1
|
Teerasumran P, Velliou E, Bai S, Cai Q. Deodorants and antiperspirants: New trends in their active agents and testing methods. Int J Cosmet Sci 2023; 45:426-443. [PMID: 36896776 PMCID: PMC10946881 DOI: 10.1111/ics.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023]
Abstract
Sweating is the human body's thermoregulation system but also results in unpleasant body odour which can diminish the self-confidence of people. There has been continued research in finding solutions to reduce both sweating and body odour. Sweating is a result of increased sweat flow and malodour results from certain bacteria and ecological factors such as eating habits. Research on deodorant development focuses on inhibiting the growth of malodour-forming bacteria using antimicrobial agents, whereas research on antiperspirant synthesis focuses on technologies reducing the sweat flow, which not only reduces body odour but also improves people's appearance. Antiperspirant's technology is based on the use of aluminium salts which can form a gel plug at sweat pores, obstructing the sweat fluid from arising onto the skin surface. In this paper, we perform a systematic review on the recent progress in the development of novel antiperspirant and deodorant active ingredients that are alcohol-free, paraben-free, and naturally derived. Several studies have been reported on the alternative class of actives that can potentially be used for antiperspirant and body odour treatment including deodorizing fabric, bacterial, and plant extracts. However, a significant challenge is to understand how the gel-plugs of antiperspirant actives are formed in sweat pores and how to deliver long-lasting antiperspirant and deodorant benefits.
Collapse
Affiliation(s)
- Paweenuch Teerasumran
- Department of Chemical and Process Engineering, Faculty of Engineering and Physical SciencesUniversity of SurreyGuildfordGU2 7XHUK
- Centre for 3D Models of Health and DiseaseUCL‐Division of Surgery and Interventional ScienceCharles Bell House, 43‐45 Foley Street, FitzroviaLondonW1W 7TYUK
- The State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijing100190China
| | - Eirini Velliou
- Department of Chemical and Process Engineering, Faculty of Engineering and Physical SciencesUniversity of SurreyGuildfordGU2 7XHUK
- Centre for 3D Models of Health and DiseaseUCL‐Division of Surgery and Interventional ScienceCharles Bell House, 43‐45 Foley Street, FitzroviaLondonW1W 7TYUK
| | - Shuo Bai
- The State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijing100190China
| | - Qiong Cai
- Department of Chemical and Process Engineering, Faculty of Engineering and Physical SciencesUniversity of SurreyGuildfordGU2 7XHUK
| |
Collapse
|
2
|
Moussaron A, Alexandre J, Chenard MP, Mathelin C, Reix N. Correlation between daily life aluminium exposure and breast cancer risk: A systematic review. J Trace Elem Med Biol 2023; 79:127247. [PMID: 37354712 DOI: 10.1016/j.jtemb.2023.127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Epidemiological data indicate that the role of environmental factors on breast cancer (BC) incidence remains undetermined. Our daily life exposure to aluminium (Al) is suspected to influence BC development. This review proposes a state of the art on the association between Al and BC risk combined with a critical point of view on the subject. METHODS We searched the PubMed database using terms related to Al and BC up to November 18, 2022. Reports were eligible if they were cohort or case-control studies or meta-analyses. FINDINGS Six studies focused on the relationship between deodorant and antiperspirant use and BC incidence and didn't produce consistent results. Among 13 studies relating Al content in mammary tissues and BC risk, results are not unanimous to validate higher Al content in tumor tissues compared to healthy ones. We detail parameters that could explain this conclusion: the absence of statistical adjustments on BC risk factors in studies, the confusion between deodorant and antiperspirant terms, the non-assessment of global Al exposure, and the focus on Al in mammary tissues whereas a profile of several metals seems more appropriate. The clinical studies are retrospective. They were carried out on small cohorts and without a long follow-up. On the other hand, studies on cell lines have shown the carcinogenic potential of aluminum. Moreover, studies considered BC as a unique group whereas BC is a heterogeneous disease with multiple tumor subtypes determining the tumor aggressiveness. CONCLUSION In light of the precautionary principle and based on the data obtained, it is better to avoid antiperspirants that contain Al. Deodorants without aluminum are not implicated in breast cancer, either clinically or fundamentally.
