1
|
Jamal HS, Raja R, Ahmed S, Yesiloz G, Ali SA. Immobilization of collagenase in inorganic hybrid nanoflowers with enhanced stability, proteolytic activity, and their anti-amyloid potential. Int J Biol Macromol 2024; 274:133114. [PMID: 38871102 DOI: 10.1016/j.ijbiomac.2024.133114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Organic-inorganic hybrid nanomaterials are considered as promising immobilization matrix for enzymes owing to their markedly enhanced stability and reusability. Herein, collagenase was chosen as a model enzyme to synthesize collagenase hybrid nanoflowers (Col-hNFs). Maximum collagenase activity (155.58 μmol min-1 L-1) and encapsulation yield (90 %) were observed in presence of Zn(II) ions at 0.05 mg/mL collagenase, 120 mM zinc chloride and PBS (pH 7.5). Synthesized Col-Zn-hNFs were extensively characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transform infrared (FTIR), circular dichroism (CD), fluorescence spectroscopy, dynamic light scattering (DLS) and zeta potential measurements. SEM images showed flower-like morphology with average size of 5.1 μm and zeta potential of -14.3 mV. Col-Zn-hNFs demonstrated superior relative activity across wide pH and temperature ranges, presence of organic solvents and surfactants as compared to its free form. Moreover, Col-Zn-hNFs exhibited excellent shelf life stability and favorable reusability. Col-Zn-hNFs showed the ability to suppress and eradicate fully developed insulin fibrils in vitro (IC50 = 2.8 and 6.2 μg/mL, respectively). This indicates a promising inhibitory potential of Col-Zn-hNFs against insulin amyloid fibrillation. The findings suggest that the utilization of Col-Zn-hNFs as a carrier matrix holds immense potential for immobilizing collagenase with improved catalytic properties and biomedical applications.
Collapse
Affiliation(s)
- Hafiza Sumaiyya Jamal
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Rameez Raja
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Shakil Ahmed
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Gurkan Yesiloz
- National Nanotechnology Research Center of Turkiye, Institute of Materials Science and Nanotechnology, Bilkent University-UNAM-Universiteler Mah, 06800 Cankaya, Ankara, Turkey
| | - Syed Abid Ali
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
2
|
Barati F, Hosseini F, Vafaee R, Sabouri Z, Ghadam P, Arab SS, Shadfar N, Piroozmand F. In silico approaches to investigate enzyme immobilization: a comprehensive systematic review. Phys Chem Chem Phys 2024; 26:5744-5761. [PMID: 38294035 DOI: 10.1039/d3cp03989g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Enzymes are popular catalysts with many applications, especially in industry. Biocatalyst usage on a large scale is facing some limitations, such as low operational stability, low recyclability, and high enzyme cost. Enzyme immobilization is a beneficial strategy to solve these problems. Bioinformatics tools can often correctly predict immobilization outcomes, resulting in a cost-effective experimental phase with the least time consumed. This study provides an overview of in silico methods predicting immobilization processes via a comprehensive systematic review of published articles till 11 December 2022. It also mentions the strengths and weaknesses of the processes and explains the computational analyses in each method that are required for immobilization assessment. In this regard, Web of Science and Scopus databases were screened to gain relevant publications. After screening the gathered documents (n = 3873), 60 articles were selected for the review. The selected papers have applied in silico procedures including only molecular dynamics (MD) simulations (n = 20), parallel tempering Monte Carlo (PTMC) and MD simulations (n = 3), MD and docking (n = 1), density functional theory (DFT) and MD (n = 1), only docking (n = 11), metal ion binding site prediction (MIB) server and docking (n = 2), docking and DFT (n = 1), docking and analysis of enzyme surfaces (n = 1), only DFT (n = 1), only MIB server (n = 2), analysis of an enzyme structure and surface (n = 12), rational design of immobilized derivatives (RDID) software (n = 3), and dissipative particle dynamics (DPD; n = 2). In most included studies (n = 51), enzyme immobilization was investigated experimentally in addition to in silico evaluation.
Collapse
Affiliation(s)
- Farzaneh Barati
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Fakhrisadat Hosseini
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Rayeheh Vafaee
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Sabouri
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Parinaz Ghadam
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Najmeh Shadfar
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Firoozeh Piroozmand
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Dadi S, Ocsoy I. Role of pretty nanoflowers as novel versatile analytical tools for sensing in biomedical and bioanalytical applications. SMART MEDICINE 2024; 3:e20230040. [PMID: 39188519 PMCID: PMC11236047 DOI: 10.1002/smmd.20230040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/24/2024] [Indexed: 08/28/2024]
Abstract
In recent years, an encouraging breakthrough in the synthesis of immobilized enzymes in flower-shaped called "organic-inorganic hybrid nanoflowers (hNFs)" with greatly enhanced catalytic activity and stability were reported. Although, these hNFs were discovered by accident, the enzymes exhibited highly enhanced catalytic activities and stabilities in the hNFs compared with the free and conventionally immobilized enzymes. Herein, we rationally utilized the catalytic activity of the hNFs for analytical applications. In this comprehensive review, we covered the design and use of the hNFs as novel versatile sensors for electrochemical, colorimetric/optical and immunosensors-based detection strategies in analytical perspective.
Collapse
Affiliation(s)
- Seyma Dadi
- Department of Nanotechnology EngineeringAbdullah Gül UniversityKayseriTurkey
| | - Ismail Ocsoy
- Department of Analytical ChemistryFaculty of PharmacyErciyes UniversityKayseriTurkey
| |
Collapse
|
4
|
Souza DES, Santos LMF, Freitas JPA, de Almeida LC, Santos JCB, de Souza RL, Pereira MM, Lima ÁS, Soares CMF. Experimental and Computational Analysis of Synthesis Conditions of Hybrid Nanoflowers for Lipase Immobilization. Molecules 2024; 29:628. [PMID: 38338371 PMCID: PMC10856756 DOI: 10.3390/molecules29030628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
This work presents a framework for evaluating hybrid nanoflowers using Burkholderia cepacia lipase. It was expanded on previous findings by testing lipase hybrid nanoflowers (hNF-lipase) formation over a wide range of pH values (5-9) and buffer concentrations (10-100 mM). The free enzyme activity was compared with that of hNF-lipase. The analysis, performed by molecular docking, described the effect of lipase interaction with copper ions. The morphological characterization of hNF-lipase was performed using scanning electron microscopy. Fourier Transform Infrared Spectroscopy performed the physical-chemical characterization. The results show that all hNF-lipase activity presented values higher than that of the free enzyme. Activity is higher at pH 7.4 and has the highest buffer concentration of 100 mM. Molecular docking analysis has been used to understand the effect of enzyme protonation on hNF-lipase formation and identify the main the main binding sites of the enzyme with copper ions. The hNF-lipase nanostructures show the shape of flowers in their micrographs from pH 6 to 8. The spectra of the nanoflowers present peaks typical of the amide regions I and II, current in lipase, and areas with P-O vibrations, confirming the presence of the phosphate group. Therefore, hNF-lipase is an efficient biocatalyst with increased catalytic activity, good nanostructure formation, and improved stability.
