1
|
Badri Z, Nourigheimasi F, Foroutan-Nejad C. Tetraquinolines; four linked quinoline units or porphyrinoids. Org Biomol Chem 2024; 22:2284-2291. [PMID: 38407320 DOI: 10.1039/d3ob01616a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Tetraquinolines (TEQs) have been recently synthesized and proposed to be a new member of the porphyrinoid family with highly distorted, nonplanar, geometries. In this contribution by studying several molecules, closely related to TEQs, we have suggested that the origin of the nonplanarity of TEQs and their counterparts is a combination of steric strain and the propensity of the molecules to avoid antiaromaticity. The tendency of TEQs to coordinate with doubly charged metal ions can be interpreted in terms of their transition from potential antiaromaticity to nonaromaticity. Even metal-coordinated TEQs do not sustain diatropic ring currents. Although full planarization is not possible because of steric strain, doubly oxidized TEQs and their counterparts sustain moderate global diatropic ring currents and partially planarize. The nature of current density in the molecules is studied in the light of Steiner-Fowler selection rules.
Collapse
Affiliation(s)
- Zahra Badri
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Farnoush Nourigheimasi
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Cina Foroutan-Nejad
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
2
|
Franzke Y, Holzer C, Andersen JH, Begušić T, Bruder F, Coriani S, Della Sala F, Fabiano E, Fedotov DA, Fürst S, Gillhuber S, Grotjahn R, Kaupp M, Kehry M, Krstić M, Mack F, Majumdar S, Nguyen BD, Parker SM, Pauly F, Pausch A, Perlt E, Phun GS, Rajabi A, Rappoport D, Samal B, Schrader T, Sharma M, Tapavicza E, Treß RS, Voora V, Wodyński A, Yu JM, Zerulla B, Furche F, Hättig C, Sierka M, Tew DP, Weigend F. TURBOMOLE: Today and Tomorrow. J Chem Theory Comput 2023; 19:6859-6890. [PMID: 37382508 PMCID: PMC10601488 DOI: 10.1021/acs.jctc.3c00347] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 06/30/2023]
Abstract
TURBOMOLE is a highly optimized software suite for large-scale quantum-chemical and materials science simulations of molecules, clusters, extended systems, and periodic solids. TURBOMOLE uses Gaussian basis sets and has been designed with robust and fast quantum-chemical applications in mind, ranging from homogeneous and heterogeneous catalysis to inorganic and organic chemistry and various types of spectroscopy, light-matter interactions, and biochemistry. This Perspective briefly surveys TURBOMOLE's functionality and highlights recent developments that have taken place between 2020 and 2023, comprising new electronic structure methods for molecules and solids, previously unavailable molecular properties, embedding, and molecular dynamics approaches. Select features under development are reviewed to illustrate the continuous growth of the program suite, including nuclear electronic orbital methods, Hartree-Fock-based adiabatic connection models, simplified time-dependent density functional theory, relativistic effects and magnetic properties, and multiscale modeling of optical properties.
Collapse
Affiliation(s)
- Yannick
J. Franzke
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Christof Holzer
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Josefine H. Andersen
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Tomislav Begušić
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Florian Bruder
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Sonia Coriani
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Fabio Della Sala
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for
Biomolecular Nanotechnologies @UNILE, Istituto
Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Italy
| | - Eduardo Fabiano
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for
Biomolecular Nanotechnologies @UNILE, Istituto
Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Italy
| | - Daniil A. Fedotov
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Susanne Fürst
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Sebastian Gillhuber
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Robin Grotjahn
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Max Kehry
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Marjan Krstić
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Fabian Mack
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sourav Majumdar
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Brian D. Nguyen
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Shane M. Parker
- Department
of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106 United States
| | - Fabian Pauly
- Institute
of Physics, University of Augsburg, Universitätsstr. 1, 86159 Augsburg, Germany
| | - Ansgar Pausch
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Eva Perlt
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Gabriel S. Phun
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Ahmadreza Rajabi
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Dmitrij Rappoport
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Bibek Samal
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Tim Schrader
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Manas Sharma
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Enrico Tapavicza
- Department
of Chemistry and Biochemistry, California
State University, Long Beach, 1250 Bellflower Boulevard, Long
Beach, California 90840-9507, United States
| | - Robert S. Treß
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Vamsee Voora
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Artur Wodyński
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Jason M. Yu
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Benedikt Zerulla
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen Germany
| | - Filipp Furche
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Christof Hättig
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Marek Sierka
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - David P. Tew
- Physical
and Theoretical Chemistry Laboratory, University
of Oxford, South Parks
Road, Oxford OX1 3QZ, United Kingdom
| | - Florian Weigend
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| |
Collapse
|
3
|
Abstract
The occurrence of aromaticity in organic molecules is widely accepted, but its occurrence in purely metallic systems is less widespread. Molecules comprising only metal atoms (M) are known to be able to exhibit aromatic behaviour, sustaining ring currents inside an external magnetic field along M-M connection axes (σ-aromaticity) or above and below the plane (π-aromaticity) for cyclic or cage-type compounds. However, all-metal compounds provide an extension of the electrons' mobility also in other directions. Here, we show that regular {Bi6} prisms exhibit a non-localizable molecular orbital of f-type symmetry and generate a strong ring current that leads to a behaviour referred to as φ-aromaticity. The experimentally observed heterometallic cluster [{CpRu}3Bi6]-, based on a regular prismatic {Bi6} unit, displays aromatic behaviour; according to quantum chemical calculations, the corresponding hypothetical Bi62- prism shows a similar behaviour. By contrast, [{(cod)Ir}3Bi6] features a distorted Bi6 moiety that inhibits φ-aromaticity.