Collapse
Affiliation(s)
| | - Julie Alexandre
- Department of Obstetrics, Centre Médico-chirurgical Et Obstétrical (CMCO), University Hospital of Strasbourg, Schiltigheim, France
| | - Marie-Pierre Chenard
- Service de Pathologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Department of Functional Genomics and Cancer, Institute of Genetics and Cellular and Molecular Biology, University of Strasbourg, Illkirch, France
| | - Carole Mathelin
- University Hospital of Strasbourg, Strasbourg, France; Department of Functional Genomics and Cancer, Institute of Genetics and Cellular and Molecular Biology, University of Strasbourg, Illkirch, France; Surgery Unit, Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, France
| | - Nathalie Reix
- ICube UMR 7357, University of Strasbourg/CNRS, Federation of Translational Medicine of Strasbourg (FMTS), Strasbourg, France; Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
3
|
Lütgerath C, Weiß C, Faulhaber J, Karsai S. Comparison of a novel aluminum lactate-based with an aluminum chloride-based antiperspirant in excessive axillary and inguinal perspiration: first randomized controlled trial. J Dtsch Dermatol Ges 2022; 20:1589-1601. [PMID: 36495093 DOI: 10.1111/ddg.14898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Topical aluminum salts are a commonly used remedy for excessive axillary perspiration. To the contrary, less is known about their anhidrotic potential in the groin. This study sought to compare the anhidrotic efficacy and tolerability of an aluminum chloride-based antiperspirant to an innovative aluminum lactate-based antiperspirant in healthy study participants presenting with excessive axillary and inguinal perspiration. PARTICIPANTS AND METHODS Fifty participants were enrolled in this open open-labeled, randomized, controlled trial. Following a baseline assessment, efficacy was analyzed at two time points throughout the study period by means of four physiological parameters (pH value, transepidermal water loss, gravimetric analysis, Minor test) and two questionnaires (Dermatology Life Quality Index, Hyperhidrosis Disease Severity Scale). Tolerability was evaluated via symptom diaries. RESULTS Both study preparations were comparably effective in reducing axillary and inguinal perspiration and exhibited increasing effectiveness over time. In both treatment regions, the aluminum lactate-based antiperspirant had a more favorable tolerability profile than the aluminum chloride-based antiperspirant. CONCLUSIONS Due to its comparable efficacy and - most noticeably in the groin - superior tolerability, this study supports the use of topical aluminum lactate as a first-line option to control excessive axillary and inguinal perspiration.
