1
|
Bai M, Shao X, Wang C, Wang J, Wang X, Guan P, Hu X. Application of carbon-based nanomaterials in Alzheimer's disease. MATERIALS HORIZONS 2025; 12:673-693. [PMID: 39526325 DOI: 10.1039/d4mh01256a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder marked by permanent impairment of brain function across the whole brain. This condition results in a progressive deterioration of cognitive function in patients and is frequently associated with psychological symptoms such as agitation and anxiety, imposing a significant burden on both patients and their families. Nanomaterials possess numerous distinctive physical and chemical features that render them extensively utilized. In the biomedical domain, nanomaterials can be utilized for disease prevention and therapy, including medication delivery systems, biosensors, and tissue engineering. This article explores the etiology and potential molecular processes of AD, as well as the application of carbon-based nanomaterials in the diagnosis and treatment of AD. Some of such nanomaterials are carbon quantum dots, carbon nanotubes, and graphene, among others. These materials possess distinctive physicochemical features that render them highly promising for applications in biosensing, drug delivery, neuroprotection, and photothermal treatment. In addition, this review explored various therapeutic approaches for AD in terms of reducing inflammation, preventing oxidative damage, and inhibiting Aβ aggregation. The advent of carbon nanomaterials in nanotechnology has facilitated the development of novel treatment approaches for Alzheimer's disease. These strategies provide promising approaches for early diagnosis, effective intervention and neuroprotection of the disease.
Collapse
Affiliation(s)
- Mengyao Bai
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Juanxia Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| |
Collapse
|
2
|
Li F, Zhang Z, Wang X, Yin X, Fu M, Qin T, Ji X, Yang G, Sun S. A physical crosslinked pH-sensitive hydrogel based on hemicellulose/graphene oxide for controlled oral drug delivery. Int J Biol Macromol 2025; 289:138875. [PMID: 39701251 DOI: 10.1016/j.ijbiomac.2024.138875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The design of innovative pH-sensitive hydrogels for oral drug delivery is particularly promising for the treatment of intestinal diseases. The traditional pH-responsive hydrogels still have some problems such as low biocompatibility, complex preparation process and poor therapeutic effect, so a new method needs to be developed to solve these problems. Here, a pH-sensitive hemicellulose/graphene oxide (HC/GO) composite hydrogel (HGCH) was prepared through a one-step strategy. Benefitting from the multiple hydrogen bonding between HC and GO, HGCH possessed a low gelator concentration (∼0.79 wt%), well-defined 3D porous network and excellent mechanical properties. Remarkably, HGCH exhibited pH-induced gel-sol transition and a high drug loading efficiency, showing great potential as a candidate for advanced drug carrier. The drug loading and release test revealed that about 85 % Vitamin B 12 was released in neutral PBS solution (pH 7.4). However, only about 30 % drug was diffused into acid medium (pH 1.7) in the same period, which suggested the HGCH have high adaptability to soluble drugs and pH sensitivity triggered release. Further cellular toxicity tests demonstrated that the HGCH was nontoxic and biocompatible for cells. Thus, the physically cross-linked HGCH would be an attractive drug carrier for controlled drug release at physiological pH in the future.
Collapse
Affiliation(s)
- Fengfeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Zhili Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China.
| | - Xiluan Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Xiuxin Yin
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Maoqing Fu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Tianci Qin
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Shaolong Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| |
Collapse
|
3
|
Frigerio G, Motta S, Siani P, Donadoni E, Di Valentin C. Unveiling the drug delivery mechanism of graphene oxide dots at the atomic scale. J Control Release 2025; 379:344-362. [PMID: 39798704 DOI: 10.1016/j.jconrel.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/16/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Graphene oxide (GO) is an amphiphilic and versatile graphene-based nanomaterial that is extremely promising for targeted drug delivery, which aims to administer drugs in a spatially and temporally controlled manner. A typical GO nanocarrier features a polyethylene glycol coating and conjugation to an active targeting ligand. However, it is challenging to accurately model GO dots, because of their intrinsically complex and not unique structure. Here, realistic atomistic GO models are designed as homogeneously/inhomogeneously oxidized flakes and then coated with stealth polymeric chains conjugated to an active targeting ligand (PEG-cRGD). Doxorubicin (DOX) adsorption is investigated by metadynamics simulations for accelerated loading/release events. The presence of PEG and cRGD are found not to affect the DOX adsorption, whereas the homogeneity of oxidation plays a crucial role. We also proved that a change in pH towards acidic conditions causes a reduction in the GO/DOX affinity in line with a pH-triggered release mechanism. Based on this study, the ideal graphene-based DOX carrier is identified as a homogeneously highly oxidized GO where graphitic regions with strong DOX π-π stacking are limited. Such interactions excessively stabilize DOX and are not weakened by a pH-change. On the contrary, DOX interactions with surface oxidized groups are H-bonding and electrostatic, which can effectively be modified by a pH reduction. Our findings are useful to the experimental community to further develop successful drug delivery systems.
Collapse
Affiliation(s)
- Giulia Frigerio
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, I-20125, Milano, Italy
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, I-20126, Milano, Italy
| | - Paulo Siani
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, I-20125, Milano, Italy; BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, Italy
| | - Edoardo Donadoni
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, I-20125, Milano, Italy
| | - Cristiana Di Valentin
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, I-20125, Milano, Italy; BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, Italy.
| |
Collapse
|
4
|
Mundada AB, Pradhan P, Raju R, Sujitha YS, Kulkarni PA, Mundada PA, Tiwari R, Sharma P. Molecular dynamics in pharmaceutical nanotechnology: simulating interactions and advancing applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-27. [PMID: 39786352 DOI: 10.1080/09205063.2025.2450150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Molecular Dynamics (MD) simulations are now widely utilized in pharmaceutical nanotechnology to gain deeper understanding of nanoscale processes imperative to drug design. This review has also detailed how MD simulation can be employed in the study of drug-nanocarrier interactions, controlling release of chemical compounds from drug delivery systems and increasing solubility and bioavailability of nanocarriers. Furthermore, MD contributes to examining the drug delivery systems, measuring the toxic effects, and determining biocompatibility of nanomedical systems. With the incorporation of artificial intelligence and the use of hybrid simulation systems, MD has gone a step ahead to model other niches of biology that make a tremendous opening to develop highly selective nanomedications. Nevertheless, with well-known issues such as computational constraints and the discrepancy between in silico and experiment results, MD remains a work in progress, with considerable promise for replacing or supplementing existing approaches to the development of precision medicine and nanomedicine, the continued progression of healthcare hopeful.
Collapse
Affiliation(s)
- Anand Badrivishal Mundada
- Department of Pharmacy, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District Dhule, Maharashtra, India
| | - Pankaj Pradhan
- Department of Pharmacy, Swami Keshvanand Institute of Pharmacy, Ramnagaria, Jagatpura, Jaipur, Rajasthan, India
| | - Rajapandi Raju
- Department of Pharmacy, St. John's College of Pharmaceutical Sciences & Research, Kattappana, Kerala, India - Idukki
| | - Y Sarah Sujitha
- Department of Pharmacy, Krishna Teja Pharmacy College, Tirupati, India
| | - Parag Arun Kulkarni
- Department of Pharmaceutics, Shastry Institute of Pharmacy, Erandol, Maharashtra, India
| | - Pooja Anand Mundada
- Department of Pharmacy, R. C. Patel Institute of Pharmacy, Shirpur, District Dhule, Maharashtra, India
| | - Ruchi Tiwari
- Department of Pharmaceutics, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, Uttar Pradesh, India
| | - Pankaj Sharma
- Department of Pharmaceutics, ShriRam College of Pharmacy, Banmore, Morena, Madhya Pradesh, India
| |
Collapse
|
5
|
Veg E, Hashmi K, Raza S, Joshi S, Rahman Khan A, Khan T. The Role of Nanomaterials in Diagnosis and Targeted Drug Delivery. Chem Biodivers 2025; 22:e202401581. [PMID: 39313849 DOI: 10.1002/cbdv.202401581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Nanomaterials have evolved into the most useful resources in all spheres of life. Their small size imparts them with unique properties and they can also be designed and engineered according to the specific need. The use of nanoparticles (NPs) in medicine is particularly quite revolutionary as it has opened new therapeutic avenues to diagnose, treat and manage diseases in an efficient and timely manner. The review article presents the biomedical applications of nanomaterials including bioimaging, magnetic hypothermia and photoablation therapy, with a particular focus on disease diagnosis and targeted drug delivery. Nanobiosensors are highly specific and can be delivered into cells to investigate important biomarkers. They are also used for targeted drug delivery and deliver theranostic agents to specific sites of interest. Other than these factors, the review also explores the role of nano-based drug delivery systems for the management and treatment of nervous system disorders, tuberculosis and orthopaedics. The nano-capsulated drugs can be transported by blood to the targeted site for a sustained release over a prolonged period. Some other applications like their role in invasive surgery, photodynamic therapy and quantum dot imaging have also been explored. Despite that, the safety concerns related to nanomedicine are also pertinent to comprehend as well as the biodistribution of NPs in the body and the mechanistic insight.
