1
|
Zhang Z, Chen K, Ameduri B, Chen M. Fluoropolymer Nanoparticles Synthesized via Reversible-Deactivation Radical Polymerizations and Their Applications. Chem Rev 2023; 123:12431-12470. [PMID: 37906708 DOI: 10.1021/acs.chemrev.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Fluorinated polymeric nanoparticles (FPNPs) combine unique properties of fluorocarbon and polymeric nanoparticles, which has stimulated massive interest for decades. However, fluoropolymers are not readily available from nature, resulting in synthetic developments to obtain FPNPs via free radical polymerizations. Recently, while increasing cutting-edge directions demand tailored FPNPs, such materials have been difficult to access via conventional approaches. Reversible-deactivation radical polymerizations (RDRPs) are powerful methods to afford well-defined polymers. Researchers have applied RDRPs to the fabrication of FPNPs, enabling the construction of particles with improved complexity in terms of structure, composition, morphology, and functionality. Related examples can be classified into three categories. First, well-defined fluoropolymers synthesized via RDRPs have been utilized as precursors to form FPNPs through self-folding and solution self-assembly. Second, thermally and photoinitiated RDRPs have been explored to realize in situ preparations of FPNPs with varied morphologies via polymerization-induced self-assembly and cross-linking copolymerization. Third, grafting from inorganic nanoparticles has been investigated based on RDRPs. Importantly, those advancements have promoted studies toward promising applications, including magnetic resonance imaging, biomedical delivery, energy storage, adsorption of perfluorinated alkyl substances, photosensitizers, and so on. This Review should present useful knowledge to researchers in polymer science and nanomaterials and inspire innovative ideas for the synthesis and applications of FPNPs.
Collapse
Affiliation(s)
- Zexi Zhang
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Kaixuan Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Bruno Ameduri
- Institute Charles Gerhardt of Montpellier (ICGM), CNRS, University of Montpellier, ENSCM, Montpellier 34296, France
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Di Spirito NA, Grizzuti N, Casalegno M, Castiglione F, Pasquino R. Phase transitions of aqueous solutions of Pluronic F68 in the presence of Diclofenac Sodium. Int J Pharm 2023; 644:123353. [PMID: 37647976 DOI: 10.1016/j.ijpharm.2023.123353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
In recent years, advancements in bioengineering and materials science have witnessed increasing interest in synthetic polymers capable of fulfilling various applications. Owing to their distinctive properties, Pluronics can be used as nano-drug carriers, to deliver poorly water-soluble drugs, and as model systems to study colloidal science by tuning amphiphilic properties. In this work, we investigated the effect of diclofenac sodium on the self-assembly and thermoresponsive crystallization of Pluronic F68 in water solutions, by employing experimental rheology and Nuclear Magnetic Resonance (NMR). We built a complete phase diagram as a function of temperature and concentration for 45 wt% Pluronic F68 with various amounts of diclofenac sodium in water. The morphological transitions were followed as a function of temperature via linear rheology. We extrapolated the transition temperatures - identifying distinct phases - as a function of the drug concentration and proposed an empirical model for their prediction. NMR analysis provided further information on the structural characteristics of the systems, shedding light on the interactions between F68 and diclofenac sodium. Although dealing with a pharmaceutical salt, the study is focused on a colloidal system and its interaction with a binding molecule, that is of general interest for colloidal science.
Collapse
Affiliation(s)
| | - Nino Grizzuti
- DICMaPI, Università degli Studi di Napoli Federico II, P. le Tecchio 80, 80125 Napoli, Italy.
| | - Mosè Casalegno
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, via Mancinelli 7, I-20131 Milano (MI), Italy.
| | - Franca Castiglione
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, via Mancinelli 7, I-20131 Milano (MI), Italy.
| | - Rossana Pasquino
- DICMaPI, Università degli Studi di Napoli Federico II, P. le Tecchio 80, 80125 Napoli, Italy.
| |
Collapse
|
3
|
Pisu AA, Siddi F, Cappellini G, Cardia R. Optical properties of nanostructured antiviral and anticancer drugs. RSC Adv 2023; 13:22481-22492. [PMID: 37534260 PMCID: PMC10392868 DOI: 10.1039/d3ra00061c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
We present a computational study on the optical absorption properties of some systems of interest in the field of drug delivery. In particular we considered as drug molecules favipiravir (T705, an antiviral molecule) and 5-fluorouracil (5FU, an anticancer molecule) and, on the other hand, pure fullerenes (C24, B12N12, Ga12N12) and doped fullerenes (C23B, CB11N12) are considered as nanocarriers. Some combined configurations between the drug molecules and the carrier nanostructures have been then studied. The optical absorption properties of the above mentioned drug molecules and their carrier nanostructures in the free and bound states are obtained by a TD-DFT method, in gas phase and in aqueous solution. We perform a detailed analysis of the modifications arising in the absorption spectra that take place in some linked configurations between the drug molecules and the carrier nanostructures. These changes could be of importance as an optical fingerprint of the realized drug/carrier link.
Collapse
Affiliation(s)
- Alessandra Angela Pisu
- Department of Physics, University of Cagliari S.P. Monserrato-Sestu Km 0,700 Monserrato CA I-09042 Italy
| | - Francesco Siddi
- Department of Physics, University of Cagliari S.P. Monserrato-Sestu Km 0,700 Monserrato CA I-09042 Italy
| | - Giancarlo Cappellini
- Department of Physics, University of Cagliari S.P. Monserrato-Sestu Km 0,700 Monserrato CA I-09042 Italy
- European Theoretical Spectroscopy Facility (ETSF) Italy
| | - Roberto Cardia
- Department of Physics, University of Cagliari S.P. Monserrato-Sestu Km 0,700 Monserrato CA I-09042 Italy
| |
Collapse
|
4
|
Amini N, Hivechi A, Asadpour S, Ebrahimzadeh K, Kargozar S, Gholipourmalekabadi M, Nasrolahi A, Ghasemian M, Shafaat A, Mozafari M, Brouki Milan P, Rezapour A. Fabrication and characterization of bilayer scaffolds made of decellularized dermis/nanofibrous collagen for healing of full-thickness wounds. Drug Deliv Transl Res 2023; 13:1766-1779. [PMID: 36701113 DOI: 10.1007/s13346-023-01292-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 01/27/2023]
Abstract
Skin tissue engineering has progressed from simple wound dressings to biocompatible materials with desired physico-chemical properties that can deliver regenerative biomolecules. This study describes using a novel biomimetic hybrid scaffold of decellularized dermis/collagen fibers that can continuously deliver stromal cell-derived factor-1 alpha (SDF-1α) for skin regeneration. In diabetic rat models, the idea that sustained SDF-1α infusion could increase the recruitment of CXCR4-positive cells at the injury site and improve wound regeneration was investigated. The morphology of the scaffold, its biocompatibility, and the kinetics of SDF-1 release were all assessed. SDF-1α was successfully incorporated into collagen nanofibers, resulting in a 200-h continuous release profile. The microscopic observations exhibited that cells are attached and proliferated on proposed scaffolds. As evaluated by in vivo study and histological examination, fabricated scaffold with SDF-1α release capacity exhibited a remarkably more robust ability to accelerate wound regeneration than the control group. Besides, the SDF-1α-loaded scaffold demonstrated functional effects on the proliferation and recruitment of CD31 and CXCR4-positive cells in the wound bed. Additionally, no adverse effects such as hyperplasia or scarring were found during the treatment period. It may be concluded that the fabricated hybrid scaffold based on natural polymer opens up a new option for topical administration of bioactive molecules. We believe the SDF-1α-loaded hybrid scaffold has promise for skin tissue engineering.
Collapse
Affiliation(s)
- Naser Amini
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Hivechi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Kaveh Ebrahimzadeh
- Department of Neurosurgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahvan Nasrolahi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Melina Ghasemian
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Shafaat
- Department of Mechanical Engineering, Arak University of Technology, Arak, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Alireza Rezapour
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran.
- Department of Tissue Engineering and Regenerative Medicine, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
5
|
Jeon WJ, Lee HK, Na YG, Jung M, Han SC, Hwang JH, Jung E, Hwang D, Shin JS, Cho CW. Antiviral Lipid Nanocarrier Loaded with Remdesivir Effective Against SARS-CoV-2 in vitro Model. Int J Nanomedicine 2023; 18:1561-1575. [PMID: 37007987 PMCID: PMC10065008 DOI: 10.2147/ijn.s391462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/10/2023] [Indexed: 03/28/2023] Open
Abstract
Introduction The ongoing SARS-CoV-2 pandemic has affected public health, the economy, and society. This study reported a nanotechnology-based strategy to enhance the antiviral efficacy of the antiviral agent remdesivir (RDS). Results We developed a nanosized spherical RDS-NLC in which the RDS was encapsulated in an amorphous form. The RDS-NLC significantly potentiated the antiviral efficacy of RDS against SARS-CoV-2 and its variants (alpha, beta, and delta). Our study revealed that NLC technology improved the antiviral effect of RDS against SARS-CoV-2 by enhancing the cellular uptake of RDS and reducing SARS-CoV-2 entry in cells. These improvements resulted in a 211% increase in the bioavailability of RDS. Conclusion Thus, the application of NLC against SARS-CoV-2 may be a beneficial strategy to improve the antiviral effects of antiviral agents.
