1
|
Dong Z, Wu J, Liu A, Hua Z, Liu G. Environmentally ion-dissociable high-performance supramolecular polyelectrolyte plastics. Chem Sci 2025; 16:5503-5511. [PMID: 40018664 PMCID: PMC11863135 DOI: 10.1039/d4sc08484e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025] Open
Abstract
Robust and stiff polymeric materials usually rely on dense covalent crosslinking, which endows them with excellent properties such as high durability and outstanding thermal stability. However, because of the strong covalent bonds within the network, these polymeric materials are not easily degraded or recycled, giving rise to uncontrolled accumulation of end-of-life plastics in seawater or soil. Here, we present a general strategy to fabricate high-performance supramolecular polyelectrolyte plastics with environmentally ion-dissociable properties in a facile manner. By combining dynamic supramolecular hydrogen bonding and multiple electrostatic crosslinking with hydrophobic interactions, the resulting stable supramolecular polyelectrolyte plastic possesses a tensile strength of 93.6 ± 3.3 MPa and a Young's modulus of 2.3 ± 0.3 GPa, outperforming most of the commercial plastics. More importantly, the unique supramolecular dynamic network structures endow the polyelectrolyte plastics with excellent remoldability, good recyclability, and efficient dissociation in seawater and soil under ambient conditions. The simple fabrication strategy developed herein for robust sustainable polyelectrolyte plastics appears to be applicable to other bio-sourced and synthetic polyelectrolytes. This work provides a practical way for fabricating sustainable high-performance plastics by elegantly designing the supramolecular networks of polyelectrolytes.
Collapse
Affiliation(s)
- Zhi Dong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China Hefei Anhui 230026 China
| | - Jiang Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China Hefei Anhui 230026 China
| | - Anhong Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China Hefei Anhui 230026 China
| | - Zan Hua
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Department of Materials Chemistry, School of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 China
| | - Guangming Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
2
|
Xiao K, Zhou Y, Xu X, Szymanowski JES, Yang Y, Afsari B, Burns PC, Liu T. A Two-Step Intermolecular Interaction Of Molecular Macroions With Multivalent Counterions. Chemistry 2024; 30:e202402359. [PMID: 39173118 DOI: 10.1002/chem.202402359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Macroion-counterion interaction is essential for regulating the solution behaviors of hydrophilic macroions, as simple models for polyelectrolytes. Here, we explore the interaction between uranyl peroxide molecular cluster Li68K12(OH)20[UO2(O2)OH]60 (U60) and multivalent counterions. Different from interaction with monovalent counterions that shows a simple one-step process, isothermal titration calorimetry, combined with light/X-ray scattering measurements and electron microscopy, confirm a two-step process for their interaction with multivalent counterions: an ion-pairing between U60 and the counterion with partial breakage of hydration shells followed by strong U60-U60 attraction, leading to the formation of large nanosheets with severe breakage and reconstruction of hydration shells. The detailed studies on macroion-counterion interaction can be nicely correlated to the microscopic (self-assembly) and macroscopic (gelation or phase separation) phase transitions in the dilute U60 aqueous solutions induced by multivalent counterions.
Collapse
Affiliation(s)
- Kexing Xiao
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Yifan Zhou
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Xiaohan Xu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Jennifer E S Szymanowski
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Yuqing Yang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Bahareh Afsari
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Peter C Burns
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tianbo Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
3
|
Liang X, Liu G. Concurrently Improving both Mechanical and Electrochemical Performances of Quasi-Solid-State Electrical Double-Layer Capacitors by a Rational Design of Gel Polymer Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56997-57003. [PMID: 39401271 DOI: 10.1021/acsami.4c10344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Aqueous poly(vinyl alcohol) (PVA) gel electrolyte-based quasi-solid-state electrical double-layer capacitors (QSEDLCs) have been extensively investigated in the past ten years, but challenges remain to fabricate the PVA gel electrolyte possessing both superior mechanical and outstanding electrochemical performances. Herein, we develop a strategy to address this issue by a rational design of PVA gel electrolytes, based on a combination of the freeze-thaw (FT) method and sodium perchlorate (NaClO4)-based water-in-salt (WIS) electrolyte. Our study demonstrates that either the FT method or the NaClO4-based WIS electrolyte can improve both the mechanical performance of the PVA gel electrolyte by increasing the crystallization of PVA chains and the electrochemical performance of the PVA gel electrolyte-based QSEDLC by different mechanisms. In comparison with the conventional solvent evaporation method, this work provides an effective strategy to concurrently improve both the mechanical and electrochemical performances of aqueous QSEDLCs.
Collapse
Affiliation(s)
- Xiaohong Liang
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Guangming Liu
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
4
|
Aubrecht FJ, Orme K, Saul A, Cai H, Ranathunge TA, Silberstein MN, McDonald BR. Ion-Specific Interactions Engender Dynamic and Tailorable Properties in Biomimetic Cationic Polyelectrolytes. Angew Chem Int Ed Engl 2024; 63:e202408673. [PMID: 38981860 DOI: 10.1002/anie.202408673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
Biomaterials such as spider silk and mussel byssi are fabricated by the dynamic manipulation of intra- and intermolecular biopolymer interactions. Organisms modulate solution parameters, such as pH and ion co-solute concentration, to effect these processes. These biofabrication schemes provide a conceptual framework to develop new dynamic and responsive abiotic soft material systems. Towards these ends, the chemical diversity of readily available ionic compounds offers a broad palette to manipulate the physicochemical properties of polyelectrolytes via ion-specific interactions. In this study, we show for the first time that the ion-specific interactions of biomimetic polyelectrolytes engenders a variety of phase separation behaviors, creating dynamic thermal- and ion-responsive soft matter that exhibits a spectrum of physical properties, spanning viscous fluids to viscoelastic and viscoplastic solids. These ion-dependent characteristics are further rendered general by the merger of lysine and phenylalanine into a single, amphiphilic vinyl monomer. The unprecedented breadth, precision, and dynamicity in the reported ion-dependent phase behaviors thus introduce a broad array of opportunities for the future development of responsive soft matter; properties that are poised to drive developments in critical areas such as chemical sensing, soft robotics, and additive manufacturing.