Collapse
Affiliation(s)
- Danivia Endi S. Souza
- Postgraduate Program Process Engineering, Tiradentes University (UNIT), Campus Farolandia, Aracaju 49032-490, Sergipe, Brazil; (D.E.S.S.); (L.C.d.A.); (J.C.B.S.); (R.L.d.S.)
| | - Lucas M. F. Santos
- Postgraduate Program Process Engineering, Tiradentes University (UNIT), Campus Farolandia, Aracaju 49032-490, Sergipe, Brazil; (D.E.S.S.); (L.C.d.A.); (J.C.B.S.); (R.L.d.S.)
| | - João P. A. Freitas
- Postgraduate Program Process Engineering, Tiradentes University (UNIT), Campus Farolandia, Aracaju 49032-490, Sergipe, Brazil; (D.E.S.S.); (L.C.d.A.); (J.C.B.S.); (R.L.d.S.)
| | - Lays C. de Almeida
- Postgraduate Program Process Engineering, Tiradentes University (UNIT), Campus Farolandia, Aracaju 49032-490, Sergipe, Brazil; (D.E.S.S.); (L.C.d.A.); (J.C.B.S.); (R.L.d.S.)
| | - Jefferson C. B. Santos
- Postgraduate Program Process Engineering, Tiradentes University (UNIT), Campus Farolandia, Aracaju 49032-490, Sergipe, Brazil; (D.E.S.S.); (L.C.d.A.); (J.C.B.S.); (R.L.d.S.)
| | - Ranyere Lucena de Souza
- Postgraduate Program Process Engineering, Tiradentes University (UNIT), Campus Farolandia, Aracaju 49032-490, Sergipe, Brazil; (D.E.S.S.); (L.C.d.A.); (J.C.B.S.); (R.L.d.S.)
- Institute of Technology and Research (ITP), Aracaju 49032-490, Sergipe, Brazil
| | - Matheus M. Pereira
- Department of Chemical Engineering, University of Coimbra, CIEPQPF, 3030-790 Coimbra, Portugal
| | - Álvaro S. Lima
- Postgraduate Program Chemical Engineering, Federal University of Bahia (UFBA), Campus Federação, Salvador 40210-630, Bahia, Brazil;
| | - Cleide M. F. Soares
- Postgraduate Program Process Engineering, Tiradentes University (UNIT), Campus Farolandia, Aracaju 49032-490, Sergipe, Brazil; (D.E.S.S.); (L.C.d.A.); (J.C.B.S.); (R.L.d.S.)
- Institute of Technology and Research (ITP), Aracaju 49032-490, Sergipe, Brazil
| |
Collapse
|
5
|
Mostafavi M, Poor MB, Habibi Z, Mohammadi M, Yousefi M. Hyperactivation of lipases by immobilization on superhydrophobic graphene quantum dots inorganic hybrid nanoflower. Int J Biol Macromol 2024; 254:127817. [PMID: 37918587 DOI: 10.1016/j.ijbiomac.2023.127817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Various nanoflowers are synthesized for enzyme immobilization. In order to increase the activity of nanoflowers, in this study, 3D flower-like structured organic-inorganic hybrid nanoflowers (hNFs) with various lipases Rhizomucor miehei lipase (RML), Candida antarctica lipase B (CALB), Humicola insolens lipase (HIL), Thermomyces lanuginosus lipase (TLL), Eversa® Transform 2.0 (ET) a genetically modified enzyme derived of TLL and graphene quantum dots (GQDs) were prepared and characterized.Lipase hNFs [lipase-(Cu/Co)3(PO4)2] and lipase@GQDs hNFs [lipase@GQDs-(Cu/Co)3(PO4)2] were straightforwardly prepared through mixing with metal ion (Cu2+or Co2+) aqueous solutions with or without GQDs. The ET@GQDs-(Cu)3(PO4)2 hNFs demonstrated 687 % higher activity than ET-(Cu)3(PO4)2 hNFs and 650 % higher activity than the free ET. Similar results were also observed with other lipase hybrid nanoflowers. For example, TLL@GQDs-(Cu)3(PO4)2 hNFs exhibited a 557 % higher activity than TLL-(Cu)3(PO4)2 hNFs and a 463 % higher activity than free TLL. Additionally, TLL@GQDs-(Co)3(PO4)2 hNFs showed a 141 % higher activity than TLL-(Co)3(PO4)2 hNFs and a 304 % higher activity than free TLL. Upon examining pH and thermal stability, it was revealed that lipase@GQDs hNFs exhibited higher activity compared to free lipase and other hNFs without GQDs. The effect of metal ions, enzyme concentrations and amount of GQDs on the morphology and enzyme activity of the lipase-hNFs was examined.
Collapse
Affiliation(s)
- Mostafa Mostafavi
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C., Tehran, Iran
| | - Mahtab Beihaghi Poor
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C., Tehran, Iran
| | - Zohreh Habibi
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C., Tehran, Iran.
| | - Mehdi Mohammadi
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Maryam Yousefi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
6
|
Liu S, Liu J, Wang Z, Wu Z, Wei Y, Liu P, Lan X, Liao Y, Lan P. In situ embedding of glucose oxidase in amorphous ZIF-7 with high catalytic activity and stability and mechanism investigation. Int J Biol Macromol 2023; 242:124806. [PMID: 37178879 DOI: 10.1016/j.ijbiomac.2023.124806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Glucose oxidase (GOx) has a great application potential in the determination of glucose concentration. However, its sensitivity to the environment and poor recyclability limited its broader application. Herein, with the assistance of DA-PEG-DA, a novel immobilized GOx based on amorphous Zn-MOFs (DA-PEG-DA/GOx@aZIF-7/PDA) was developed to impart excellent properties to the enzyme. SEM, TEM, XRD, and BET analyses confirmed that GOx was embedded in amorphous ZIF-7 with ~5 wt% loading. Compared with free GOx, DA-PEG-DA/GOx@aZIF-7/PDA exhibited enhanced stability, excellent reusability, and promising potential for glucose detection. After 10 repetitions, the catalytic activity of DA-PEG-DA/GOx@aZIF-7/PDA can maintain 95.53 % ± 3.16 %. In understanding the in situ embedding of GOx in ZIF-7, the interaction of zinc ion and benzimidazole with GOx was studied by using molecular docking and multi-spectral methods. Results showed that zinc ions and benzimidazole had multiple binding sites on the enzyme, which induced the accelerated synthesis of ZIF-7 around the enzyme. During binding, the structure of the enzyme changes, but such changes hardly affect the activity of the enzyme. This study provides not only a preparation strategy of immobilized enzyme with high activity, high stability, and low enzyme leakage rate for glucose detection, but also a more comprehensive understanding of the formation of immobilized enzymes using the in situ embedding strategy.
