1
|
Elkhabaz A, Moseson DE, Brouwers J, Augustijns P, Taylor LS. Dissolution, phase behavior and mass transport of amorphous solid dispersions in aspirated human intestinal fluids. J Pharm Sci 2025; 114:336-349. [PMID: 39419479 DOI: 10.1016/j.xphs.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
Amorphous solid dispersions (ASDs) typically show improved dissolution and generate supersaturated solutions, enhancing the oral bioavailability of poorly soluble drugs. To gain insights into intraluminal ASD behavior, we utilized two poorly soluble drugs with different crystallization tendencies, atazanavir and posaconazole, prepared as ASDs at a 10% drug loading with hydroxypropyl methylcellulose acetyl succinate (HPMCAS). We evaluated their release in aspirated fasted-state human intestinal fluid (FaHIF), and multi-component fasted-state simulated intestinal fluid (composite-FaSSIF), characterizing the supersaturation profiles and drug-rich nanodroplets that formed. Complete release was observed for atazanavir ASDs over a 90 min period. Flux for dissolved atazanavir ASDs remained high over the experimental time period of 3 h. In contrast, posaconazole solution concentrations were initially high and then decreased. Likewise, flux was initially high and then decreased where these changes are attributed to crystallization of the drug. Generation of spherical nano-sized amorphous droplets of ∼100-150 nm was found to occur in ex vivo FaHIF media for both ASDs, maximizing the diffusive flux during the supersaturation window. Moreover, buffer capacity differences were postulated to influence release rates of ASDs in simulated vs aspirated fluids. Importantly, the solution phase phenomena observed during ASD release in simulated fluids, namely amorphous nanodroplet formation and drug crystallization, were also found to occur in aspirated luminal fluids.
Collapse
Affiliation(s)
- Ahmed Elkhabaz
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Dana E Moseson
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | | | | | - Lynne S Taylor
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
2
|
Moseson DE, Taylor LS. Crystallinity: A Complex Critical Quality Attribute of Amorphous Solid Dispersions. Mol Pharm 2023; 20:4802-4825. [PMID: 37699354 DOI: 10.1021/acs.molpharmaceut.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Does the performance of an amorphous solid dispersion rely on having 100% amorphous content? What specifications are appropriate for crystalline content within an amorphous solid dispersion (ASD) drug product? In this Perspective, the origin and significance of crystallinity within amorphous solid dispersions will be considered. Crystallinity can be found within an ASD from one of two pathways: (1) incomplete amorphization, or (2) crystal creation (nucleation and crystal growth). While nucleation and crystal growth is the more commonly considered pathway, where crystals originate as a physical stability failure upon accelerated or prolonged storage, manufacturing-based origins of crystallinity are possible as well. Detecting trace levels of crystallinity is a significant analytical challenge, and orthogonal methods should be employed to develop a holistic assessment of sample properties. Probing the impact of crystallinity on release performance which may translate to meaningful clinical significance is inherently challenging, requiring optimization of dissolution test variables to address the complexity of ASD formulations, in terms of drug physicochemical properties (e.g., crystallization tendency), level of crystallinity, crystal reference material selection, and formulation characteristics. The complexity of risk presented by crystallinity to product performance will be illuminated through several case studies, highlighting that a one-size-fits-all approach cannot be used to set specification limits, as the risk of crystallinity can vary widely based on a multitude of factors. Risk assessment considerations surrounding drug physicochemical properties, formulation fundamentals, physical stability, dissolution, and crystal micromeritic properties will be discussed.