxin Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Wang X, Seah HL, Zhang XL, Zhuang Z, Liu XW. Fluorescent Self-Assembled Complexes Based on Glyco-Functionalized G-Quadruplexes as a Targeted Delivery Platform. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50229-50237. [PMID: 39264898 DOI: 10.1021/acsami.4c08079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Targeted delivery systems combined with the stimuli-responsive release of drug molecules hold noteworthy promise for precision medicine, enabling treatments with enhanced effectiveness and reduced adverse effects. An ideal drug delivery platform with versatile targeting moieties, the capability of combinational payloads, and simple preparation is highly desirable. Herein, we developed pH-sensitive fluorescent self-assembled complexes (SACs) of a galactose-functionalized G-quadruplex (G4) and a coumarin carboxamidine derivative as a targeted delivery platform through the nanoprecipitation method. These SACs selectively targeted hepatocellular carcinoma (HepG2) cells in fluorescence imaging after a short incubation and exerted specific anticancer effects in an appropriate dose range. Co-delivery of 1 μM prodrug floxuridine oligomers and 16 μg/mL SACs (minimal hemolytic effect) significantly reduced the cytotoxicity of the nucleoside anticancer drug on normal cells (NIH/3T3), kept up to 70% alive after 72-h incubation, and improved anticancer efficacy compared to SACs alone. This strategy can be extended to ratiometric multidrug delivery through self-assembly for targeted combinational therapy.
Collapse
Affiliation(s)
- Xian Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hui Ling Seah
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xiao-Lin Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Zeyan Zhuang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xue-Wei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
4
|
Wan Y, Chen J, Li J, Chen Z, Wang Y, Li J, Pei Z, Pei Y. Cu 0-based nanoparticles boost anti-tumor efficacy via synergy of cuproptosis and ferroptosis enhanced by cuproptosis-induced glutathione synthesis disorder. Colloids Surf B Biointerfaces 2024; 245:114196. [PMID: 39243710 DOI: 10.1016/j.colsurfb.2024.114196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Apoptotic resistance of tumor often leads to poor efficacy from mono-therapy based on apoptosis. Cuproptosis, a new type of non-apoptotic cell death related to mitochondrial dysfunction, can alter metabolism and enhance ferroptosis, providing a promising strategy for effective synergistic cancer treatment. In this work, Cu0-based nanoparticles (denoted as HA-ZCu) were successfully developed to improve anti-tumor efficacy by combining cuproptosis with enhanced ferroptosis, which was achieved by cuproptosis-induced glutathione synthesis disorder. In vitro studies revealed that HA-ZCu effectively induced cuproptosis and ferroptosis in HepG2 cells. Moreover, HA-ZCu induced mitochondrial dysfunction and decreased intracellular adenosine triphosphate (ATP), glutamate, and glutathione, demonstrating the effective synergy. In vivo studies further approved the synergistic therapeutic efficacy of HA-ZCu, where the inhibition rate of tumor growth reached 83.2 %. This work represents the first example of enhanced anti-tumor efficacy via cuproptosis and ferroptosis synergy through cuproptosis-induced glutathione synthesis disorder.
Collapse
Affiliation(s)
- Yichen Wan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Junge Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, PR China
| | - Jiaxuan Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zelong Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiahui Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yuxin Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
5
|
Chu B, Deng H, Niu T, Qu Y, Qian Z. Stimulus-Responsive Nano-Prodrug Strategies for Cancer Therapy: A Focus on Camptothecin Delivery. SMALL METHODS 2024; 8:e2301271. [PMID: 38085682 DOI: 10.1002/smtd.202301271] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Indexed: 08/18/2024]
Abstract
Camptothecin (CPT) is a highly cytotoxic molecule with excellent antitumor activity against various cancers. However, its clinical application is severely limited by poor water solubility, easy inactivation, and severe toxicity. Structural modifications and nanoformulations represent two crucial avenues for camptothecin's development. However, the potential for further structural modifications is limited, and camptothecin nanoparticles fabricated via physical loading have the drawbacks of low drug loading and leakage. Prodrug-based CPT nanoformulations have shown unique advantages, including increased drug loading, reduced burst release, improved bioavailability, and minimal toxic side effects. Stimulus-responsive CPT nano-prodrugs that respond to various endogenous or exogenous stimuli by introducing various activatable linkers to achieve spatiotemporally responsive drug release at the tumor site. This review comprehensively summarizes the latest research advances in stimulus-responsive CPT nano-prodrugs, including preparation strategies, responsive release mechanisms, and their applications in cancer therapy. Special focus is placed on the release mechanisms and characteristics of various stimulus-responsive CPT nano-prodrugs and their application in cancer treatment. Furthermore, clinical applications of CPT prodrugs are discussed. Finally, challenges and future research directions for CPT nano-prodrugs are discussed. This review to be valuable to readers engaged in prodrug research is expected.
Collapse
Affiliation(s)
- Bingyang Chu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hanzhi Deng
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Qu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
6
|
Wang Y, Chen Z, Li J, Wen Y, Li J, Lv Y, Pei Z, Pei Y. A Paramagnetic Metal-Organic Framework Enhances Mild Magnetic Hyperthermia Therapy by Downregulating Heat Shock Proteins and Promoting Ferroptosis via Aggravation of Two-Way Regulated Redox Dyshomeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306178. [PMID: 38161219 PMCID: PMC10953551 DOI: 10.1002/advs.202306178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Mild magnetic hyperthermia therapy (MMHT) holds great potential in treating deep-seated tumors, but its efficacy is impaired by the upregulation of heat shock proteins (HSPs) during the treatment process. Herein, Lac-FcMOF, a lactose derivative (Lac-NH2 ) modified paramagnetic metal-organic framework (FcMOF) with magnetic hyperthermia property and thermal stability, has been developed to enhance MMHT therapeutic efficacy. In vitro studies showed that Lac-FcMOF aggravates two-way regulated redox dyshomeostasis (RDH) via magnetothermal-accelerated ferricenium ions-mediated consumption of glutathione and ferrocene-catalyzed generation of ∙OH to induce oxidative damage and inhibit heat shock protein 70 (HSP70) synthesis, thus significantly enhancing the anti-cancer efficacy of MMHT. Aggravated RDH promotes glutathione peroxidase 4 inactivation and lipid peroxidation to promote ferroptosis, which further synergizes with MMHT. H22-tumor-bearing mice treated with Lac-FcMOF under alternating magnetic field (AMF) demonstrated a 90.4% inhibition of tumor growth. This work therefore provides a new strategy for the simple construction of a magnetic hyperthermia agent that enables efficient MMHT by downregulating HSPs and promoting ferroptosis through the aggravation of two-way regulated RDH.