Collapse
Affiliation(s)
- Siyuan Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning, Guangxi 530006, PR China
| | - Jingxing Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning, Guangxi 530006, PR China
| | - Zefen Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China; Institute of Biological Manufacturing Technology Co. Ltd, Guangxi Institute of Industrial Technology, Nanning, Guangxi 530002, PR China
| | - Zhiqi Wu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning, Guangxi 530006, PR China
| | - Yiliang Wei
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning, Guangxi 530006, PR China
| | - Pengru Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning, Guangxi 530006, PR China
| | - Xiongdiao Lan
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning, Guangxi 530006, PR China.
| | - Yexin Liao
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning, Guangxi 530006, PR China
| | - Ping Lan
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning, Guangxi 530006, PR China.
| |
Collapse
|
7
|
Nanozymes and nanoflower: Physiochemical properties, mechanism and biomedical applications. Colloids Surf B Biointerfaces 2023; 225:113241. [PMID: 36893662 DOI: 10.1016/j.colsurfb.2023.113241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Natural enzymes possess several drawbacks which limits their application in industries, wastewater remediation and biomedical field. Therefore, in recent years researchers have developed enzyme mimicking nanomaterials and enzymatic hybrid nanoflower which are alternatives of enzyme. Nanozymes and organic inorganic hybrid nanoflower have been developed which mimics natural enzymes functionalities such as diverse enzyme mimicking activities, enhanced catalytic activities, low cost, ease of preparation, stability and biocompatibility. Nanozymes include metal and metal oxide nanoparticles mimicking oxidases, peroxidases, superoxide dismutase and catalases while enzymatic and non-enzymatic biomolecules were used for preparing hybrid nanoflower. In this review nanozymes and hybrid nanoflower have been compared in terms of physiochemical properties, common synthetic routes, mechanism of action, modification, green synthesis and application in the field of disease diagnosis, imaging, environmental remediation and disease treatment. We also address the current challenges facing nanozyme and hybrid nanoflower research and the possible way to fulfil their potential in future.
Collapse
|
8
|
Mostafavi M, Mahmoodzadeh K, Habibi Z, Yousefi M, Brask J, Mohammadi M. Immobilization of Bacillus amyloliquefaciens protease "Neutrase" as hybrid enzyme inorganic nanoflower particles: A new biocatalyst for aldol-type and multicomponent reactions. Int J Biol Macromol 2023; 230:123140. [PMID: 36621745 DOI: 10.1016/j.ijbiomac.2023.123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Organic-inorganic hybrid nanoflowers (hNFs) with commercial protease "Neutrase" is proposed and characterized as efficient and green biocatalysts for promiscuous catalysis in aldol-type and multicomponent reactions. Neutrase hNFs [Neutrase-(Cu/Ca/Co/Mn)3(PO4)2] are straightforwardly prepared through mixing metal ion (Cu2+, Ca2+, Co2+ or Mn2+) aqueous solutions with Neutrase in phosphate buffer (pH 7.4, 10 mM) resulting in precipitation (3 days). The hNFs were characterized by various techniques including scanning electron microscopy (SEM), energy dispersive X-ray (EDX), element mapping, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). In SEM images, the metal-Neutrase complexes revealed flower-like or granular structures after hybridization. The effect of metal ions and enzyme concentrations on the morphology and enzyme activity of the Neutrase-hNFs was examined. The synthesized Neutrase-Mn hNFs showed superior activity and stability compared to free Neutrase. Traditional organic CC coupling reactions such as aldol condensation, decarboxylative aldol, Knoevenagel, Hantzsch-type reactions and synthesis of 4H-pyran derivatives were used to test the generality and scope of Neutrase promiscuity, while optimizing conditions for the Neutrase-Mn hNF biocatalyst. Briefly, Neutrase-Mn3(PO4)2 hNFs showed excellent enzyme activity, stability and reusability, qualifying as effective reusable catalysts for coupling reactions under mild conditions.
Collapse
Affiliation(s)
- Mostafa Mostafavi
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C., Tehran, Iran
| | - Kazem Mahmoodzadeh
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C., Tehran, Iran
| | - Zohreh Habibi
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C., Tehran, Iran.
| | - Maryam Yousefi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Jesper Brask
- Novozymes A/S, Krogshøjvej 36, 2880, Bagsværd, Copenhagen, Denmark
| | - Mehdi Mohammadi
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
9
|
Mineralization of Lipase from Thermomyces lanuginosus Immobilized on Methacrylate Beads Bearing Octadecyl Groups to Improve Enzyme Features. Catalysts 2022. [DOI: 10.3390/catal12121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Lipase from Thermomyces lanuginosus (TLL) has been immobilized on Purolite Lifetech® ECR8806F (viz. methacrylate macroporous resin containing octadecyl groups, designated as Purolite C18-TLL), and the enzyme performance has been compared to that of the enzyme immobilized on octyl-agarose, designated as agarose C8-TLL. The hydrolytic activity versus p-nitrophenol butyrate decreased significantly, and to a lower extent versus S-methyl mandelate (more than twofold), while versus triacetin and R-methyl mandelate, the enzyme activity was higher for the biocatalyst prepared using Purolite C18 (up to almost five-fold). Regarding the enzyme stability, Purolite C18-TLL was significantly more stable than the agarose C8-TLL. Next, the biocatalysts were mineralized using zinc, copper or cobalt phosphates. Mineralization increased the hydrolytic activity of Purolite C18-TLL versus triacetin and R-methyl mandelate, while this activity decreased very significantly versus the S-isomer, while the effects using agarose C8-TLL were more diverse (hydrolytic activity increase or decrease was dependent on the metal and substrate). The zinc salt treatment increased the stability of both biocatalysts, but with a lower impact for Purolite C18-TLL than for agarose-C8-TLL. On the contrary, the copper and cobalt salt treatments decreased enzyme stability, but more intensively using Purolite C18-TLL. The results show that even using enzymes immobilized following the same strategy, the differences in the enzyme conformation cause mineralization to have diverse effects on enzyme stability, hydrolytic activity, and specificity.
Collapse
|
10
|
Lu CH, Chen CC, Yu CS, Liu YY, Liu JJ, Wei ST, Lin YF. MIB2: metal ion-binding site prediction and modeling server. Bioinformatics 2022; 38:4428-4429. [PMID: 35904542 DOI: 10.1093/bioinformatics/btac534] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/26/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION MIB2 (metal ion-binding) attempts to overcome the limitation of structure-based prediction approaches, with many proteins lacking a solved structure. MIB2 also offers more accurate prediction performance and more metal ion types. RESULTS MIB2 utilizes both the (PS)2 method and the AlphaFold Protein Structure Database to acquire predicted structures to perform metal ion docking and predict binding residues. MIB2 offers marked improvements over MIB by collecting more MIB residue templates and using the metal ion type-specific scoring function. It offers a total of 18 types of metal ions for binding site predictions. AVAILABILITY AND IMPLEMENTATION Freely available on the web at http://bioinfo.cmu.edu.tw/MIB2/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chih-Hao Lu
- The Ph.D. Program of Biotechnology and Biomedical industry, China Medical University, Taichung 404333, Taiwan.,Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chin-Sheng Yu
- Department of Information Engineering and Computer Science, Feng Chia University, Taichung 407102, Taiwan
| | - Yen-Yi Liu
- Department of Public Health, China Medical University, Taichung 406040, Taiwan
| | - Jia-Jun Liu
- The Ph.D. Program of Biotechnology and Biomedical industry, China Medical University, Taichung 404333, Taiwan
| | - Sung-Tai Wei
- Department of Neurosurgery, China Medical University Hospital, Taichung 404332, Taiwan
| | - Yu-Feng Lin
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
11
|
Xiang X, Xiong Y, Zhang Q, Lei H, Liu K, Wang S. Ionic Liquids Modified Cu3(PO4)2 Hybrid Nanoflower for Dehydrogenase Immobilization by Biomimetic Mineralization. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Bolivar JM, Woodley JM, Fernandez-Lafuente R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem Soc Rev 2022; 51:6251-6290. [PMID: 35838107 DOI: 10.1039/d2cs00083k] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzyme immobilization has been developing since the 1960s and although many industrial biocatalytic processes use the technology to improve enzyme performance, still today we are far from full exploitation of the field. One clear reason is that many evaluate immobilization based on only a few experiments that are not always well-designed. In contrast to many other reviews on the subject, here we highlight the pitfalls of using incorrectly designed immobilization protocols and explain why in many cases sub-optimal results are obtained. We also describe solutions to overcome these challenges and come to the conclusion that recent developments in material science, bioprocess engineering and protein science continue to open new opportunities for the future. In this way, enzyme immobilization, far from being a mature discipline, remains as a subject of high interest and where intense research is still necessary to take full advantage of the possibilities.