Collapse
Affiliation(s)
- Ekhlakh Veg
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Kulsum Hashmi
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Saman Raza
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Seema Joshi
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| |
Collapse
|
6
|
Yang Z, Shi X, Qiu L. Tunable supramolecular self-assemblies based on cyclodextrin polymer as a loading platform for water-soluble drugs. Carbohydr Polym 2025; 347:122743. [PMID: 39486972 DOI: 10.1016/j.carbpol.2024.122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 11/04/2024]
Abstract
Drug loading capacity is a crucial character of nano-scaled drug carriers to achieve high quality pharmaceutical preparations. However, efficient encapsulation of water-soluble small molecular drugs still faces large obstacles in many cases. Herein, we designed a novel supramolecular delivery system constructed by poly(β-cyclodextrin) containing benzoic acid groups (PCD-PA) and adamantyl terminated poly(ethylene glycol) (PEG-AD) to provide multiple intermolecular interactions for competent loading of water-soluble small-molecular drugs. PCD-PA had multiple host molecules, and PEG-AD could be inserted via host-guest interaction in different proportion to adjust the composition of supramolecular carrier. Meanwhile, π-π stacking and electrostatic interaction furnished by benzoic acid groups served as binding force for drug entrapment, which led to considerable loading capacity for several water-soluble drugs. Among the drugs with different chemical structures, mitoxantrone hydrochloride and doxorubicin hydrochloride bearing anthraquinone rings and several protonable amino groups acquired the highest loading content as about 14 % in PCD-PA3/PEG-AD supramolecular self-assemblies. Further computational simulations investigated the mechanism of drug loading based on the interactions between the carrier materials and the payloads. In addition, the weakly acidic environment obviously accelerated the release of certain drugs. All in all, this self-assembled supramolecular nano-system displayed great potentials as a delivery platform for diverse water-soluble drugs.
Collapse
Affiliation(s)
- Zhuting Yang
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xuezhang Shi
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liyan Qiu
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Soroushmanesh M, Dinari M, Farrokhpour H. Comprehensive Computational Investigation of the Porphyrin-Based COF as a Nanocarrier for Delivering Anti-Cancer Drugs: A Combined MD Simulation and DFT Calculation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19073-19085. [PMID: 39189806 DOI: 10.1021/acs.langmuir.4c02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
As nanomaterials have gained prominence in drug delivery technology, exploring their feasibility through computational methods is beneficial before practical tests. In this study, we aim to evaluate the capability of the porphyrin-based covalent organic framework COF-366 as a nanocarrier for two anticancer drugs, irinotecan (IRI) and doxorubicin (DOX). The optimal binding conformation of the drug molecules on the COF surface was predicted by using molecular docking. Subsequently, molecular dynamic simulation (MD) was performed to assess the adsorption mechanism of drug molecules on the COF in the aqueous environment. The free energy of adsorption for DOX and IRI was estimated to be -20.07 and -23.89 kcal/mol, respectively. The adsorption of both drugs on the COF surface is mainly influenced by the π-π interaction. Furthermore, density functional theory (DFT) calculation, natural bond orbital (NBO), and quantum theory of atoms in molecules (QTAIM) analyses were employed to investigate the structural stability of Drug@COF complexes and gain a detailed understanding of the interaction between them at the molecular level. Based on DFT results, it was found that in addition to π-π interaction, the bis-piperidine-phenylene interaction affects the adsorption of IRI on the COF surface. Moreover, the diffusion behavior of the drug molecule inside the COF pore was simulated using a ten-layer COF. Based on the mean square displacement analysis, the diffusion coefficients of DOX and IRI within the COF pore were calculated to be 108 and 97 um2/s, respectively. This computational study sheds light on how different types of interactions between the drug molecule and COF affect the adsorption and diffusion process. Our findings validated that the porphyrin-based COF-366 can serve as a nanobased platform for delivering DOX and IRI.
Collapse
Affiliation(s)
- Mohsen Soroushmanesh
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Hossein Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| |
Collapse
|
8
|
Nakhaei A, Raissi H, Farzad F. Engineered nanoparticles as Selinexor drug delivery systems across the cell membrane and related signaling pathways in cancer cells. J Mol Graph Model 2024; 131:108809. [PMID: 38879904 DOI: 10.1016/j.jmgm.2024.108809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
In the present work, molecular dynamics simulation is applied to evaluate the drug carrier efficiency of graphene oxide nanoflake (GONF) for loading of Selinexor (SXR) drug as well as the drug delivery by 2D material through the membrane in aqueous solution. In addition, to investigate the adsorption and penetration of drug-nanocarrier complex into the cell membrane, well-tempered metadynamics simulations and steered molecular dynamics (SMD) simulations were performed. Based on the obtained results, it is evident that intermolecular hydrogen bonds (HBs) and π-π interactions play a significant role in expediting the interaction between drug molecules and the graphene oxide (GO) nanosheet, ultimately resulting in the formation of a stable SXR-GO complex. The Lennard-Jones (L-J) energy value for the interaction of SXR with GONF is calculated to be approximately -98.85 kJ/mol. In the SXR-GONF complex system, the dominant interaction between SXR and GONF is attributed to the L-J term, resulting from the formation of a strong π-π interaction between the drug molecules and the substrate surface. Moreover, our simulations show by decreasing the distance of GONF with respect to cell membrane, the interaction energy of GONF-membrane significantly decrease to -1500 kJ/mol resulting in fast diffusion of SXR-GONF complex toward the bilayer surface that is favored opening the way to natural drug nanocapsule.
Collapse
Affiliation(s)
- Alireza Nakhaei
- Department of Chemistry, University of Birjand, Birjand, Iran.
| | - Heidar Raissi
- Department of Chemistry, University of Birjand, Birjand, Iran.
| | - Farzaneh Farzad
- Department of Chemistry, University of Birjand, Birjand, Iran.
| |
Collapse
|
9
|
Gayathri K, Vidya R. Carbon nanomaterials as carriers for the anti-cancer drug doxorubicin: a review on theoretical and experimental studies. NANOSCALE ADVANCES 2024; 6:3992-4014. [PMID: 39114152 PMCID: PMC11302188 DOI: 10.1039/d4na00278d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 08/10/2024]
Abstract
The incidence of cancer is increasing worldwide in a life-threatening manner. In such a scenario, the development of anti-cancer drugs with minimal side effects and effective drug delivery systems is of paramount importance. Doxorubicin (DOX) is one of the powerful anti-cancer drugs from the chemical family anthracycline, which is used to treat a wide variety of cancers, including breast, prostate, ovarian, and hematological malignancies. However, DOX has been associated with many side effects, including lethal cardiotoxicity, baldness, gastrointestinal disturbances and cognitive function impairment. Even though DOX is administered in liposomal formulations to reduce its toxicity and enhance its therapeutic profile, the liposomal formulations themselves have certain therapeutic profile limitations such as "palmar-plantar erythrodysesthesia (PPE)", which shows severe swelling and redness in the skin, thus restricting the dosage and reducing patient compliance. In contemporary chemotherapy research, there is a great interest in the utilization of nanomaterials for precise and targeted drug delivery applications, especially using carbon-based nanomaterials. This review provides a comprehensive overview of both experimental and theoretical scientific works, exploring diverse forms of carbon-based materials such as graphene, graphene oxide, and carbon nanotubes that function as carriers for DOX. In addition, the review consolidates information on the fate of the carriers after the delivery of the payload at the site of action through different imaging techniques and the various pathways through which the body eliminates these nanomaterials. In conclusion, the review presents a detailed overview of the toxicities associated with these carriers within the human body, contributing to the development of enhanced drug delivery systems.
Collapse
Affiliation(s)
- K Gayathri
- Centre for Materials Informatics(C-mAIn), Sir. C.V. Raman Science Block, Anna University Sardar Patel Road, Guindy Chennai 600 025 India
- Department of Physics, Anna University Sardar Patel Road, Guindy Chennai 600 025 India
| | - R Vidya
- Centre for Materials Informatics(C-mAIn), Sir. C.V. Raman Science Block, Anna University Sardar Patel Road, Guindy Chennai 600 025 India
- Department of Physics, Anna University Sardar Patel Road, Guindy Chennai 600 025 India
| |
Collapse
|
10
|
Li L, Xiang F, Wang F, Chen A, Liu Y. Preparation and sustained-release mechanism of hydroxybutyl chitosan/graphene oxide temperature-sensitive hypoglycaemic subcutaneous implants. Colloids Surf B Biointerfaces 2024; 236:113801. [PMID: 38401183 DOI: 10.1016/j.colsurfb.2024.113801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
The current situation of diabetes prevention and control is extremely severe. For instance, glimepiride (GLM), a third-generation sulfonylurea, demonstrates suboptimal clinical efficacy in oral dosage forms, which underscores the pressing need for the development of a new dosage form. Recently, in situ gel subcutaneous implants have garnered considerable attention. Hydroxybutyl chitosan (HBC) can spontaneously crosslink to form a thermosensitive hydrogel and has good biocompatibility. However, its application is hindered by its limited mechanical properties. Graphene oxide (GO), known for its stable dispersion in water, can load GLM through π-π stacking interactions. When combined with HBC, GO enhances the mechanical properties and stability of the hydrogel. Therefore, an HBC-GO@GLM hydrogel was prepared. Rheological analysis revealed that the incorporation of GO increased the critical gelation temperature of the 5 wt% HBC hydrogel from 19.1°C to 27.2°C, considerably enhancing the mechanical properties of the hydrogel. Using encapsulation efficiency as an evaluation index, the optimal encapsulation efficiency of GO@GLM was determined to be 73.53% ± 0.45% with a drug loading capacity of 27.39 ± 0.17% using the Box-Behnken design model. Computer simulation technology validated the interaction between the materials and the drug release mechanism. Pharmacokinetic results showed that compared to the HBC@GLM group, the half-life (t1/2), mean residence time and the area under the curve for the HBC-GO@GLM group were approximately 3 times those of the HBC@GLM group. Subcutaneous implantation of the HBC-GO@GLM hydrogel for drug delivery considerably extended the drug's action time in the body, thereby maintaining blood sugar levels within a normal and stable range for an extended period.