Collapse
Affiliation(s)
- Yi Wang
- College of Chemistry and PharmacyNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Zelong Chen
- College of Chemistry and PharmacyNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Jiahui Li
- College of Chemistry and PharmacyNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Yafei Wen
- College of Chemistry and PharmacyNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Jiaxuan Li
- College of Chemistry and PharmacyNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Yinghua Lv
- College of Chemistry and PharmacyNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Zhichao Pei
- College of Chemistry and PharmacyNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Yuxin Pei
- College of Chemistry and PharmacyNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| |
Collapse
|
7
|
Qiu G, Zhou W, Liu Y, Meng T, Yu F, Jin X, Lian K, Zhou X, Yuan H, Hu F. NIR-Triggered Thermosensitive Nanoreactors for Dual-Guard Mechanism-Mediated Precise and Controllable Cancer Chemo-Phototherapy. Biomacromolecules 2024; 25:964-974. [PMID: 38232296 DOI: 10.1021/acs.biomac.3c01070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Thermosensitive nanoparticles can be activated by externally applying heat, either through laser irradiation or magnetic fields, to trigger the release of drug payloads. This controlled release mechanism ensures that drugs are specifically released at the tumor site, maximizing their effectiveness while minimizing systemic toxicity and adverse effects. However, its efficacy is limited by the low concentration of drugs at action sites, which is caused by no specific target to tumor sties. Herein, hyaluronic acid (HA), a gooey, slippery substance with CD44-targeting ability, was conjugated with a thermosensitive polymer poly(acrylamide-co-acrylonitrile) to produce tumor-targeting and thermosensitive polymeric nanocarrier (HA-P) with an upper critical solution temperature (UCST) at 45 °C, which further coloaded chemo-drug doxorubicin (DOX) and photosensitizer Indocyanine green (ICG) to prepare thermosensitive nanoreactors HA-P/DOX&ICG. With photosensitizer ICG acting as the "temperature control element", HA-P/DOX&ICG nanoparticles can respond to temperature changes when receiving near-infrared irradiation and realize subsequent structure depolymerization for burst drug release when the ambient temperature was above 45 °C, achieving programmable and on-demand drug release for effective antitumor therapy. Tumor inhibition rate increased from 61.8 to 95.9% after laser irradiation. Furthermore, the prepared HA-P/DOX&ICG nanoparticles possess imaging properties, with ICG acting as a probe, enabling real-time monitoring of drug distribution and therapeutic response, facilitating precise treatment evaluation. These results provide enlightenment for the design of active tumor targeting and NIR-triggered programmable and on-demand drug release of thermosensitive nanoreactors for tumor therapy.
Collapse
Affiliation(s)
- Guoxi Qiu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Wentao Zhou
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yupeng Liu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Fangying Yu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiangyu Jin
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Keke Lian
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xueqing Zhou
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
8
|
Xiong J, Xue EY, Ng DKP. Synthesis, Cellular Uptake, and Photodynamic Activity of Oligogalactosyl Zinc(II) Phthalocyanines. Chempluschem 2023; 88:e202200285. [PMID: 36229229 DOI: 10.1002/cplu.202200285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Indexed: 02/04/2023]
Abstract
A series of di-α-substituted zinc(II) phthalocyanines with different number of galactose moieties, ranging from 1 to 8, namely Pc-galn (n=1, 2, 4, and 8) were designed and synthesized. The synthesis involved the copper-catalyzed azide-alkyne cycloaddition reaction of a mono- or dialkynyl zinc(II) phthalocyanine with an acetyl-protected galactosyl azide or its dendritic derivative with four acetyl-protected galactosyl groups, followed by removal of the acetyl protecting groups via alkaline hydrolysis. In N,N-dimethylformamide, these oligogalactosyl phthalocyanines were non-aggregated as shown by the strong Q-band absorption and fluorescence emission. Owing to the di-α-substitution, they also behaved as efficient singlet oxygen generators upon light irradiation with a singlet oxygen quantum yield of 0.84. The spectroscopic and photophysical properties were not affected by the number of galactosyl units. In contrast, the compounds became significantly aggregated and quenched in phosphate-buffered saline. Their cellular uptake was then studied using a range of cell lines, which generally followed the order Pc-gal1 >Pc-gal2 ≈Pc-gal4 >Pc-gal8 . Interestingly, the di-galactosyl analogue exhibited selective uptake against HeLa human cervical carcinoma cells through an energy-dependent pathway instead of the expected asialoglycoprotein receptor. Upon light irradiation, it could effectively kill the cells with a half-maximal inhibitory concentration of 0.58 μM.
Collapse
Affiliation(s)
- Junlong Xiong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, P. R. China
| | - Evelyn Y Xue
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, P. R. China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, P. R. China
| |
Collapse
|
9
|
Xiong J, Xue EY, Wu Q, Lo PC, Ng DKP. A tetrazine-responsive isonitrile-caged photosensitiser for site-specific photodynamic therapy. J Control Release 2023; 353:663-674. [PMID: 36503072 DOI: 10.1016/j.jconrel.2022.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
We report herein a versatile and efficient bioorthogonal strategy to actualise targeted delivery and site-specific activation of photosensitisers for precise antitumoural photodynamic therapy. The strategy involved the use of an isonitrile-caged distyryl boron dipyrromethene-based photosensitiser, labelled as NC-DSBDP, of which the photoactivities could be specifically activated upon conversion of the meso ester substituent to carboxylate initiated by the [4 + 1] cycloaddition with a tetrazine derivative. By using two tetrazines conjugated with a galactose moiety or the GE11 peptide, labelled as gal-Tz and GE11-Tz, we could selectively label the cancer cells overexpressed with the asialoglycoprotein receptor and the epidermal growth factor receptor respectively. Upon encountering the internalised NC-DSBDP, these tetrazines triggered the "ester-to-carboxylate" transformation of this compound, activating its fluorescence and reactive oxygen species generation inside the target cells. The bioorthogonal activation was also demonstrated in vivo, leading to effective photo-eradication of the tumour in nude mice.