Collapse
Affiliation(s)
- Juan M Bolivar
- FQPIMA group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, Madrid 28049, Spain. .,Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Improvement in the Environmental Stability of Haloalkane Dehalogenase with Self-Assembly Directed Nano-Hybrid with Iron Phosphate. Catalysts 2022. [DOI: 10.3390/catal12080825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Haloalkane dehalogenase (DhaA) catalyzes the hydrolysis of halogenated compounds through the cleavage of carbon halogen bonds. However, the low activity, poor environmental stability, and difficult recycling of free DhaA greatly increases the economic cost of practical application. Inspired by the organic–inorganic hybrid system, an iron-based hybrid nanocomposite biocatalyst FeHN@DhaA is successfully constructed to enhance its environmental tolerability. A series of characterization methods demonstrate that the synthesized enzyme–metal iron complexes exhibit granular nanostructures with good crystallinity. Under optimized conditions, the activity recovery and the effective encapsulation yield of FeHN@DhaA are 138.54% and 87.21%, respectively. Moreover, it not only exhibits excellent immobilized enzymatic properties but also reveals better tolerance to extreme acid, and is alkali compared with the free DhaA. In addition, the immobilized enzyme FeHN@DhaA can be easily recovered and has a satisfactory reusability, retaining 57.8% of relative activity after five reaction cycles. The results of this study might present an alternative immobilized DhaA-based clean biotechnology for the decontamination of organochlorine pollutants.
Collapse
|
14
|
Tuning Immobilized Commercial Lipase Preparations Features by Simple Treatment with Metallic Phosphate Salts. Molecules 2022; 27:molecules27144486. [PMID: 35889359 PMCID: PMC9320038 DOI: 10.3390/molecules27144486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Four commercial immobilized lipases biocatalysts have been submitted to modifications with different metal (zinc, cobalt or copper) phosphates to check the effects of this modification on enzyme features. The lipase preparations were Lipozyme®TL (TLL-IM) (lipase from Thermomyces lanuginose), Lipozyme®435 (L435) (lipase B from Candida antarctica), Lipozyme®RM (RML-IM), and LipuraSelect (LS-IM) (both from lipase from Rhizomucor miehei). The modifications greatly altered enzyme specificity, increasing the activity versus some substrates (e.g., TLL-IM modified with zinc phosphate in hydrolysis of triacetin) while decreasing the activity versus other substrates (the same preparation in activity versus R- or S- methyl mandelate). Enantiospecificity was also drastically altered after these modifications, e.g., LS-IM increased the activity versus the R isomer while decreasing the activity versus the S isomer when treated with copper phosphate. Regarding the enzyme stability, it was significantly improved using octyl-agarose-lipases. Using all these commercial biocatalysts, no significant positive effects were found; in fact, a decrease in enzyme stability was usually detected. The results point towards the possibility of a battery of biocatalysts, including many different metal phosphates and immobilization protocols, being a good opportunity to tune enzyme features, increasing the possibilities of having biocatalysts that may be suitable for a specific process.
Collapse
|
15
|
Guimarães JR, Carballares D, Rocha-Martin J, Tardioli PW, Fernandez-Lafuente R. Stabilization of immobilized lipases by treatment with metallic phosphate salts. Int J Biol Macromol 2022; 213:43-54. [DOI: 10.1016/j.ijbiomac.2022.05.167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/10/2023]
|
16
|
Saikia J, Bhat VT, Potnuru LR, Redkar AS, Agarwal V, Ramakrishnan V. Minimalist De Novo Design of an Artificial Enzyme. ACS OMEGA 2022; 7:19131-19140. [PMID: 35721939 PMCID: PMC9202009 DOI: 10.1021/acsomega.1c07075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
We employed a reductionist approach in designing the first heterochiral tripeptide that forms a robust heterogeneous short peptide catalyst similar to the "histidine brace" active site of lytic polysaccharide monooxygenases. The histidine brace is a conserved divalent copper ion-binding motif that comprises two histidine side chains and an amino group to create the T-shaped 3N geometry at the reaction center. The geometry parameters, including a large twist angle (73°) between the two imidazole rings of the model complex, are identical to those of native lytic polysaccharide monooxygenases (72.61°). The complex was synthesized and characterized as a structural and functional mimic of the histidine brace. UV-vis, vis-circular dichroism, Raman, and electron paramagnetic resonance spectroscopic analyses suggest a distorted square-pyramidal geometry with a 3N coordination at pH 7. Solution- and solid-state NMR results further confirm the 3N coordination in the copper center of the complex. The complex is pH-dependent and could catalyze the oxidation of benzyl alcohol in water to benzaldehyde with yields up to 82% in 3 h at pH 7 and above at 40 °C. The catalyst achieved 100% selectivity for benzaldehyde compared to conventional copper catalysis. The design of such a minimalist building block for functional soft materials with a pH switch can be a stepping stone in addressing needs for a cleaner and sustainable future catalyst.
Collapse
Affiliation(s)
- Jahnu Saikia
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
| | - Venugopal T. Bhat
- Organic
Synthesis and Catalysis Laboratory SRM Research Institute and Department
of Chemistry SRM Institute of Science and Technology, Kattankulathur 603203, Tamilnadu, India
| | - Lokeswara Rao Potnuru
- TIFR
Centre for Interdisciplinary Sciences, Tata
Institute of Fundamental Research Hyderabad, Hyderabad 500107, India
| | - Amay S. Redkar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
| | - Vipin Agarwal
- TIFR
Centre for Interdisciplinary Sciences, Tata
Institute of Fundamental Research Hyderabad, Hyderabad 500107, India
| | - Vibin Ramakrishnan
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
17
|
T.sriwong K, Matsuda T. Recent Advances in Enzyme Immobilization Utilizing Nanotechnology for Biocatalysis. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kotchakorn T.sriwong
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Tomoko Matsuda
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
18
|
Development of Hybrid DNA-Copper Phosphate Nanoflowers as Peroxidase Enzyme Mimics and for Colorimetric Sensing of Phenol. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Ma X, Chen Z, Han J, Zhou Y, Mao Y, Li C, Wang L, Wang Y. Facile preparation of amorphous cobalt phosphate as inorganic carrier for direct separation and immobilization of his-tagged β-glucosidase from cell lysate. NEW J CHEM 2022. [DOI: 10.1039/d2nj01148d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present work was aimed to develop a facile method to fabricate solid support for the separation and immobilization of his-tagged enzymes directly from cell lysate without pre-purification of the enzymes.