Collapse
Affiliation(s)
- Woo-Jin Jeon
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hong-Ki Lee
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology (KIT), Jeongeup, Jeollabuk-do, 53212, Republic of Korea
- Human Health Risk Assessment Center, Jeonbuk Branch, Korea Institute of Toxicology (KIT), Jeongeup, Jeollabuk-do, 53212, Republic of Korea
| | - Young-Guk Na
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Minwoo Jung
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Su-Cheol Han
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology (KIT), Jeongeup, Jeollabuk-do, 53212, Republic of Korea
| | - Jeong Ho Hwang
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology (KIT), Jeongeup, Jeollabuk-do, 53212, Republic of Korea
| | - Eunhye Jung
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Dasom Hwang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jin Soo Shin
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Correspondence: Jin Soo Shin, Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea, Email
| | - Cheong-Weon Cho
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, 34134, Republic of Korea
- Cheong-Weon Cho, College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea, Email
| |
Collapse
|
6
|
Vinod A, Pulikkalparambil H, Jagadeesh P, Rangappa SM, Siengchin S. Recent advancements in lignocellulose biomass-based carbon fiber: Synthesis, properties, and applications. Heliyon 2023; 9:e13614. [PMID: 37101468 PMCID: PMC10123159 DOI: 10.1016/j.heliyon.2023.e13614] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
A growing need to reduce the global carbon footprint has prompted all sectors to make significant efforts in this direction. For example, there has been much focus on green carbon fiber sustainability. For example, it was found that the polyaromatic heteropolymer lignin might act as an intermediary in synthesising carbon fiber. Biomass is seen as a potential carbon accommodated solid natural sources that protects the nature and has a big overall supply and widespread distribution. With growing environmental concern in recent years, biomass has gained appeal as a raw material for production of carbon fibers. Especially, the positives of lignin material include its reasonable budget, sustainability, and higher carbon content, which makes it a dominating precursor. This review has examined a variety of bio precursors that help produce lignin and have higher lignin concentrations. In addition, there has been much research on plant sources, lignin types, factors affecting carbon fiber synthesis, spinning methods, stabilization, carbonization, and activation the characterisation techniques used for the lignin carbon fiber to comprehend the structure and features. In addition, an overview of the applications that use lignin carbon fiber has been provided.
Collapse
Affiliation(s)
- Athira Vinod
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Harikrishnan Pulikkalparambil
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800, Thailand
| | - Praveenkumara Jagadeesh
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800, Thailand
| | - Sanjay Mavinkere Rangappa
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800, Thailand
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800, Thailand
| |
Collapse
|
7
|
Arefkhani M, Babaei A, Masoudi M, Kafashan A. A step forward to overcome the cytotoxicity of graphene oxide through decoration with tragacanth gum polysaccharide. Int J Biol Macromol 2023; 226:1411-1425. [PMID: 36442552 DOI: 10.1016/j.ijbiomac.2022.11.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Hybridization of nanomaterials (NMs) with natural polymers is one of the best techniques to promote their exciting properties. In this way, the main objective of this work was to investigate the efficiency of decoration of the graphene oxide (GO) nano-sheets with tragacanth gum (TG) polysaccharide. To aim this, different approaches were used (with and without ultrasonic treatment) and various tests (XRD, FTIR, Raman, UV-Vis, DLS, Zeta potential, contact angle, AFM, FE-SEM, TEM, and MTT assay) were conducted. Test results indicated that the nano-hybrids were successfully synthesized. Furthermore, our findings represented that, the TG hybridized GO (TG-GO) appreciably enhanced the biocompatibility of GO. Moreover, it was demonstrated that the ultrasonic treatment of TG solution put a remarkable impact on the microstructure, wettability, and also surface charge characteristic of fabricated nano-hybrids and consequently improved the biocompatibility against L929-fibroblast cells.
Collapse
Affiliation(s)
- Mahdi Arefkhani
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Amir Babaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran.
| | - Maha Masoudi
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Azade Kafashan
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| |
Collapse
|
8
|
Hajebi S, Yousefiasl S, Rahimmanesh I, Dahim A, Ahmadi S, Kadumudi FB, Rahgozar N, Amani S, Kumar A, Kamrani E, Rabiee M, Borzacchiello A, Wang X, Rabiee N, Dolatshahi‐Pirouz A, Makvandi P. Genetically Engineered Viral Vectors and Organic-Based Non-Viral Nanocarriers for Drug Delivery Applications. Adv Healthc Mater 2022; 11:e2201583. [PMID: 35916145 PMCID: PMC11481035 DOI: 10.1002/adhm.202201583] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 01/28/2023]
Abstract
Conventional drug delivery systems are challenged by concerns related to systemic toxicity, repetitive doses, drug concentrations fluctuation, and adverse effects. Various drug delivery systems are developed to overcome these limitations. Nanomaterials are employed in a variety of biomedical applications such as therapeutics delivery, cancer therapy, and tissue engineering. Physiochemical nanoparticle assembly techniques involve the application of solvents and potentially harmful chemicals, commonly at high temperatures. Genetically engineered organisms have the potential to be used as promising candidates for greener, efficient, and more adaptable platforms for the synthesis and assembly of nanomaterials. Genetically engineered carriers are precisely designed and constructed in shape and size, enabling precise control over drug attachment sites. The high accuracy of these novel advanced materials, biocompatibility, and stimuli-responsiveness, elucidate their emerging application in controlled drug delivery. The current article represents the research progress in developing various genetically engineered carriers. Organic-based nanoparticles including cellulose, collagen, silk-like polymers, elastin-like protein, silk-elastin-like protein, and inorganic-based nanoparticles are discussed in detail. Afterward, viral-based carriers are classified, and their potential for targeted therapeutics delivery is highlighted. Finally, the challenges and prospects of these delivery systems are concluded.
Collapse
Affiliation(s)
- Sakineh Hajebi
- Department of Polymer EngineeringSahand University of TechnologyTabriz51335‐1996Iran
- Institute of Polymeric MaterialsSahand University of TechnologyTabriz51335‐1996Iran
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadan6517838736Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research CenterIsfahan Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahan8174673461Iran
| | - Alireza Dahim
- Department of AnesthesiaJundishapur University of Medical SciencesAhvaz61357‐15794Iran
| | - Sepideh Ahmadi
- Department of BiologyFaculty of SciencesUniversity of ZabolSistan and BaluchestanZabol98613‐35856Iran
| | - Firoz Babu Kadumudi
- Department of Health TechnologyTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Nikta Rahgozar
- Department of ChemistryAmirkabir University of TechnologyTehran15875‐4413Iran
| | - Sanaz Amani
- Department of Chemical EngineeringSahand University of TechnologyTabriz51335‐1996Iran
| | - Arun Kumar
- Chitkara College of PharmacyChitkara UniversityHimachal Pradesh174 103India
| | - Ehsan Kamrani
- Harvard‐MIT Health Science and TechnologyCambridgeMA02139USA
- Wellman Center for PhotomedicineHarvard Medical SchoolBostonMA02139USA
| | - Mohammad Rabiee
- Biomaterials GroupDepartment of Biomedical EngineeringAmirkabir University of TechnologyTehran15875‐4413Iran
| | - Assunta Borzacchiello
- Institute for Polymers, Composites and BiomaterialsNational Research CouncilIPCB‐CNRNaples80125Italy
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghai200032China
| | - Navid Rabiee
- School of EngineeringMacquarie UniversitySydneyNSW2109Australia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| | | | - Pooyan Makvandi
- Centre for Materials InterfacesIstituto Italiano di TecnologiaPontederaPisa56025Italy
- The Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhou People’s HospitalQuzhouZhejiang324000China
- School of ChemistryDamghan UniversityDamghan36716‐41167Iran
| |
Collapse
|
9
|
Alshahrani SM, Thotakura N, Sharma S, Quadir SS, Chaurawal N, Sharma S, Chitkara D, Raza K. Influence of Nanocarrier Type on the Drug Delivery Aspects of Docetaxel: Empirical Evidences. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09677-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Nalini T, Basha SK, Sadiq AM, Kumari VS. In vitro cytocompatibility assessment and antibacterial effects of quercetin encapsulated alginate/chitosan nanoparticle. Int J Biol Macromol 2022; 219:304-311. [PMID: 35934075 DOI: 10.1016/j.ijbiomac.2022.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 01/05/2023]
Abstract
The present work aims at evaluating the in vitro biocompatibility, antibacterial activity and antioxidant capacity of the fabricated and optimized Alginate/Chitosan nanoparticles (ALG/CSNPs) and quercetin loaded Alginate/Chitosan nanoparticles (Q-ALG/CSNPs) with an improved biological efficacy on the hydrophobic flavonoid.The physicochemical properties were determined by TEM and FTIR analysis. The nanoparticles evaluated for the encapsulation of quercetin exerted % encapsulation efficiency (EE) that varied between 76 and 82.4 % and loading capacity (LC) from 31 to 46.5 %. Potential cytotoxicity of the ALG/CSNPs and Q-ALG/CSNPs upon L929 fibroblast cell line was evaluated by MTT reduction Assay and expressed as % cell viability. The in vitro antibacterial property was studied by well diffusion method against gram-positive bacteria Staphylococcus aureus (ATCC 25925) and gram-negative bacteria Escherichia coli (ATCC 25923). The inhibitory efficacy by scavenging free radical intermediates was evaluated by 1,1, diphenyl 2-picrylhydrazyl (DPPH) assay. The results of in vitro cytotoxicity showed biocompatibility towards L929 cells. Quercetin loaded Alginate/Chitosan nanoparticles inhibited the growth of microorganisms than pure quercetin. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging results have shown a high level of antioxidant property for encapsulated Quercetin in Alginate/Chitosan nanoparticles compared to free Quercetin. The findings of our study suggest that the developed ALG/CSNPs and Q-ALG/CSNPs possess the prerequisites and be proposed as a suitable system for delivering quercetin with enhanced therapeutic effectuality.