Collapse
Affiliation(s)
- Li Li
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Fengting Xiang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Fan Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Anqi Chen
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Yu Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China; LiaoNing University Judicial Authentication Centre, Shenyang 110036, China.
| |
Collapse
|
11
|
Yu Z, Wang Y, Cai M, Chen J, Zou Q, Fan Q, Zhang L. Plasmonic nanoprobes on single AuNTs for evaluating and monitoring the dynamic release of 2D drug carriers. J Mater Chem B 2023; 11:11164-11172. [PMID: 37982293 DOI: 10.1039/d3tb02255b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The use of nanomaterials in drug delivery has gained significant attention in recent years. In this project, we developed a novel localized surface plasmon resonance (LSPR) nanoprobe on single gold triangular nanoplates (AuNTs) for dynamic monitoring of the drug carrier release process. Graphene, as the drug carrier, could be immobilized on the AuNT surface through the π-π* stacking effect. Upon loading or releasing the model drug (doxorubicin, DOX), subtle changes in the local microenvironment's dielectric constant around the AuNTs induced notable red-shifts or blue-shifts in the LSPR scattering spectra of single AuNTs. Furthermore, the spectral shifts led to a continuous enhancement in the red channel of the dark field microscopy (DFM) images during the drug release process in vitro, demonstrating that the drug release system is not susceptible to potential confounding factors. These release kinetics results under different conditions could be well-fitted using the Higuchi desorption model, further proving that this nanoprobe could be employed for evaluating the controlled release ability of 2D nanocarriers. These findings are expected to inspire new ideas and technologies in the preparation of more effective drug carriers, making a significant contribution to the development of drug delivery nanosystems and nanomedicine.
Collapse
Affiliation(s)
- Zejie Yu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Yi Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Miaomiao Cai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Jiachang Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Qirong Zou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Lei Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| |
Collapse
|
12
|
Shukla S, Jakowski J, Kadian S, Narayan RJ. Computational approaches to delivery of anticancer drugs with multidimensional nanomaterials. Comput Struct Biotechnol J 2023; 21:4149-4158. [PMID: 37675288 PMCID: PMC10477808 DOI: 10.1016/j.csbj.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023] Open
Abstract
Functionalized nanotubes (NTs), nanosheets, nanorods, and porous organometallic scaffolds are potential in vivo carriers for cancer therapeutics. Precise delivery through these agents depends on factors like hydrophobicity, payload capacity, bulk/surface adsorption, orientation of molecules inside the host matrix, bonding, and nonbonding interactions. Herein, we summarize advances in simulation techniques, which are extremely valuable in initial geometry optimization and evaluation of the loading and unloading behavior of encapsulated drug molecules. Computational methods broadly involve the use of quantum and classical mechanics for studying the behavior of molecular properties. Combining theoretical processes with experimental techniques, such as X-ray crystallography, NMR spectroscopy, and bioassays, can provide a more comprehensive understanding of the structure and function of biological molecules. This integrated approach has led to numerous breakthroughs in drug discovery, enzyme design, and the study of complex biological processes. This short review provides an overview of results and challenges described from erstwhile investigations on the molecular interaction of anticancer drugs with nanocarriers of different aspect ratios.
Collapse
Affiliation(s)
- Shubhangi Shukla
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695-7907, United States
| | - Jacek Jakowski
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Sachin Kadian
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695-7907, United States
| | - Roger J. Narayan
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695-7907, United States
| |
Collapse
|
13
|
Gatou MA, Vagena IA, Pippa N, Gazouli M, Pavlatou EA, Lagopati N. The Use of Crystalline Carbon-Based Nanomaterials (CBNs) in Various Biomedical Applications. CRYSTALS 2023; 13:1236. [DOI: 10.3390/cryst13081236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
This review study aims to present, in a condensed manner, the significance of the use of crystalline carbon-based nanomaterials in biomedical applications. Crystalline carbon-based nanomaterials, encompassing graphene, graphene oxide, reduced graphene oxide, carbon nanotubes, and graphene quantum dots, have emerged as promising materials for the development of medical devices in various biomedical applications. These materials possess inorganic semiconducting attributes combined with organic π-π stacking features, allowing them to efficiently interact with biomolecules and present enhanced light responses. By harnessing these unique properties, carbon-based nanomaterials offer promising opportunities for future advancements in biomedicine. Recent studies have focused on the development of these nanomaterials for targeted drug delivery, cancer treatment, and biosensors. The conjugation and modification of carbon-based nanomaterials have led to significant advancements in a plethora of therapies and have addressed limitations in preclinical biomedical applications. Furthermore, the wide-ranging therapeutic advantages of carbon nanotubes have been thoroughly examined in the context of biomedical applications.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
14
|
Zaboli A, Raissi H, Hashemzadeh H, Farzad F. Graphene Oxide Hosting a pH-Sensitive Prodrug: An In Silico Investigation of Graphene Oxide-Based Nanovehicle toward Cancer Therapy. ACS APPLIED BIO MATERIALS 2023. [PMID: 37327458 DOI: 10.1021/acsabm.3c00276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Prodrug and drug delivery systems are two effective strategies for improving the selectivity of chemotherapeutics. Herein, via molecular dynamics (MD) simulation and free energy calculation, the effectiveness of the graphene oxide (GO) decorated with the pH-sensitive prodrug (PD) molecules in cancer therapy is investigated. PEI-CA-DOX (prodrug) was loaded onto the GO surface, in which the hydrogen bonding and pi-pi stacking interactions play the main role in the stability of the GO-PD complex. Due to the strong interaction of GO and PD (about -800 kJ/mol), the GO-PD complex remains stable during the membrane penetration process. The obtained results confirm that GO is a suitable surface for hosting the prodrug and passing it through the membrane. Furthermore, the investigation of the release process shows that the PD can be released under acidic conditions. This phenomenon is due to the reduction of the contribution of electrostatic energy in the GO and PD interaction and the entry of water into the drug delivery system. Moreover, it is found that an external electrical field does not have much effect on drug release. Our results provide a deep understanding of the prodrug delivery systems, which helps the combination of nanocarriers and modified chemotherapy drugs in the future.
Collapse
Affiliation(s)
- Ameneh Zaboli
- Department of Chemistry, University of Birjand, Birjand 9717434765, Iran
| | - Heidar Raissi
- Department of Chemistry, University of Birjand, Birjand 9717434765, Iran
| | - Hassan Hashemzadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Farzaneh Farzad
- Department of Chemistry, University of Birjand, Birjand 9717434765, Iran
| |
Collapse
|
15
|
Rajput A, Sevalkar G, Pardeshi K, Pingale P. COMPUTATIONAL NANOSCIENCE AND TECHNOLOGY. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
16
|
Joshi P, Prolta A, Mehta S, Khan TS, Srivastava M, Khatri OP. Adsorptive removal of multiple organic dyes from wastewater using regenerative microporous carbon: Decisive role of surface-active sites, charge and size of dye molecules. CHEMOSPHERE 2022; 308:136433. [PMID: 36126740 DOI: 10.1016/j.chemosphere.2022.136433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Present work addresses the synthesis of microporous activated carbon (SDAC) by a facile thermochemical conversion of teak sawdust powder. The high surface area (1999 m2 g-1), excellent microporosity (average pore size: 2.62 nm), and turbostratic carbon structure with intertwined graphitic domains make SDAC a highly efficient adsorptive material for the removal of organic pollutants. The spectroscopic analyses (FTIR, Raman, and XPS) and adsorption locator calculations revealed multiple interactions between organic dyes and SDAC adsorbent, i.e., electrostatic, π-π, n-π interactions, and hydrogen linkages. The size, chemical functionalities, aromatic rings, electronegative and heteroatoms in dye molecules, along with the surface-active sites, microstructured and textural features of SDAC adsorbent collectively governed the interaction pathways and adsorption efficiency. The calculated adsorption energy using Monte Carlo-based simulation annealing method signified faster and higher adsorption of malachite green than methylene blue dye at surface-active sites (-COOH, CO, C-OH, and π-electron-rich domains) of SDAC adsorbent, corroborating the experimental results. The batch-mode adsorptive separation results showed remarkably high adsorption efficiency (>99%) for industrial wastewater to remove cationic and anionic dyes together. The SDAC displayed significantly high adsorption of methylene blue dye (625 mg.g-1) with excellent recyclability without measurable loss of adsorption efficiency even after ten cycles. The SDAC fixed-bed column showed a dye removal capacity of 594 mg.g-1 at 90% breakthrough in a continuous-mode process signifying its applicability for a real-time industrial run. The excellent conformity between batch mode and fixed bed continuous column adsorption data, along with higher removal capacity and remarkable recyclability, promise the use of SDAC adsorbent for industrial wastewater treatment to remove multiple organic pollutants.