Collapse
Affiliation(s)
- Xinnan Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Zhili Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Juan Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212012, China
| | - Yanli Mao
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467036, Henan, China
| | - Chunmei Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| |
Collapse
|
20
|
Nano-immobilization of PETase enzyme for enhanced polyethylene terephthalate biodegradation. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108205] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Salvi HM, Yadav GD. Organic-inorganic epoxide hydrolase hybrid nanoflowers with enhanced catalytic activity: Hydrolysis of styrene oxide to 1-phenyl-1,2-ethanediol. J Biotechnol 2021; 341:113-120. [PMID: 34536457 DOI: 10.1016/j.jbiotec.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 01/09/2023]
Abstract
Epoxide hydrolases are ubiquitous in nature and are utilized to catalyze the cofactor-independent hydrolysis of epoxides to their corresponding diols. These enzymes have tremendous potential and have been applied in the synthesis of bulk and fine chemical industry and utilized as chiral building blocks. Herein, we report a green, facile, and economical method for immobilization of epoxide hydrolase based on biomimetic mineralization. The organic-inorganic hybrid nanoflowers have received tremendous attention due to their higher catalytic activity and stability. The nanoflowers were synthesized, with the organic component being enzyme epoxide hydrolase and the inorganic component being Ca2+ ions. A unique hierarchical flower-like spherical structure with hundreds of spiked petals was observed. The synthesized nanoflowers were applied for styrene oxide hydrolysis, producing 1-phenyl-1,2-ethanediol. Further, the factors influencing the morphology, catalytic activity, and stability studies were performed to study the activity recovery of the synthesized organic-inorganic hybrid epoxide hydrolase nanoflowers. The findings will have interesting applications.
Collapse
Affiliation(s)
- Harshada M Salvi
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai 400019, India.
| | - Ganapati D Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai 400019, India.
| |
Collapse
|
22
|
Bhapkar S, Kumbhar N, Sharma P, Jagtap S, Gacche R, Barvkar VT, Sonune D, Sonawane KD, Jadhav U. Self-assembly of soybean peroxidase nanohybrid for activity enhancement and dye decolorization: experimental and computational studies. J Biomol Struct Dyn 2021; 40:12739-12749. [PMID: 34550842 DOI: 10.1080/07391102.2021.1975566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/29/2021] [Indexed: 12/27/2022]
Abstract
The soybean peroxidase (SBP) mediated nanohybrid [SBP-Cu3(PO4)2·3H2O] synthesis was carried out in the present study. The scanning electron microscopy (SEM) analysis showed a characteristic flower-like hierarchical structure of the SBP-nanohybrid. The mechanism of SBP-nanohybrid formation was elucidated using computational approaches. The predicted Cu2+ binding sites followed by molecular docking studies showed the two lowest energy (-4.4 kcal/mol and -3.56 kcal/mol) Cu2+ binding sites. These two binding sites are located at the opposite position and might be involved in the formation of SBP-nanohybrid assemblies. Further, these sites are different than the catalytic active site pocket of SBP, and may facilitate more substrate catalysis. Obtained computational results were confirmed by in-vitro guaiacol oxidations studies using SBP-nanohybrid. The effect of various parameters on SBP-nanohybrid activity was studied. The pH 7.2 was found optimum for SBP-nanohybrid activity. The enzyme activity increased with an increase in temperature up to 50 °C temperature and then decreased with an increase in temperature. Around ∼138% enhanced activity was recorded using SBP-nanohybrid compared to crude SBP. Also, the SBP-nanohybrid showed around 95% decolorization of methylene blue (MB) in 1 h and the MB degradation was confirmed by high-pressure liquid chromatography analysis (HPLC).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sunil Bhapkar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Navanath Kumbhar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Praful Sharma
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Shweta Jagtap
- Department of Instrumentation Science, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Rajesh Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra, India
| | | | - Kailas D Sonawane
- Department of Biochemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Umesh Jadhav
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
23
|
Dube S, Rawtani D. Understanding intricacies of bioinspired organic-inorganic hybrid nanoflowers: A quest to achieve enhanced biomolecules immobilization for biocatalytic, biosensing and bioremediation applications. Adv Colloid Interface Sci 2021; 295:102484. [PMID: 34358991 DOI: 10.1016/j.cis.2021.102484] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023]
Abstract
The immobilization of biomolecules has been a subject of interest for scientists for a long time. The organic-inorganic hybrid nanoflowers are a new class of nanostructures that act as a host platform for the immobilization of such biomolecules. It provides better practical applicability to these functional biomolecules while also providing superior activity and reusability when catalysis is involved. These nanostructures have a versatile and straightforward synthesis process and also exhibit enzyme mimicking activity in many cases. However, this facile synthesis involves many intricacies that require in-depth analysis to fully attain its potential as an immobilization technique. A complete account of all the factors involving the synthesis process optimisation is essential to be studied to make it commercially viable. This paper explores all the different aspects of hybrid nanoflowers which sets them apart from the conventional immobilization techniques while also giving an overview of its wide range of applications in industries.
Collapse
|
24
|
Tacias-Pascacio VG, Morellon-Sterling R, Castañeda-Valbuena D, Berenguer-Murcia Á, Kamli MR, Tavano O, Fernandez-Lafuente R. Immobilization of papain: A review. Int J Biol Macromol 2021; 188:94-113. [PMID: 34375660 DOI: 10.1016/j.ijbiomac.2021.08.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Papain is a cysteine protease from papaya, with many applications due to its broad specificity. This paper reviews for first time the immobilization of papain on different supports (organic, inorganic or hybrid supports) presenting some of the features of the utilized immobilization strategies (e.g., epoxide, glutaraldehyde, genipin, glyoxyl for covalent immobilization). Special focus is placed on the preparation of magnetic biocatalysts, which will permit the simple recovery of the biocatalyst even if the medium is a suspension. Problems specific to the immobilization of proteases (e.g., steric problems when hydrolyzing large proteins) are also defined. The benefits of a proper immobilization (enzyme stabilization, widening of the operation window) are discussed, together with some artifacts that may suggest an enzyme stabilization that may be unrelated to enzyme rigidification.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Roberto Morellon-Sterling
- Departamento de Biocatálisis. ICP-CSIC./Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain; Student of Departamento de Biología Molecular, Universidad Autónoma de Madrid, Darwin 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain
| | - Daniel Castañeda-Valbuena
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddad 21589, Saudi Arabia; Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddad 21589, Saudi Arabia
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC./Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain; Center of Excellence in Bionanoscience Research, External advisory board, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
25
|
Shi Y, Ding X, Cao Y, Zhou H, Yu W, Liu M, Yin J, Liu H, Wang J, Huang C, Gong C, Wei H, Zhao G. Preparation and application of quick hemostatic gauze based on biomimetic mineralized thrombin. Biomater Sci 2021; 9:6098-6107. [PMID: 34355714 DOI: 10.1039/d1bm00917f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Thrombin is a serine protease known as activated coagulation factor II and is primarily applied as an effective local hemostatic agent. However, its clinical application is hindered by drawbacks, such as high sensitivity to the surrounding environment, instability and poor storage stability, easy inactivation, and low bioavailability. The biological functions of biomacromolecules in harsh environments can be preserved through biomineralization. Despite the success of biomimetic mineralization, limited consideration has been given to the mineral-based methods and the effect of various metal ions on enzyme activity. To explore an efficient technique for biomimetic mineralized thrombin, six kinds of ion/thrombin hybrid microflowers and two kinds of thrombin/MOF were synthesized in this work. The results showed that Zn-HNFs-G exhibits good hemostatic effect and maintains high enzymatic activity when exposed to high-temperature conditions. Meanwhile, Fe-HNFs-G, Thrombin@ZIF-8-G and Thrombin@MAF-7-G possess negligible enzyme protection.