Collapse
Affiliation(s)
- T Nalini
- PG & Research Department of Biochemistry, D.K.M College (Autonomous),Vellore 632001, Tamil Nadu, India
| | - S Khaleel Basha
- PG & Research Department of Chemistry, C. Abdul Hakeem College (Autonomous), Melvisharam 632509, Tamil Nadu, India
| | - A Mohamed Sadiq
- PG & Research Department of Biochemistry, Adhiparasakthi College of Arts and Science, Kalavai 632506,Tamil Nadu, India
| | - V Sugantha Kumari
- PG & Research Department of Chemistry, Auxilium College (Autonomous), Vellore, Tamil Nadu 632006, India.
| |
Collapse
|
11
|
Nicolae-Maranciuc A, Chicea D, Chicea LM. Ag Nanoparticles for Biomedical Applications-Synthesis and Characterization-A Review. Int J Mol Sci 2022; 23:ijms23105778. [PMID: 35628585 PMCID: PMC9146088 DOI: 10.3390/ijms23105778] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 12/18/2022] Open
Abstract
Silver nanoparticles have been intensively studied over a long period of time because they exhibit antibacterial properties in infection treatments, wound healing, or drug delivery systems. The advantages that silver nanoparticles offer regarding the functionalization confer prolonged stability and make them suitable for biomedical applications. Apart from functionalization, silver nanoparticles exhibit various shapes and sizes depending on the conditions used through their fabrications and depending on their final purpose. This paper presents a review of silver nanoparticles with respect to synthesis procedures, including the polluting green synthesis. Currently, the most commonly used characterization techniques required for nanoparticles investigation in antibacterial treatments are described briefly, since silver nanoparticles possess differences in their structure or morphology.
Collapse
Affiliation(s)
- Alexandra Nicolae-Maranciuc
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, Dr. Ion Raţiu Street 5−7, 550012 Sibiu, Romania;
| | - Dan Chicea
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, Dr. Ion Raţiu Street 5−7, 550012 Sibiu, Romania;
- Correspondence:
| | - Liana Maria Chicea
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania;
| |
Collapse
|
12
|
Al-Otaibi JS, Sheena Mary Y, Shyma Mary Y, Thomas R. Electronic Structure, Solvation Effects and Wave Function Based Properties of a New Triazole Based Symmetric Chromene Derivative of Apigenin. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2055583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jamelah S. Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | | - Renjith Thomas
- Deparment of Chemistry, St Berchmans College, (Autonomous), Mahatma Gandhi University, Changanassery, Kerala, India
| |
Collapse
|
13
|
Zabihi E, Arab-Bafrani Z, Hoseini SM, Mousavi E, Babaei A, Khalili M, Hashemi MM, Javid N. Fabrication of nano-decorated ZnO-fibrillar chitosan exhibiting a superior performance as a promising replacement for conventional ZnO. Carbohydr Polym 2021; 274:118639. [PMID: 34702461 DOI: 10.1016/j.carbpol.2021.118639] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 09/01/2021] [Indexed: 12/27/2022]
Abstract
In this research, bioactive nano-hybrids based on the nano-fibrillar chitosan-ZnO (NF-CS-ZnO) were synthesized to diminish the toxicity of ZnO-NPs. The successful formation of nano-hybrids was confirmed by FT-IR, UV-Vis, and FE-SEM analyses, showing a uniform spherical ZnO-NPs with an average diameter of 20-30 nm, homogeneously dispersed on NF-CS. The obtained results demonstrated a remarkable antibacterial activity of NF-CS-ZnO-0.6 nano-hybrid against E. coli and S. aureus and, interestingly, no cytotoxic on normal cells (even at a high concentration of 100 μg/mL). Furthermore, NF-CS hybridization efficiently decreased the up-regulation in Cas3, Cas9, and Il6 of inspected fishes compared to the ZnO-NPs. Histopathological examination revealed hepatocyte necrosis in the fish exposed to ZnO-NPs and hyperemia exposed to NF-CS-ZnO-0.6 nano-hybrid. Finally, NF-CS efficiently improved the bio-safety and bactericidal activity of ZnO-NPs; therefore, NF-CS-ZnO nano-hybrid is prominently recommended as a talented low-toxicity antibacterial agent replacement of conventional ZnO-NPs for use in different applications.
Collapse
Affiliation(s)
- Erfan Zabihi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Zahra Arab-Bafrani
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Seyyed Morteza Hoseini
- Inland Waters Aquatics Resources Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization, Gorgan, Iran
| | - Elham Mousavi
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Babaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran.
| | - Mohsen Khalili
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Naeme Javid
- Department of Molecular Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
14
|
Meena P, Kishore N. Thermodynamic and mechanistic analytical effect of albumin coated gold nanosystems for antibiotic drugs binding and interaction with deoxyribonucleic acid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
de Carvalho Lima EN, Diaz RS, Justo JF, Castilho Piqueira JR. Advances and Perspectives in the Use of Carbon Nanotubes in Vaccine Development. Int J Nanomedicine 2021; 16:5411-5435. [PMID: 34408416 PMCID: PMC8367085 DOI: 10.2147/ijn.s314308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Advances in nanobiotechnology have allowed the utilization of nanotechnology through nanovaccines. Nanovaccines are powerful tools for enhancing the immunogenicity of a specific antigen and exhibit advantages over other adjuvant approaches, with features such as expanded stability, prolonged release, decreased immunotoxicity, and immunogenic selectivity. We introduce recent advances in carbon nanotubes (CNTs) to induce either a carrier effect as a nanoplatform or an immunostimulatory effect. Several studies of CNT-based nanovaccines revealed that due to the ability of CNTs to carry immunogenic molecules, they can act as nonclassical vaccines, a quality not possessed by vaccines with traditional formulations. Therefore, adapting and modifying the physicochemical properties of CNTs for use in vaccines may additionally enhance their efficacy in inducing a T cell-based immune response. Accordingly, the purpose of this study is to renew and awaken interest in and knowledge of the safe use of CNTs as adjuvants and carriers in vaccines.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Yu J, Qiu H, Yin S, Wang H, Li Y. Polymeric Drug Delivery System Based on Pluronics for Cancer Treatment. Molecules 2021; 26:3610. [PMID: 34204668 PMCID: PMC8231161 DOI: 10.3390/molecules26123610] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pluronic polymers (pluronics) are a unique class of synthetic triblock copolymers containing hydrophobic polypropylene oxide (PPO) and hydrophilic polyethylene oxide (PEO) arranged in the PEO-PPO-PEO manner. Due to their excellent biocompatibility and amphiphilic properties, pluronics are an ideal and promising biological material, which is widely used in drug delivery, disease diagnosis, and treatment, among other applications. Through self-assembly or in combination with other materials, pluronics can form nano carriers with different morphologies, representing a kind of multifunctional pharmaceutical excipients. In recent years, the utilization of pluronic-based multi-functional drug carriers in tumor treatment has become widespread, and various responsive drug carriers are designed according to the characteristics of the tumor microenvironment, resulting in major progress in tumor therapy. This review introduces the specific role of pluronic-based polymer drug delivery systems in tumor therapy, focusing on their physical and chemical properties as well as the design aspects of pluronic polymers. Finally, using newer literature reports, this review provides insights into the future potential and challenges posed by different pluronic-based polymer drug delivery systems in tumor therapy.