Collapse
Affiliation(s)
- Junlong Xiong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Evelyn Y Xue
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Qianqian Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
10
|
Yuan X, Tao Y, Xiao W, Du K, Hu H, Xu D, Xu Q. Conjugates of lactobionic acid and IR820: New photosensitizers for efficient photodynamic therapy of hepatoma cells. Drug Dev Res 2022; 83:1923-1933. [DOI: 10.1002/ddr.22007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/08/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoyin Yuan
- School of Pharmacy Changzhou University Changzhou P. R. China
| | - Yayu Tao
- School of Pharmacy Changzhou University Changzhou P. R. China
| | - Wen Xiao
- School of Pharmacy Changzhou University Changzhou P. R. China
| | - Kunda Du
- School of Pharmacy Changzhou University Changzhou P. R. China
| | - Hang Hu
- School of Pharmacy Changzhou University Changzhou P. R. China
- Jiangsu Hope‐pharm Co., Ltd Changzhou P. R. China
| | - Defeng Xu
- School of Pharmacy Changzhou University Changzhou P. R. China
| | - Qingbo Xu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University) Zhuhai P. R. China
| |
Collapse
|
11
|
Wang Y, Li J, Pei Z, Pei Y. Lactosylation leads to a water-soluble fluorescent probe for detection of S2− in water. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Feng W, Zhang S, Wan Y, Chen Z, Qu Y, Li J, James TD, Pei Z, Pei Y. Nanococktail Based on Supramolecular Glyco-Assembly for Eradicating Tumors In Vivo. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20749-20761. [PMID: 35481368 DOI: 10.1021/acsami.2c03463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of robust phototherapeutic strategies for eradicating tumors remains a significant challenge in the transfer of cancer phototherapy to clinical practice. Here, a phototherapeutic nanococktail atovaquone/17-dimethylaminoethylamino-17-demethoxygeldanamycin/glyco-BODIPY (ADB) was developed to enhance photodynamic therapy (PDT) and photothermal therapy (PTT) via alleviation of hypoxia and thermal resistance that was constructed using supramolecular self-assembly of glyco-BODIPY (BODIPY-SS-LAC, BSL-1), hypoxia reliever atovaquone (ATO), and heat shock protein inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG). Benefiting from a glyco-targeting and glutathione (GSH) responsive units BSL-1, ADB can be rapidly taken up by hepatoma cells, furthermore the loaded ATO and 17-DMAG can be released in original form into the cytoplasm. Using in vitro and in vivo results, it was confirmed that ADB enhanced the synergetic PDT and PTT upon irradiation using 685 nm near-infrared light (NIR) under a hypoxic tumor microenvironment where ATO can reduce O2 consumption and 17-DMAG can down-regulate HSP90. Moreover, ADB exhibited good biosafety, and tumor eradication in vivo. Hence, this as-developed phototherapeutic nanococktail overcomes the substantial obstacles encountered by phototherapy in tumor treatment and offers a promising approach for the eradication of tumors.
Collapse
Affiliation(s)
- Weiwei Feng
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Shangqian Zhang
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yichen Wan
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zelong Chen
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yun Qu
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jiahui Li
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
13
|
Barchi JJ. Glycoconjugate Nanoparticle-Based Systems in Cancer Immunotherapy: Novel Designs and Recent Updates. Front Immunol 2022; 13:852147. [PMID: 35432351 PMCID: PMC9006936 DOI: 10.3389/fimmu.2022.852147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
For many years, cell-surface glycans (in particular, Tumor-Associated Carbohydrate Antigens, TACAs) have been the target of both passive and active anticancer immunotherapeutic design. Recent advances in immunotherapy as a treatment for a variety of malignancies has revolutionized anti-tumor treatment regimens. Checkpoint inhibitors, Chimeric Antigen Receptor T-cells, Oncolytic virus therapy, monoclonal antibodies and vaccines have been developed and many approvals have led to remarkable outcomes in a subset of patients. However, many of these therapies are very selective for specific patient populations and hence the search for improved therapeutics and refinement of techniques for delivery are ongoing and fervent research areas. Most of these agents are directed at protein/peptide epitopes, but glycans-based targets are gaining in popularity, and a handful of approved immunotherapies owe their activity to oligosaccharide targets. In addition, nanotechnology and nanoparticle-derived systems can help improve the delivery of these agents to specific organs and cell types based on tumor-selective approaches. This review will first outline some of the historical beginnings of this research area and subsequently concentrate on the last 5 years of work. Based on the progress in therapeutic design, predictions can be made as to what the future holds for increasing the percentage of positive patient outcomes for optimized systems.
Collapse
Affiliation(s)
- Joseph J. Barchi
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
14
|
Wang Y, Li J, Chen Z, Pu L, Pei Z, Pei Y. A GLUTs/GSH cascade targeting-responsive bioprobe for the detection of circulating tumor cells. Chem Commun (Camb) 2022; 58:3945-3948. [PMID: 35244637 DOI: 10.1039/d2cc00566b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A GLUTs/GSH cascade targeting-responsive bioprobe, GluCC, was rationally designed and synthesized for the first time via the coordination of copper ions with a glucose-modified coumarin derivative ligand (GluC). GluCC can specifically detect circulating tumor cells (CTCs) in lung metastatic mice models by targeting the Warburg effect and responding to overexpressed glutathione in the tumor microenvironment. This bioprobe with a simple detection procedure has significant advantages for CTC detection.