Collapse
Affiliation(s)
| | - Christel Weiß
- Department of Medical Statistics and Biomathematics, University Medical Centre, Mannheim, Germany
| | - Jörg Faulhaber
- MVZ Hautzentrum am Kalten Markt GmbH, Schwäbisch Gmünd, Germany
| | - Syrus Karsai
- Dermatologikum Hamburg GmbH, Hamburg, Germany.,Department of Dermatology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Lütgerath C, Weiß C, Faulhaber J, Karsai S. Vergleich eines neuen Aluminiumlactat-basierten mit einem Aluminiumchlorid-basierten Antitranspirant bei übermäßigem axillären und inguinalen Schwitzen: Erste randomisierte kontrollierte Studie. J Dtsch Dermatol Ges 2022; 20:1589-1602. [PMID: 36508376 DOI: 10.1111/ddg.14898_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022]
Affiliation(s)
| | - Christel Weiß
- Medizinische Statistik, Biomathematik und Informationsverarbeitung, Universitätsmedizin Mannheim
| | | | - Syrus Karsai
- Dermatologikum Hamburg GmbH, Hamburg.,Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| |
Collapse
|
5
|
Thá EL, Gagosian VSC, Canavez ADPM, Schuck DC, Brohem CA, Gradia DF, de Freitas RA, Prado KB, Cestari MM, Lorencini M, Leme DM. In vitro evaluation of the inhalation toxicity of the cosmetic ingredient aluminum chlorohydrate. J Appl Toxicol 2022; 42:2016-2029. [PMID: 35883269 DOI: 10.1002/jat.4371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022]
Abstract
Aluminum chlorohydrate (ACH) is a major aerosol component frequently used as the active ingredient in antiperspirants, and in vivo studies have raised a concern about its inhalation toxicity. Still, few studies have addressed its effects on the human respiratory tract. Therefore, we developed a study on ACH inhalation toxicity using an in vitro human alveolar cell model (A549 cells) with molecular and cellular markers of oxidative stress, immunotoxicity, and epigenetic changes. The chemical characterization of ACH suspensions indicated particle instability and aggregation; however, side-scatter analysis demonstrated significant particle uptake in cells exposed to ACH. Exposure of A549 cells to non-cytotoxic concentrations of ACH (0.25, 0.5, and 1 mg/ml) showed that ACH induced reactive oxygen species. Moreover, ACH upregulated TNF, IL6, IL8, and IL1A genes, but not the lncRNAs NEAT1 and MALAT1. Finally, no alterations on the global DNA methylation pattern (5-methylcytosine and 5-hydroxymethylcytosine) or the phosphorylation of histone H2AX (γ-H2AX) were observed. Our data suggest that ACH may induce oxidative stress and inflammation on alveolar cells, and A549 cells may be useful to identify cellular and molecular events that may be associated with adverse effects on the lungs. Still, further research is needed to ensure the inhalation safety of ACH.
Collapse
Affiliation(s)
- Emanoela Lundgren Thá
- Graduate Program in Genetics, Department of Genetics-Federal University of Paraná (UFPR), Curitiba, Brazil
| | | | | | | | - Carla Abdo Brohem
- Product Safety Management-Q&PP, Grupo Boticário, São José dos Pinhais, Brazil
| | | | | | - Karin Braun Prado
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | | | - Márcio Lorencini
- Product Safety Management-Q&PP, Grupo Boticário, São José dos Pinhais, Brazil
| | - Daniela Morais Leme
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
6
|
de Ligt R, Westerhout J, Grossouw D, Buters TP, Rissmann R, Burggraaf J, Windhorst AD, Tozer S, Pappa G, Wall B, Bury D, Mason DR, Vaes WHJ. Assessment of dermal absorption of aluminium from a representative antiperspirant formulation using a ( 26Al)Al microtracer approach: a follow-up study in humans. Toxicol Res (Camb) 2022; 11:511-519. [PMID: 35782644 PMCID: PMC9244721 DOI: 10.1093/toxres/tfac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/21/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022] Open
Abstract
A follow-up study was performed in 12 healthy women to evaluate systemic exposure to aluminium following topical application of a representative antiperspirant formulation under real-life use conditions (part A) and to assess the local fate of topically applied aluminium by taking additional tape strips and skin biopsies (Part B). A simple roll-on formulation, containing the maximal possible radioactive dose, was prepared with [26Al] aluminium-labeled chlorohydrate (ACH). The microtracer of [26Al] was used to distinguish aluminium from the natural background, using accelerator mass spectrometry. [26Al] aluminiumcitrate was administered intravenously to estimate the dermal fraction absorbed. Despite the 25-fold increase of the topical dose compared with the previous study, only 12 blood samples gave results above the lower limit of quantitation (0.118 fg/mL). The most reliable estimates of the dermal fraction absorbed are derived from noncompartmental analysis with the urine data. By using the intravenous dose to normalize the urinary excretion to 100% bioavailability, the best estimate of the fraction absorbed of [26Al] from a topical application of [26Al]-aluminium-labeled chlorohydrate in an antiperspirant formulation was 0.00052%. Part B of the study demonstrated that the majority of the aluminium in the formulation remained associated with the external layers of the skin without penetration through the skin.