Collapse
Affiliation(s)
- Jialin Yu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.Y.); (H.Q.); (S.Y.)
| | - Huayu Qiu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.Y.); (H.Q.); (S.Y.)
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Shouchun Yin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.Y.); (H.Q.); (S.Y.)
| | - Hebin Wang
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741099, China
| | - Yang Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.Y.); (H.Q.); (S.Y.)
| |
Collapse
|
17
|
Zhang Y, Li C, Jia R, Gao R, Zhao Y, Ji Q, Cai J, Li Q, Wang Y. PEG-poly(amino acid)s/EpCAM aptamer multifunctional nanoparticles arrest the growth and metastasis of colorectal cancer. Biomater Sci 2021; 9:3705-3717. [PMID: 34008621 DOI: 10.1039/d1bm00160d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tanshinone II-A (TSIIA) is a derivative of a phenanthrene-quinone extracted from a TCM herb, Salvia miltiorrhiza, and has been widely adopted in the treatment of colorectal cancer (CRC). It is known that TSIIA can lead to the apoptosis and differentiation of certain cell lines and it suppresses the proliferation and metastasis of tumors. However, its poor water solubility and low bioavailability when taken orally have prevented this drug being utilized effectively in the body. A nanoparticle (NP) drug carrier system is a technology that can effectively improve drug utilization and targeting ability. In this study, a new NP drug carrier system is reported: EpCAM targeting TSIIA-encapsulated poly(amino acid)s NPs (EpCAM-TSIIA-NPs). The results show that this new targeted NP drug carrier system has higher cytotoxicity, better water solubility and better targeting ability, and can effectively suppress the proliferation and metastasis of tumors. In addition, the invasion and metastasis mechanism of colorectal cancer (CRC) under β-catenin nuclear meditation suppressed by EpCAM-TSIIA-NPs is also discussed. It is found that the immune-targeted type EpCAM-TSIIA-NPs could effectively enhance the expression of APC and axin when compared to normal NPs. It could improve the stability of β-catenin destruction complex and suppress the occurrence and progression of tumors by stopping the nuclear activities of β-catenin.
Collapse
Affiliation(s)
- Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. and Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Chunpu Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ru Jia
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ruixuan Gao
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.
| | - Yiyang Zhao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. and Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. and Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. and Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
18
|
Antibacterial composite coatings of MgB 2 powders embedded in PVP matrix. Sci Rep 2021; 11:9591. [PMID: 33953282 PMCID: PMC8100140 DOI: 10.1038/s41598-021-88885-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Three commercial powders of MgB2 were tested in vitro by MTS and LDH cytotoxicity tests on the HS27 dermal cell line. Depending on powders, the toxicity concentrations were established in the range of 8.3–33.2 µg/ml. The powder with the lowest toxicity limit was embedded into polyvinylpyrrolidone (PVP), a biocompatible and biodegradable polymer, for two different concentrations. The self-replenishing MgB2-PVP composite materials were coated on substrate materials (plastic foil of the reservoir and silicon tubes) composing a commercial urinary catheter. The influence of the PVP-reference and MgB2-PVP novel coatings on the bacterial growth of Staphylococcus aureus ATCC 25923, Enterococcus faecium DMS 13590, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, in planktonic and biofilm state was assessed in vitro at 6, 24, and 48 h of incubation time. The MgB2-PVP coatings are efficient both against planktonic microbes and microbial biofilms. Results open promising applications for the use of MgB2 in the design of anti-infective strategies for different biomedical devices and systems.
Collapse
|
19
|
Nanocomposite gels of poloxamine and Laponite for β-Lapachone release in anticancer therapy. Eur J Pharm Sci 2021; 163:105861. [PMID: 33930520 DOI: 10.1016/j.ejps.2021.105861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022]
Abstract
Nano-hybrid systems have been shown to be an attractive platform for drug delivery. Laponite® RD (LAP), a biocompatible synthetic clay, has been exploited for its ability to establish of strong secondary interactions with guest compounds and hybridization with polymers or small molecules that improves, for instance, cell adhesion, proliferation, and differentiation or facilitates drug attachment to their surfaces through charge interaction. In this work, LAP was combined with Tetronics, X-shaped amphiphilic PPO-PEO (poly (propylene oxide)-poly (ethylene oxide) block copolymers. β-Lapachone (BLPC) was selected for its anticancer activity and its limited bioavailability due to very low aqueous solubility, with the aim to improve this by using LAP/Tetronic nano-hybrid systems. The nanocarriers were prepared over a range of Tetronic 1304 concentrations (1 to 20% w/w) and LAP (0 to 3% w/w). A combination of physicochemical methods was employed to characterize the hybrid systems, including rheology, particle size and shape (DLS, TEM), thermal analysis (TG and DSC), FTIR, solubility studies and drug release experiments. In vitro cytotoxicity assays were performed with BALB/3T3 and MCF-7 cell lines. In hybrid systems, a sol-gel transition can occur below physiological temperature. BLPC exhibits the most significant increase in solubility in formulations with a high concentration of T1304 (over 10% w/w) and 1.5% w/w LAP, or systems with only LAP (1.5%), with a 50 and 100-fold increase in solubilisation, respectively. TEM images showed spherical micelles of T1304, which elongated into wormlike micelles with concentration (20%) and in the presence of LAP, a finding that has not been reported before. A sustained release of BLPC over 140 hours was achieved in one of the formulations (10% T1304 with 1.5% laponite), which also showed the best selectivity index towards cancer cells (MCF-7) over BALB/3T3 cell lines. In conclusion, BLPC-loaded T1304/LAP nano-hybrid systems proved safe and highly effective and are thus a promising formulation for anticancer therapy.
Collapse
|
20
|
Ghosh M, Mandal S, Roy A, Paladhi A, Mondal P, Hira SK, Mukhopadhyay SK, Pradhan SK. Synthesis and characterization of a novel drug conjugated copper-silver- titanium oxide nanocomposite with enhanced antibacterial activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
The Role of Nanomaterials in Stroke Treatment: Targeting Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8857486. [PMID: 33815664 PMCID: PMC7990543 DOI: 10.1155/2021/8857486] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/22/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Stroke has a high rate of morbidity and disability, which seriously endangers human health. In stroke, oxidative stress leads to further damage to the brain tissue. Therefore, treatment for oxidative stress is urgently needed. However, antioxidative drugs have demonstrated obvious protective effects in preclinical studies, but the clinical studies have not seen breakthroughs. Nanomaterials, with their characteristically small size, can be used to deliver drugs and have demonstrated excellent performance in treating various diseases. Additionally, some nanomaterials have shown potential in scavenging reactive oxygen species (ROS) in stroke according to the nature of nanomaterials. The drugs' delivery ability of nanomaterials has great significance for the clinical translation and application of antioxidants. It increases drug blood concentration and half-life and targets the ischemic brain to protect cells from oxidative stress-induced death. This review summarizes the characteristics and progress of nanomaterials in the application of antioxidant therapy in stroke, including ischemic stroke, hemorrhagic stroke, and neural regeneration. We also discuss the prospect of nanomaterials for the treatment of oxidative stress in stroke and the challenges in their application, such as the toxicity and the off-target effects of nanomaterials.
Collapse
|
22
|
Budiarta M, Xu W, Schubert L, Meledina M, Meledin A, Wöll D, Pich A, Beck T. Protecting redesigned supercharged ferritin containers against protease by integration into acid-cleavable polyelectrolyte microgels. J Colloid Interface Sci 2021; 591:451-462. [PMID: 33631532 DOI: 10.1016/j.jcis.2021.01.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
HYPOTHESIS The application of ferritin containers as a promising drug delivery vehicle is limited by their low bioavailability in blood circulation due to unfavorable environments, such as degradation by protease. The integration of ferritin containers into the polymeric network of microgels through electrostatic interactions is expected to be able to protect ferritin against degradation by protease. Furthermore, a stimuli-responsive microgel system can be designed by employing an acid-degradable crosslinker during the microgel synthesis. This should enable ferritin release in an acidic environment, which will be useful for future drug delivery applications. EXPERIMENTS Nanoparticle/fluorophores-loaded ferritin was integrated into microgels during precipitation polymerization. The integration was monitored by transmission electron microscopy (TEM)2 and fluorescence microscopy, respectively. After studying ferritin release in acidic solutions, we investigated the stability of ferritin inside microgels against degradation by chymotrypsin. FINDINGS About 80% of the applied ferritin containers were integrated into microgels and around 85% and 50% of them could be released in buffer pH 2.5 and 4.0, respectively. Total degradation of the microgels was not achieved due to the self-crosslinking of N-isopropylacrylamide (NIPAM). Finally, we prove that microgels could protect ferritin against degradation by chymotrypsin at 37 °C.