Collapse
Affiliation(s)
- Pratiksha Joshi
- CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Abeena Prolta
- CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
| | - Sweta Mehta
- CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Tuhin Suvra Khan
- CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Manoj Srivastava
- CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Om P Khatri
- CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
17
|
Kanjwal MA, Ghaferi AA. Graphene Incorporated Electrospun Nanofiber for Electrochemical Sensing and Biomedical Applications: A Critical Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:8661. [PMID: 36433257 PMCID: PMC9697565 DOI: 10.3390/s22228661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The extraordinary material graphene arrived in the fields of engineering and science to instigate a material revolution in 2004. Graphene has promptly risen as the super star due to its outstanding properties. Graphene is an allotrope of carbon and is made up of sp2-bonded carbon atoms placed in a two-dimensional honeycomb lattice. Graphite consists of stacked layers of graphene. Due to the distinctive structural features as well as excellent physico-chemical and electrical conductivity, graphene allows remarkable improvement in the performance of electrospun nanofibers (NFs), which results in the enhancement of promising applications in NF-based sensor and biomedical technologies. Electrospinning is an easy, economical, and versatile technology depending on electrostatic repulsion between the surface charges to generate fibers from the extensive list of polymeric and ceramic materials with diameters down to a few nanometers. NFs have emerged as important and attractive platform with outstanding properties for biosensing and biomedical applications, because of their excellent functional features, that include high porosity, high surface area to volume ratio, high catalytic and charge transfer, much better electrical conductivity, controllable nanofiber mat configuration, biocompatibility, and bioresorbability. The inclusion of graphene nanomaterials (GNMs) into NFs is highly desirable. Pre-processing techniques and post-processing techniques to incorporate GNMs into electrospun polymer NFs are precisely discussed. The accomplishment and the utilization of NFs containing GNMs in the electrochemical biosensing pathway for the detection of a broad range biological analytes are discussed. Graphene oxide (GO) has great importance and potential in the biomedical field and can imitate the composition of the extracellular matrix. The oxygen-rich GO is hydrophilic in nature and easily disperses in water, and assists in cell growth, drug delivery, and antimicrobial properties of electrospun nanofiber matrices. NFs containing GO for tissue engineering, drug and gene delivery, wound healing applications, and medical equipment are discussed. NFs containing GO have importance in biomedical applications, which include engineered cardiac patches, instrument coatings, and triboelectric nanogenerators (TENGs) for motion sensing applications. This review deals with graphene-based nanomaterials (GNMs) such as GO incorporated electrospun polymeric NFs for biosensing and biomedical applications, that can bridge the gap between the laboratory facility and industry.
Collapse
|
18
|
Surface functionalization of graphene nanosheet with poly (L-histidine) and its application in drug delivery: covalent vs non-covalent approaches. Sci Rep 2022; 12:19046. [PMID: 36351935 PMCID: PMC9646737 DOI: 10.1038/s41598-022-21619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Nowadays, nanomaterials are increasingly being used as drug carriers in the treatment of different types of cancers. As a result, these applications make them attractive to researchers dealing with diagnosis and biomarkers discovery of the disease. In this study, the adsorption behavior of gemcitabine (GMC) on graphene nanosheet (GNS), in the presence and absence of Poly (L-histidine) (PLH) polymer is discussed using molecular dynamics (MD) simulation. The MD results revealed an increase in the efficiency and targeting of the drug when the polymer is covalently attached to the graphene substrate. In addition, the metadynamics simulation to investigate the effects of PLH on the adsorption capacity of the GNS, and explore the adsorption/desorption process of GMC on pristine and PLH- grafted GNS is performed. The metadynamics calculations showed that the amount of free energy of the drug in acidic conditions is higher (- 281.26 kJ/mol) than the free energy in neutral conditions (- 346.24 kJ/mol). Consequently, the PLH polymer may not only help drug adsorption but can also help in drug desorption in lower pH environments. Based on these findings, it can be said that covalent polymer bonding not only can help in the formation of a targeted drug delivery system but also can increase the adsorption capacity of the substrate.
Collapse
|
19
|
Guo X, Chen X, Zhao J, Zhou W, Wei J. Effect of the Addition of Graphene Nanoplatelets on the Thermal Conductivity of Rocket Kerosene: A Molecular Dynamics Study. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5511. [PMID: 36013646 PMCID: PMC9410242 DOI: 10.3390/ma15165511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Rocket kerosene plays an important role in the regenerative cooling process of rocket thrust chambers. Its thermal conductivity determines the cooling efficiency and the tendency to coke in rocket kerosene engines. In this paper, graphene nanoplatelets (GNPs) were introduced into rocket kerosene to improve its thermal conductivity. Molecular dynamics simulation was used to investigate the thermal conductivity of the composite system and its underlying thermal conductivity mechanism. Firstly, by studying the effect of the mass fraction of GNPs, it was found that, when the graphene mass fraction increases from 1.14% to 6.49%, the thermal conductivity of the composite system increases from 4.26% to 17.83%, which can be explained by the percolation theory. Secondly, the influence of the size of GNPs on the thermal conductivity of the composite system was studied. Basically, the thermal conductivity was found to increase by increasing the aspect ratio of GNPs, indicating that GNPs with a higher aspect ratio are more conducive to improving the thermal conductivity of rocket kerosene. By carefully analyzing the effect of the size of GNPs on thermal conductivity, it was concluded that the thermal conduction enhancement by adding GNPs is determined by the combined effect of the percolation theory and the Brownian motion. The results of the temperature effect study showed that the ratio of thermal conductivity to rocket kerosene increased from 1.16 to 1.26 and from 1.07 to 1.11 for the composite systems, with graphene sizes of 41.18 Å × 64.00 Å and 24.14 Å × 17.22 Å in the temperature range of 293 K to 343 K, respectively. It is further proved that the Brownian motion of GNPs has a non-negligible effect on the thermal conductivity of the composite system. This work provides microscopic insights into the thermal conduction mechanism of GNPs in nanofluids and will offer practical guidance for improving the thermal conductivity of rocket kerosene.
Collapse
Affiliation(s)
- Xiaodie Guo
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xuejiao Chen
- Beijing Institute of Aerospace Testing Technology, Beijing 100074, China
| | - Jinpeng Zhao
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wenjing Zhou
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jinjia Wei
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
20
|
Doxorubicin-Based Hybrid Compounds as Potential Anticancer Agents: A Review. Molecules 2022; 27:molecules27144478. [PMID: 35889350 PMCID: PMC9318127 DOI: 10.3390/molecules27144478] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
The scarcity of novel and effective therapeutics for the treatment of cancer is a pressing and alarming issue that needs to be prioritized. The number of cancer cases and deaths are increasing at a rapid rate worldwide. Doxorubicin, an anticancer agent, is currently used to treat several types of cancer. It disrupts myriad processes such as histone eviction, ceramide overproduction, DNA-adduct formation, reactive oxygen species generation, Ca2+, and iron hemostasis regulation. However, its use is limited by factors such as drug resistance, toxicity, and congestive heart failure reported in some patients. The combination of doxorubicin with other chemotherapeutic agents has been reported as an effective treatment option for cancer with few side effects. Thus, the hybridization of doxorubicin and other chemotherapeutic drugs is regarded as a promising approach that can lead to effective anticancer agents. This review gives an update on hybrid compounds containing the scaffolds of doxorubicin and its derivatives with potent chemotherapeutic effects.
Collapse
|
21
|
Chen SH, Bell DR, Luan B. Understanding interactions between biomolecules and two-dimensional nanomaterials using in silico microscopes. Adv Drug Deliv Rev 2022; 186:114336. [PMID: 35597306 PMCID: PMC9212071 DOI: 10.1016/j.addr.2022.114336] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 12/28/2022]
Abstract
Two-dimensional (2D) nanomaterials such as graphene are increasingly used in research and industry for various biomedical applications. Extensive experimental and theoretical studies have revealed that 2D nanomaterials are promising drug delivery vehicles, yet certain materials exhibit toxicity under biological conditions. So far, it is known that 2D nanomaterials possess strong adsorption propensities for biomolecules. To mitigate potential toxicity and retain favorable physical and chemical properties of 2D nanomaterials, it is necessary to explore the underlying mechanisms of interactions between biomolecules and nanomaterials for the subsequent design of biocompatible 2D nanomaterials for nanomedicine. The purpose of this review is to integrate experimental findings with theoretical observations and facilitate the study of 2D nanomaterial interaction with biomolecules at the molecular level. We discuss the current understanding and progress of 2D nanomaterial interaction with proteins, lipid membranes, and DNA based on molecular dynamics (MD) simulation. In this review, we focus on the 2D graphene nanosheet and briefly discuss other 2D nanomaterials. With the ever-growing computing power, we can image nanoscale processes using MD simulation that are otherwise not observable in experiment. We expect that molecular characterization of the complex behavior between 2D nanomaterials and biomolecules will help fulfill the goal of designing effective 2D nanomaterials as drug delivery platforms.