Collapse
Affiliation(s)
- Yuting Shi
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. and State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Xiamen, 361101, P. R. China
| | - Xiaoquan Ding
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou 730000, P. R. China
| | - Yufei Cao
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Haicun Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, P. R. China
| | - Wenwen Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, P. R. China
| | - Mingsheng Liu
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Juanjuan Yin
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Hongbin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, P. R. China
| | - Jingjing Wang
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Xiamen, 361101, P. R. China
| | - Congshu Huang
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Xiamen, 361101, P. R. China
| | - Chenliang Gong
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Hua Wei
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Guanghui Zhao
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
26
|
Tavernini L, Romero O, Aburto C, López-Gallego F, Illanes A, Wilson L. Development of a Hybrid Bioinorganic Nanobiocatalyst: Remarkable Impact of the Immobilization Conditions on Activity and Stability of β-Galactosidase. Molecules 2021; 26:molecules26144152. [PMID: 34299429 PMCID: PMC8303607 DOI: 10.3390/molecules26144152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/15/2023] Open
Abstract
Hybrid bioinorganic biocatalysts have received much attention due to their simple synthesis, high efficiency, and structural features that favor enzyme activity and stability. The present work introduces a biomineralization strategy for the formation of hybrid nanocrystals from β-galactosidase. The effects of the immobilization conditions were studied, identifying the important effect of metal ions and pH on the immobilization yield and the recovered activity. For a deeper understanding of the biomineralization process, an in silico study was carried out to identify the ion binding sites at the different conditions. The selected β-galactosidase nanocrystals showed high specific activity (35,000 IU/g biocatalyst) and remarkable thermal stability with a half-life 11 times higher than the soluble enzyme. The nanobiocatalyst was successfully tested for the synthesis of galacto-oligosaccharides, achieving an outstanding performance, showing no signs of diffusional limitations. Thus, a new, simple, biocompatible and inexpensive nanobiocatalyst was produced with high enzyme recovery (82%), exhibiting high specific activity and high stability, with promising industrial applications.
Collapse
Affiliation(s)
- Luigi Tavernini
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
| | - Oscar Romero
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
- Bioprocess Engineering and Applied Biocatalysis Group, Department of Chemical Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (O.R.); (L.W.)
| | - Carla Aburto
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
| | - Fernando López-Gallego
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain;
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Andrés Illanes
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
| | - Lorena Wilson
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
- Correspondence: (O.R.); (L.W.)
| |
Collapse
|
27
|
Al-Maqdi KA, Bilal M, Alzamly A, Iqbal HMN, Shah I, Ashraf SS. Enzyme-Loaded Flower-Shaped Nanomaterials: A Versatile Platform with Biosensing, Biocatalytic, and Environmental Promise. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1460. [PMID: 34072882 PMCID: PMC8227841 DOI: 10.3390/nano11061460] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023]
Abstract
As a result of their unique structural and multifunctional characteristics, organic-inorganic hybrid nanoflowers (hNFs), a newly developed class of flower-like, well-structured and well-oriented materials has gained significant attention. The structural attributes along with the surface-engineered functional entities of hNFs, e.g., their size, shape, surface orientation, structural integrity, stability under reactive environments, enzyme stabilizing capability, and organic-inorganic ratio, all significantly contribute to and determine their applications. Although hNFs are still in their infancy and in the early stage of robust development, the recent hike in biotechnology at large and nanotechnology in particular is making hNFs a versatile platform for constructing enzyme-loaded/immobilized structures for different applications. For instance, detection- and sensing-based applications, environmental- and sustainability-based applications, and biocatalytic and biotransformation applications are of supreme interest. Considering the above points, herein we reviewed current advances in multifunctional hNFs, with particular emphasis on (1) critical factors, (2) different metal/non-metal-based synthesizing processes (i.e., (i) copper-based hNFs, (ii) calcium-based hNFs, (iii) manganese-based hNFs, (iv) zinc-based hNFs, (v) cobalt-based hNFs, (vi) iron-based hNFs, (vii) multi-metal-based hNFs, and (viii) non-metal-based hNFs), and (3) their applications. Moreover, the interfacial mechanism involved in hNF development is also discussed considering the following three critical points: (1) the combination of metal ions and organic matter, (2) petal formation, and (3) the generation of hNFs. In summary, the literature given herein could be used to engineer hNFs for multipurpose applications in the biosensing, biocatalysis, and other environmental sectors.
Collapse
Affiliation(s)
- Khadega A. Al-Maqdi
- Department of Chemistry, College of Science, UAE University, Al Ain P. O. Box 15551, United Arab Emirates; (K.A.A.-M.); (A.A.)
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Ahmed Alzamly
- Department of Chemistry, College of Science, UAE University, Al Ain P. O. Box 15551, United Arab Emirates; (K.A.A.-M.); (A.A.)
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico;
| | - Iltaf Shah
- Department of Chemistry, College of Science, UAE University, Al Ain P. O. Box 15551, United Arab Emirates; (K.A.A.-M.); (A.A.)
| | - Syed Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi P. O. Box 127788, United Arab Emirates
| |
Collapse
|
28
|
Kaur H, Bari NK, Garg A, Sinha S. Protein morphology drives the structure and catalytic activity of bio-inorganic hybrids. Int J Biol Macromol 2021; 176:106-116. [PMID: 33556398 DOI: 10.1016/j.ijbiomac.2021.01.217] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 11/26/2022]
Abstract
Bio-hybrid materials have received a lot of attention in view of their bio-mimicking nature. One such biomimetic material with catalytic activity are the protein derived floral nanohybrid. Copper phosphate coordinated flakes can be curated to distinct floral morphology using proteins. Structurally two different proteins with similar size and with no known enzymatic activity are used to evaluate the role of protein structure and morphology, on the structure-activity relationship of the developed hybrid nanoflowers. Globular protein BSA and bacterial microcompartment domain protein PduBB' are selected. PduBB' because of self-assembling nature forms extended sheets, whereas BSA lacks specific assembly. The developed hybrid NFs differ in their morphology and also in their mimicry as a biological catalyst. The present investigation highlights the importance of the quaternary structure of proteins in tailoring the structure and function of the h-NFs. The results in this manuscript will motivate and guide designing, engineering and selection of glue material for fabricating biomacromolecule derived biohybrid material to mimic natural enzymes of potential industrial application.