Collapse
Affiliation(s)
- Yi Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Jiahui Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Zelong Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Liang Pu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| |
Collapse
|
15
|
Das R, Mukhopadhyay B. A brief insight to the role of glyconanotechnology in modern day diagnostics and therapeutics. Carbohydr Res 2021; 507:108394. [PMID: 34265516 DOI: 10.1016/j.carres.2021.108394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022]
Abstract
Carbohydrate-protein and carbohydrate-carbohydrate interactions are very important for various biological processes. Although the magnitude of these interactions is low compared to that of protein-protein interaction, the magnitude can be boosted by multivalent approach known as glycocluster effect. Nanoparticle platform is one of the best ways to present diverse glycoforms in multivalent manner and thus, the field of glyconanotechnology has emerged as an important field of research considering their potential applications in diagnostics and therapeutics. Considerable advances in the field have been achieved through development of novel techniques, use of diverse metallic and non-metallic cores for better efficacy and application of ever-increasing number of carbohydrate ligands for site-specific interaction. The present review encompasses the recent developments in the area of glyconanotechnology and their future promise as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Rituparna Das
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India.
| | - Balaram Mukhopadhyay
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India.
| |
Collapse
|
16
|
Abstract
Systematically dissecting the molecular basis of the cell surface as well as its related biological activities is considered as one of the most cutting-edge fields in fundamental sciences. The advent of various advanced cell imaging techniques allows us to gain a glimpse of how the cell surface is structured and coordinated with other cellular components to respond to intracellular signals and environmental stimuli. Nowadays, cell surface-related studies have entered a new era featured by a redirected aim of not just understanding but artificially manipulating/remodeling the cell surface properties. To meet this goal, biologists and chemists are intensely engaged in developing more maneuverable cell surface labeling strategies by exploiting the cell's intrinsic biosynthetic machinery or direct chemical/physical binding methods for imaging, sensing, and biomedical applications. In this review, we summarize the recent advances that focus on the visualization of various cell surface structures/dynamics and accurate monitoring of the microenvironment of the cell surface. Future challenges and opportunities in these fields are discussed, and the importance of cell surface-based studies is highlighted.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | | | | | | |
Collapse
|
17
|
Stuart-Walker W, Mahon CS. Glycomacromolecules: Addressing challenges in drug delivery and therapeutic development. Adv Drug Deliv Rev 2021; 171:77-93. [PMID: 33539854 DOI: 10.1016/j.addr.2021.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
Carbohydrate-based materials offer exciting opportunities for drug delivery. They present readily available, biocompatible components for the construction of macromolecular systems which can be loaded with cargo, and can enable targeting of a payload to particular cell types through carbohydrate recognition events established in biological systems. These systems can additionally be engineered to respond to environmental stimuli, enabling triggered release of payload, to encompass multiple modes of therapeutic action, or to simultaneously fulfil a secondary function such as enabling imaging of target tissue. Here, we will explore the use of glycomacromolecules to deliver therapeutic benefits to address key health challenges, and suggest future directions for development of next-generation systems.
Collapse
|
18
|
Wang JL, Wang KX, Han TL, Li JM, He X, Rong RX, Cao ZR, Li XL, Wang KR. Antitumour properties based on the self-assembly of camptothecin and carbamoylmannose conjugates. Chem Biol Drug Des 2020; 96:870-877. [PMID: 32321194 DOI: 10.1111/cbdd.13698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/05/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Camptothecin (CPT) and its analogues show potent antitumour activity. However, poor water solubility and severe side effects have restricted their applications in clinical practice. In this paper, a novel self-assembly based on camptothecin and carbamoylmannose conjugates (CPT-Man) was constructed. The self-assembly increased the water solubility of camptothecin to 0.64 mg/ml and antitumour activity. Moreover, CPT-Man could induce obvious cancer cell apoptosis. This work provides a new approach for exploring carbohydrate-modified antitumour properties by self-assembled CPT drugs.
Collapse
Affiliation(s)
- Jia-Li Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, China
| | - Kai-Xin Wang
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding, China
| | - Tian-Lei Han
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, China
| | - Jin-Mei Li
- Department of Pathology, The First Central Hospital of Baoding, Baoding, China
| | - Xu He
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, China
| | - Rui-Xue Rong
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding, China
| | - Zhi-Ran Cao
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding, China
| | - Xiao-Liu Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, China
| | - Ke-Rang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, China
| |
Collapse
|
19
|
Rao NNM, Sharma S, Palodkar KK, Sadhu V, Sharma M, Sainath AVS. Rationally designed curcumin laden glycopolymeric nanoparticles: Implications on cellular uptake and anticancer efficacy. J Appl Polym Sci 2020. [DOI: 10.1002/app.48954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- N. Naga Malleswara Rao
- Polymers and Functional Materials and Fluoro‐Agrochemicals Department and Academy of Scientific & Innovative Research (AcSIR)CSIR‐Indian Institute of Chemical Technology Uppal Road Hyderabad 500007 India
| | - Shipra Sharma
- Department of PharmacyBanasthali Vidyapith Banasthali Rajasthan 304022 India
| | - Krushna Kaduba Palodkar
- Polymers and Functional Materials and Fluoro‐Agrochemicals Department and Academy of Scientific & Innovative Research (AcSIR)CSIR‐Indian Institute of Chemical Technology Uppal Road Hyderabad 500007 India
| | - Veera Sadhu
- School of Physical SciencesBanasthali Vidyapith Banasthali Rajasthan 304022 India
| | - Manu Sharma
- Department of PharmacyBanasthali Vidyapith Banasthali Rajasthan 304022 India
| | - Annadanam V. Sesha Sainath
- Polymers and Functional Materials and Fluoro‐Agrochemicals Department and Academy of Scientific & Innovative Research (AcSIR)CSIR‐Indian Institute of Chemical Technology Uppal Road Hyderabad 500007 India
| |
Collapse
|
20
|
Hao B, Li W, Zhang S, Zhu Y, Li Y, Ding A, Huang X. A facile PEG/thiol-functionalized nanographene oxide carrier with an appropriate glutathione-responsive switch. Polym Chem 2020. [DOI: 10.1039/d0py00110d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel nanographene oxide/PEG-based bioreduction-responsive smart drug delivery system with a GSH-responsive disulfide linker as the controlled release switch can selectively release anti-cancer drugs in cancer cells.