Collapse
Affiliation(s)
- Serena H Chen
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - David R Bell
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Binquan Luan
- IBM Thomas J. Watson Research, Yorktown Heights, New York 10598, USA.
| |
Collapse
|
22
|
Tran VA, Vo GV, Tan MA, Park JS, An SSA, Lee SW. Dual Stimuli-Responsive Multifunctional Silicon Nanocarriers for Specifically Targeting Mitochondria in Human Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14040858. [PMID: 35456692 PMCID: PMC9028052 DOI: 10.3390/pharmaceutics14040858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 01/16/2023] Open
Abstract
Specific targeting, selective stimuli-responsiveness, and controlled release of anticancer agents are requested for high therapeutic efficiency with a minimal adverse effect. Herein, we report the sophisticated synthesis and functionalization of fluorescent mesoporous silicon (FMPSi) nanoparticles decorated with graphene oxide (GO) nanosheets. GO-wrapped FMPSi (FMPSi@GO) was loaded with a cisplatin (Cis) anticancer agent, and Cis-loaded FMPSi@GO (FMPSi-Cis@GO) exhibited the dual stimuli (pH and NIR)-responsiveness of controlled drug release, i.e., the drug release rate was distinctly enhanced at acidic pH 5.5 than at neutral pH 7.0 and further enhanced under NIR irradiation at acidic pH condition. Notably, dequalinium-conjugated FMPSi-Cis@GO (FMPSi-Cis@GO@DQA) demonstrated an excellent specificity for mitochondrial targeting in cancer cells without noticeable toxicity to normal human cells. Our novel silicon nanocarriers demonstrated not only stimuli (pH and NIR)-responsive controlled drug release, but also selective accumulation in the mitochondria of cancer cells and destroying them.
Collapse
Affiliation(s)
- Vy Anh Tran
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Korea;
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Vietnam;
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Vietnam
| | - Mario A. Tan
- College of Science and Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines;
| | - Joon-Seo Park
- Department of Chemistry, Eastern University, 1300 Eagle Road, St. Davids, PA 19087, USA;
| | - Seong Soo A. An
- Department of Bionano Technology, Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Korea
- Correspondence: (S.S.A.A.); (S.-W.L.); Tel.: +82-31-750-8755 (S.S.A.A.); +82-31-750-5360 (S.-W.L.)
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Korea;
- Correspondence: (S.S.A.A.); (S.-W.L.); Tel.: +82-31-750-8755 (S.S.A.A.); +82-31-750-5360 (S.-W.L.)
| |
Collapse
|
23
|
Molaparast M, Malekinejad H, Rahimi M, Shafiei-Irannejad V. Biocompatible functionalized graphene nanosheet for delivery of doxorubicin to breast cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Kamath A, Laha A, Pandiyan S, Aswath S, Vatti AK, Dey P. Atomistic investigations of polymer-doxorubicin-CNT compatibility for targeted cancer treatment: A molecular dynamics study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Huang TH, Hsu SH, Chang SW. Molecular interaction mechanisms of glycol chitosan self-healing hydrogel as a drug delivery system for gemcitabine and doxorubicin. Comput Struct Biotechnol J 2022; 20:700-709. [PMID: 35140889 PMCID: PMC8803946 DOI: 10.1016/j.csbj.2022.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/15/2022] Open
Abstract
Glycol chitosan is a derivative of chitosan that has attracted attention in recent years due to its biocompatibility and biodegradability. Due to its unique biological characteristics, it has been widely used in hydrogels and biomaterials. In this study, we explored the loading efficiency of a self-healing hydrogel (GC-DP) comprising glycol chitosan (GC) and telechelic difunctional poly(ethylene glycol) (DF-PEG) for delivering the anticancer drugs gemcitabine and doxorubicin through full atomistic simulations. We also constructed full atomistic models of the two drug delivery systems at three drug concentrations of 10%, 40%, and 80% to understand how the drug concentration affects the loading efficiency and molecular structure of the GC-DP hydrogels. Through the analysis of the results, we show that the GC-DP hydrogel exhibits excellent loading efficiency for both gemcitabine and doxorubicin at all drug concentrations (10%, 40% and 80%). Our results reveal that the main mechanism of interaction between the GC-DP hydrogels and gemcitabine is van der Waals adsorption and that the dominant interactions between the GC-DP hydrogel and doxorubicin are hydrogen bonds for the D10 model and van der Waals adsorption for the D40 and D80 models. Our results provide molecular insights into how drug molecules are carried by hydrogel materials and indicate that the GC-DP hydrogel is a promising candidate for carrying both gemcitabine and doxorubicin, and thus serving as a novel drug carrier for cancer treatment.
Collapse
|
26
|
Maheshwari R, Gadeval A, Raval N, Kalia K, Tekade RK. Laser activatable nanographene colloids for chemo-photothermal combined gene therapy of triple-negative breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112605. [PMID: 35525767 DOI: 10.1016/j.msec.2021.112605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Abstract
This investigation reports the green approach for developing laser activatable nanoscale-graphene colloids (nGC-CO-FA) for chemo-photothermal combined gene therapy of triple-negative breast cancer (TNBC). The nano colloid was found to be nanometric as characterized by SEM, AFM, and zeta sizer (68.2 ± 2.1 nm; 13.8 ± 1.2 mV). The doxorubicin (Dox) loaded employing hydrophobic interaction/π-π stacking showed >80% entrapment efficiency with a sustained pH-dependent drug release profile. It can efficiently incorporate siRNA and Dox and successfully co-localize them inside TNBC cells to obtain significant anticancer activity as evaluated using CCK-8 assay, apoptosis assay, cell cycle analysis, cellular uptake, fluorescence assay, endosomal escape study, DNA content analysis, and gene silencing efficacy studies. nGC-CO-FA/Dox/siRNA released the Dox in temperature- and a pH-responsive manner following NIR-808 laser irradiation. The synergistic photo-chemo-gene therapy using near infrared-808 nm laser (NIR-808) irradiation was found to be more effective as compared to without NIR-808 laser-treated counterparts (∆T: 37 ± 1.1 °C → to 49.2 ± 3.1 °C; 10 min; 0.5 W/cm2), suggesting the pivotal role of photothermal combined gene-therapy in the treatment of TNBC.
Collapse
Affiliation(s)
- Rahul Maheshwari
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Anuradha Gadeval
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Nidhi Raval
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
27
|
Lai WF, Wong WT. Use of graphene-based materials as carriers of bioactive agents. Asian J Pharm Sci 2021; 16:577-588. [PMID: 34849163 PMCID: PMC8609387 DOI: 10.1016/j.ajps.2020.11.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/01/2020] [Accepted: 11/10/2020] [Indexed: 11/12/2022] Open
Abstract
Graphene possesses a large specific surface area, a high Young's modulus, high fracture strength, high electrical conductivity, and excellent optical performance. It has been widely studied for biomedical use since its first appearance in the literature. This article offers an overview of the latest advances in the design of graphene-based materials for delivery of bioactive agents. To enhance the translation of these carriers into practical use, the toxicity involved is needed to be examined in future research in more detail. In addition, guidelines for standardizing experimental conditions during the evaluation of the performance of graphene-based materials are required to be established so that candidates showing higher practical potential can be more effectively identified for further development. This can streamline the optimization and use of graphene-based materials in delivery applications.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China.,Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, Special Administrative Region, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, Special Administrative Region, China
| |
Collapse
|
28
|
Salahshoori I, Ramezani Z, Cacciotti I, Yazdanbakhsh A, Hossain MK, Hassanzadeganroudsari M. Cisplatin uptake and release assessment from hydrogel synthesized in acidic and neutral medium: An experimental and molecular dynamics simulation study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Razavilar N, Hanna G. Molecular‐Level Insights into the Diffusion of a Hydrophobic Drug in a Disordered Block Copolymer Micelle by Molecular Dynamics Simulation. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Negin Razavilar
- Department of Chemistry University of Alberta 11227 Saskatchewan Drive Edmonton Alberta T6G 2G2 Canada
| | - Gabriel Hanna
- Department of Chemistry University of Alberta 11227 Saskatchewan Drive Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
30
|
Ji Y, Zhu R, Shen Y, Tan Q, Chen J. Comparison of loading and unloading of different small drugs on graphene and its oxide. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Surface functionalization of boron nitride nanosheet with folic acid: Toward an enhancement in Doxorubicin anticancer drug loading performance. J Mol Graph Model 2021; 109:108041. [PMID: 34653765 DOI: 10.1016/j.jmgm.2021.108041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/18/2021] [Accepted: 09/25/2021] [Indexed: 12/29/2022]
Abstract
Loading of the Doxorubicin (DOX) as an anticancer drug molecule on boron nitride (BN) nanosheets with different sizes, in the presence and absence of Folic Acid (FA) functional groups, are investigated using molecular dynamic simulations. The obtained results from these investigations revealed that the drug molecules are spontaneously adsorbed the carriers and form stable complexes. It is also shown that an increase the nanosheet leads to an enhancement in its capacity to adsorb the drugs. Furthermore, the conjugation of BN with the FA group not only improves the BN efficiency for the drug adsorption but also helps the drug-carrier complex to target the cancerous cells. Evaluation of interaction energies reveals that L-J interaction plays an essential role in the adsorption of the drug molecules on the BN. The radial distribution function (RDF) shows that the highest drug position probability is around 0.6 nm away from the BN surface. Atomic RDF analysis is in line with the interaction energy analysis and proved that π-π stacking contributes the most to this process. Hydrogen bond (HB) analysis also shows that, although limited, the columbic interaction can be helpful in the adsorption process. Moreover, the free energy (FE) surface is explored for a system containing a BN nanosheet, an FA group, and a DOX molecule through metadynamics simulations. The obtained results reveal that the lowest FE point located in coordinations d1 = 0.70 nm and d2 = 0.84 nm, and energetically reached -280.42 kJ/mol. It can be concluded from the FE calculations that while the FA is stuck on the substrate, DOX faces difficulty in the way it be adsorbed. In return, it will be hard for the molecule to be released from the BN surface through desorption processes in neutral pH because it faces an energy barrier with a height of ∼100 kJ/mol at 1.6 nm.