Collapse
Affiliation(s)
- Harpreet Kaur
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab 140306, India
| | - Naimat K Bari
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab 140306, India
| | - Ankush Garg
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab 140306, India
| | - Sharmistha Sinha
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab 140306, India.
| |
Collapse
|
29
|
T Sriwong K, Koesoema AA, Matsuda T. Organic-inorganic nanocrystal reductase to promote green asymmetric synthesis. RSC Adv 2020; 10:30953-30960. [PMID: 35516042 PMCID: PMC9056328 DOI: 10.1039/d0ra03160g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/11/2020] [Indexed: 11/21/2022] Open
Abstract
An acetophenone reductase from Geotrichum candidum (GcAPRD) was immobilized by the organic–inorganic nanocrystal method. The GcAPRD nanocrystal presented improved stability and recyclability compared with those of the free GcAPRD. Moreover, the GcAPRD nanocrystal reduced broad kinds of ketones with excellent enantioselectivities to produce beneficial chiral alcohols such as (S)-1-(3′,4′-dichlorophenyl)ethanol with >99% yield and >99% ee. The robust and versatile properties of the GcAPRD nanocrystal demonstrated an approach to promote green asymmetric synthesis and sustainable chemistry. Geotrichum candidum acetophenone reductase (GcAPRD) nanocrystal reduces broad kinds of ketones to their corresponding (S)-alcohols with excellent enantioselectivity.![]()
Collapse
Affiliation(s)
- Kotchakorn T Sriwong
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8501 Japan +81-45-924-5757 +81-45-924-5757
| | - Afifa Ayu Koesoema
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8501 Japan +81-45-924-5757 +81-45-924-5757
| | - Tomoko Matsuda
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8501 Japan +81-45-924-5757 +81-45-924-5757
| |
Collapse
|
30
|
Li Y, Wu H, Su Z. Enzyme-based hybrid nanoflowers with high performances for biocatalytic, biomedical, and environmental applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213342] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Wen H, Zhang L, Du Y, Wang Z, Jiang Y, Bian H, Cui J, Jia S. Bimetal based inorganic-carbonic anhydrase hybrid hydrogel membrane for CO2 capture. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Improved biodegradation of polyvinyl alcohol by hybrid nanoflowers of degrading enzymes from Bacillus niacini. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0547-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Li C, Zhao J, Zhang Z, Jiang Y, Bilal M, Jiang Y, Jia S, Cui J. Self-assembly of activated lipase hybrid nanoflowers with superior activity and enhanced stability. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107582] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Talens-Perales D, Fabra MJ, Martínez-Argente L, Marín-Navarro J, Polaina J. Recyclable thermophilic hybrid protein-inorganic nanoflowers for the hydrolysis of milk lactose. Int J Biol Macromol 2020; 151:602-608. [PMID: 32061698 DOI: 10.1016/j.ijbiomac.2020.02.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Thermostable β-galactosidase (TmLac) has been immobilized as hybrid inorganic-protein nanoflowers using salts of Cu2+, Mn2+, Zn2+, Co2+ and Ca2+ as the inorganic component. The incorporation efficiency of enzyme into the nanoflowers was higher than 95% for a protein concentration of 0.05 mg/mL. The structure, activity and recyclability of the nanoflowers with different chemical composition were analyzed. Ca2+, Mn2+ and Co2+ nanoflowers showed a level of lactase activity equivalent to their same content of free enzyme. Cu2+nanoflowers showed only marginal enzyme activity in agreement with the inhibitory effect of this cation on the enzyme. TmLac nanoflowers provide an efficient methodology for enzyme immobilization and recyclability. TmLac-Ca2+ nanoflowers presented the best properties for lactose hydrolysis both in buffered and in milk, and could be reused in five consecutive cycles.
Collapse
Affiliation(s)
| | - María José Fabra
- Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| | | | - Julia Marín-Navarro
- Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain; Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Spain
| | - Julio Polaina
- Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain.
| |
Collapse
|
35
|
Liu Y, Ji X, He Z. Organic-inorganic nanoflowers: from design strategy to biomedical applications. NANOSCALE 2019; 11:17179-17194. [PMID: 31532431 DOI: 10.1039/c9nr05446d] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Organic-inorganic hybrid nanoflowers (NF) with sizes or features on a nanoscale are a class of flower-shaped nanomaterials self-assembled from metal ions and organic components. Here, to be more specific, the organic components mainly refer to biomolecules ranging from proteins, peptides, and amino acids to DNA/RNA. Beyond their pleasing aesthetics, their unique properties and integrated functions have attracted widespread interest and made them promising candidates in the application of biomedical areas. Great efforts have been made to design and synthesize versatile functional hybrid nanoflowers. In this review, we begin with the clarification of versatile recently reported hybrid nanoflowers according to the types of metal ions and biomolecules employed. To highlight the design of organic-inorganic hybrid nanoflowers, their synthetic methods and mechanisms, structural and biological characteristics are discussed. After that, the state-of-the-art applications of hybrid nanoflowers in biomedical fields including biosensing, biocatalysis, and cancer therapy are demonstrated. In the end, we discuss the prospects of organic-inorganic hybrid nanoflowers and highlight the challenges and opportunities for future research.
Collapse
Affiliation(s)
- Yucheng Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China. and Division of Engineering in Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xinghu Ji
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
36
|
Bilal M, Asgher M, Shah SZH, Iqbal HMN. Engineering enzyme-coupled hybrid nanoflowers: The quest for optimum performance to meet biocatalytic challenges and opportunities. Int J Biol Macromol 2019; 135:677-690. [PMID: 31152838 DOI: 10.1016/j.ijbiomac.2019.05.206] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 02/08/2023]
Abstract
The current industrial revolution signifies the high-value of biocatalysis engineering. Over the past decade, multiple micro- and nanostructured materials have been attempted for immobilization of enzymes to improve their catalytic properties. Conventional immobilization strategies result in improved stability, while insolubilized enzymes generally lost their activity compared to free counterparts. Recently, a new generation organic-inorganic hybrid nanoflowers with unique properties have received great attention as a novel and incentive immobilization approach owing to their simple fabrication, high biocatalytic efficiency, and enzyme stabilizing capability. The hybrid nanoflowers biocatalytic system implicates metal ions and biomolecules (enzymes). In contrast to free or conventionally immobilized enzymes, single enzyme or multi enzyme-incorporated flowers-like hybrid nanoconstructs demonstrated elevated catalytic activities and stabilities over a very broader range of experimental conditions, i.e., pHs, temperatures and salt concentration. This review discusses the recent developments in the fabrication strategies to diversifying nanoflowers, types, characteristics, and applications of organic-inorganic hybrid nanoflowers as a host platform to engineer different kinds of enzymes with requisite functionalities for biocatalysis applications in different sectors of the modern world. Based on experimental and theoretical literature data, the review is wrapped up with concluding remarks and an outlook in terms of upcoming challenges and prospects for their scale-up applications.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Muhammad Asgher
- Department of Biochemistry, University of Agriculture Faisalabad, Pakistan
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
37
|
Fotiadou R, Patila M, Hammami MA, Enotiadis A, Moschovas D, Tsirka K, Spyrou K, Giannelis EP, Avgeropoulos A, Paipetis A, Gournis D, Stamatis H. Development of Effective Lipase-Hybrid Nanoflowers Enriched with Carbon and Magnetic Nanomaterials for Biocatalytic Transformations. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E808. [PMID: 31142000 PMCID: PMC6632025 DOI: 10.3390/nano9060808] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 01/10/2023]
Abstract
In the present study, hybrid nanoflowers (HNFs) based on copper (II) or manganese (II) ions were prepared by a simple method and used as nanosupports for the development of effective nanobiocatalysts through the immobilization of lipase B from Pseudozyma antarctica. The hybrid nanobiocatalysts were characterized by various techniques including scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). The effect of the addition of carbon-based nanomaterials, namely graphene oxide and carbon nanotubes, as well as magnetic nanoparticles such as maghemite, on the structure, catalytic activity, and operational stability of the hybrid nanobiocatalysts was also investigated. In all cases, the addition of nanomaterials during the preparation of HNFs increased the catalytic activity and the operational stability of the immobilized biocatalyst. Lipase-based magnetic nanoflowers were effectively applied for the synthesis of tyrosol esters in non-aqueous media, such as organic solvents, ionic liquids, and environmental friendly deep eutectic solvents. In such media, the immobilized lipase preserved almost 100% of its initial activity after eight successive catalytic cycles, indicating that these hybrid magnetic nanoflowers can be applied for the development of efficient nanobiocatalytic systems.