Collapse
Affiliation(s)
- Made Budiarta
- RWTH Aachen University, Institute of Inorganic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | - Wenjing Xu
- DWI- Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074 Aachen, Germany; RWTH Aachen University, Institute of Technical and Molecular Chemistry, Woringer Weg 2, 52074 Aachen, Germany.
| | - Lukas Schubert
- RWTH Aachen University, Institute of Physical Chemistry, Landoltweg 2, 52074 Aachen, Germany.
| | - Maria Meledina
- RWTH Aachen University, Central Facility for Electron Microscopy, Ahornstraße 55, Aachen 52074, Germany.
| | - Alexander Meledin
- RWTH Aachen University, Central Facility for Electron Microscopy, Ahornstraße 55, Aachen 52074, Germany.
| | - Dominik Wöll
- RWTH Aachen University, Institute of Physical Chemistry, Landoltweg 2, 52074 Aachen, Germany.
| | - Andrij Pich
- DWI- Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074 Aachen, Germany; RWTH Aachen University, Institute of Technical and Molecular Chemistry, Woringer Weg 2, 52074 Aachen, Germany; Maastricht University, Aachen Maastricht Institute for Biobased Materials, Urmonderbaan 22, 6167 RD, Geleen, the Netherlands.
| | - Tobias Beck
- Universität Hamburg, Department of Chemistry, Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, Germany; The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany.
| |
Collapse
|
23
|
Veloso SR, Andrade RG, Castanheira EM. Review on the advancements of magnetic gels: towards multifunctional magnetic liposome-hydrogel composites for biomedical applications. Adv Colloid Interface Sci 2021; 288:102351. [PMID: 33387893 DOI: 10.1016/j.cis.2020.102351] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
Abstract
Magnetic gels have been gaining great attention in nanomedicine, as they combine features of hydrogels and magnetic nanoparticles into a single system. The incorporation of liposomes in magnetic gels further leads to a more robust multifunctional system enabling more functions and spatiotemporal control required for biomedical applications, which includes on-demand drug release. In this review, magnetic gels components are initially introduced, as well as an overview of advancements on the development, tuneability, manipulation and application of these materials. After a discussion of the advantages of combining hydrogels with liposomes, the properties, fabrication strategies and applications of magnetic liposome-hydrogel composites (magnetic lipogels or magnetolipogels) are reviewed. Overall, the progress of magnetic gels towards smart multifunctional materials are emphasized, considering the contributions for future developments.
Collapse
|
24
|
Biological perspective of a triazine derivative with isatin/chalcone/acridone: DFT and docking investigations. Struct Chem 2021. [DOI: 10.1007/s11224-020-01609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Albalawi F, Hussein MZ, Fakurazi S, Masarudin MJ. Engineered Nanomaterials: The Challenges and Opportunities for Nanomedicines. Int J Nanomedicine 2021; 16:161-184. [PMID: 33447033 PMCID: PMC7802788 DOI: 10.2147/ijn.s288236] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022] Open
Abstract
The emergence of nanotechnology as a key enabling technology over the past years has opened avenues for new and innovative applications in nanomedicine. From the business aspect, the nanomedicine market was estimated to worth USD 293.1 billion by 2022 with a perception of market growth to USD 350.8 billion in 2025. Despite these opportunities, the underlying challenges for the future of engineered nanomaterials (ENMs) in nanomedicine research became a significant obstacle in bringing ENMs into clinical stages. These challenges include the capability to design bias-free methods in evaluating ENMs' toxicity due to the lack of suitable detection and inconsistent characterization techniques. Therefore, in this literature review, the state-of-the-art of engineered nanomaterials in nanomedicine, their toxicology issues, the working framework in developing a toxicology benchmark and technical characterization techniques in determining the toxicity of ENMs from the reported literature are explored.
Collapse
Affiliation(s)
- Fahad Albalawi
- Department of Medical Laboratory and Blood Bank, King Fahad Specialist Hospital-Tabuk, Tabuk, Saudi Arabia
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Natural Medicine and Product Research Laboratory Institute of Bioscience, Serdang, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
26
|
Wang P, Yan G, Zhu X, Du Y, Chen D, Zhang J. Heterofullerene MC 59 (M = B, Si, Al) as Potential Carriers for Hydroxyurea Drug Delivery. NANOMATERIALS 2021; 11:nano11010115. [PMID: 33430313 PMCID: PMC7825758 DOI: 10.3390/nano11010115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/03/2022]
Abstract
As a representative nanomaterial, C60 and its derivatives have drawn much attention in the field of drug delivery over the past years, due to their unique geometric and electronic structures. Herein, the interactions of hydroxyurea (HU) drug with the pristine C60 and heterofullerene MC59 (M = B, Si, Al) were investigated using the density functional theory calculations. The geometric and electronic properties in terms of adsorption configuration, adsorption energy, Hirshfeld charge, frontier molecular orbitals, and charge density difference are calculated. In contrast to pristine C60, it is found that HU molecule is chemisorbed on the BC59, SiC59, and AlC59 molecules with moderate adsorption energy and apparent charge transfer. Therefore, heterofullerene BC59, SiC59, and AlC59 are expected to be promising carriers for hydroxyurea drug delivery.
Collapse
Affiliation(s)
- Peng Wang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (P.W.); (G.Y.); (X.Z.); (Y.D.); (D.C.)
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Ge Yan
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (P.W.); (G.Y.); (X.Z.); (Y.D.); (D.C.)
| | - Xiaodong Zhu
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (P.W.); (G.Y.); (X.Z.); (Y.D.); (D.C.)
| | - Yingying Du
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (P.W.); (G.Y.); (X.Z.); (Y.D.); (D.C.)
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Da Chen
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (P.W.); (G.Y.); (X.Z.); (Y.D.); (D.C.)
| | - Jinjuan Zhang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (P.W.); (G.Y.); (X.Z.); (Y.D.); (D.C.)
- Correspondence: ; Tel.: +86-187-5425-3028
| |
Collapse
|
27
|
Kumar RS, M. Al-thamili D, Almansour AI, Arumugam N, Mohammad F. A One-Pot Three-Component Synthesis and Investigation of the In Vitro Mechanistic Anticancer Activity of Highly Functionalized Spirooxindole-Pyrrolidine Heterocyclic Hybrids. Molecules 2020; 25:molecules25235581. [PMID: 33261115 PMCID: PMC7730040 DOI: 10.3390/molecules25235581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 01/07/2023] Open
Abstract
With an aim to develop more effective and affordable anticancer agents possessing a unique mechanism of action, we designed and synthesized derivatives of spirooxindole-pyrrolidine heterocyclic hybrids in good yields through a one-pot three-component (3+2) cycloaddition strategy. The synthesized compounds were characterized thoroughly for the physicochemical properties by making use of FT-IR, NMR spectroscopy, and mass spectrometry. Further, these compounds have been evaluated for the influence of anticancer activity against HepG2 cells up to 200 µg/mL concentration. The highly active molecular scaffold was tested for the in-depth mechanistic studies, and it was found that the major pathway of cell death is apoptosis which occurs through the induction of reactive oxygen species followed by the involvement of caspases.
Collapse
|
28
|
Aminosilanized flower-structured superparamagnetic iron oxide nanoparticles coupled to 131I-labeled CC49 antibody for combined radionuclide and hyperthermia therapy of cancer. Int J Pharm 2020; 587:119628. [PMID: 32681867 DOI: 10.1016/j.ijpharm.2020.119628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
Combined radionuclide therapy with magnetic nanoparticles-mediated hyperthermia has been under research focus as a promising tumor therapy approach. The objective of this study was to investigate the potential of 131I-radiolabeled superparamagnetic iron oxide nanoparticles (SPIONs) prepared as the ~40 nm flower-shaped structures with excellent heating efficiency (specific absorption rate at H0 = 15.9 kA∙m-1 and resonant frequency of 252 kHz was 123.1 W∙g-1) for nano-brachytherapy of tumors. 131I-radiolabeled CC49 antibody attached to SPIONs via reactive groups of 3-aminopropyltriethoxysilane (APTES) provided specificity and long-lasting localized retention after their intratumoral application into LS174T human colon adenocarcinoma xenografts in NOD-SCID mice. The results demonstrate feasibility and effectiveness of magnetic hyperthermia (HT), radionuclide therapy (RT) and their combination (HT + RT) in treating cancer in xenograft models. Combined therapy approach induced a significant (p < 0.01) tumor growth suppression in comparison to untreated groups presented by the tumor volume inhibitory rate (TVIR): 54.38%, 68.77%, 73.00% for HT, RT and HT + RT, respectively in comparison to untreated group and 48.31%, 64,62% and 69,41%, respectively, for the SPIONs-only injected group. Histopathology analysis proved the necrosis and apoptosis in treated tumors without general toxicity. Obtained data support the idea that nano-brachytherapy combined with hyperthermia is a promising approach for effective cancer treatment.