Collapse
Affiliation(s)
- Filip J Aubrecht
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912, USA
| | - Kennalee Orme
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912, USA
| | - Aiden Saul
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912, USA
| | - Hongyi Cai
- Materials Science and Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Tharindu A Ranathunge
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912, USA
| | - Meredith N Silberstein
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Benjamin R McDonald
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912, USA
| |
Collapse
|
5
|
Lu X, Mo Z, Liu Z, Hu Y, Du C, Liang L, Liu Z, Chen G. Robust, Efficient, and Recoverable Thermocells with Zwitterion-Boosted Hydrogel Electrolytes for Energy-Autonomous and Wearable Sensing. Angew Chem Int Ed Engl 2024; 63:e202405357. [PMID: 38682802 DOI: 10.1002/anie.202405357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/01/2024]
Abstract
The rapid growth of flexible quasi-solid-state thermocells (TECs) provides a fresh way forward for wearable electronics. However, their insufficient mechanical strength and power output still hinder their further applications. This work demonstrates a one-stone-two-birds strategy to synergistically enhance the mechanical and thermoelectrochemical properties of the [Fe(CN)6]3-/4--based TECs. By introducing Hofmeister effect and multiple non-covalent interactions via betaine zwitterions, the mechanical strength of the conventional brittle gelatin hydrogel electrolytes is substantially improved from 50 to 440 kPa, with a high stretchability approaching 250 %. Meanwhile, the betaine zwitterions strongly affect the solvation structure of [Fe(CN)6]3- ions, thus enlarging the entropy difference and raising the thermoelectrochemical Seebeck coefficient from 1.47 to 2.2 mV K-1. The resultant quasi-solid-state TECs exhibit a normalized output power density of 0.48 mW m-2 K-2, showing a notable improvement in overall performance compared to their counterparts without zwitterion regulation. The intrinsic thermo-reversible property also allows the TECs to repeatedly self-recover through sol-gel transformations, ensuring reliable energy output and even recycling of TECs in case of extreme mechanical damages. An energy-autonomous smart glove consisting of eighteen individual TECs is further designed, which can simultaneously monitor the temperature of different positions on any touched object, demonstrating high potential in wearable applications.
Collapse
Affiliation(s)
- Xin Lu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Ziwei Mo
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Zhaopeng Liu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Yifeng Hu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Chunyu Du
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Lirong Liang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Zhuoxin Liu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Guangming Chen
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
6
|
Xu Y, Gilbert EP, Sokolova A, Stokes JR. Phase transition and gelation in cellulose nanocrystal-based aqueous suspensions studied by SANS. J Colloid Interface Sci 2024; 658:660-670. [PMID: 38134674 DOI: 10.1016/j.jcis.2023.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
HYPOTHESIS Aqueous suspensions of cellulose nanocrystals (CNC) form a re-entrant liquid crystal (LC) phase with increasing salinity. Phase separation occurs in this LC state leading to a biphasic gel with a flow programmable structure that can be used to form anisotropic soft materials. We term this state a Liquid Crystal Hydroglass (LCH). Defining the mechanisms by which the LCH forms requires detailed structural analysis at the mesoscopic length scale. EXPERIMENTS By utilising Small Angle Neutron Scattering (SANS), we investigated the microstructure transitions in CNC suspensions, with a particular focus on the unique LC re-entrancy and gelation into the biphasic LCH. FINDINGS Scattering from LCH gels comprises contributions from a dispersed liquid state and static heterogeneity, characterised using a Lorentzian-Gaussian model of inhomogeneity. This conceptually supports a gelation mechanism (spinodal decomposition) in CNC suspensions towards a biphasic structure of the LCH. It also demonstrates that, with increasing salinity, the non-monotonic variation in effective volume fraction of CNC rods fundamentally causes the LC re-entrancy. This work provides the first experimental characterisation of the LC-re-entrancy and formation of an anisotropic LCH gel. The proposed mechanism can be extended to understanding the general behaviour of anisotropic colloids.
Collapse
Affiliation(s)
- Yuan Xu
- School of Chemical Engineering, The University of Queensland, Queensland, 4072, Australia.
| | - Elliot P Gilbert
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, New South Wales, 2234, Australia
| | - Anna Sokolova
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, New South Wales, 2234, Australia
| | - Jason R Stokes
- School of Chemical Engineering, The University of Queensland, Queensland, 4072, Australia.
| |
Collapse
|
7
|
Lee S, Han IK, Jeon NG, Lee Y, Son HB, Han DY, Nam S, Chung T, Kwak MJ, Kim YS, Park S. Promoting Homogeneous Zinc-Ion Transfer Through Preferential Ion Coordination Effect in Gel Electrolyte for Stable Zinc Metal Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304915. [PMID: 37870210 DOI: 10.1002/advs.202304915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/25/2023] [Indexed: 10/24/2023]
Abstract
Aqueous zinc metal batteries (AZMBs) are emerging energy storage systems that are poised to replace conventional lithium-ion batteries owing to their intrinsic safety, facile manufacturing process, economic benefits, and superior ionic conductivity. However, the issues of inferior anode reversibility and dendritic plating during operation remain challenging for the practical use of AZMBs. Herein, a gel electrolyte based on zwitterionic poly(sulfobetaine methacrylate) (poly(SBMA)) dissolved with different concentrations of ZnSO4 is proposed. Two-dimensional correlation spectroscopy based on Raman analysis reveals an enhanced interaction priority between the polar groups in SBMA and the dissolved ions as electrolyte concentration increases, which establishes a robust interaction and renders homogeneous ion distribution. Attributable to the modified coordination, zwitterionic gel polymer electrolyte with 5 mol kg-1 of ZnSO4 (ZGPE-5) facilitates stable zinc deposition and improves anode reversibility. By taking advantage of preferential coordination, a symmetrical cell evaluation employing ZGPE-5 demonstrates a cycle life over 3600 h, where ZGPE-5 also exerts a beneficial effect on the full cell cycling when assembled with Zn0.25 V2 O5 cathode. This study elucidates changes in the internal ion behavior that are dependent on electrolyte concentrations and pave the way for durable AZMBs.