Collapse
Affiliation(s)
| | | | | | - Thomas P Buters
- Center for Human Drug Research, 2333CL Leiden, The Netherlands
| | - Robert Rissmann
- Center for Human Drug Research, 2333CL Leiden, The Netherlands
| | | | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, Free University Medical Center, P.O. Box 7057, 1007MB, Amsterdam, The Netherlands
| | - Sarah Tozer
- Procter & Gamble Technical Centres Ltd, Reading RG2 0QE, UK
| | | | - Brian Wall
- Colgate Palmolive Company, 909 River Road, Piscataway, NJ 08855, USA
| | - Dagmar Bury
- L’Oréal Research & Innovation, 9 rue Pierre Dreyfus, 92110 Clichy, France
| | - David R Mason
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | | |
Collapse
|
7
|
Dawn A, Wireko FC, Shauchuk A, Morgan JLL, Webber JT, Jones SD, Swaile D, Kumari H. Structure-Function Correlations in the Mechanism of Action of Key Antiperspirant Agents Containing Al(III) and ZAG Salts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11597-11609. [PMID: 35213806 PMCID: PMC8915165 DOI: 10.1021/acsami.1c22771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Aluminum hydrolysis chemistry is an important part of modern society because of the dominance of Al(III) as a highly effective antiperspirant active. However, the century-old chemistry centered on aluminum chloride (ACL) is not comprehensive enough to address all of the in vivo events associated with current commercial antiperspirants and their mechanism of action. The present study aims to address the knowledge gap among extensively studied benchmark ACL, its modified version aluminum chlorohydrate (ACH), and a more complex but less explored group of aluminum zirconium chlorohydrate glycine complexes (ZAG salts) toward understanding the mechanism of action under consumer-relevant conditions. ACH, which is the Al source used in the manufacture of ZAG salts, provides a bridge between ACL and ZAG chemistry. High viscosity and gel formation driven by pH and a specific Al(III) salt upon hydrolysis are considered the criteria for building an in vivo occlusive mass to retard or stop the flow of sweat to the skin surface, thus providing an antiperspirant effect. Rheological studies indicated that ACL and aluminum zirconium tetrachlorohydrex glycine (TETRA) were the most efficacious salt actives. Spectroscopic studies, diffraction studies, and elemental analysis suggested that small metal oxide and hydroxide species with coparticipating glycine as well as various polynuclear and oligomeric species are the key to gel formation. At a given pH, the key ingredients (NaCl, urea, bovine serum albumin, and lactic acid) in artificial sweat were found to have little influence on Al(III) salt hydrolysis. The effects of the sweat components were mostly limited to local complex formation and kinetic modification. The in vitro comparative experiments with various Al(III) and ZAG salt systems offer unprecedented insights into the chemistry of different salt types, thus paving the way for engineering more efficacious antiperspirant systems.
Collapse
Affiliation(s)
- Arnab Dawn
- James
L. Winkle College of Pharmacy, University
of Cincinnati, Cincinnati, Ohio 45267-0004, United States
| | - Fred C. Wireko
- P&G
Mason Business Center, Mason, Cincinnati, Ohio 45040, United States
| | - Andrei Shauchuk
- P&G
Mason Business Center, Mason, Cincinnati, Ohio 45040, United States
| | | | - John T. Webber
- P&G
Mason Business Center, Mason, Cincinnati, Ohio 45040, United States
| | - Stevan D. Jones
- P&G
Mason Business Center, Mason, Cincinnati, Ohio 45040, United States
| | - David Swaile
- P&G
Mason Business Center, Mason, Cincinnati, Ohio 45040, United States
| | - Harshita Kumari
- James
L. Winkle College of Pharmacy, University
of Cincinnati, Cincinnati, Ohio 45267-0004, United States
| |
Collapse
|
8
|
Galey JB, Botet R, Sakhawoth Y, Dupire J, Leonforte F, Chardon M, Monti F, Tabeling P, Cabane B. Dendritic growth of protein gel in the course of sweat pore plugging by aluminium salts under physiological conditions. SOFT MATTER 2021; 17:8022-8026. [PMID: 34525157 DOI: 10.1039/d1sm01029h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Are aluminium ions unavoidable in antiperspirants? To answer this question, we present confocal microscopy images of dendritic plugs appearing in sweat flowing across a microfluidic channel in the presence of aluminium salts. By comparing with numerical simulations, we identify the mechanisms forming this structured protein gel inside the pore.