Collapse
|
4
|
Mahmood A, Dimitrova M, Wirz LN, Sundholm D. Magnetically Induced Current Densities in Zinc Porphyrin Nanoshells. J Phys Chem A 2022; 126:1936-1945. [PMID: 35302768 PMCID: PMC8978182 DOI: 10.1021/acs.jpca.1c10815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Indexed: 12/21/2022]
Abstract
The molecular structures of porphyrinoid cages were obtained by constructing small polyhedral graphs whose vertices have degree-4. The initial structures were then fully optimized at the density functional theory (DFT) level using the generalized gradient approximation. Some of polyhedral vertices were replaced with Zn-porphyrin units and their edges were replaced with ethyne or butadiyne bridges or connected by fusing two neighboring Zn-porphyrin units. Molecule 1 is an ethyne-bridge porphyrinoid nanotube, whose ends are sealed with a Zn-porphyrin. Molecule 2 is the corresponding open porphyrinoid nanotube. Molecule 3 is a clam-like porphyrinoid cage, whose shells consist of fused Zn-porphyrins, and the two halves are connected via butadiyne bridges. Molecule 4 is a cross-belt of fused Zn-porphyrins, and molecule 5 is a cross-belt of Zn-porphyrins connected with butadiyne bridges. The magnetically induced current density of the optimized porphyrinoid cages was calculated for determining the aromatic character, the degree of aromaticity and the current-density pathways. The current-density calculations were performed at the DFT level with the gauge─including magnetically induced currents (GIMIC) method using the B3LYP hybrid functional and def2-SVP basis sets. Calculations of the current densities show that molecule 2 sustains a paratropic ring current around the nanotube, whereas sealing the ends as in molecule 1 leads to an almost nonaromatic nanotube. Fusing porphyrinoids as in molecules 3 and 4 results in complicated current-density pathways that differ from the ones usually appearing in porphyrinoids. The aromatic character of molecules 4 and 5 changes upon oxidation. The neutral molecule 4 is antiaromatic, whereas the dication is nonaromatic. Molecule 5 is nonaromatic, and its dication is aromatic.
Collapse
Affiliation(s)
- Atif Mahmood
- Department of Chemistry, University
of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, FIN-00014 Helsinki, Finland
| | - Maria Dimitrova
- Department of Chemistry, University
of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, FIN-00014 Helsinki, Finland
| | - Lukas N. Wirz
- Department of Chemistry, University
of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, FIN-00014 Helsinki, Finland
| | - Dage Sundholm
- Department of Chemistry, University
of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, FIN-00014 Helsinki, Finland
| |
Collapse
|
5
|
Abstract
The ascertainment of magnetic aromaticity is not necessarily straightforward, especially for large and bent systems, such as the cycloporphyrin nanorings recently synthesized by the group of Anderson. Six of these cycloporphyrin nanorings were studied here computationally. Indirect methods, based on nuclear shielding and magnetizabilities, and direct methods, based on standard quantum mechanics, were both used effectively to determine their magnetically induced current strength, which mostly confirmed Anderson’s classification. However, in the case of hexanions, and in particular for cyclohexaporphyrin hexacations, a significant cancellation of delocalized diatropic and paratropic flow occurred, showing that the resultant faint aromatic character was a result of competing aromatic and antiaromatic contributions, as also evidenced by the ipsocentric method. A warning is renewed on the use of isotropic shielding to determine the tropicity of the magnetically induced current.
Collapse
|
6
|
Baş Ç, Krumsieck J, Möller W, Körner D, Bröring M. Zinc- and Cadmium meso-Aryl-Isoporphyrins: Non-Aromatic NIR Dyes with Distinct Conformational Features. Chemistry 2021; 27:8021-8029. [PMID: 33826188 PMCID: PMC8252505 DOI: 10.1002/chem.202100686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 11/26/2022]
Abstract
A series of pyrrolyl and dipyrrinyl isoporphyrins carrying different phenyl and thienyl groups is reported. The compounds are obtained by a one-pot approach in the presence of a template reagent. Thienyl derivatives gave better yields, and were the only subclass to form with steric hindrance. The structural analyses carried out on compounds 1 and 14 revealed distinct conformational differences which are likely to result from an intramolecular NH… Cl hydrogen bridge of the pyrrolyl subclass. In addition, this hydrogen bridge strongly favors one of the two possible atropisomers. Hindered rotation of the meso-aryl groups is observed only in the cases of methylbenzothienyl derivatives 10 and 15 and leads to the observation of several diastereomers. NIR absorptions up to 923 nm are found throughout. Electrochemical investigations into the 1e- and 2e- reduced species unravel axial ligand exchange dynamics for the zinc isoporphyrin radical, and the probable formation of a zinc phlorinate.