Collapse
Affiliation(s)
- Sangyeop Lee
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Im Kyung Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Na Gyeong Jeon
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Yubin Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Hye Bin Son
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Dong-Yeob Han
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Seoha Nam
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Taehun Chung
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Myung-Jun Kwak
- Advanced Batteries Research Center (ABRC), Korea Electronics Technology Institute (KETI), 25 Saenari-ro, Bundang-gu, Seongnam, 13509, Republic of Korea
| | - Youn Soo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Soojin Park
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
8
|
He X, Ewing AG. Hofmeister Series: From Aqueous Solution of Biomolecules to Single Cells and Nanovesicles. Chembiochem 2023; 24:e202200694. [PMID: 37043703 DOI: 10.1002/cbic.202200694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Indexed: 04/14/2023]
Abstract
Hofmeister effects play a critical role in numerous physicochemical and biological phenomena, including the solubility and/or accumulation of proteins, the activities of enzymes, ion transport in biochannels, the structure of lipid bilayers, and the dynamics of vesicle opening and exocytosis. This minireview focuses on how ionic specificity affects the physicochemical properties of biomolecules to regulate cellular exocytosis, vesicular content, and nanovesicle opening. We summarize recent progress in further understanding Hofmeister effects on biomacromolecules and their applications in biological systems. These important steps have increased our understanding of the Hofmeister effects on cellular exocytosis, vesicular content, and nanovesicle opening. Increasing evidence is firmly establishing that the ions along the Hofmeister series play an important role in living organisms that has often been ignored.
Collapse
Affiliation(s)
- Xiulan He
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden
| |
Collapse
|
9
|
Zhang J, Hua Z, Liu G. Effect of Counterion-Mediated Hydrogen Bonding on Polyelectrolytes at the Solid/Water Interface: Current Understanding and Perspectives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2881-2889. [PMID: 36780613 DOI: 10.1021/acs.langmuir.2c03470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The counterion-mediated hydrogen bonding (CMHB) effect can be generated in polyelectrolyte systems when hydrogen bonds are formed between the bound counterions and polyelectrolyte chains. This Perspective mainly discusses the effect of CMHB on polyelectrolytes at the solid/water interface. The CMHB effect generated by the hydroxide (OH-) or hydronium (H3O+) counterions gives rise to a pH responsiveness of strong polyelectrolyte brushes (SPBs) whose strength can be modulated by the external salt concentration. Further studies have shown that the CMHB effect on SPBs can be extended beyond the OH- and H3O+ counterions and that the CMHB effect can be observed in the systems of weak polyelectrolyte brushes (WPBs) and polyelectrolyte multilayers (PEMs). Based on the understanding of the mechanisms of the CMHB effect on polyelectrolytes at the solid/water interface, we have demonstrated that a range of important properties of SPBs, WPBs, and PEMs can be tuned by pH with the consideration of the CMHB effect. Future directions for the CMHB effect on polyelectrolytes are also discussed. The insights on the CMHB effect on polyelectrolytes at the solid/water interface would promote the development of smart interfacial polyelectrolyte materials in a wide range of fields.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, College of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Zan Hua
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Guangming Liu
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
10
|
Lee JY, Kim T, Song S, Lee J, Kim SY, Lee J, Kim BK. Electrochemical Cloud Point Temperature from Thermoamperometry: Real-Time Analysis for Phase Transition of Thermoresponsive Polymers. Anal Chem 2023; 95:2832-2837. [PMID: 36625765 DOI: 10.1021/acs.analchem.2c04254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cloud point temperature (Tcp) is a thermal index used to define the phase transition of thermoresponsive polymers. In this study, we used electrochemical techniques to obtain an electrochemical cloud point temperature (Tecp) that exhibits the more accurate phase transition temperature and can replace Tcp. Thermoamperometry on an ultramicroelectrode was conducted with a poly(arylene ether sulfone) (PES10) as a model system to obtain a current-temperature (i-T) curve in real time; the Tecp of the PES10 was determined from the i-T curve. The i-T curve shows an unprecedented current decrease in the PES10 solution despite increasing temperature; on the other hand, the current increased linearly with increasing temperature in the solution without PES10. This phenomenon was analyzed by considering the characteristics of PES10 during phase transition, such as dynamic viscosity, temperature of the solution, and electrode impedance. It was confirmed that the current drops shown in the i-T curves were mainly due to the decrease of real electrode area. The comparison of Tecp and Tcp showed that both depended similarly on the concentrations of the thermoresponsive polymer and the supporting electrolyte. The results reveal that by adjusting the concentration of polymer and electrolyte in an organic solution, Tecp, as a new analytical method, can be used in electric circuit-based energy storage appliances such as Li-ion batteries and supercapacitors.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul03760, Republic of Korea
| | - Taehyoung Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| | - Sua Song
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul03760, Republic of Korea.,Department of Chemistry, Sookmyung Women's University, Seoul04310, Republic of Korea.,Inorganic Metrology Group, Korea Research Institute of Standards and Science, Daejeon34113, Republic of Korea
| | - Jeeho Lee
- Department of Chemistry, Sookmyung Women's University, Seoul04310, Republic of Korea
| | - Sang Youl Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| | - Jinhee Lee
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology, Daejeon34114, Republic of Korea
| | - Byung-Kwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul03760, Republic of Korea
| |
Collapse
|
11
|
Specific Ion Effects on the Enzymatic Degradation of Polyester Films. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Ehtiati K, Moghaddam SZ, Klok HA, Daugaard AE, Thormann E. Specific Counterion Effects on the Swelling Behavior of Strong Polyelectrolyte Brushes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Koosha Ehtiati
- Department of Chemistry, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Saeed Z. Moghaddam
- Department of Chemistry, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Harm-Anton Klok
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire des Polyméres, Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Anders E. Daugaard
- Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
13
|
Gregory KP, Elliott GR, Robertson H, Kumar A, Wanless EJ, Webber GB, Craig VSJ, Andersson GG, Page AJ. Understanding specific ion effects and the Hofmeister series. Phys Chem Chem Phys 2022; 24:12682-12718. [PMID: 35543205 DOI: 10.1039/d2cp00847e] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Specific ion effects (SIE), encompassing the Hofmeister Series, have been known for more than 130 years since Hofmeister and Lewith's foundational work. SIEs are ubiquitous and are observed across the medical, biological, chemical and industrial sciences. Nevertheless, no general predictive theory has yet been able to explain ion specificity across these fields; it remains impossible to predict when, how, and to what magnitude, a SIE will be observed. In part, this is due to the complexity of real systems in which ions, counterions, solvents and cosolutes all play varying roles, which give rise to anomalies and reversals in anticipated SIEs. Herein we review the historical explanations for SIE in water and the key ion properties that have been attributed to them. Systems where the Hofmeister series is perturbed or reversed are explored, as is the behaviour of ions at the liquid-vapour interface. We discuss SIEs in mixed electrolytes, nonaqueous solvents, and in highly concentrated electrolyte solutions - exciting frontiers in this field with particular relevance to biological and electrochemical applications. We conclude the perspective by summarising the challenges and opportunities facing this SIE research that highlight potential pathways towards a general predictive theory of SIE.