Collapse
Affiliation(s)
- Bingjie Hao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Wei Li
- Division of Physical Biology and Bioimaging Center
- Shanghai Synchrotron Radiation Facility
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- University of Chinese Academy of Sciences
| | - Sen Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Ying Zhu
- Division of Physical Biology and Bioimaging Center
- Shanghai Synchrotron Radiation Facility
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- University of Chinese Academy of Sciences
| | - Yongjun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Aishun Ding
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
21
|
Li J, Zhang Y, Cai C, Rong X, Shao M, Li J, Yang C, Yu G. Collaborative assembly of doxorubicin and galactosyl diblock glycopolymers for targeted drug delivery of hepatocellular carcinoma. Biomater Sci 2019; 8:189-200. [PMID: 31821399 DOI: 10.1039/c9bm01604j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) patients suffer from severe pain due to the serious systemic side effects and low efficiency of chemotherapeutic drugs, and it is important to develop novel drug delivery systems to circumvent these issues. In this study, a series of galactose-based glycopolymers, poly(N-(prop-2-enoyl)-β-d-galactopyranosylamine)-b-poly(N-isopropyl acrylamide) (pGal(OH)-b-pNIPAA), were prepared through a sequential reversible addition-fragmentation chain transfer (RAFT) polymerization and tetrabutylammonium hydroxide (TBAOH)-mediated removal of acetyl groups. Hydrophilic doxorubicin hydrochloride was introduced to undergo collaborative assembly with poly(N-(prop-2-enoyl)-β-d-peracetylated galactosamine)-b-poly(N-isopropyl acrylamide) (pGal(Ac)-b-pNIPAA) via TBAOH treatment. pGal-b-pNIPAA/doxorubicin (DOX) delivery nanoparticles (GND NPs) formed by collaborative assembly were fully characterized by NMR, TEM and FT-IR, indicating the well-controlled formation of particles with uniform size and high efficiency in terms of drug loading and encapsulation compared with conventional adsorption methods. Meanwhile, the GND NPs were observed to be rapidly disintegrated under acidic conditions and resulted in an increased release of DOX. Cellular experiments showed that pGal-b-pNIPAA/DOX is apparently an asialoglycoprotein receptor (ASGPR)-mediated target of HCC, resulting in enhanced cellular uptake to HepG2 cells and anti-tumor efficacy in vitro. Furthermore, GND NPs III exerted more sustainable and effective anti-tumor effects compared to free DOX on a transgenic zebrafish TO(KrasG12V) model in vivo. These results indicated that the biocompatible nanomaterials developed by collaborative assembly with galactosyl diblock glycopolymers and DOX may serve as a promising candidates for targeting therapy of HCC.
Collapse
Affiliation(s)
- Jianghua Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Yang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China. and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China. and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Meng Shao
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Jiarui Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Chendong Yang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China. and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
22
|
Chai X, Han HH, Zang Y, Li J, He XP, Zhang J, Tian H. Targeted photoswitchable imaging of intracellular glutathione by a photochromic glycosheet sensor. Beilstein J Org Chem 2019; 15:2380-2389. [PMID: 31666872 PMCID: PMC6808201 DOI: 10.3762/bjoc.15.230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
The development of photochromic fluorescence sensors with dynamic and multiple-signaling is beneficial to the improvement of biosensing/imaging precision. However, elaborate designs with complicated molecular structures are always required to integrate these functions into one molecule. By taking advantages of both redox-active/high loading features of two-dimensional (2D) manganese dioxide (MnO2) and dynamic fluorescence photoswitching of photochromic sensors, we here design a hybrid photochromic MnO2 glycosheet (Glyco-DTE@MnO2) to achieve the photoswitchable imaging of intracellular glutathione (GSH). The photochromic glycosheet manifests significantly turn-on fluorescence and dynamic ON/OFF fluorescence signals in response to GSH, which makes it favorable for intracellular GSH double-check in targeted human hepatoma cell line (HepG2) through the recognition between β-D-galactoside and asialoglycoprotein receptor (ASGPr) on cell membranes. The dynamic fluorescence signals and excellent selectivity for detection and imaging of GSH ensure the precise determination of cell states, promoting its potential applications in future disease diagnosis and therapy.
Collapse
Affiliation(s)
- Xianzhi Chai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China.,National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd., Shanghai 201203, People's Republic of China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd., Shanghai 201203, People's Republic of China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd., Shanghai 201203, People's Republic of China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
23
|
Fang D, Pi M, Pan Z, Song N, He X, Li J, Luo F, Tan H, Li Z. Stable, Bioresponsive, and Macrophage-Evading Polyurethane Micelles Containing an Anionic Tripeptide Chain Extender. ACS OMEGA 2019; 4:16551-16563. [PMID: 31616835 PMCID: PMC6788071 DOI: 10.1021/acsomega.9b02326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Polymeric nanocarriers have been extensively used in medicinal applications for drug delivery. However, intravenous nanocarriers circulating in the blood will be rapidly cleared from the mononuclear macrophage system. The surface physicochemical characterizations of nanocarriers are the primary factors to determine their fate in vivo, such as evading the reticuloendothelial system, exhibiting long blood circulation times, and accumulating in the targeted site. In this work, we develop a series of polyurethane micelles containing segments of an anionic tripeptide, hydrophilic mPEG, and disulfide bonds. It is found that the long hydrophilic mPEG can shield the micellar surface and have a synergistic effect with the negatively charged tripeptide to minimize macrophage phagocytosis. Meanwhile, the disulfide bond can rapidly respond to the intracellular reduction environment, leading to the acceleration of drug release and improvement of the therapeutic effect. Our results verify that these anionic polyurethane micelles hold great potential in the development of the stealth immune system and controllable intracellular drug transporters.