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Worldwide Research and Development Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Van Duong T, Ni Z, Taylor LS. Phase Behavior and Crystallization Kinetics of a Poorly Water-Soluble Weakly Basic Drug as a Function of Supersaturation and Media Composition. Mol Pharm 2022; 19:1146-1159. [PMID: 35319221 DOI: 10.1021/acs.molpharmaceut.1c00927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Understanding the supersaturation and precipitation behavior of poorly water-soluble compounds in vivo and the impact on oral absorption is critical to design consistently performing products with optimized bioavailability. Weakly basic compounds are of particular importance in this context since they have an inherent tendency to undergo supersaturation in vivo upon exit from the stomach and entry into the small intestine because of their pH-dependent solubility. To understand and probe potential in vivo variability of supersaturating systems, rigorous understanding of compound physical properties and phase behavior landscape is essential. Herein, we extensively characterize the solution phase behavior of a model, poorly soluble and weakly basic compound, posaconazole. Phase boundaries for crystal-solution and amorphous-solution were established as a function of pH, allowing possible phase transformations, namely, crystallization or liquid-liquid phase separation, to be mapped for different initial doses and fluid volumes. Endogenous surfactants including sodium taurocholate, lecithin, glycerol monooleate, and sodium oleate in biorelevant media significantly extended the phase boundaries due to solubilization, to an extent that was dependent on the concentration of the surface-active agents. The nucleation induction time of posaconazole was much shorter in biorelevant media in comparison to the corresponding buffer solution, with two distinct regions observed in all media that could be attributed to a change in the nucleation mechanism at high and low supersaturation. The presence of undissolved nanocrystals accelerated the desupersaturation. This work enhances our understanding of biorelevant factors impacting precipitation kinetics, which might affect absorption in vivo. It is expected that findings from this study with posaconazole could be broadly applicable to other weakly basic compounds, after taking into consideration differences in pKa, solubility, and molecular structure.
Collapse
Affiliation(s)
- Tu Van Duong
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhanglin Ni
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
França MT, Martins Marcos T, Costa PF, Bazzo GC, Nicolay Pereira R, Gerola AP, Stulzer HK. Eutectic mixture and amorphous solid dispersion: Two different supersaturating drug delivery system strategies to improve griseofulvin release using saccharin. Int J Pharm 2022; 615:121498. [DOI: 10.1016/j.ijpharm.2022.121498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 12/23/2022]
|
5
|
Krollik K, Lehmann A, Wagner C, Kaidas J, Bülhoff J, Kubas H, Weitschies W. Increasing the Robustness of Biopharmaceutical Precipitation Assays - Part II: Recommendations on the use of FaSSIF. J Pharm Sci 2021; 111:155-163. [PMID: 34461113 DOI: 10.1016/j.xphs.2021.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Biopharmaceutical precipitation assays are an important in vitro tool to characterize the precipitation behavior of weakly basic drugs during their transit from the stomach into the small intestine. To mimic the intestinal fluids more closely, biorelevant media like Fasted State Simulated Intestinal Fluid (FaSSIF) and versions thereof are often applied. When applying UV analytics to measure the drug concentration during the transfer experiments, changes in the UV spectrum of the medium have been observed when FaSSIF was stored over a longer period of time or under accelerated conditions. Therefore, this study aimed at evaluating the stability of FaSSIF under various storage conditions. Furthermore, the impact of stressed FaSSIF on the supersaturation and precipitation behavior of ketoconazole was investigated. As a result of this study, it was demonstrated that the FaSSIF powder composition changes during storage, which, in turn, impacts the supersaturation and precipitation behavior of ketoconazole in in vitro transfer studies. Based on the results of this study, we provide recommendations on the application of FaSSIF in biopharmaceutical precipitation assays with the aim to increase reproducibility and enhance data reliability for those compounds where changing FaSSIF composition may impact the supersaturation and precipitation behavior.
Collapse
Affiliation(s)
- Katharina Krollik
- Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Straße 3, Greifswald, Germany; Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, Darmstadt, Germany
| | - Andreas Lehmann
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, Darmstadt, Germany
| | - Christian Wagner
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, Darmstadt, Germany
| | - Jonathan Kaidas
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, Darmstadt, Germany
| | - Janina Bülhoff
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, Darmstadt, Germany
| | - Holger Kubas
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, Darmstadt, Germany
| | - Werner Weitschies
- Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Straße 3, Greifswald, Germany.