Collapse
Affiliation(s)
- Kasimir P Gregory
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia. .,Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Gareth R Elliott
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| | - Hayden Robertson
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| | - Anand Kumar
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5001, Australia
| | - Erica J Wanless
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| | - Grant B Webber
- School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Vincent S J Craig
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Gunther G Andersson
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5001, Australia
| | - Alister J Page
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| |
Collapse
|
14
|
Salminen L, Karjalainen E, Aseyev V, Tenhu H. Phase Separation of Aqueous Poly(diisopropylaminoethyl methacrylate) upon Heating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5135-5148. [PMID: 34752116 PMCID: PMC9069861 DOI: 10.1021/acs.langmuir.1c02224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Poly(diisopropylaminoethyl methacrylate) (PDPA) is a pH- and thermally responsive water-soluble polymer. This study deepens the understanding of its phase separation behavior upon heating. Phase separation upon heating was investigated in salt solutions of varying pH and ionic strength. The effect of the counterion on the phase transition upon heating is clearly demonstrated for chloride-, phosphate-, and citrate-anions. Phase separation did not occur in pure water. The buffer solutions exhibited similar cloud points, but phase separation occurred in different pH ranges and with different mechanisms. The solution behavior of a block copolymer comprising poly(dimethylaminoethyl methacrylate) (PDMAEMA) and PDPA was investigated. Since the PDMAEMA and PDPA blocks phase separate within different pH- and temperature ranges, the block copolymer forms micelle-like structures at high temperature or pH.
Collapse
Affiliation(s)
- Linda Salminen
- Department
of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtasen aukio
1, FIN-00014 HY Helsinki, Finland
| | - Erno Karjalainen
- VTT
Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT Espoo, Finland
| | - Vladimir Aseyev
- Department
of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtasen aukio
1, FIN-00014 HY Helsinki, Finland
| | - Heikki Tenhu
- Department
of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtasen aukio
1, FIN-00014 HY Helsinki, Finland
| |
Collapse
|
15
|
The Anion Binding Affinity Determines the Strength of Anion Specificities of Thermosensitive Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2633-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Lewoczko EM, Kelly MT, Kent EW, Zhao B. Effects of temperature on chaotropic anion-induced shape transitions of star molecular bottlebrushes with heterografted poly(ethylene oxide) and poly( N, N-dialkylaminoethyl methacrylate) side chains in acidic water. SOFT MATTER 2021; 17:6566-6579. [PMID: 34151928 DOI: 10.1039/d1sm00728a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article reports a study of the effects of temperature on chaotropic anion (CA)-induced star-globule shape transitions in acidic water of three-arm star bottlebrushes composed of heterografted poly(ethylene oxide) (PEO) and either poly(2-(N,N-dimethylamino)ethyl methacrylate) (PDMAEMA) or poly(2-(N,N-diethylamino)ethyl methacrylate) (PDEAEMA) (the brushes denoted as SMB-11 and -22, respectively). The brush polymers were synthesized by grafting alkyne-end-functionalized PEO and PDMAEMA or PDEAEMA onto an azide-bearing three-arm star backbone polymer using the copper(i)-catalyzed alkyne-azide cycloaddition reaction. Six anions were studied for their effects on the conformations of SMB-11 and -22 in acidic water: super CAs [Fe(CN)6]3- and [Fe(CN)6]4-, moderate CAs PF6- and ClO4-, weak CA I-, and for comparison, kosmotropic anion SO42-. At 25 °C, the addition of super and moderate CAs induced shape transitions of SMB-11 and -22 in pH 4.50 water from a starlike to a collapsed globular state stabilized by PEO side chains, which was driven by the ion pairing of protonated tertiary amine groups with CAs and the chaotropic effect. The shape changes occurred at much lower salt concentrations for super CAs than moderate CAs. Upon heating from near room temperature to 70 °C, the super CA-collapsed brushes remained in the globular state, whereas the moderate CA-collapsed brushes underwent reversible globule-to-star shape transitions. The transition temperature increased with increasing salt concentration and was found to be higher for SMB-22 at the same salt concentration, presumably caused by the chaotropic effect. In contrast, I- and SO42- had small effects on the conformations of SMB-11 and -22 at 25 °C in the studied salt concentration range, and only small and gradual size variations were observed upon heating to 70 °C. The results reported here may have potential uses in the design of stimuli-responsive systems for substance encapsulation and release.
Collapse
Affiliation(s)
- Evan M Lewoczko
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Michael T Kelly
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Ethan W Kent
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| |
Collapse
|
17
|
Lian L, Liu L, Ding Y, Hua Z, Liu G. Specific Anion Effects on Charged-Neutral Random Copolymers: Interplay between Different Anion-Polymer Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1697-1706. [PMID: 33499598 DOI: 10.1021/acs.langmuir.0c02907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The study of ion specificities of charged-neutral random copolymers is of great importance for understanding specific ion effects on natural macromolecules. In the present work, we have investigated the specific anion effects on the thermoresponsive behavior of poly([2-(methacryloyloxy)ethyl trimethylammonium chloride]-co-N-isopropylacrylamide) [P(METAC-co-NIPAM)] random copolymers. Our study demonstrates that the anion specificities of the P(METAC-co-NIPAM) copolymers are dependent on their chemical compositions. The specific anion effects on the copolymers with high mole fractions of poly(N-isopropylacrylamide) (PNIPAM) are similar to those on the PNIPAM homopolymer. As the mole fraction of PNIPAM decreases to a certain value, a V-shaped anion series can be observed in terms of the anion-specific cloud point temperature of the copolymer, as induced by the interplay between different anion-polymer interactions. Our study also suggests that both the direct and the indirect anion-polymer interactions contribute to the anion specificities of the copolymers. This work would improve our understanding of the relationship between the ion specificities and the ion-macromolecule interactions for naturally occurring macromolecules.