Collapse
Affiliation(s)
- Danxuan Fang
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Menghan Pi
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhicheng Pan
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Nijia Song
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xueling He
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jiehua Li
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Feng Luo
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hong Tan
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhen Li
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
24
|
Xie Y, Huang H, Ismail I, Sun H, Yi L, Xi Z. A fluorogenic H2S-triggered prodrug based on thiolysis of the NBD amine. Bioorg Med Chem Lett 2019; 29:126627. [DOI: 10.1016/j.bmcl.2019.126627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/08/2019] [Accepted: 08/16/2019] [Indexed: 01/29/2023]
|
25
|
Zhang Y, Cui Z, Mei H, Xu J, Zhou T, Cheng F, Wang K. Angelica sinensis polysaccharide nanoparticles as a targeted drug delivery system for enhanced therapy of liver cancer. Carbohydr Polym 2019; 219:143-154. [DOI: 10.1016/j.carbpol.2019.04.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/24/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022]
|
26
|
Glutathione responsive cubic gel particles cyclodextrin metal-organic frameworks for intracellular drug delivery. J Colloid Interface Sci 2019; 551:39-46. [PMID: 31075632 DOI: 10.1016/j.jcis.2019.04.096] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 11/22/2022]
Abstract
Novel cubic gel particles (ssCGP) with Glutathione (GSH) triggered drug release features were prepared by crosslinking the cyclodextrin based metal-organic frameworks (CD-MOFs) templets with a newly synthesized biodegradable disulfide bond-bearing linker and removing of the potassium ion in sequence. The morphology and size of ssCGP were investigated by field emission scanning electron microscope (FESEM) and dynamic light scattering. Energy dispersive x-ray spectroscopy (EDX), fourier transform infrared spectroscopy (FT-IR), powder x-ray diffraction (PXRD) and Brunauer-Emmett-Teller (BET) were employed to characterize the structure of ssCGP. ssCGP have regular hexahedron shape with edge length about 200-400 nm. Excellent ability of drug adsorption was achieved by using doxorubicin (DOX) as a model drug. The GSH triggered drug release of ssCGP was observed both in GSH contained solutions and intracellular environments. ssCGP have been demonstrated as a biocompatible porous nanocarrier, particular for intracellular drug delivery.
Collapse
|
27
|
Chen Y, Diaz-Dussan D, Wu D, Wang W, Peng YY, Asha AB, Hall DG, Ishihara K, Narain R. Bioinspired Self-Healing Hydrogel Based on Benzoxaborole-Catechol Dynamic Covalent Chemistry for 3D Cell Encapsulation. ACS Macro Lett 2018; 7:904-908. [PMID: 35650963 DOI: 10.1021/acsmacrolett.8b00434] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Boronic ester, one typical example of dynamic covalent bonds, has presented great potential to prepare self-healing hydrogels. However, most of currently reported hydrogels based on boronic esters are formed at pH > 8, which impeded their further use in physiological conditions. In this study, we designed two kinds of zwitterionic copolymers with benzoxaborole and catechol pendant groups, respectively. Owing to the lower pKa value of benzoxaborole (7.2), gelation can happen easily at pH 7.4 PBS after mixing these two copolymers due to efficient formation of benzoxaborole-catechol complexations. The resulting hydrogels exhibited excellent self-healing property as well as dual pH/sugar responsiveness due to the dynamic nature of boronic ester. Moreover, benefiting from the cell membrane bioinspired 2-methacryloyloxyethyl phosphorylcholine (MPC)-based polymeric matrix, the hydrogel was further investigated for 3D cell encapsulation. The combination of biocompatible zwitterionic polymers with dynamic benzoxaborole-catechol complexation makes the hydrogels a promising platform for diverse potential bioapplications like drug delivery and tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | |
Collapse
|
28
|
Kalaydina RV, Bajwa K, Qorri B, Decarlo A, Szewczuk MR. Recent advances in "smart" delivery systems for extended drug release in cancer therapy. Int J Nanomedicine 2018; 13:4727-4745. [PMID: 30154657 PMCID: PMC6108334 DOI: 10.2147/ijn.s168053] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in nanomedicine have become indispensable for targeted drug delivery, early detection, and increasingly personalized approaches to cancer treatment. Nanoparticle-based drug-delivery systems have overcome some of the limitations associated with traditional cancer-therapy administration, such as reduced drug solubility, chemoresistance, systemic toxicity, narrow therapeutic indices, and poor oral bioavailability. Advances in the field of nanomedicine include “smart” drug delivery, or multiple levels of targeting, and extended-release drug-delivery systems that provide additional methods of overcoming these limitations. More recently, the idea of combining smart drug delivery with extended-release has emerged in hopes of developing highly efficient nanoparticles with improved delivery, bioavailability, and safety profiles. Although functionalized and extended-release drug-delivery systems have been studied extensively, there remain gaps in the literature concerning their application in cancer treatment. We aim to provide an overview of smart and extended-release drug-delivery systems for the delivery of cancer therapies, as well as to introduce innovative advancements in nanoparticle design incorporating these principles. With the growing need for increasingly personalized medicine in cancer treatment, smart extended-release nanoparticles have the potential to enhance chemotherapy delivery, patient adherence, and treatment outcomes in cancer patients.
Collapse
Affiliation(s)
| | - Komal Bajwa
- Postgraduate Medical Education, Graduate Diploma and Professional Master in Medical Sciences, School of Medicine, Queen's University
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen's University,
| | | | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University,
| |
Collapse
|
29
|
Yan C, Guo Z, Liu Y, Shi P, Tian H, Zhu WH. A sequence-activated AND logic dual-channel fluorescent probe for tracking programmable drug release. Chem Sci 2018; 9:6176-6182. [PMID: 30090304 PMCID: PMC6062889 DOI: 10.1039/c8sc02079e] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/21/2018] [Indexed: 12/27/2022] Open
Abstract
The translation of biomarker sensing into programmable diagnostics or therapeutic applications in vivo is greatly challenging, especially for eliminating the 'false positive' signals from OR logic gates. Herein we present a sense-of-logic dual-channel nanoprobe, operating through a sequence-activated AND logic gate by responding ultra-sensitively to pH changes and being subsequently triggered with biothiol for the controllable release of anti-cancer drugs. Specifically, programmable drug release is conducted in a multistage tumor microenvironment (acidic endocytic organelles followed by abnormal glutathione-overexpressing cell cytosol), which is synchronous with dual-channel near-infrared (NIR) fluorescence output. This approach represents the merging of sensing and release, including logically enabled molecular design, biomarker sensing, and controllable drug release. Impressively, the sequential AND logic feature within an unprecedented framework provides feedback on the diversity and complexity of biological milieu, along with remarkably enhancing the tumor therapeutic efficiency via its precise targeting ability and programmable drug release.