Collapse
|
29
|
Hosseini M, Mozafari M. Cerium Oxide Nanoparticles: Recent Advances in Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3072. [PMID: 32660042 PMCID: PMC7411590 DOI: 10.3390/ma13143072] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
Submicron biomaterials have recently been found with a wide range of applications for biomedical purposes, mostly due to a considerable decrement in size and an increment in surface area. There have been several attempts to use innovative nanoscale biomaterials for tissue repair and tissue regeneration. One of the most significant metal oxide nanoparticles (NPs), with numerous potential uses in future medicine, is engineered cerium oxide (CeO2) nanoparticles (CeONPs), also known as nanoceria. Although many advancements have been reported so far, nanotoxicological studies suggest that the nanomaterial's characteristics lie behind its potential toxicity. Particularly, physicochemical properties can explain the positive and negative interactions between CeONPs and biosystems at molecular levels. This review represents recent advances of CeONPs in biomedical engineering, with a special focus on tissue engineering and regenerative medicine. In addition, a summary report of the toxicity evidence on CeONPs with a view toward their biomedical applications and physicochemical properties is presented. Considering the critical role of nanoengineering in the manipulation and optimization of CeONPs, it is expected that this class of nanoengineered biomaterials plays a promising role in the future of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran;
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran
| |
Collapse
|
30
|
Zarrintaj P, Ramsey JD, Samadi A, Atoufi Z, Yazdi MK, Ganjali MR, Amirabad LM, Zangene E, Farokhi M, Formela K, Saeb MR, Mozafari M, Thomas S. Poloxamer: A versatile tri-block copolymer for biomedical applications. Acta Biomater 2020; 110:37-67. [PMID: 32417265 DOI: 10.1016/j.actbio.2020.04.028] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 11/16/2022]
Abstract
Poloxamers, also called Pluronic, belong to a unique class of synthetic tri-block copolymers containing central hydrophobic chains of poly(propylene oxide) sandwiched between two hydrophilic chains of poly(ethylene oxide). Some chemical characteristics of poloxamers such as temperature-dependent self-assembly and thermo-reversible behavior along with biocompatibility and physiochemical properties make poloxamer-based biomaterials promising candidates for biomedical application such as tissue engineering and drug delivery. The microstructure, bioactivity, and mechanical properties of poloxamers can be tailored to mimic the behavior of various types of tissues. Moreover, their amphiphilic nature and the potential to self-assemble into the micelles make them promising drug carriers with the ability to improve the drug availability to make cancer cells more vulnerable to drugs. Poloxamers are also used for the modification of hydrophobic tissue-engineered constructs. This article collects the recent advances in design and application of poloxamer-based biomaterials in tissue engineering, drug/gene delivery, theranostic devices, and bioinks for 3D printing. STATEMENT OF SIGNIFICANCE: Poloxamers, also called Pluronic, belong to a unique class of synthetic tri-block copolymers containing central hydrophobic chains of poly(propylene oxide) sandwiched between two hydrophilic chains of poly(ethylene oxide). The microstructure, bioactivity, and mechanical properties of poloxamers can be tailored to mimic the behavior of various types of tissues. Moreover, their amphiphilic nature and the potential to self-assemble into the micelles make them promising drug carriers with the ability to improve the drug availability to make cancer cells more vulnerable to drugs. However, no reports have systematically reviewed the critical role of poloxamer for biomedical applications. Research on poloxamers is growing today opening new scenarios that expand the potential of these biomaterials from "traditional" treatments to a new era of tissue engineering. To the best of our knowledge, this is the first review article in which such issue is systematically reviewed and critically discussed in the light of the existing literature.
Collapse
Affiliation(s)
- Payam Zarrintaj
- Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Joshua D Ramsey
- Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Ali Samadi
- Polymer Engineering Department, Faculty of Engineering, Urmia University, Urmia, Iran
| | - Zhaleh Atoufi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohsen Khodadadi Yazdi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences, University of Tehran, Tehran, Iran
| | | | - Ehsan Zangene
- Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran.
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sabu Thomas
- School of Chemical Sciences, M G University, Kottayam 686560, Kerala, India
| |
Collapse
|
31
|
Mousavi SM, Zarei M, Hashemi SA, Ramakrishna S, Chiang WH, Lai CW, Gholami A. Gold nanostars-diagnosis, bioimaging and biomedical applications. Drug Metab Rev 2020; 52:299-318. [PMID: 32150480 DOI: 10.1080/03602532.2020.1734021] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold Nanostars (GNS) have attracted tremendous attention toward themselves owing to their multi-branched structure and unique properties. These state of the art metallic nanoparticles possess intrinsic features like remarkable optical properties and exceptional physiochemical activities. These star-shaped gold nanoparticles can predominantly be utilized in biosensing, photothermal therapy, imaging, surface-enhanced Raman spectroscopy and target drug delivery applications due to their low toxicity and extraordinary optical features. In the current review, recent approaches in the matter of GNS in case of diagnosis, bioimaging and biomedical applications were summarized and reported. In this regard, first an overview about the structure and general properties of GNS were reported and thence detailed information regarding the diagnostic, bioimaging, photothermal therapy, and drug delivery applications of such novel nanomaterials were presented in detail. Summarized information clearly highlighting the superior capability of GNS as potential multi-functional materials for biomedical applications.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Maryam Zarei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Alireza Hashemi
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, Singapore
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Ahmad Gholami
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical research Center, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
32
|
Mandal AK. Dendrimers in targeted drug delivery applications: a review of diseases and cancer. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1713780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ardhendu Kumar Mandal
- Central Instrumentation Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, India
| |
Collapse
|
33
|
Mohammadi MR, Corbo C, Molinaro R, Lakey JRT. Biohybrid Nanoparticles to Negotiate with Biological Barriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902333. [PMID: 31250985 DOI: 10.1002/smll.201902333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Incapability of effective cross-talk with biological environments has partly impaired the in vivo functionality of nanoparticles (NPs). Homing, biodistribution, and function of NPs could be engineered through regulating their interactions with in vivo niches. Inspired by communications in biological systems, endowing a "biological identity" to synthetic NPs is one approach to control their biodistribution, and immunonegotiation profiles. This synthetic-biological combination is referred to as biohybrid NPs, which comprise both i) engineerable, readily producible, and trackable synthetic NPs as well as ii) biological moieties with the capability to cross-talk with immunological barriers. Here, the latest understanding on the in vivo interactions of NPs, biological barriers they face, and emerging methods for quantitative measurements of NPs' biodistribution are reviewed. Some key biomolecules that have emerged as negotiators with the immune system in the context of cancer and autoimmunity, and their inspirations on biohybrid NPs are introduced. Critical design considerations for efficient cross-talk between NPs and innate and adaptive immunity followed by hybridization methods are also discussed. Finally, clinical translation challenges and future perspectives regarding biohybrid NPs are discussed.
Collapse
Affiliation(s)
- M Rezaa Mohammadi
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Sue and Bill Gross Stem Cell Research Center, Irvine, CA, 92697, USA
- Department of Surgery and Biomedical Engineering, University of California, Irvine, CA, 92697, USA
| | - Claudia Corbo
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, MI, 20126, Italy
| | - Roberto Molinaro
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
- Department of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jonathan R T Lakey
- Department of Surgery and Biomedical Engineering, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
34
|
Mobaraki M, Abbasi R, Omidian Vandchali S, Ghaffari M, Moztarzadeh F, Mozafari M. Corneal Repair and Regeneration: Current Concepts and Future Directions. Front Bioeng Biotechnol 2019; 7:135. [PMID: 31245365 PMCID: PMC6579817 DOI: 10.3389/fbioe.2019.00135] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
The cornea is a unique tissue and the most powerful focusing element of the eye, known as a window to the eye. Infectious or non-infectious diseases might cause severe visual impairments that need medical intervention to restore patients' vision. The most prominent characteristics of the cornea are its mechanical strength and transparency, which are indeed the most important criteria considerations when reconstructing the injured cornea. Corneal strength comes from about 200 collagen lamellae which criss-cross the cornea in different directions and comprise nearly 90% of the thickness of the cornea. Regarding corneal transparency, the specific characteristics of the cornea include its immune and angiogenic privilege besides its limbus zone. On the other hand, angiogenic privilege involves several active cascades in which anti-angiogenic factors are produced to compensate for the enhanced production of proangiogenic factors after wound healing. Limbus of the cornea forms a border between the corneal and conjunctival epithelium, and its limbal stem cells (LSCs) are essential in maintenance and repair of the adult cornea through its support of corneal epithelial tissue repair and regeneration. As a result, the main factors which threaten the corneal clarity are inflammatory reactions, neovascularization, and limbal deficiency. In fact, the influx of inflammatory cells causes scar formation and destruction of the limbus zone. Current studies about wound healing treatment focus on corneal characteristics such as the immune response, angiogenesis, and cell signaling. In this review, studied topics related to wound healing and new approaches in cornea regeneration, which are mostly related to the criteria mentioned above, will be discussed.