Collapse
Affiliation(s)
- Leilei Lian
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lvdan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yanwei Ding
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zan Hua
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Guangming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
18
|
Wu J, Zhai W, Gao X, Liu B, Zhang R, Yu Y. Preparation and self-assembly of thermosensitive triblock copolymers with N-isopropylacrylamide and 3-methacryloxypropyltrimethoxysilane as monomers. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03131-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Kent EW, Lewoczko EM, Zhao B. pH- and chaotropic anion-induced conformational changes of tertiary amine-containing binary heterografted star molecular bottlebrushes in aqueous solution. Polym Chem 2021. [DOI: 10.1039/d0py01466d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Three-arm star-shaped, tertiary-amine-containing bottlebrushes exhibit star-globule shape transitions in response to pH changes and addition of sufficiently strong chaotropic anions.
Collapse
Affiliation(s)
- Ethan W. Kent
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| | | | - Bin Zhao
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| |
Collapse
|
20
|
Higaki Y, Kobayashi M, Takahara A. Hydration State Variation of Polyzwitterion Brushes through Interplay with Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9015-9024. [PMID: 32677837 DOI: 10.1021/acs.langmuir.0c01672] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Polyzwitterions have emerged as a new class of antifouling materials alternating poly(ethylene glycol). The exemplary biopassivation and lubrication behaviors are often attributed to the particular chemical structure of zwitterions, which involve a large dipole moment of the charged groups and a neutral net charge, while the hydration state and dynamics also associate with these characteristics. Polymer brushes composed of surface-tethered polyzwitterion chains produced by surface-initiated controlled radical polymerization have been developed as thin films which exhibit excellent antifouling and lubrication properties. In past decades, numerous studies have been devoted to examining the structure and dynamics of polyzwitterion brush chains in aqueous solutions. This feature article provides an overview of recent studies exploring the hydration state of polyzwitterion brushes with specular neutron reflectivity, highlights some newly published work on the nonuniform equilibrium structure, ion concentration dependence, ion specificity, and the effects of charge spacer length in the zwitterions, and discusses future perspective in this field.
Collapse
Affiliation(s)
- Yuji Higaki
- Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Motoyasu Kobayashi
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | | |
Collapse
|
21
|
Yu W, Du N, Gu Y, Yan J, Hou W. Specific Ion Effects on the Colloidal Stability of Layered Double Hydroxide Single-layer Nanosheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6557-6568. [PMID: 32466650 DOI: 10.1021/acs.langmuir.0c01089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The surface charge properties and aggregation behavior of positively charged Mg-Al-NO3 layered double hydroxide (LDH) single-layer nanosheets dispersed in water were investigated in the presence of K+ salts with different mono-, di-, and trivalent anions, using electrophoresis and dynamic light scattering techniques. An increase in the salt concentration can significantly decrease the effective surface charge density (σeff) of LDHs, leading to the aggregation of nanosheets. The critical coagulation concentration (CCC) or ionic strength (CCIS) of salts for nanosheets significantly decreases with an increase in the valence of anions. Specific ion effects, with a partially reverse Hofmeister series, are observed. On the basis of the Stern model and the DLVO theory, the relationship of CCC with σeff and the ionic valences of salts (zi) is theoretically analyzed, which can accurately describe the dependence of CCC on the σeff and zi but cannot explain the origin of specific ion effects. To explore the origin of specific ion effects, a correlation between CCIS and the specific adsorption energy (Esc) of anions within the Stern layer is developed. Especially, an empirical relationship of Esc with the characteristic physical parameters of anions is proposed. Our model can accurately predict the CCISs of at least monovalent anions and divalent anions (CO32- and SO42-), demonstrating that the specific ion effects observed can be attributed to the differences in ionic size, polarizability, and hydration free energy (or the formation capacity of anion-cation pairs) of different anions. This work not only deepens the understanding of specific ion effects on the colloidal stability but also provides useful information for the potential applications of LDH single-layer nanosheets.
Collapse
Affiliation(s)
- Weiyan Yu
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P.R. China
| | - Na Du
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P.R. China
| | - Yongtao Gu
- Gudong Petroleum Production Factory, Shengli Oilfield of Sinopec, Dongying 257237, P.R. China
| | - Jingen Yan
- Gudong Petroleum Production Factory, Shengli Oilfield of Sinopec, Dongying 257237, P.R. China
| | - Wanguo Hou
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P.R. China
| |
Collapse
|
22
|
Yuan H, Liu G. Ionic effects on synthetic polymers: from solutions to brushes and gels. SOFT MATTER 2020; 16:4087-4104. [PMID: 32292998 DOI: 10.1039/d0sm00199f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ionic effects on synthetic polymers have attracted extensive attention due to the crucial role of ions in the determination of the properties of synthetic polymers. This review places the focus on specific ion effects, multivalent ion effects, and ionic hydrophilicity/hydrophobicity effects in synthetic polymer systems from solutions to brushes and gels. The specific ion effects on neutral polymers are determined by both the direct and indirect specific ion-polymer interactions, whereas the ion specificities of charged polymers are mainly dominated by the specific ion-pairing interactions. The ionic cross-linking effect exerted by the multivalent ions is widely used to tune the properties of polyelectrolytes, while the reentrant behavior of polyelectrolytes in the presence of multivalent ions still remains poorly understood. The ionic hydrophilicity/hydrophobicity effects not only can be applied to make strong polyelectrolytes thermosensitive, but also can be used to prepare polymeric nano-objects and to control the wettability of polyelectrolyte brush-modified surfaces. The not well-studied ionic hydrogen bond effects are also discussed in the last section of this review.