Collapse
Affiliation(s)
- Chenxu Yan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , China . ;
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , China . ;
| | - Yajing Liu
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , 200237 , China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , 200237 , China
| | - He Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , China . ;
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , China . ;
| |
Collapse
|
30
|
Yan C, Guo Z, Shen Y, Chen Y, Tian H, Zhu WH. Molecularly precise self-assembly of theranostic nanoprobes within a single-molecular framework for in vivo tracking of tumor-specific chemotherapy. Chem Sci 2018; 9:4959-4969. [PMID: 29938023 PMCID: PMC5989654 DOI: 10.1039/c8sc01069b] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/19/2018] [Indexed: 01/06/2023] Open
Abstract
Structural heterogeneity and the lack of in vivo real-time tracking of drug release are the utmost barriers for nanocarrier-mediated prodrugs in targeted therapy. Herein, we describe the strategy of molecularly precise self-assembly of monodisperse nanotheranostics for BP n -DCM-S-CPT (n = 0, 5 and 20) with fixed drug loadings (36%, 23% and 16%) and constant release capacities, permitting in vivo real-time targeted therapy. We focus on regulating the hydrophilic fragment length to construct stable, well-defined nanostructured assemblies. Taking the bis-condensed dicyanomethylene-4H-pyran (DCM) derivative as the activatable near-infrared (NIR) fluorophore, it makes full use of two terminal conjunctions: the hydrophobic disulfide-bridged anticancer prodrug camptothecin (CPT) and the hydrophilic oligomer-bridged biotin segment serving as an active targeting unit. From the rational design, only BP20-DCM-S-CPT forms uniform and highly stable self-assemblies (ca. 80 nm, critical micelle concentration = 1.52 μM) with several advantages, such as structural homogeneity, fixed drug loading efficiency, real-time drug release tracking and synergistic targeting (passive, active and activatable ability). More importantly, in vitro and in vivo experiments verify that the surface-grafted biotins of nanoassemblies are directly exposed to receptors on cancer cells, thus markedly facilitating cellular internalization. Notably, through synergistic targeting, BP20-DCM-S-CPT displays excellent tumor-specific drug release performance in HeLa tumor-bearing nude mice, which has significantly enhanced in vivo antitumor activity and nearly eradicates the tumor (IRT = 99.7%) with few side effects. For the first time, the specific molecularly precise self-assembly of BP20-DCM-S-CPT within a single-molecular framework has successfully achieved a single reproducible entity for real-time reporting of drug release and cancer therapeutic efficacy in living animals, providing a new insight into amphiphilic nanotheranostics for clinical translation.
Collapse
Affiliation(s)
- Chenxu Yan
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China . ;
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China . ;
| | - Yanyan Shen
- Division of Anti-Tumor Pharmacology , State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Yi Chen
- Division of Anti-Tumor Pharmacology , State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - He Tian
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China . ;
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China . ;
| |
Collapse
|
31
|
Zhou X, Li L, Qin H, Ning B, Li J, Kan C. Controlled self-assembly into diverse stimuli-responsive microstructures: from microspheres to branched cylindrical micelles and vesicles. RSC Adv 2018; 8:21613-21620. [PMID: 35539922 PMCID: PMC9080933 DOI: 10.1039/c8ra03374a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/03/2018] [Indexed: 11/22/2022] Open
Abstract
A series of amphiphilic PDMAEMA-SS-PCL chains with variable ratios of hydrophilic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) to hydrophobic poly(ε-caprolactone) (PCL) were prepared via ring-opening polymerization, in which the two different moieties were linked via a disulfide bond with reduction responsiveness. After cross-linking by the photodegradable o-nitrobenzyl linkage, the amphiphilic chains could self-assemble into microspheres, branched cylindrical micelles and vesicles, which were responsive to the reduction agent dl-dithiothreitol and UV light irradiation through different mechanisms.
Collapse
Affiliation(s)
- Xiaoteng Zhou
- Department of Chemical Engineering, Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University Beijing 100084 People's Republic of China
| | - Lingxiao Li
- Department of Chemical Engineering, Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University Beijing 100084 People's Republic of China
| | - He Qin
- Department of Chemical Engineering, Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University Beijing 100084 People's Republic of China
| | - Bo Ning
- Department of Chemical Engineering, Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University Beijing 100084 People's Republic of China
| | - Junpei Li
- Department of Chemical Engineering, Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University Beijing 100084 People's Republic of China
| | - Chengyou Kan
- Department of Chemical Engineering, Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University Beijing 100084 People's Republic of China
| |
Collapse
|
32
|
Zhang Y, Wu X, Hou C, Shang K, Yang K, Tian Z, Pei Z, Qu Y, Pei Y. Dual-responsive dithio-polydopamine coated porous CeO 2 nanorods for targeted and synergistic drug delivery. Int J Nanomedicine 2018; 13:2161-2173. [PMID: 29695903 PMCID: PMC5905827 DOI: 10.2147/ijn.s152002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective The aim was to produce the first report of assembling degradable stimuli-responsive dithio-polydopamine coating with a cancer target unit for synergistic and targeted drug delivery. Methods A multifunctional drug delivery system was constructed by coating a dual-responsive dithio-polydopamine (PDS) on porous CeO2 nanorods and subsequent conjugation of lactose derivative, where the PDS was formed by self-polymerization of dithio-dopamine (DOPASS). Results The multifunctional drug delivery system displayed excellent cancer targeted ability resulting from the conjugation of lactose derivative, which could specifically recognize the overexpressed asialoglycoprotein receptors on the surface of HepG2 cells. It also showed a dual-responsive property of glutathione and pH, achieving controllable drug release from the cleavage of disulfide bond and subsequent degradation of PDS in cancer cells. Moreover, the degradation of PDS led to the exposure of CeO2 nanorods, which has a synergistic anticancer effect due to its cytotoxicity to cancer cells. Conclusion This work presents a good example of a rational design towards synergistic and targeted DDS for cancer chemotherapies.