Collapse
Affiliation(s)
- Mohammadmahdi Mobaraki
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Reza Abbasi
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sajjad Omidian Vandchali
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Maryam Ghaffari
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Fathollah Moztarzadeh
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Mukhija A, Kishore N. Thermodynamic insights into interaction of protein coated gold nanoclusters with DNA and influence of coating on drug binding. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Jeon J. Review of Therapeutic Applications of Radiolabeled Functional Nanomaterials. Int J Mol Sci 2019; 20:E2323. [PMID: 31083402 PMCID: PMC6539387 DOI: 10.3390/ijms20092323] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/10/2023] Open
Abstract
In the last two decades, various nanomaterials have attracted increasing attention in medical science owing to their unique physical and chemical characteristics. Incorporating radionuclides into conventionally used nanomaterials can confer useful additional properties compared to the original material. Therefore, various radionuclides have been used to synthesize functional nanomaterials for biomedical applications. In particular, several α- or β-emitter-labeled organic and inorganic nanoparticles have been extensively investigated for efficient and targeted cancer treatment. This article reviews recent progress in cancer therapy using radiolabeled nanomaterials including inorganic, polymeric, and carbon-based materials and liposomes. We first provide an overview of radiolabeling methods for preparing anticancer agents that have been investigated recently in preclinical studies. Next, we discuss the therapeutic applications and effectiveness of α- or β-emitter-incorporated nanomaterials in animal models and the emerging possibilities of these nanomaterials in cancer therapy.
Collapse
Affiliation(s)
- Jongho Jeon
- Department of Applied Chemistry, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
37
|
Son GH, Na YG, Huh HW, Wang M, Kim MK, Han MG, Byeon JJ, Lee HK, Cho CW. Systemic Design and Evaluation of Ticagrelor-Loaded Nanostructured Lipid Carriers for Enhancing Bioavailability and Antiplatelet Activity. Pharmaceutics 2019; 11:E222. [PMID: 31071977 PMCID: PMC6572397 DOI: 10.3390/pharmaceutics11050222] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022] Open
Abstract
Ticagrelor (TGL), a P2Y12 receptor antagonist, is classified as biopharmaceutics classification system (BCS) class IV drug due to its poor solubility and permeability, resulting in low oral bioavailability. Nanostructured lipid carriers (NLC) are an efficient delivery system for the improvement of bioavailability of BCS class IV drugs. Hence, we prepared TGL-loaded NLC (TGL-NLC) to enhance the oral bioavailability and antiplatelet activity of TGL with a systemic design approach. The optimized TGL-NLC with Box-Behnken design showed a small particle size of 87.6 nm and high encapsulation efficiency of 92.1%. Scanning electron microscope (SEM), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) were performed to investigate the characteristics of TGL-NLC. Furthermore, TGL-NLC exhibited biocompatible cytotoxicity against Caco-2 cells. Cellular uptake of TGL-NLC was 1.56-fold higher than that of raw TGL on Caco-2 cells. In pharmacokinetic study, the oral bioavailability of TGL-NLC was 254.99% higher than that of raw TGL. In addition, pharmacodynamic study demonstrated that the antiplatelet activity of TGL-NLC was superior to that of raw TGL, based on enhanced bioavailability of TGL-NLC. These results suggest that TGL-NLC can be applied for efficient oral absorption and antiplatelet activity of TGL.
Collapse
Affiliation(s)
- Gi-Ho Son
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
- Present affiliation: Korea United Pharmaceutical Co. Ltd., 25-23, Nojangongdan-gil. Jeondong-myeon, Sejong 30011, Korea.
| | - Young-Guk Na
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Hyun Wook Huh
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Miao Wang
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Min-Ki Kim
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Min-Gu Han
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jin-Ju Byeon
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Hong-Ki Lee
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Cheong-Weon Cho
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|
38
|
Bokare A, Takami A, Kim JH, Dong A, Chen A, Valerio R, Gunn S, Erogbogbo F. Herringbone-Patterned 3D-Printed Devices as Alternatives to Microfluidics for Reproducible Production of Lipid Polymer Hybrid Nanoparticles. ACS OMEGA 2019; 4:4650-4657. [PMID: 31459652 PMCID: PMC6648599 DOI: 10.1021/acsomega.9b00128] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/18/2019] [Indexed: 05/09/2023]
Abstract
Major barriers to the implementation of nanotechnology include reproducible synthesis and scalability. Batch solution phase methods do not appear to have the potential to overcome these barriers. Microfluidic methods have been investigated as a means to enable controllable and reproducible synthesis; however, the most popular constituent of microfluidics, polydimethylsiloxane, is ill-suited for mass production. Multi-inlet vortex mixers (MIVMs) have been proposed as a method for scalable nanoparticle production; however, the control and reproducibility of the nanoparticle is wanting. Here, we investigate the ability to improve the control and reproducibility of nanoparticles produced by using 3D printed MIVMs with herringbone patterns in the flow channels. We compare three methods, viz., microfluidic, MIVM, and herringbone-patterned MIVM methods, for the synthesis of lipid-polymer hybrid nanoparticles (LPHNPs). The 3D printed herringbone-patterned MIVM method resulted in the smallest LPHNPs with the most uniform size distribution and shows more reproducible results as compared to the other two methods. To elucidate the mechanism underlying these results, concentration slices and vorticity streamlines of mixing chambers have been analyzed for 3D printed herringbone-patterned MIVM devices. The results bode well for LPHNPs, a formulation widely investigated for its improved therapeutic efficacy and biocompatibility. The herringbone-patterned device also has the potential to be broadly applied to many solution phase processes that take advantage of efficient mixing. The methods discussed here have broad implications for reproducible production of nanoparticles with constituents such as siRNA, proteins, quantum dots, and inorganic materials.
Collapse
Affiliation(s)
- Anuja Bokare
- San Jose State University, 1 Washington Square, San
Jose, California 95112, United States
| | - Ashley Takami
- San Jose State University, 1 Washington Square, San
Jose, California 95112, United States
| | - Jung Han Kim
- San Jose State University, 1 Washington Square, San
Jose, California 95112, United States
| | - Alexis Dong
- San Jose State University, 1 Washington Square, San
Jose, California 95112, United States
| | - Alan Chen
- San Jose State University, 1 Washington Square, San
Jose, California 95112, United States
| | - Ronald Valerio
- San Jose State University, 1 Washington Square, San
Jose, California 95112, United States
| | - Steven Gunn
- San Jose State University, 1 Washington Square, San
Jose, California 95112, United States
| | - Folarin Erogbogbo
- San Jose State University, 1 Washington Square, San
Jose, California 95112, United States
| |
Collapse
|
39
|
Release Behavior of Folic Acid Grafted Hollow Hydroxyapatite as Drug Carrier. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/9562437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Based on the formation of carbodiimide compounds between carboxyl and primary amines, hollow microspheres arising from the folic acid (folate-FA) grafted onto the surface of the modified hydroxyapatite were successfully prepared. The hollow morphology and composition of the FA-grafted hydroxyapatite microspheres were confirmed by scanning electron microscopy (SEM) and other characterizations. Brunauer-Emmett-Teller (BET) assay revealed the specific surface area and average pore size of the microspheres were 34.58m2/g and 17.80 nm, respectively. As a drug carrier, the kinetic investigation of doxorubicin (DOX) loaded shows that the adsorbed behavior of drug on the adsorbent is more suitable to be described with pseudo-first-order model. Furthermore, the release rate can reach 83% at pH 5.7, which is greater than the release of 39% at pH 7.4, indicating an excellent performance of controlled drug release for response pH. The release mechanism of DOX coincides with Fickian diffusion as a result of Korsmeyer-Peppas model analysis and the release phenomena can be well explained by Fickian diffusion second law.
Collapse
|
40
|
Kazemzadeh H, Mozafari M. Fullerene-based delivery systems. Drug Discov Today 2019; 24:898-905. [PMID: 30703542 DOI: 10.1016/j.drudis.2019.01.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/12/2018] [Accepted: 01/22/2019] [Indexed: 12/21/2022]
Abstract
With the development of new drugs, there have been many attempts to explore innovative delivery routes. Targeted delivery systems are a desired solution designed to overcome the deficiency of routine methods. To transform this idea into reality, a wide range of nanoparticles has been proposed and studied. These nanoparticles should interact well with biological environments and pass through cell membranes to deliver therapeutic molecules. One of the pioneer classes of carbon-based nanoparticles for targeted delivery is the fullerenes. Fullerenes have a unique structure and possess suitable properties for interaction with the cellular environment. This short review concentrates on newly developed fullerene derivatives and their potential as advanced delivery systems for pharmaceutical applications.