Collapse
Affiliation(s)
- Haiyang Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, No. 96, Jinzhai Road, Hefei 230026, P. R. China.
| | | |
Collapse
|
23
|
Larin DE, Govorun EN. Stabilization of Polymer Mesoglobules via Specific Interactions of Macromolecules with Dissolved Substance. POLYMER SCIENCE SERIES A 2019. [DOI: 10.1134/s0965545x19050092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Structure and rheology of liquid crystal hydroglass formed in aqueous nanocrystalline cellulose suspensions. J Colloid Interface Sci 2019; 555:702-713. [PMID: 31416025 DOI: 10.1016/j.jcis.2019.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/12/2023]
Abstract
HYPOTHESIS Liquid crystal hydroglass (LCH) is a biphasic soft material with flow programmable anisotropy that forms via phase separation in suspensions of charged colloidal rods upon increases in ionic strength. The unique structure and rheology of the LCH gel formed using nanocrystalline cellulose (NCC) is hypothesised to be dependent on colloidal stability that is modulated using specific ion effects arising from Hofmeister phenomena. EXPERIMENTS LCHs are prepared in NCC suspensions in aqueous media containing varying levels of sodium chloride (NaCl) or sodium thiocyanate (NaSCN). The NCC suspensions are characterised using rheology and structural analysis techniques that includes polarised optical microscopy, zeta potential, dynamic light scattering and small-angle X-ray scattering. FINDINGS The two salts have a profound effect on the formation process and structure of the LCH. Differences in network density and size of the liquid crystal domains are observed within the LCH for each of the salts, which is associated with the strength of interaction between NCC particles during LCH formation. In comparison to Cl- at the same salinity, the chaotropic nature of the weakly hydrated SCN- enhances colloidal stability by rendering NCC particles more hydrated and repulsive, but this also leads to weaker gel strength of the LCH. The results suggest that salts are a means in which to control the formation, structure and rheology of these anisotropic soft materials.
Collapse
|
25
|
Gregory KP, Webber GB, Wanless EJ, Page AJ. Lewis Strength Determines Specific-Ion Effects in Aqueous and Nonaqueous Solvents. J Phys Chem A 2019; 123:6420-6429. [DOI: 10.1021/acs.jpca.9b04004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kasimir P. Gregory
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Grant B. Webber
- School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Priority Research Centre for Advanced Particle Processing and Transport, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Erica J. Wanless
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Priority Research Centre for Advanced Particle Processing and Transport, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Alister J. Page
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
26
|
Liu G. Tuning the Properties of Charged Polymers at the Solid/Liquid Interface with Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3232-3247. [PMID: 29806944 DOI: 10.1021/acs.langmuir.8b01158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In conventional theories, where ions are treated as point charges, the properties of charged polymers can be tuned using ions via the ionic strength. However, this article will show that the properties of charged polymers at the solid/liquid interface, including charged polymer brushes and polyelectrolyte multilayers, can be tuned by ions beyond ionic strength effects. Ion specificity, multivalency, ionic hydrogen bonding, and ionic hydrophobicity/hydrophilicity are used to tune a range of properties of charged polymers at the solid/liquid interface such as hydration, conformation, stiffness, surface wettability, lubricity, adhesion, and protein adsorption. The ionic effects demonstrated here greatly broaden our understanding of the use of ions to tune the interfacial properties of charged polymers. It is anticipated that these ionic effects can be further expanded by incorporating new types of important ion-charged polymer interactions and can also be extended to neutral polymer systems.
Collapse
Affiliation(s)
- Guangming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei , P. R. China 230026
| |
Collapse
|
27
|
Sakamaki T, Inutsuka Y, Igata K, Higaki K, Yamada NL, Higaki Y, Takahara A. Ion-Specific Hydration States of Zwitterionic Poly(sulfobetaine methacrylate) Brushes in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1583-1589. [PMID: 30441903 DOI: 10.1021/acs.langmuir.8b03104] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The ion-specific hydration states of zwitterionic poly(3-( N-2-methacryloyloxyethyl- N, N-dimethyl)ammonatopropanesulfonate) (PMAPS) brushes in various aqueous solutions were investigated by neutron reflectivity (NR) and atomic force microscopy (AFM). The asymmetric hydration state of the PMAPS brushes was verified from the NR scattering-length density profiles, while the variation in their swollen thickness was complementary as determined from AFM topographic images. PMAPS brushes got thicker in any salt solutions, while the extent of swelling and the dimensions of swollen chain structure were dependent on the ion species and salt concentration in the solutions. Anion specificity was clearly observed, whereas cations exhibited weaker modulation in ion-specific hydration states. The anion specificity could be ascribed to ion-specific interactions between the quaternary ammonium cation in sulfobetaine and the anions. The weak cation specificity was attributed to the intrinsically weak cohesive interactions between the weakly hydrated sulfonate anion in sulfobetaine and the strongly hydrated cations. The ion-specific hydration of PMAPS brushes was largely consistent with the ion-specific aggregation state of the PMAPS chains in aqueous solutions.
Collapse
Affiliation(s)
| | | | | | | | - Norifumi L Yamada
- Neutron Science Laboratory , High Energy Accelerator Research Organization , Ibaraki 319-1106 , Japan
| | | | | |
Collapse
|
28
|
Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nat Commun 2018; 9:5146. [PMID: 30514952 PMCID: PMC6279834 DOI: 10.1038/s41467-018-07625-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/12/2018] [Indexed: 12/03/2022] Open
Abstract
Thermogalvanic cells offer a cheap, flexible and scalable route for directly converting heat into electricity. However, achieving a high output voltage and power performance simultaneously from low-grade thermal energy remains challenging. Here, we introduce strong chaotropic cations (guanidinium) and highly soluble amide derivatives (urea) into aqueous ferri/ferrocyanide ([Fe(CN)6]4−/[Fe(CN)6]3−) electrolytes to significantly boost their thermopowers. The corresponding Seebeck coefficient and temperature-insensitive power density simultaneously increase from 1.4 to 4.2 mV K−1 and from 0.4 to 1.1 mW K−2 m−2, respectively. The results reveal that guanidinium and urea synergistically enlarge the entropy difference of the redox couple and significantly increase the Seebeck effect. As a demonstration, we design a prototype module that generates a high open-circuit voltage of 3.4 V at a small temperature difference of 18 K. This thermogalvanic cell system, which features high Seebeck coefficient and low cost, holds promise for the efficient harvest of low-grade thermal energy. Achieving high thermopower in liquid-state thermogalvanic cells is vital to realize a low-cost technology solution for thermal-to-electrical energy conversion. Here, the authors present aqueous thermogalvanic cells based on modified electrolyte with enhanced Seebeck coefficient and thermopower.