Collapse
Affiliation(s)
- Jean-Baptiste Galey
- L'Oréal Recherche & Innovation, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France.
| | - Robert Botet
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, UMR8502, 91405, Orsay, France.
| | | | - Jules Dupire
- L'Oréal Recherche & Innovation, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France.
| | - Fabien Leonforte
- L'Oréal Recherche & Innovation, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France.
| | - Marion Chardon
- L'Oréal Recherche & Innovation, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France.
| | | | | | - Bernard Cabane
- LCMD, CNRS UMR8231, ESPCI, 10 rue Vauquelin, 75231 Paris cedex 05, France
| |
Collapse
|
9
|
Sanajou S, Şahin G, Baydar T. Aluminium in cosmetics and personal care products. J Appl Toxicol 2021; 41:1704-1718. [PMID: 34396567 DOI: 10.1002/jat.4228] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/08/2022]
Abstract
Usage of inorganic ingredients like aluminium salts in cosmetics and personal care products has been a concern for producers and consumers. Although aluminium is used to treat hyperhidrosis, some worries have been raised about aluminium's role in breast cancer, breast cyst and Alzheimer's disease. The human population is exposed to aluminium from vaccines, diet, and drinking water, but the frequent use of aluminium-based cosmetics might add additional local exposure. This paper reviews literature to determine if aluminium-based products may pose potential harm to the body. The dermal absorption of aluminium is not widely understood. It is not yet known whether aluminium can travel from the skin to brain to cause Alzheimer's disease. Aluminium may cause gene instability, alter gene expression or enhance oxidative stress, but the carcinogenicity of aluminium has not been proved yet. Until now, epidemiological researches were based on oral information, which lacks consistency, and the results are conflicting. Future studies should target real-life-based long-time exposure to antiperspirants and other aluminium-containing cosmetics and personal care products.
Collapse
Affiliation(s)
- Sonia Sanajou
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Turkey.,Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Gönül Şahin
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Turkey
| | - Terken Baydar
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
10
|
Sakhawoth Y, Dupire J, Leonforte F, Chardon M, Monti F, Tabeling P, Cabane B, Botet R, Galey JB. Real time observation of the interaction between aluminium salts and sweat under microfluidic conditions. Sci Rep 2021; 11:6376. [PMID: 33737654 PMCID: PMC7973555 DOI: 10.1038/s41598-021-85691-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/02/2021] [Indexed: 11/21/2022] Open
Abstract
Aluminium salts such as aluminium chlorohydrate (ACH) are the active ingredients of antiperspirant products. Their mechanism of action involves a temporary and superficial plugging of eccrine sweat pores at the skin surface. We developed a microfluidic system that allows the real time observation of the interactions between sweat and ACH in conditions mimicking physiological sweat flow and pore dimensions. Using artificial sweat containing bovine serum albumin as a model protein, we performed experiments under flowing conditions to demonstrate that pore clogging results from the aggregation of proteins by aluminium polycations at specific location in the sweat pore. Combining microfluidic experiments, confocal microscopy and numerical models helps to better understand the physical chemistry and mechanisms involved in pore plugging. The results show that plugging starts from the walls of sweat pores before expanding into the centre of the channel. The simulations aid in explaining the influence of ACH concentration as well as the impact of flow conditions on the localization of the plug. Altogether, these results outline the potential of both microfluidic confocal observations and numerical simulations at the single sweat pore level to understand why aluminium polycations are so efficient for sweat channel plugging.