Collapse
Affiliation(s)
- Ying Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiaowen Wu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Chenxi Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Kun Shang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Kui Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhimin Tian
- Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yongquan Qu
- Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
33
|
Abstract
A shocking state of affairs; the use of nanoparticles as simple carriers is dead and outdated. Stimuli-responsive nanoparticles have emerged as active participants in the therapeutic landscape, rather than inert molecule carriers. And this time they are here to join the ongoing war against an old enemy: bacteria.
Collapse
Affiliation(s)
- Carina I. C. Crucho
- CQFM, Centro de Química-Física
Molecular, and IN, Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| |
Collapse
|
34
|
Li N, Zhang W, Lin L, He Z, Khan M, Lin JM. Live imaging of cell membrane-localized MT1-MMP activity on a microfluidic chip. Chem Commun (Camb) 2018; 54:11435-11438. [DOI: 10.1039/c8cc07117a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We designed an enzyme-activatable probe for real time in situ tracking of MT1-MMP activity.
Collapse
Affiliation(s)
- Nan Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University
- Beijing
- China
| | - Weifei Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University
- Beijing
- China
| | - Ling Lin
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology
- Beijing
- China
| | - Ziyi He
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University
- Beijing
- China
| | - Mashooq Khan
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University
- Beijing
- China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University
- Beijing
- China
| |
Collapse
|
35
|
Zhang Y, Zhou T, Luo L, Cui Z, Wang N, Shu Y, Wang KP. Pharmacokinetics, biodistribution and receptor mediated endocytosis of a natural Angelica sinensis polysaccharide. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:254-263. [PMID: 29291632 DOI: 10.1080/21691401.2017.1421210] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yu Zhang
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhou
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Luo
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Cui
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Yamin Shu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Kai-Ping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Ma B, Lu M, Yu BY, Tian J. A galactose-mediated targeting nanoprobe for intracellular hydroxyl radical imaging to predict drug-induced liver injury. RSC Adv 2018; 8:22062-22068. [PMID: 35541760 PMCID: PMC9081097 DOI: 10.1039/c8ra01424h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/04/2018] [Indexed: 11/21/2022] Open
Abstract
Drug-induced liver injury (DILI) is a serious concern in modern medicine due to its unpredictability. Currently, biochemical serum markers are being used in DILI detection. However, these biomarker-based methods lack sensitivity and specificity. A high intracellular level of hydroxyl radicals (˙OH) has been regarded as an early indicator of DILI. Therefore, we proposed an ˙OH-responsive and hepatocyte-targeted nanoprobe via conjugation of carboxyfluorescein-labeled DNA and pegylated galactose on the surface of gold nanoparticles. The nanoprobe could bind to a hepatocyte-specific asialoglycoprotein receptor through galactose, and it could be internalized into liver cells. In the presence of high levels of ˙OH in DILI, the DNA could be cleaved to release carboxyfluorescein, leading to remarkable fluorescence enhancement for ˙OH detection. Confocal fluorescence imaging demonstrated that the nanoprobe could be successfully applied in monitoring high ˙OH levels resulting from acetaminophen or triptolide-induced liver injury, which may provide a simple but powerful protocol for the prediction of DILI. A galactose-mediated targeting nanoprobe has been developed for the accurate imaging of ˙OH to predict drug-induced hepatotoxicity at an early stage.![]()
Collapse
Affiliation(s)
- Bailing Ma
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Mi Lu
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Bo-Yang Yu
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| |
Collapse
|
37
|
Gong P, Guo L, Pang M, Wang D, Sun L, Tian Z, Li J, Zhang Y, Liu Z. Nano-sized paramagnetic and fluorescent fluorinated carbon fiber with high NIR absorbance for cancer chemo-photothermal therapy. J Mater Chem B 2018; 6:3068-3077. [DOI: 10.1039/c7tb03320f] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report a novel strategy to synthesize nano-sized, water-soluble and functionalized fluorinated carbon fiber oxide with high fluorescence, paramagnetism and NIR absorption for cancer chemo-photothermal therapy.
Collapse
Affiliation(s)
- Peiwei Gong
- The Key Laboratory of Life-Organic Analysis
- Institute of Anticancer Agents Development and Theranostic Application
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Lihua Guo
- The Key Laboratory of Life-Organic Analysis
- Institute of Anticancer Agents Development and Theranostic Application
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Minghui Pang
- The Key Laboratory of Life-Organic Analysis
- Institute of Anticancer Agents Development and Theranostic Application
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Dandan Wang
- The Key Laboratory of Life-Organic Analysis
- Institute of Anticancer Agents Development and Theranostic Application
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Lu Sun
- The Key Laboratory of Life-Organic Analysis
- Institute of Anticancer Agents Development and Theranostic Application
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Zhenzhen Tian
- The Key Laboratory of Life-Organic Analysis
- Institute of Anticancer Agents Development and Theranostic Application
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Juanjuan Li
- The Key Laboratory of Life-Organic Analysis
- Institute of Anticancer Agents Development and Theranostic Application
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Yuanyuan Zhang
- The Key Laboratory of Life-Organic Analysis
- Institute of Anticancer Agents Development and Theranostic Application
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Zhe Liu
- The Key Laboratory of Life-Organic Analysis
- Institute of Anticancer Agents Development and Theranostic Application
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| |
Collapse
|
38
|
Hou M, Xue P, Gao YE, Ma X, Bai S, Kang Y, Xu Z. Gemcitabine–camptothecin conjugates: a hybrid prodrug for controlled drug release and synergistic therapeutics. Biomater Sci 2017; 5:1889-1897. [DOI: 10.1039/c7bm00382j] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Self-assembled small molecule prodrug loaded with gemcitabine and camptothecin and responsive to reductive tumour microenvironment for combination cancer chemotherapy.
Collapse
Affiliation(s)
- Meili Hou
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Peng Xue
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Yong-E. Gao
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Xiaoqian Ma
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Shuang Bai
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Yuejun Kang
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Zhigang Xu
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| |
Collapse
|