Collapse
|
29
|
Zhang J, Cai H, Tang L, Liu G. Tuning the pH Response of Weak Polyelectrolyte Brushes with Specific Anion Effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12419-12427. [PMID: 30220208 DOI: 10.1021/acs.langmuir.8b02776] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The positively charged poly( N, N'-dimethylaminoethyl methacrylate) (PDMAEMA) brushes have been employed as model weak polyelectrolyte brushes (WPBs) to demonstrate the tuning of the pH response of WPBs with specific anion effects. The charge density of PDMAEMA brushes can be modulated by specific ion-pairing interactions between counterions and the protonated dimethylamino group; as a result, the strength of the pH response of PDMAEMA brushes can be tuned by specific anion effects. A more chaotropic counterion can more strongly interact with the protonated dimethylamino group, thereby more effectively neutralizing the positively charged group associated with the grafted weak polyelectrolyte chains and more remarkably suppressing the pH response of PDMAEMA brushes. Although the pH response of PDMAEMA brushes is insensitive to the anion identity at a low salt concentration, it can be tuned by specific anion effects at relatively high salt concentrations. Our study demonstrates that the pH-responsive properties of PDMAEMA brushes including hydration, conformation, oil wettability, and adhesion can be tuned by specific anion effects. The work presented here provides a method to tune the pH response of WPBs by the anion identity.
Collapse
Affiliation(s)
- Jian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Hongtao Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Ling Tang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Guangming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| |
Collapse
|
30
|
Murdoch TJ, Humphreys BA, Johnson EC, Webber GB, Wanless EJ. Specific ion effects on thermoresponsive polymer brushes: Comparison to other architectures. J Colloid Interface Sci 2018; 526:429-450. [DOI: 10.1016/j.jcis.2018.04.086] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
|
31
|
Zhu R, Baraniak MK, Jäkle F, Liu G. Anion Specificity in Dimethyl Sulfoxide-Water Mixtures Exemplified by a Thermosensitive Polymer. J Phys Chem B 2018; 122:8293-8300. [PMID: 30086631 DOI: 10.1021/acs.jpcb.8b06125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the present work, we have investigated the anion-specific upper critical solution temperature (UCST) behavior of polymer-supported borinic acid (PBA) in dimethyl sulfoxide-water (DMSO-H2O) mixtures. An inverted V-shaped series CH3COO- < Cl- < salt-free > NO3- > ClO4- > SCN- is observed in terms of the anion-specific UCST of PBA in the DMSO-H2O mixtures. Both direct anion-polymer interactions and indirect solvent-mediated anion-polymer interactions are involved in the specific anion effect on the UCST behavior of PBA. The direct binding of anions to the PBA surface generates a salting-in effect on PBA, causing the UCST for the different types of anions to increase from chaotropic to kosmotropic anions due to the stronger binding of the more chaotropic anions. On the other hand, the indirect anionic polarization of hydrogen bonding between PBA and DMSO molecules also produces a salting-in effect on PBA, leading the UCST for the different types of anions to increase from kosmotropic to chaotropic anions because of the stronger capability of the more kosmotropic anions to polarize the hydrogen bonding. Thus, the dominating anion-PBA interactions change from the direct anion binding to the indirect anionic polarization of hydrogen bonding as the anions change from chaotropes to kosmotropes. The observed inverted V-shaped series suggests that the specific anion effect on the UCST behavior of PBA in the DMSO-H2O mixtures is determined by the combined effects of the binding of anions to the PBA surface and the anionic polarization of hydrogen bonding between PBA and DMSO molecules.
Collapse
Affiliation(s)
- Renwei Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei , P. R. China 230026
| | - Monika K Baraniak
- Department of Chemistry , Rutgers University-Newark , 73 Warren Street , Newark , New Jersey 07102 , United States
| | - Frieder Jäkle
- Department of Chemistry , Rutgers University-Newark , 73 Warren Street , Newark , New Jersey 07102 , United States
| | - Guangming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei , P. R. China 230026
| |
Collapse
|
32
|
Kou R, Zhang J, Chen Z, Liu G. Counterion Specificity of Polyelectrolyte Brushes: Role of Specific Ion-Pairing Interactions. Chemphyschem 2018; 19:1404-1413. [PMID: 29575481 DOI: 10.1002/cphc.201701256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 11/10/2022]
Abstract
We demonstrate here that the properties of poly (2-(methacryloyloxy) ethyl trimethylammonium chloride) brushes can be tuned by counterion species. When the brushes are exposed to external chloride (Cl- ) counterions, obvious dehydration and collapse are only observed at high salt concentrations. In the presence of very strongly chaotropic perchlorate (ClO4- ), the brushes strongly dehydrate and collapse at a very low salt concentration. For the strongly chaotropic thiocyanate ion (SCN- ), the changes in hydration and conformation of the brushes are similar to those observed for ClO4- but at a smaller extent at very low salt concentrations. With the addition of kosmotropic acetate (Ac- ), hydration of the brushes increases, accompanied by a swelling of the brushes in the low-salt-concentration regime. In contrast, the brushes dehydrate and collapse with increasing concentration of Ac- in the high-salt-concentration regime. The counterion specificity of the brushes demonstrated here is determined by specific ion-pairing interactions through modulating the osmotic pressure within the brushes and the hydrophobicity of the ion pairs.
Collapse
Affiliation(s)
- Ran Kou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhen Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Guangming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
33
|
Li S, Ye S, Liu G. Specific Ion Effects on Protein Thermal Aggregation from Dilute Solutions to Crowded Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4289-4297. [PMID: 29566333 DOI: 10.1021/acs.langmuir.8b00294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We have investigated specific ion effects on protein thermal aggregation from dilute solutions to crowded environments. Ovalbumin and poly(ethylene glycol) have been employed as the model protein and crowding agent, respectively. Our studies demonstrate that the rate-limiting step of ovalbumin thermal aggregation is changed from the aggregation of unfolded protein molecules to the unfolding of the protein molecules, when the solution conditions are varied from a dilute solution to a crowded environment. The specific ion effects acting on the thermal aggregation of ovalbumin generated by kosmotropic and chaotropic ions are different. The thermal aggregation of ovalbumin molecules is promoted by kosmotropic anions in dilute solutions via an increase in protein hydrophobic interactions. In contrast, ovalbumin thermal aggregation is facilitated by chaotropic ions in crowded environments through accelerated unfolding of protein molecules. Therefore, there are distinct mechanisms causing the ion specificities of protein thermal aggregation between dilute solutions and crowded environments. The ion specificities are dominated by ion-specific hydrophobic interactions between protein molecules and ion-specific unfolding of protein molecules in dilute solutions and crowded environments, respectively.