Collapse
Affiliation(s)
| | - Jules Dupire
- L'Oréal Recherche and Innovation, 1 avenue Eugène Schueller, 93600, Aulnay-sous-Bois, France
| | - Fabien Leonforte
- L'Oréal Recherche and Innovation, 1 avenue Eugène Schueller, 93600, Aulnay-sous-Bois, France
| | - Marion Chardon
- L'Oréal Recherche and Innovation, 1 avenue Eugène Schueller, 93600, Aulnay-sous-Bois, France
| | | | | | - Bernard Cabane
- LCMD, CNRS UMR8231, ESPCI, 10 rue Vauquelin, 75231, Paris cedex 05, France
| | - Robert Botet
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, UMR8502, 91405, Orsay, France.
| | - Jean-Baptiste Galey
- L'Oréal Recherche and Innovation, 1 avenue Eugène Schueller, 93600, Aulnay-sous-Bois, France.
| |
Collapse
|
11
|
Carter OWL, Xu Y, Sadler PJ. Minerals in biology and medicine. RSC Adv 2021; 11:1939-1951. [PMID: 35424161 PMCID: PMC8693805 DOI: 10.1039/d0ra09992a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/21/2020] [Indexed: 01/08/2023] Open
Abstract
Natural minerals ('stone drugs') have been used in traditional Chinese medicines for over 2000 years, but there is potential for modern-day use of inorganic minerals to combat viral infections, antimicrobial resistance, and for other areas in need of new therapies and diagnostic aids. Metal and mineral surfaces on scales from milli-to nanometres, either natural or synthetic, are patterned or can be modified with hydrophilic/hydrophobic and ionic/covalent target-recognition sites. They introduce new strategies for medical applications. Such surfaces have novel properties compared to single metal centres. Moreover, 3D mineral particles (including hybrid organo-minerals) can have reactive cavities, and some minerals have dynamic movement of metal ions, anions, and other molecules within their structures. Minerals have a unique ability to interact with viruses, microbes and macro-biomolecules through multipoint ionic and/or non-covalent contacts, with potential for novel applications in therapy and biotechnology. Investigations of mineral deposits in biology, with their often inherent heterogeneity and tendency to become chemically-modified on isolation, are highly challenging, but new methods for their study, including in intact tissues, hold promise for future advances.
Collapse
Affiliation(s)
- Oliver W L Carter
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- MAS CDT, Senate House, University of Warwick Coventry CV4 7AL UK
| | - Yingjian Xu
- GoldenKeys High-Tech Materials Co., Ltd, Building B, Innovation & Entrepreneurship Park Guian New Area Guizhou Province 550025 China
| | - Peter J Sadler
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
12
|
Delouche N, Schofield AB, Tabuteau H. Dynamics of progressive pore clogging by colloidal aggregates. SOFT MATTER 2020; 16:9899-9907. [PMID: 33026373 DOI: 10.1039/d0sm01403f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The flow of a suspension through a bottleneck often leads to its obstruction. Such a continuous flow to clogging transition has been well characterized when the constriction width to particle size ratio, W/D, is smaller than 3-4. In such cases, the constriction is either blocked by a single particle that is larger than the constriction width (W/D < 1), or there is an arch formed by several particles that try to enter it together (2 < W/D < 4). For larger W/D ratios, 4 < W/D < 10, the blockage of the constriction is presumed to be due to the successive accumulations of particles. Such a clogging mechanism may also apply to wider pores. The dynamics of this progressive obstruction remains largely unexplored since it is difficult to see through the forming clog and we still do not know how particles accumulate inside the constriction. In this paper, we use particle tracking and image analysis to study the clogging of a constriction/pore by stable colloidal particles. These techniques allow us to determine the shape and the size of all the objects, be they single particles or aggregates, captured inside the pore. We show that even with the rather monodisperse colloidal suspension we used individual particles cannot clog a pore alone. These individual particles can only partially cover the pore surface whilst it is the very small fraction of aggregates present in the suspension that can pile up and clog the pore. We analyzed the dynamics of aggregate motion up to the point of capture within the pore, which helps us to elucidate why the probability of aggregate capture inside the pore is high.