| |
Collapse
|
6
|
Enright EF, Joyce SA, Gahan CG, Taylor LS. Impact of phospholipid digests and bile acid pool variations on the crystallization of atazanavir from supersaturated solutions. Eur J Pharm Biopharm 2020; 153:68-83. [DOI: 10.1016/j.ejpb.2020.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/15/2020] [Accepted: 05/24/2020] [Indexed: 11/25/2022]
|
7
|
Bannigan P, Flynn J, Hudson SP. The impact of endogenous gastrointestinal molecules on the dissolution and precipitation of orally delivered hydrophobic APIs. Expert Opin Drug Deliv 2020; 17:677-688. [DOI: 10.1080/17425247.2020.1743677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Pauric Bannigan
- Department of Chemical Sciences, SSPC the SFI Pharmaceutical Centre, Bernal Institute, University of Limerick, Limerick, Ireland
| | - James Flynn
- Department of Chemical Sciences, SSPC the SFI Pharmaceutical Centre, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Sarah P. Hudson
- Department of Chemical Sciences, SSPC the SFI Pharmaceutical Centre, Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
8
|
The role of glycyrrhizic acid in colloidal phenomena of supersaturation drug delivery systems containing the antifungal drug griseofulvin. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Pinto JMO, Rengifo AFC, Mendes C, Leão AF, Parize AL, Stulzer HK. Understanding the interaction between Soluplus® and biorelevant media components. Colloids Surf B Biointerfaces 2020; 187:110673. [DOI: 10.1016/j.colsurfb.2019.110673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 01/21/2023]
|
10
|
Bannigan P, Stokes K, Kumar A, Madden C, Hudson SP. Investigating the effects of amphipathic gastrointestinal compounds on the solution behaviour of salt and free base forms of clofazimine: An in vitro evaluation. Int J Pharm 2018; 552:180-192. [DOI: 10.1016/j.ijpharm.2018.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 02/02/2023]
|
11
|
Song B, Bransford P, Peresypkin A, Medek A, Mudunuri P, Randles EG, Dworakowski W, Kumar S, Snyder PW. Overcoming the Bile Salt-Mediated Formation of Nanocolloids That Inhibit Oral Absorption of VX-985. J Pharm Sci 2018; 108:821-831. [PMID: 30385281 DOI: 10.1016/j.xphs.2018.10.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 11/15/2022]
Abstract
This article describes the discovery and characterization of nanocolloidal structures formed between VX-985 (an orally administered inhibitor of hepatitis C virus protease) and the bile salt, sodium taurocholate at concentrations of the latter >4 mM. These complexes (1) distribute narrowly in size around a mean diameter of 260 nm, (2) separate from solution only with ultracentrifugation, and (3) appear to influence the absorption of VX-985 from the intestinal tract in vivo, in rodents and humans. Although the oral bioavailability of suspensions of its solid forms is poor, addition of vitamin E D-alpha-tocopherol polyethylene glycol 1000 succinate to dosing vehicles improves the fraction absorbed of the compound in vivo. In vitro characterization is compatible with the hypothesis that surfactants like D-alpha-tocopherol polyethylene glycol 1000 succinate preclude nanocolloidal structures and increase the bioavailability by increasing the rate of absorption of VX-985. This study, while specific to VX-985, provides a route to circumvent the poor oral bioavailability caused by formation of kinetically stable complexes between bile salts and drug molecules. This study also underscores the importance of characterizing aggregation phenomenon that may be observed in solubility measurements during preclinical formulation development.
Collapse
Affiliation(s)
- Bin Song
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210
| | - Philip Bransford
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210
| | - Andrey Peresypkin
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210
| | - Ales Medek
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210
| | - Praveen Mudunuri
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210
| | - Edward G Randles
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210
| | - Wojciech Dworakowski
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210
| | - Santosh Kumar
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210
| | - Phillip W Snyder
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210.
| |
Collapse
|
12
|
Kaur N, Narang A, Bansal AK. Use of biorelevant dissolution and PBPK modeling to predict oral drug absorption. Eur J Pharm Biopharm 2018; 129:222-246. [DOI: 10.1016/j.ejpb.2018.05.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/16/2018] [Accepted: 05/21/2018] [Indexed: 11/29/2022]
|
13
|
HPMCAS as an effective precipitation inhibitor in amorphous solid dispersions of the poorly soluble drug candesartan cilexetil. Carbohydr Polym 2018; 184:199-206. [DOI: 10.1016/j.carbpol.2017.12.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 11/19/2022]
|