Collapse
|
32
|
Magne TM, de Oliveira Vieira T, Alencar LMR, Junior FFM, Gemini-Piperni S, Carneiro SV, Fechine LMUD, Freire RM, Golokhvast K, Metrangolo P, Fechine PBA, Santos-Oliveira R. Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2021; 12:693-727. [PMID: 34512930 PMCID: PMC8419677 DOI: 10.1007/s40097-021-00444-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 05/05/2023]
Abstract
Over the past few years, there has been a growing potential use of graphene and its derivatives in several biomedical areas, such as drug delivery systems, biosensors, and imaging systems, especially for having excellent optical, electronic, thermal, and mechanical properties. Therefore, nanomaterials in the graphene family have shown promising results in several areas of science. The different physicochemical properties of graphene and its derivatives guide its biocompatibility and toxicity. Hence, further studies to explain the interactions of these nanomaterials with biological systems are fundamental. This review has shown the applicability of the graphene family in several biomedical modalities, with particular attention for cancer therapy and diagnosis, as a potent theranostic. This ability is derivative from the considerable number of forms that the graphene family can assume. The graphene-based materials biodistribution profile, clearance, toxicity, and cytotoxicity, interacting with biological systems, are discussed here, focusing on its synthesis methodology, physicochemical properties, and production quality. Despite the growing increase in the bioavailability and toxicity studies of graphene and its derivatives, there is still much to be unveiled to develop safe and effective formulations. Graphic abstract
Collapse
Affiliation(s)
- Tais Monteiro Magne
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906 Brazil
| | | | - Luciana Magalhães Rebelo Alencar
- Biophysics and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luis, Maranhão 65080805 Brazil
| | - Francisco Franciné Maia Junior
- Department of Natural Sciences, Mathematics and Statistics, Federal Rural University of the Semi-Arid, Mossoró, RN 59625-900 Brazil
| | - Sara Gemini-Piperni
- Laboratory of Advanced Science, Universidade Unigranrio, Duque de Caxias, RJ 25071-202 Brazil
| | - Samuel V. Carneiro
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Lillian M. U. D. Fechine
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Rafael M. Freire
- Institute of Applied Chemical Sciences, Universidad Autónoma de Chile, 8910060 Santiago, Chile
| | - Kirill Golokhvast
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Vladivostok, Russia
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, Russia
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials, Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta” Politecnico Di Milano, Via L. Mancinelli 7, 20131 Milano, Italy
| | - Pierre B. A. Fechine
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906 Brazil
- Laboratory of Nanoradiopharmacy and Synthesis of Radiopharmaceuticals, Zona Oeste State University, Av Manuel Caldeira de Alvarenga, 200, Campo Grande, Rio de Janeiro, 2100000 Brazil
| |
Collapse
|
33
|
|
34
|
Sun J, Liu X, Lyu C, Hu Y, Zou D, He YS, Lu J. Synergistic antibacterial effect of graphene-coated titanium loaded with levofloxacin. Colloids Surf B Biointerfaces 2021; 208:112090. [PMID: 34507071 DOI: 10.1016/j.colsurfb.2021.112090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
In this study, graphene coating was introduced to the modified titanium surface to prevent bacterial infection in oral implants. We modified the titanium surface through SLA and silanization treatment and then coated the surface with graphene. The structure and surface properties were characterized by XPS and SEM. Graphene-coated titanium sheet was incubated with bacteria to test the antibacterial property, which was enhanced by adsorption and release of levofloxacin. We further implanted the graphene-coated titanium sheet loaded with levofloxacin into rabbits to test the antibacterial properties in vivo. The graphene coating exhibited inherent antibacterial properties through membrane stress and the generation of reactive oxygen species (ROS). When loaded with levofloxacin, the graphene coating exhibited a synergistic antibacterial effect and effectively prevented bacterial infections following the implantation. The graphene coating is promising to improve the antibacterial functions of oral implant surfaces to prevent bacterial infection.
Collapse
Affiliation(s)
- Jiayue Sun
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xuling Liu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chengqi Lyu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yinghan Hu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Derong Zou
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yu-Shi He
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jiayu Lu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
35
|
Geetha Devi M, Dutta S, Al Hinai AT, Feroz S. Nano engineered biodegradable capsules for the encapsulation and kinetic release studies of ciprofloxacin hydrochloride. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Exploring pH dependent delivery of 5-fluorouracil from functionalized multi-walled carbon nanotubes. Colloids Surf B Biointerfaces 2021; 205:111823. [PMID: 34098368 DOI: 10.1016/j.colsurfb.2021.111823] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022]
Abstract
Multi-walled carbon nanotubes (MWCNTs) can be applied for pH-sensitive delivery of anticancer drugs. Due to the importance of 5-fluorouracil (5-FU) in different tumor therapy regimens, it has been widely used in different pH dependent drug delivery systems. To investigate the pH effects on loading (and release) of 5-FU on (and from) the functionalized MWCNTs and propose the optimum condition for drug delivery, both macroscopic and microscopic studies were carried out using chromatography and molecular dynamic simulation at different conditions. For both levels of studies, different analytical approaches were performed to assess the validity of the methods. The experimental results revealed that 5-FU has more binding affinity to the surface of the nanocarrier at physiological pH (pH = 7.4) and showed more release at acidic conditions (pH = 5.0). Meanwhile it has been observed that basic pH (pH = 9.0) can lead to a dramatic decrease effect on loading of the drug. The results of this study can be used to suggest the optimum pH levels for nanocarbon based formulations of 5-FU in cancer therapy.
Collapse
|
37
|
Shirazi-Fard S, Mohammadpour F, Zolghadr AR, Klein A. Encapsulation and Release of Doxorubicin from TiO 2 Nanotubes: Experiment, Density Functional Theory Calculations, and Molecular Dynamics Simulation. J Phys Chem B 2021; 125:5549-5558. [PMID: 34014667 DOI: 10.1021/acs.jpcb.1c02648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Titanium dioxide (TiO2) nanotubes are attractive materials for drug-delivery systems because of their biocompatibility, chemical stability, and simple preparation. In this study, we loaded TiO2 nanotubes with anticancer drug doxorubicin (DOX) experimentally and in all-atom molecular dynamics (MD) simulations. The release of doxorubicin from the nanotubes was studied by high-performance liquid chromatography (HPLC) and confocal Raman spectroscopy, and drug-release profiles were evaluated under various conditions. The polyethylene glycol (PEG) coating and capping of the nanotubes led to a marked increase in the water contact angles from about 16 to 33° in keeping with reduced wettability. The capping retarded the release rate without decreasing the overall release amount. The MD simulations further show that the DOX molecule diffusion coefficients (Di) are in the order of 10-10 m2/s. The DOX molecules show a plethora of short- and long-range H-bonding interactions with TiO2 nanotube walls and water. Calculated radial distribution functions (RDFs) and combined radial/angular distribution functions (CDFs) allowed gauging the strength of these hydrogen bonds. The strength does not fully correlate with the pKa values of DOX atoms which we assign to the confinement of DOX and water in the tubes. The lifetimes of hydrogen bonds between the DOX atoms and water molecules are shorter than that of the DOX...TiO2 interactions, and DOX...DOX aggregation does not play an important role. These results suggest TiO2 nanotubes as promising candidates for controllable drug-delivery systems for DOX or similar antiproliferative molecules.
Collapse
Affiliation(s)
| | - Fatemeh Mohammadpour
- Department of Physics, Farhangian University, Tarbiat Moallem, Ave Niayesh Junction Farahzadi Blvd, Tehran 1939614464, Iran
| | | | - Axel Klein
- Department of Chemistry, Shiraz University, Shiraz 71946-84795, Iran.,Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Köln, Germany
| |
Collapse
|
38
|
Borandeh S, Hosseinbeigi H, Abolmaali SS, Monajati M, Tamaddon AM. Steric stabilization of β-cyclodextrin functionalized graphene oxide by host-guest chemistry: A versatile supramolecule for dual-stimuli responsive cellular delivery of doxorubicin. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Arkaban H, Karimi Shervedani R, Yaghoobi F, Kefayat A. A nanocomposite theranostic system, consisting of AuNPs@MnCO3/Mn3O4 coated with PAA and integrated with folic acid, doxorubicin, and propidium iodide: Synthesis, characterization and examination for capturing of cancer cells. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Bina A, Raissi H, Hashemzadeh H, Farzad F. Conjugation of a smart polymer to doxorubicin through a pH-responsive bond for targeted drug delivery and improving drug loading on graphene oxide. RSC Adv 2021; 11:18809-18817. [PMID: 35478640 PMCID: PMC9033485 DOI: 10.1039/d1ra02361f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Polymeric nanoparticles have emerged as efficient carriers for anticancer drug delivery because they can improve the solubility of hydrophobic drugs and also can increase the bio-distribution of drugs throughout the bloodstream. In this work, a computational study is performed on a set of new pH-sensitive polymer-drug compounds based on an intelligent polymer called poly(β-malic acid) (PMLA). The molecular dynamics (MD) simulation is used to explore the adsorption and dynamic properties of PMLA-doxorubicin (PMLA-DOX) interaction with the graphene oxide (GOX) surface in acidic and neutral environments. The PMLA is bonded to DOX through an amide bond (PMLA-ami-DOX) and a hydrazone bond (PMLA-hz-DOX) and their adsorption behavior is compared with free DOX. Our results confirm that the polymer-drug prodrug shows unique properties. Analysis of the adsorption behavior reveals that this process is spontaneous and the most stable complex with a binding energy of -1210.262 kJ mol-1 is the GOX/PMLA-hz-DOX complex at normal pH. On the other hand, this system has a great sensitivity to pH so that in an acidic environment, its interaction with GOX became weaker while such behavior is not observed for the PMLA-ami-DOX complex. The results obtained from this study provide accurate information about the interaction of the polymer-drug compounds and nanocarriers at the atomic level, which can be useful in the design of smart drug delivery systems.