Collapse
Affiliation(s)
- N Delouche
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France.
| | | | | |
Collapse
|
13
|
Caberlotto E, Guillou C, Colomb L, Barla C, Salah S, Vicic M, Revol-Cavalier F, Rat V, Filipe S, Flament F. Developing a new device for continuously recording, in vivo, the excretion rate of sweat (perspiration) in humans. Skin Res Technol 2019; 25:489-498. [PMID: 30758876 DOI: 10.1111/srt.12677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/30/2018] [Accepted: 12/09/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Some methodologies used for evaluating sweat production and antiperspirants are of a stationary aspect, that is, most often performed under warm (38°C) but resting conditions in a rather short period of time. The aim is to develop an electronic sensor apt at continuously recording sweat excretion, in vivo, during physical exercises, exposure to differently heated environments, or any other stimuli that may provoke sweat excretion. MATERIAL AND METHODS A sensor (20 cm2 ) is wrapped under a double-layered textile pad. Fixed onto the armpits, these two arrays of electrodes are connected to electronic system through an analog multiplexer. A microcontroller is used to permanently record changes in the conductance between two electrodes during exposure of subjects to different sweat-inducing conditions or to assess the efficacy of applied aluminum hydrochloride (ACH)-based roll-ons at two concentrations (5% and 15%). RESULTS In vitro calibration, using a NaCl 0.5% solution, allows changes in mV to be related with progressively increased volumes. In vivo, results show that casual physical exercise leads to sweat excretions much higher than in warm environment (37 or 45°C). Only, an exposure to a 50°C environment induced comparable sweat excretion. In this condition, sweat excretions were found similar in both armpits and both genders. Decreased sweat excretions were recorded following applications of ACH, with a dose effect. CONCLUSION Developing phases of this new approach indicate that usual method or guidelines used to determine sweat excretions in vivo do not reflect true energy expenditure processes. As a consequence, they probably over-estimate the efficacy of antiperspirant agents or formulae.
Collapse
Affiliation(s)
| | | | - Loic Colomb
- L'Oréal Research and Innovation, Chevilly-Larue, France
| | - Charlie Barla
- L'Oréal Research and Innovation, Chevilly-Larue, France
| | - Samir Salah
- L'Oréal Research and Innovation, Chevilly-Larue, France
| | - Marco Vicic
- L'Oréal Research and Innovation, Chevilly-Larue, France
| | | | | | | | | |
Collapse
|
14
|
Capillary electrophoresis for aluminum ion speciation: Optimized separation conditions for complex polycation mixtures. J Chromatogr A 2018; 1552:79-86. [PMID: 29655840 DOI: 10.1016/j.chroma.2018.03.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 11/23/2022]
Abstract
Aluminum chlorohydrates (ACH) are used in numerous applications and commercial products on a global scale including water treatment, catalysis or antiperspirants. They are complex mixtures of water soluble aluminum polycations of different degrees of polymerization, that are difficult to separate and quantify due to their susceptibility to depolymerize in solution when placed out of equilibrium, which is inherent to any separation process. We recently achieved the first capillary electrophoresis separation and characterization of ACH oligomers using 4-morpholineethanesulfonic acid (MES) as background electrolyte counter-ion. MES stabilizes the separated ACH oligomers during the electrophoretic process leading to highly repeatable and fast separations. In this work, the separation of ACH oligomers was further studied and perfected by varying the ionic strength, MES concentration and pH of the background electrolyte. Complex electrophoretic behavior is reported for the separation of Al13, Al30 and Na+ ions according to these experimental parameters. The transformation of the electropherograms in effective mobility scale and the use of the slope-plot approach are used to better understand the observed changes in selectivity/resolution. Optimal conditions (700 mM MES at 25 mM ionic strength containing 0.1 mM didodecyldimethylammonium bromide for dynamic capillary coating, pH 4.8) obtained for the separation of ACH oligomers are used for the baseline separation of samples difficult to analyze with other methods, including different molecular, aggregated and colloidal forms of aluminum from the Al13, Al30 and Na+ mixture, validating the rationale of the approach.