Collapse
Affiliation(s)
- Houman Kazemzadeh
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
41
|
Marín-Caba L, Chariou PL, Pesquera C, Correa-Duarte MA, Steinmetz NF. Tobacco Mosaic Virus-Functionalized Mesoporous Silica Nanoparticles, a Wool-Ball-like Nanostructure for Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:203-211. [PMID: 30576145 DOI: 10.1021/acs.langmuir.8b03337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The design of versatile tools to improve cell targeting and drug delivery in medicine has become increasingly pertinent to nanobiotechnology. Biological and inorganic nanocarrier drug delivery systems are being explored, showing advantages and disadvantages in terms of cell targeting and specificity, cell internalization, efficient payload delivery, and safety profiles. Combining the properties of a biological coating on top of an inorganic nanocarrier, we hypothesize that this hybrid system would improve nanoparticle-cell interactions, resulting in enhanced cell targeting and uptake properties compared to the bare inorganic nanocarrier. Toward this goal, we engineered a hierarchical assembly featuring the functionalization of cargo-loaded mesoporous silica nanoparticles (MSNPs) with tobacco mosaic virus (TMV) as a biological coating. The MSNP functions as a delivery system because the porous structure enables high therapeutic payload capacity, and TMV serves as a biocompatible coating to enhance cell interactions. The resulting MSNP@TMV nanohybrids have a wool-ball-like appearance and demonstrate enhanced cell uptake, hence cargo delivery properties. The MSNP@TMV have potential for medical applications such as drug delivery, contrast agent imaging, and immunotherapy.
Collapse
Affiliation(s)
- Laura Marín-Caba
- Department of Physical Chemistry, Biomedical Research Center (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM) , Universidade de Vigo , 36310 Vigo , Spain
| | - Paul L Chariou
- Department of Biomedical Engineering , Case Western Reserve University Schools of Medicine and Engineering , Cleveland , Ohio 44106 , United States
- Department of NanoEngineering, Moores Cancer Center, Department of Radiology, Department of Bioengineering , University of California-San Diego , La Jolla , California 92039 , United States
| | - Carmen Pesquera
- Department of Chemistry and Processes and Resources Engineering, Superior Technical School of Industrial and Telecommunications , University of Cantabria (UC), Sanitary Research Insitute, (IDIVAL, Valdecilla) , Santander 39005 , Cantabria , Spain
| | - Miguel A Correa-Duarte
- Department of Physical Chemistry, Biomedical Research Center (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM) , Universidade de Vigo , 36310 Vigo , Spain
| | - Nicole F Steinmetz
- Department of Biomedical Engineering , Case Western Reserve University Schools of Medicine and Engineering , Cleveland , Ohio 44106 , United States
- Department of NanoEngineering, Moores Cancer Center, Department of Radiology, Department of Bioengineering , University of California-San Diego , La Jolla , California 92039 , United States
| |
Collapse
|
42
|
Popp L, Tran V, Patel R, Segatori L. Autophagic response to cellular exposure to titanium dioxide nanoparticles. Acta Biomater 2018; 79:354-363. [PMID: 30134208 DOI: 10.1016/j.actbio.2018.08.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 01/12/2023]
Abstract
Titanium dioxide is "generally regarded as safe" and titanium dioxide nanoparticles (TiO2 NPs) are used in a wide variety of consumer products. Cellular exposure to TiO2 NPs results in complex effects on cell physiology including induction of oxidative stress and impairment of lysosomal function, raising concerns about the impact of TiO2 NPs on biological systems. We investigated the effects of TiO2 NPs (15, 50, and 100 nm in diameter) on the lysosome-autophagy system, the main cellular catabolic pathway that mediates degradation of nanomaterials. Specifically, we monitored a comprehensive set of markers of the lysosome-autophagy system upon cell exposure to TiO2 NPs, ranging from transcriptional activation of genes required for the formation of autophagic vesicles to clearance of autophagic substrates. This study reveals that uptake of TiO2 NPs induces a response of the lysosome-autophagy system mediated by the transcription factor EB and consequent upregulation of the autophagic flux. Prolonged exposure to TiO2 NPs, however, was found to induce lysosomal dysfunction and membrane permeabilization, leading to a blockage in autophagic flux. Results from this study will inform the design of TiO2 NP based devices with specific autophagy-modulating properties.
Collapse
|
43
|
Affiliation(s)
- Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Preparation of Layer-by-Layer Films with Remarkably Different pH-Stability and Release Properties Using Dual Responsive Block Copolymer Micelles. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
45
|
Kunjiappan S, Panneerselvam T, Somasundaram B, Arunachalam S, Sankaranarayanan M, Parasuraman P. Preparation of liposomes encapsulated Epirubicin-gold nanoparticles for Tumor specific delivery and release. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aac9ec] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Kopan C, Tucker T, Alexander M, Mohammadi MR, Pone EJ, Lakey JRT. Approaches in Immunotherapy, Regenerative Medicine, and Bioengineering for Type 1 Diabetes. Front Immunol 2018; 9:1354. [PMID: 29963051 PMCID: PMC6011033 DOI: 10.3389/fimmu.2018.01354] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Recent advances on using immune and stem cells as two-pronged approaches for type 1 diabetes mellitus (T1DM) treatment show promise for advancement into clinical practice. As T1DM is thought to arise from autoimmune attack destroying pancreatic β-cells, increasing treatments that use biologics and cells to manipulate the immune system are achieving better results in pre-clinical and clinical studies. Increasingly, focus has shifted from small molecule drugs that suppress the immune system nonspecifically to more complex biologics that show enhanced efficacy due to their selectivity for specific types of immune cells. Approaches that seek to inhibit only autoreactive effector T cells or enhance the suppressive regulatory T cell subset are showing remarkable promise. These modern immune interventions are also enabling the transplantation of pancreatic islets or β-like cells derived from stem cells. While complete immune tolerance and body acceptance of grafted islets and cells is still challenging, bioengineering approaches that shield the implanted cells are also advancing. Integrating immunotherapy, stem cell-mediated β-cell or islet production and bioengineering to interface with the patient is expected to lead to a durable cure or pave the way for a clinical solution for T1DM.
Collapse
Affiliation(s)
- Christopher Kopan
- Department of Surgery, University of California Irvine, Irvine, CA, United States
| | - Tori Tucker
- Department of Cell and Molecular Biosciences, University of California Irvine, Irvine, CA, United States
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA, United States
| | - M. Rezaa Mohammadi
- Department of Chemical Engineering and Materials Science, University of California Irvine, Irvine, CA, United States
| | - Egest J. Pone
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, United States
| | - Jonathan Robert Todd Lakey
- Department of Surgery, University of California Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
47
|
Najdahmadi A, Lakey JRT, Botvinick E. Structural Characteristics and Diffusion Coefficient of Alginate Hydrogels Used for Cell Based Drug Delivery. ACTA ACUST UNITED AC 2018. [DOI: 10.1557/adv.2018.455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Abstract
Despite preliminary confidence on biosafety of polymer coated iron oxide nanoparticles (SPIONs), toxicity concerns have hampered their clinical translation. SPIONs toxicity is known to be due to catalytic activity of their surface and release of toxic Fe ions originating from the core biodegradation, leading to the generation of reactive oxygen species (ROS). Here, we hypothesized that a double-layer polymeric corona comprising of dextran as an interior, and polyethylene glycol (PEG) as an exterior layer better shields the core SPIONs. We found that ROS generation was cell specific and depended on SPIONs concentration, although it was reduced by sufficient PEG immobilization or 100 µM deferoxamine. 24 h following injection, PEGylated samples showed reduction of biodistribution in liver, heterogenous biodistribution profile in spleen, and no influence on NPs blood retention. Sufficient surface masking or administration of deferoxamine could be beneficial strategies in designing and clinical translation of future biomedical SPIONs.
Collapse
|
49
|
Ramazani Afarani Z, Sarvi MN, Akbari Alavijeh M. Modification of montmorillonite nanolayers as a pH-responsive carrier of biomolecules: Delivery of vitamin B12. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Zarrintaj P, Manouchehri S, Ahmadi Z, Saeb MR, Urbanska AM, Kaplan DL, Mozafari M. Agarose-based biomaterials for tissue engineering. Carbohydr Polym 2018; 187:66-84. [PMID: 29486846 DOI: 10.1016/j.carbpol.2018.01.060] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/28/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023]
Abstract
Agarose is a natural polysaccharide polymer having unique characteristics that give reason to consider it for tissue engineering applications. Special characteristics of agarose such as its excellent biocompatibility, thermo-reversible gelation behavior and physiochemical features support its use as a biomaterial for cell growth and/or controlled/localized drug delivery. The resemblance of this natural carbohydrate polymer to the extracellular matrix results in attractive features that bring about a strong interest in its usage in the field. The scope of this review is to summarize the extensive researches addressing agarose-based biomaterials in order to provide an in-depth understanding of its tissue engineering-related applications.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Saeed Manouchehri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Zahed Ahmadi
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran.
| | | | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|