Collapse
Affiliation(s)
- Shuling Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei , P. R. China 230026
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei , P. R. China 230026
| | - Guangming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei , P. R. China 230026
| |
Collapse
|
34
|
Higaki Y, Inutsuka Y, Ono H, Yamada NL, Ikemoto Y, Takahara A. Counteranion-Specific Hydration States of Cationic Polyelectrolyte Brushes. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00210] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuji Higaki
- Japan Science
and Technology Agency (JST), ERATO, Takahara Soft Interfaces Project, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | | | | | - Norifumi L. Yamada
- Neutron Science Laboratory, High Energy Accelerator Research Organization, Ibaraki 319-1106, Japan
| | - Yuka Ikemoto
- Japan Synchrotron Radiation
Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho,
Sayo-gun, Hyogo 679-5198, Japan
| | - Atsushi Takahara
- Japan Science
and Technology Agency (JST), ERATO, Takahara Soft Interfaces Project, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
35
|
Xiao S, Ren B, Huang L, Shen M, Zhang Y, Zhong M, Yang J, Zheng J. Salt-responsive zwitterionic polymer brushes with anti-polyelectrolyte property. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2017.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Umapathi R, Reddy PM, Rani A, Venkatesu P. Influence of additives on thermoresponsive polymers in aqueous media: a case study of poly(N-isopropylacrylamide). Phys Chem Chem Phys 2018; 20:9717-9744. [DOI: 10.1039/c7cp08172c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thermoresponsive polymers (TRPs) in different solvent media have been studied over a long period and are important from both scientific and technical points of view.
Collapse
Affiliation(s)
| | - P. Madhusudhana Reddy
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
- Department of Chemical Engineering
| | - Anjeeta Rani
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| | | |
Collapse
|
37
|
Yuan P, Ruan Z, Liu L, Li T, Jing T, Yan L. Sharp-pH-Sensitive Amphiphilic Polypeptide Micelles with Adjustable Triggered pHs by Salts via the Hofmeister Effect. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pan Yuan
- CAS Key Laboratory of Soft Matter Chemistry; and Department of Chemical Physics; iChEM; University of Science and Technology of China; Jinzai Road 96# Hefei 230026 Anhui P. R. China
| | - Zheng Ruan
- CAS Key Laboratory of Soft Matter Chemistry; and Department of Chemical Physics; iChEM; University of Science and Technology of China; Jinzai Road 96# Hefei 230026 Anhui P. R. China
| | - Le Liu
- CAS Key Laboratory of Soft Matter Chemistry; and Department of Chemical Physics; iChEM; University of Science and Technology of China; Jinzai Road 96# Hefei 230026 Anhui P. R. China
| | - Tuanwei Li
- CAS Key Laboratory of Soft Matter Chemistry; and Department of Chemical Physics; iChEM; University of Science and Technology of China; Jinzai Road 96# Hefei 230026 Anhui P. R. China
| | - Titao Jing
- CAS Key Laboratory of Soft Matter Chemistry; and Department of Chemical Physics; iChEM; University of Science and Technology of China; Jinzai Road 96# Hefei 230026 Anhui P. R. China
| | - Lifeng Yan
- CAS Key Laboratory of Soft Matter Chemistry; and Department of Chemical Physics; iChEM; University of Science and Technology of China; Jinzai Road 96# Hefei 230026 Anhui P. R. China
| |
Collapse
|
38
|
Reddy PM, Hsieh SR, Chang CJ, Leong YY, Chen JK, Lee MC. Amplification of Hofmeister effect on poly( n -isopropylacrylamide) by crown ether. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Song W, Zhu J, Liu L, Liu G. Modulation of the Binding Affinity of Polyzwitterion-Conjugated Protein by Ion-Specific Effects in Crowded Environments. J Phys Chem B 2017; 121:7366-7372. [DOI: 10.1021/acs.jpcb.7b04314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wangqin Song
- Department of Chemical Physics,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jie Zhu
- Department of Chemical Physics,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lvdan Liu
- Department of Chemical Physics,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guangming Liu
- Department of Chemical Physics,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
40
|
Umapathi R, Vepuri SB, Venkatesu P, Soliman ME. Comprehensive Computational and Experimental Analysis of Biomaterial toward the Behavior of Imidazolium-Based Ionic Liquids: An Interplay between Hydrophilic and Hydrophobic Interactions. J Phys Chem B 2017; 121:4909-4922. [DOI: 10.1021/acs.jpcb.7b02208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Suresh B. Vepuri
- K
L College of Pharmacy, K L University, Guntur 522 502, India
- Discipline
of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal (UKZN), Westville Campus, Durban 4000, South Africa
| | | | - Mahmoud E. Soliman
- Discipline
of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal (UKZN), Westville Campus, Durban 4000, South Africa
| |
Collapse
|
41
|
Kim K, Kwon T, Sung BJ, Kim C. Effect of methane-sugar interaction on the solubility of methane in an aqueous solution. J Colloid Interface Sci 2017; 500:113-118. [PMID: 28402843 DOI: 10.1016/j.jcis.2017.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/27/2017] [Accepted: 04/02/2017] [Indexed: 10/19/2022]
Abstract
In this study, the effect of methane-sugar interaction on the solubility of methane in an aqueous solution at ambient pressure was investigated. Various sugars, such as fructose, glucose, sucrose, maltose, and raffinose, were used, and depending on the type and concentration of sugar, the methane solubility increased from 21.72mg/L (in pure water) to 24.86mg/L. Sugars with a low hydrogen-bonding number between the water and sugar molecules exhibited a large enhancement in methane solubility. The solute partitioning model and molecular dynamics simulations were employed to verify the results obtained for the experimental solubility of methane in aqueous sugar solutions.
Collapse
Affiliation(s)
- Kwangmin Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Taejin Kwon
- Department of Chemistry, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Bong June Sung
- Department of Chemistry, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Choongik Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea.
| |
Collapse
|
42
|
|
43
|
Zhang Y, Tang H, Wu P. Multiple interaction regulated phase transition behavior of thermo-responsive copolymers containing cationic poly(ionic liquid)s. Phys Chem Chem Phys 2017; 19:30804-30813. [DOI: 10.1039/c7cp05846b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Schematic illustration of the phase transition mechanism of the P(OEGMA-co-BVIm[SCN]) copolymer.
Collapse
Affiliation(s)
- Yingna Zhang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science and Laboratory for Advanced Materials
- Fudan University
- Shanghai 200433
- China
| | - Hui Tang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science and Laboratory for Advanced Materials
- Fudan University
- Shanghai 200433
- China
| | - Peiyi Wu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science and Laboratory for Advanced Materials
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|