Collapse
|
15
|
Lopez CG, Watanabe T, Adamo M, Martel A, Porcar L, Cabral JT. Microfluidic devices for small-angle neutron scattering. J Appl Crystallogr 2018; 51:570-583. [PMID: 29896054 PMCID: PMC5988002 DOI: 10.1107/s1600576718007264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
A comparative examination is presented of materials and approaches for the fabrication of microfluidic devices for small-angle neutron scattering (SANS). Representative inorganic glasses, metals, and polymer materials and devices are evaluated under typical SANS configurations. Performance criteria include neutron absorption, scattering background and activation, as well as spatial resolution, chemical compatibility and pressure resistance, and also cost, durability and manufacturability. Closed-face polymer photolithography between boron-free glass (or quartz) plates emerges as an attractive approach for rapidly prototyped microfluidic SANS devices, with transmissions up to ∼98% and background similar to a standard liquid cell (I ≃ 10-3 cm-1). For applications requiring higher durability and/or chemical, thermal and pressure resistance, sintered or etched boron-free glass and silicon devices offer superior performance, at the expense of various fabrication requirements, and are increasingly available commercially.
Collapse
Affiliation(s)
- Carlos G. Lopez
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Takaichi Watanabe
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Marco Adamo
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Institut Laue–Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Anne Martel
- Institut Laue–Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Lionel Porcar
- Institut Laue–Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - João T. Cabral
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
16
|
Silva BFB. SAXS on a chip: from dynamics of phase transitions to alignment phenomena at interfaces studied with microfluidic devices. Phys Chem Chem Phys 2018; 19:23690-23703. [PMID: 28828415 DOI: 10.1039/c7cp02736b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of microfluidics offers attractive possibilities to perform novel experiments that are difficult (or even impossible) to perform using conventional bulk and surface-based methods. Such attractiveness comes from several important aspects inherent to these miniaturized devices. First, the flow of fluids under submillimeter confinement typically leads to a drop of inertial forces, meaning that turbulence is practically suppressed. This leads to predictable and controllable flow profiles, along with well-defined chemical gradients and stress fields that can be used for controlled mixing and actuation on the micro and nanoscale. Secondly, intricate microfluidic device designs can be fabricated using cleanroom standard procedures. Such intricate geometries can take diverse forms, designed by researchers to perform complex tasks, that require exquisite control of flow of several components and gradients, or to mimic real world examples, facilitating the establishment of more realistic models. Thirdly, microfluidic devices are usually compatible with in situ or integrated characterization methods that allow constant real-time monitoring of the processes occurring inside the microchannels. This is very different from typical bulk-based methods, where usually one can only observe the final result, or otherwise, take quick snapshots of the evolving process or take aliquots to be analyzed separately. Altogether, these characteristics inherent to microfluidic devices provide researchers with a set of tools that allow not only exquisite control and manipulation of materials at the micro and nanoscale, but also observation of these effects. In this review, we will focus on the use and prospects of combining microfluidic devices with in situ small-angle X-ray scattering (and related techniques such as small-angle neutron scattering and X-ray photon correlation spectroscopy), and their enormous potential for physical-chemical research, mainly in self-assembly and phase-transitions, and surface characterization.
Collapse
Affiliation(s)
- Bruno F B Silva
- Department of Life Sciences, INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga 4715-330, Portugal.
| |
Collapse
|