Collapse
Affiliation(s)
- Renia Fotiadou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece.
| | - Michaela Patila
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece.
| | - Mohamed Amen Hammami
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Apostolos Enotiadis
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Dimitrios Moschovas
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece.
| | - Kyriaki Tsirka
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece.
| | - Konstantinos Spyrou
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece.
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Apostolos Avgeropoulos
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece.
| | - Alkiviadis Paipetis
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece.
| | - Dimitrios Gournis
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece.
| | - Haralambos Stamatis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
38
|
Fu M, Xing J, Ge Z. Preparation of laccase-loaded magnetic nanoflowers and their recycling for efficient degradation of bisphenol A. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2857-2865. [PMID: 30463138 DOI: 10.1016/j.scitotenv.2018.10.145] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) has been identified as one of the endocrine disrupting chemicals. However, the issue that BPA widely exists in various environments has puzzled people for decades. To develop highly efficient, easy separation, recyclable and reusable materials for BPA degradation in water, laccase-loaded magnetic nanoflowers (MNFs) were prepared by attaching amino-functionalized magnetic nanoparticles onto the laccase-inorganic hybrid nanoflowers. Characterization results showed that MNFs were spherical, porous and hierarchical structure with an average diameter of 15 μm to which magnetic nanoparticles was successfully attached through electrostatic force. MNFs exhibited excellent catalytic activity on BPA degradation under room temperature in the presence of ABTS. Under optimized conditions, MNFs reached 100% BPA degradation for only 5 min. In addition, it still retained over 92% of its initial activity after 60 days of storage at 4 °C, indicating that its thermal and storage stabilities have been improved. When the MNFs was recycled and reused 5 cycles, only 5% decrease in degradation efficiency of BPA was observed. These results suggest that MNFs possess great efficiency and reusability in the treatment of aqueous solution containing BPA and is a novel promising material.
Collapse
Affiliation(s)
- Meihua Fu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, People's Republic of China
| | - Jinfeng Xing
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, People's Republic of China
| | - Zhiqiang Ge
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, People's Republic of China.
| |
Collapse
|
39
|
Zhu J, Wen M, Wen W, Du D, Zhang X, Wang S, Lin Y. Recent progress in biosensors based on organic-inorganic hybrid nanoflowers. Biosens Bioelectron 2018; 120:175-187. [DOI: 10.1016/j.bios.2018.08.058] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 12/31/2022]
|
40
|
Fang X, Zhang C, Qian X, Yu D. Self-assembled 2,4-dichlorophenol hydroxylase-inorganic hybrid nanoflowers with enhanced activity and stability. RSC Adv 2018; 8:20976-20981. [PMID: 35542350 PMCID: PMC9080888 DOI: 10.1039/c8ra02360c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022] Open
Abstract
2,4-Dichlorophenol hydroxylase (2,4-DCP hydroxylase) is a key enzyme in the degradation of 2,4-dichlorophenoxyacetic acid in the hydroxylation step in many bacteria. Our previous study demonstrated that a cold-adapted 2,4-DCP hydroxylase (tfdB-JLU) exhibits broad substrate specificity for chlorophenols, biphenyl derivatives and their homologues. However, the stability of this enzyme is not satisfactory in practical use. There have been no reports of immobilizing a cold-adapted enzyme to improve its activity and stability so far. This study for the first time reports a facile approach for the synthesis of hybrid nanoflowers (hNFs) formed from cold-adapted 2,4-dichlorophenol hydroxylase (tfdB-JLU) and Cu3(PO4)2·3H2O. The influence of experimental factors, such as the pH of the solution mixture and the enzyme and Cu2+ concentrations, on the activity of the prepared tfdB-JLU-hNFs is investigated. The morphologies of the tfdB-JLU-hNFs are further analyzed by SEM and TEM. Compared to the free enzyme, the tfdB-JLU-hNFs exhibit up to 162.46 ± 1.53% enhanced 2,4-dichlorophenol degradation activity when encapsulated at different enzyme concentrations. The tfdB-JLU-hNFs exhibit excellent durability with 58.34% residual activity after six successive cycles, and up to 90.58% residual activity after 20 days of storage. These results demonstrate that this multistage and hierarchical flower-like structure can effectively increase enzyme activity and stability with respect to those of the free enzyme. The satisfactory removal rate of 2,4-dichlorophenol catalyzed by tfdB-JLU-hNFs suggests that this immobilized enzyme exhibits great potential for application in bioremediation. Highly stable and active hydroxylase-inorganic hybrid nanoflowers with great potential for application in bioremediation were obtained.![]()
Collapse
Affiliation(s)
- Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun
- P. R. China
| | - Chengkai Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun
- P. R. China
| | - Xue Qian
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun
- P. R. China
| | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
41
|
Song Y, Gao J, He Y, Zhou L, Ma L, Huang Z, Jiang Y. Preparation of a Flowerlike Nanobiocatalyst System via Biomimetic Mineralization of Cobalt Phosphate with Enzyme. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03809] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yang Song
- School of Chemical Engineering
and
Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, People’s Republic of China
| | - Jing Gao
- School of Chemical Engineering
and
Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, People’s Republic of China
| | - Ying He
- School of Chemical Engineering
and
Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, People’s Republic of China
| | - Liya Zhou
- School of Chemical Engineering
and
Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, People’s Republic of China
| | - Li Ma
- School of Chemical Engineering
and
Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, People’s Republic of China
| | - Zhihong Huang
- School of Chemical Engineering
and
Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, People’s Republic of China
| | - Yanjun Jiang
- School of Chemical Engineering
and
Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, People’s Republic of China
| |
Collapse
|
42
|
|
43
|
Li Z, Xia H, Li S, Pang J, Zhu W, Jiang Y. In situ hybridization of enzymes and their metal-organic framework analogues with enhanced activity and stability by biomimetic mineralisation. NANOSCALE 2017; 9:15298-15302. [PMID: 28991303 DOI: 10.1039/c7nr06315f] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
By incorporating Cytochrome c (peroxidase, Cyt c) into a skeleton of its corresponding synthetic MOF analogue (peroxidase mimic, CuBDC), approximately 12-fold catalytic efficiency (kcat/KM) enhancement is observed compared to free Cyt c. Meanwhile, the shield endowed by CuBDC prevents encapsulated enzymes from deactivation by trypsin digestion, thermal treatment and long-term storage in vitro. This concept of combining enzymes and their MOF mimics with enhanced enzymatic activity and stability may provide new insights into the design of highly active, stable enzyme-MOF composite catalysts and holds promise for applications in biocatalysis, biosensing and drug delivery systems.
Collapse
Affiliation(s)
- Zhixian Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | | | | | | | | | | |
Collapse
|
44
|
Gupta SM, Kamble MP, Yadav GD. Insight into microwave assisted enzyme catalysis in process intensification of reaction and selectivity: Kinetic resolution of ( R,S )-flurbiprofen with alcohols. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|