Collapse
Affiliation(s)
- Ali Bina
- Department of Chemistry, University of Birjand Birjand Iran +98 5632502064
| | - Heidar Raissi
- Department of Chemistry, University of Birjand Birjand Iran +98 5632502064
| | - Hassan Hashemzadeh
- Department of Chemistry, University of Birjand Birjand Iran +98 5632502064
| | - Farzaneh Farzad
- Department of Chemistry, University of Birjand Birjand Iran +98 5632502064
| |
Collapse
|
41
|
Pereira AT, Henriques PC, Schneider KH, Pires AL, Pereira AM, Martins MCL, Magalhães FD, Bergmeister H, Gonçalves IC. Graphene-based materials: the key for the successful application of pHEMA as a blood-contacting device. Biomater Sci 2021; 9:3362-3377. [PMID: 33949373 DOI: 10.1039/d0bm01699c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thrombosis and infection are the leading causes of blood-contacting device (BCD) failure, mainly due to the poor performance of existing biomaterials. Poly(2-hydroxyethyl methacrylate) (pHEMA) has excellent hemocompatibility but the weak mechanical properties impair its use as a bulk material for BCD. As such, pHEMA has been explored as a coating, despite the instability and difficulty of attachment to the underlying polymer compromise its success. This work describes the hydrogel composites made of pHEMA and graphene-based materials (GBM) that meet the biological and mechanical requirements for a stand-alone BCD. Five GBM differing in thickness, oxidation degree, and lateral size were incorporated in pHEMA, revealing that only oxidized-GBM can reinforce pHEMA. pHEMA/oxidized-GBM composites are cytocompatible and prevent the adhesion of endothelial cells, blood platelets, and bacteria (S. aureus), thus maintaining pHEMA's anti-adhesive properties. As a proof of concept, the thrombogenicity of the tubular prototypes of the best formulation (pHEMA/Graphene oxide (GO)) was evaluated in vivo, using a porcine arteriovenous-shunt model. pHEMA/GO conduits withstand the blood pressure and exhibit negligible adhesion of blood components, revealing better hemocompatibility than ePTFE, a commercial material for vascular access. Our findings reveal pHEMA/GO, a synthetic and off-the-shelf hydrogel, as a preeminent material for the design of blood-contacting devices that prevent thrombosis and bacterial adhesion.
Collapse
Affiliation(s)
- Andreia T Pereira
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal. and i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Portugal and GABBA - Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Patrícia C Henriques
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal. and i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Portugal and FEUP - Faculty of Engineering, University of Porto, Porto, Portugal and LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Portugal
| | - Karl H Schneider
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria and Ludwig Boltzmann Institute for Cardiovascular Research, Austria
| | - Ana L Pires
- IFIMUP - Instituto de Física de Materiais Avançados, Nanotecnologias e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal
| | - André M Pereira
- IFIMUP - Instituto de Física de Materiais Avançados, Nanotecnologias e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal
| | - Maria Cristina L Martins
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal. and i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Portugal and ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Fernão D Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Portugal
| | - Helga Bergmeister
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria and Ludwig Boltzmann Institute for Cardiovascular Research, Austria
| | - Inês C Gonçalves
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal. and i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Portugal
| |
Collapse
|
42
|
Zheng S, Xiong J, Wang L, Zhai D, Xu Y, Lin F. e-Graphene: A Computational Platform for the Prediction of Graphene-Based Drug Delivery System by Quantum Genetic Algorithm and Cascade Protocol. Front Chem 2021; 9:664355. [PMID: 34026728 PMCID: PMC8138207 DOI: 10.3389/fchem.2021.664355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
Graphene, as a novel category of carbon nanomaterials, has attracted a great attention in the field of drug delivery. Due to its large dual surface area, graphene can efficiently load drug molecules with high capacity via non-covalent interaction without chemical modification of the drugs. Hence, it ignites prevalent interests in developing a new graphene/graphene oxide (GO)-based drug delivery system (GDDS). However, current design of GDDS primarily depends on the prior experimental experience with the trial-and-error method. Thus, it is more appealing to theoretically predict possible GDDS candidates before experiments. Toward this end, we propose to fuse quantum genetic algorithm (QGA) and quantum mechanics (QM)/semi-empirical quantum mechanics (SQM)/force field (FF) to globally search the optimal binding interaction between the graphene/GO and drug in a given GDDS and develop a free computational platform “e-Graphene” to automatically predict/screen potential GDDS candidates. To make this platform more pragmatic for the rapid yet relatively accurate prediction, we further propose a cascade protocol via firstly conducting a fast QGA/FF calculation with fine QGA parameters and automatically passing the best chromosomes from QGA/FF to initialize a higher level QGA/SQM or QGA/QM calculation with coarse QGA parameters (e.g., small populations and short evolution generations). By harnessing this platform and protocol, systematic tests on a typical GDDS containing an anticancer drug SN38 illustrate that high fabrication rates of hydroxyl, epoxy, and carboxyl groups on a pristine graphene model will compromise the stability of GDDS, implying that an appropriate functionalization rate is crucial for the delicate balance between the stability and solubility/biocompatibility of GDDS. Moreover, automatic GDDS screen in the DrugBank database is performed and elicits four potential GDDS candidates with enhanced stability than the commonly tested GDDS containing SN38 from the computational point of view. We hope that this work can provide a useful program and protocol for experimental scientists to rationally design/screen promising GDDS candidates prior to experimental tests.
Collapse
Affiliation(s)
- Suqing Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, China
| | - Jun Xiong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dong Zhai
- Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, China
| | - Yong Xu
- Center of Chemical Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Fu Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
43
|
Grant JJ, Pillai SC, Hehir S, McAfee M, Breen A. Biomedical Applications of Electrospun Graphene Oxide. ACS Biomater Sci Eng 2021; 7:1278-1301. [PMID: 33729744 DOI: 10.1021/acsbiomaterials.0c01663] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Graphene oxide (GO) has broad potential in the biomedical sector. The oxygen-abundant nature of GO means the material is hydrophilic and readily dispersible in water. GO has also been known to improve cell proliferation, drug loading, and antimicrobial properties of composites. Electrospun composites likewise have great potential for biomedical applications because they are generally biocompatible and bioresorbable, possess low immune rejection risk, and can mimic the structure of the extracellular matrix. In the current review, GO-containing electrospun composites for tissue engineering applications are described in detail. In addition, electrospun GO-containing materials for their use in drug and gene delivery, wound healing, and biomaterials/medical devices have been examined. Good biocompatibility and anionic-exchange properties of GO make it an ideal candidate for drug and gene delivery systems. Drug/gene delivery applications for electrospun GO composites are described with a number of examples. Various systems using electrospun GO-containing therapeutics have been compared for their potential uses in cancer therapy. Micro- to nanosized electrospun fibers for wound healing applications and antimicrobial applications are explained in detail. Applications of various GO-containing electrospun composite materials for medical device applications are listed. It is concluded that the electrospun GO materials will find a broad range of biomedical applications such as cardiac patches, medical device coatings, sensors, and triboelectric nanogenerators for motion sensing and biosensing.
Collapse
Affiliation(s)
- Jamie J Grant
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| | - Suresh C Pillai
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| | - Sarah Hehir
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| | - Marion McAfee
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| | - Ailish Breen
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| |
Collapse
|
44
|
Wei X, Li P, Zhou H, Hu X, Liu D, Wu J, Wang Y. Engineering of gemcitabine coated nano-graphene oxide sheets for efficient near-infrared radiation mediated in vivo lung cancer photothermal therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112125. [PMID: 33601257 DOI: 10.1016/j.jphotobiol.2021.112125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
Abstract
Gemcitabine (GEM) and its derivatives of deoxycytosine is a promising anticancer candidate which is effective for the treatment of various cancers including lung cancer via cascade targetting Erk/Mek/Raf/Ras pathway and blocking the proliferation of the tumor cells. In this present work, we have described reduced graphene oxide (rGO) in the presence of anticancer utilizing ascorbic acid as reducing agents for lung cancer treatment. GEM reduced graphene oxide (termed as GEM-rGO) has resulted in a smooth and transparent morphological surface, which was confirmed by various spectroscopical investigations. The anticancer drug-loaded rGO has displayed remarkable cytotoxic activities against a panel of lung cancer cell lines when compared to the untreated lung cancer cells. Further, we examined the morphological observation of the cancer cell death was monitored through the fluorescence microscopic examinations. In addition, the cell deaths of the lung cancer cells were observed by the flow cytometry analyses. In addition, the non-toxic nature of potent GEM-rGO and GEM-rGO + NIR was confirmed by in vivo systemic toxicity analysis. Besides, the higher safety feature of the GEM-rGO and GEM-rGO + NIR was evidenced by histological analyses of the mice organs. The subcutaneous injection of GEM-rGO and GEM-rGO + NIR into mice bearing A549 xenografts more effectively inhibited the tumor than the free GEM. Based on the outcomes, we can summarise that the GEM reduced graphene oxide (GEM-rGO) can be used as a promising drug candidate for the treatment of lung cancer in the future.
Collapse
Affiliation(s)
- Xiaoli Wei
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Peixian Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Hongfeng Zhou
- Department of Medical Oncology, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin 150088, Heilongjiang, China
| | - Xiaowei Hu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Dan Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Jin Wu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Yi Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
45
|
Taheri Z, Nakhaei Pour A. Studying of the adsorption and diffusion behaviors of methane on graphene oxide by molecular dynamics simulation. J Mol Model 2021; 27:59. [PMID: 33517497 DOI: 10.1007/s00894-021-04692-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 01/24/2021] [Indexed: 02/01/2023]
Abstract
In this work, the sorption and diffusion behaviors of the methane on graphene oxide (GO) were investigated by molecular dynamics (MD) simulation. The sorption isotherms at different temperatures were calculated using the Grand Canonical Monte Carlo (GCMC) method and using the Langmuir adsorption model to fit those isotherms. To investigate the effect of the number of graphene oxide layers on the adsorption process, methane adsorption isotherms were calculated for graphene oxide with 1, 2, and 3 layers. The adsorption parameters including Langmuir adsorption constant, the entropy and the enthalpy of adsorption, collision flux, the rate of adsorption, and the rate of desorption were investigated in this work. The highest amount of adsorption calculated is related to graphene oxide three layers. The methane diffusion coefficients and diffusion activation energies were estimated at different temperatures by MD simulation coupled with Einstein relationship. The maximum diffusion coefficient calculated of methane at 348 K was 49 × 10-10 m2/s.
Collapse
Affiliation(s)
- Zahra Taheri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Nakhaei Pour
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
46
|
Mathematical modelling of drug delivery from pH-responsive nanocontainers. Comput Biol Med 2021; 131:104238. [PMID: 33618104 DOI: 10.1016/j.compbiomed.2021.104238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 11/23/2022]
Abstract
Targeted drug delivery systems represent a promising strategy to treat localised disease with minimum impact on the surrounding tissue. In particular, polymeric nanocontainers have attracted major interest because of their structural and morphological advantages and the variety of polymers that can be used, allowing the synthesis of materials capable of responding to the biochemical alterations of the environment. While experimental methodologies can provide much insight, the generation of experimental data across a wide parameter space is usually prohibitively time consuming and/or expensive. To better understand the influence of varying design parameters on the release profile and drug kinetics involved, appropriately-designed mathematical models are of great benefit. Here, we developed a continuum-scale mathematical model to describe drug transport within, and release from, a hollow nanocontainer consisting of a core and a pH-responsive polymeric shell. Our two-layer mathematical model accounts for drug dissolution and diffusion and includes a mechanism to account for trapping of drug molecules within the shell. We conduct a sensitivity analysis to assess the effect of varying the model parameters on the overall behaviour of the system. To demonstrate the usefulness of our model, we focus on the particular case of cancer treatment and calibrate the model against release profile data for two anti-cancer therapeutical agents. We show that the model is capable of capturing the experimentally observed pH-dependent release.
Collapse
|
47
|
Huynh VT, Nguyen D, Zhu L, Pham NTH, Priyananda P, Hawkett BS. Ultra-thin patchy polymer-coated graphene oxide as a novel anticancer drug carrier. Polym Chem 2021. [DOI: 10.1039/d0py00769b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PISA generated polymer pimples on single graphene oxide sheets maintain colloidal stability for the adsorption and release of DOX.
Collapse
Affiliation(s)
- Vien T. Huynh
- Key Centre for Polymers and Colloids
- School of Chemistry F11
- The University of Sydney
- Australia
- University of Sydney Nano Institute
| | - Duc Nguyen
- Key Centre for Polymers and Colloids
- School of Chemistry F11
- The University of Sydney
- Australia
- University of Sydney Nano Institute
| | - Liwen Zhu
- Key Centre for Polymers and Colloids
- School of Chemistry F11
- The University of Sydney
- Australia
- University of Sydney Nano Institute
| | - Nguyen T. H. Pham
- Key Centre for Polymers and Colloids
- School of Chemistry F11
- The University of Sydney
- Australia
- University of Sydney Nano Institute
| | - Pramith Priyananda
- Key Centre for Polymers and Colloids
- School of Chemistry F11
- The University of Sydney
- Australia
| | - Brian S. Hawkett
- Key Centre for Polymers and Colloids
- School of Chemistry F11
- The University of Sydney
- Australia
- University of Sydney Nano Institute
| |
Collapse
|
48
|
Dong K, Zhao ZZ, Kang J, Lin LR, Chen WT, Liu JX, Wu XL, Lu TL. Cinnamaldehyde and Doxorubicin Co-Loaded Graphene Oxide Wrapped Mesoporous Silica Nanoparticles for Enhanced MCF-7 Cell Apoptosis. Int J Nanomedicine 2020; 15:10285-10304. [PMID: 33376322 PMCID: PMC7756203 DOI: 10.2147/ijn.s283981] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Background Combined chemotherapy is often affected by the different physicochemical properties of chemotherapeutic drugs, which should be improved by the reasonable design of co-loaded preparations. Purpose A kind of simple but practical graphene oxide (GO) wrapped mesoporous silica nanoparticles (MSN) modified with hyaluronic acid (MSN@GO-HA) were developed for the co-delivery of cinnamaldehyde (CA) and doxorubicin (DOX), in order to enhance their combined treatment on tumor cells and reduce their application defects. Methods The MSNCA@GODOX-HA was constructed by MSNCA (loading CA via physical diffusion) and GODOX-HA (modified with HA and loading DOX via π–π stacking) through the electrostatic adsorption, followed by the physicochemical characterization, serum stability and in vitro release study. Cytotoxicity on different cells was detected, followed by the tumor cell uptake tests. The intracellular reactive oxygen species (ROS) changes, mitochondrial functions and activities of caspase-3/-9 in MCF-7 cells were also evaluated, respectively. Results The MSNCA@GODOX-HA nanoparticles kept stable in FBS solution and achieved pH-responsive release behavior, which was beneficial to increase the accumulation of CA and DOX in tumor cells to enhance the treatment. MSNCA@GODOX-HA exerted higher cytotoxicity to MCF-7 human breast cancer cells than H9c2 cardiac myocyte cells, which were not only attributed to the active targeting to tumor cells by HA, but also related with the activation of intrinsic apoptotic pathway in MCF-7 cells induced by CA, which was mediated by the specific ROS signal amplification and the interference with mitochondrial function. Moreover, the efficacy of DOX was also enhanced by the above process. Conclusion The establishment of the MSNCA@GODOX-HA nanoparticles played a role in promoting strengths and restricting shortcomings of CA and DOX, thereby exerting their function and achieving efficient treatment against cancer.
Collapse
Affiliation(s)
- Kai Dong
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Zhuang-Zhuang Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Jian Kang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Lei-Ruo Lin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Wen-Ting Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Jin-Xi Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Xiang-Long Wu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Ting-Li Lu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
49
|
Asiaee A, Nouranian S, Jiang S, Lopez AM, Fiske MR, Edmunson JE, Fox ET, Kaukler WF, Alkhateb H. On the potential of ionic liquids to recover metals from the Martian regolith: Computational insights into interfacial interactions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Men X, Chen H, Sun C, Liu Y, Wang R, Zhang X, Wu C, Yuan Z. Thermosensitive Polymer Dot Nanocomposites for Trimodal Computed Tomography/Photoacoustic/Fluorescence Imaging-Guided Synergistic Chemo-Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51174-51184. [PMID: 33141578 DOI: 10.1021/acsami.0c13252] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Precision delivery of theranostic agents to the tumor site is essential to improve their diagnostic and therapeutic efficacy and concurrently minimize adverse effects during treatment. In this study, a novel concept of near-infrared (NIR) light activation of conjugated polymer dots (Pdots) at thermosensitive hydrogel nanostructures is introduced for multimodal imaging-guided synergistic chemo-photothermal therapy. Interestingly, owing to the attractive photothermal conversion efficiency of Pdots, the Pdots@hydrogel as theranostic agents is able to undergo a controllable softening or melting state under the irradiation of NIR laser, resulting in light-triggered drug release in a controlled way and concurrently hydrogel degradation. Besides, the novel Pdots@hydrogel nanoplatform can serve as the theranostic agent for enhanced trimodal photoacoustic (PA)/computed tomography (CT)/fluorescence (FL) imaging-guided synergistic chemo-photothermal therapy of tumors. More importantly, the constructed intelligent nanocomposite Pdots@hydrogel exhibits excellent biodegradability, strong NIR absorption, bright PA/CT/FL signals, and superior tumor ablation effect. Therefore, the concept of a light-controlled multifunctional Pdots@hydrogel that integrates multiple diagnostic/therapeutic modalities into one nanoplatform can potentially be applied as a smart nanotheranostic agent to various perspectives of personalized nanomedicine.
Collapse
Affiliation(s)
- Xiaoju Men
- Faculty of Health Sciences, Center for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR 999708, China
| | - Haobin Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chen Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999708, China
| | - Yubin Liu
- Faculty of Health Sciences, Center for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR 999708, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999708, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, Center for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR 999708, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhen Yuan
- Faculty of Health Sciences, Center for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR 999708, China
| |
Collapse
|