Collapse
Affiliation(s)
- Çağla Baş
- Institute of Inorganic and Analytical ChemistryTU BraunschweigHagenring 3038106BraunschweigGermany
| | - Jens Krumsieck
- Institute of Inorganic and Analytical ChemistryTU BraunschweigHagenring 3038106BraunschweigGermany
| | - William‐Dale Möller
- Institute of Inorganic and Analytical ChemistryTU BraunschweigHagenring 3038106BraunschweigGermany
| | - Dominik Körner
- Institute of Inorganic and Analytical ChemistryTU BraunschweigHagenring 3038106BraunschweigGermany
| | - Martin Bröring
- Institute of Inorganic and Analytical ChemistryTU BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
7
|
Eulenstein AR, Franzke YJ, Lichtenberger N, Wilson RJ, Deubner HL, Kraus F, Clérac R, Weigend F, Dehnen S. Substantial π-aromaticity in the anionic heavy-metal cluster [Th@Bi 12] 4. Nat Chem 2021; 13:149-155. [PMID: 33288891 DOI: 10.1038/s41557-020-00592-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/27/2020] [Indexed: 01/30/2023]
Abstract
The concept of aromaticity was originally defined as a property of unsaturated, cyclic planar organic molecules like benzene, which gain stability by the inherent delocalization of 4n + 2 π-electrons over the ring atoms. Since then, π-aromaticity has been observed for a large variety of organic and inorganic non-metal compounds, yet, for molecules consisting only of metal atoms, it has remained restricted to systems with three to five atoms. Here, we present the straightforward synthesis of a metal 12-ring that exhibits 2π-aromaticity and has a ring current much stronger than that of benzene (6π) and equivalent to that of porphine (26π), despite these organic molecules having (much) larger numbers of π-electrons. Highly reducing reaction conditions allowed access to the heterometallic anion [Th@Bi12]4-, with interstitial Th4+ stabilizing a Bi128- moiety. Our results show that it is possible to design and generate substantial π-aromaticity in large metal rings, and we hope that such π-aromatic heavy-metal cycles will eventually find use in cluster-based reactions.
Collapse
Affiliation(s)
- Armin R Eulenstein
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany.,Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Marburg, Germany
| | - Yannick J Franzke
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Niels Lichtenberger
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany.,Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Marburg, Germany
| | - Robert J Wilson
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany.,Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Marburg, Germany
| | - H Lars Deubner
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Florian Kraus
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Rodolphe Clérac
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, Pessac, France
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany.
| | - Stefanie Dehnen
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany. .,Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
8
|
Interplay Between Planar and Spherical Aromaticity: Shielding Cone Behavior in Dual Planar‐Planar, Planar‐Spherical and Spherical‐Spherical Aromatics. Chemphyschem 2020; 21:1384-1387. [DOI: 10.1002/cphc.202000322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/13/2020] [Indexed: 12/31/2022]
|
9
|
Balasubramani SG, Chen GP, Coriani S, Diedenhofen M, Frank MS, Franzke YJ, Furche F, Grotjahn R, Harding ME, Hättig C, Hellweg A, Helmich-Paris B, Holzer C, Huniar U, Kaupp M, Marefat Khah A, Karbalaei Khani S, Müller T, Mack F, Nguyen BD, Parker SM, Perlt E, Rappoport D, Reiter K, Roy S, Rückert M, Schmitz G, Sierka M, Tapavicza E, Tew DP, van Wüllen C, Voora VK, Weigend F, Wodyński A, Yu JM. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J Chem Phys 2020; 152:184107. [PMID: 32414256 PMCID: PMC7228783 DOI: 10.1063/5.0004635] [Citation(s) in RCA: 616] [Impact Index Per Article: 123.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/07/2020] [Indexed: 01/30/2023] Open
Abstract
TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy-cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe-Salpeter methods, second-order Møller-Plesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLE's functionality, including excited-state methods, RPA and Green's function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLE's current licensing, distribution, and support model are discussed, and an overview of TURBOMOLE's development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted.
Collapse
Affiliation(s)
- Sree Ganesh Balasubramani
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Guo P Chen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Build. 207, DK-2800 Kongens Lyngby, Denmark
| | - Michael Diedenhofen
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Marius S Frank
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Yannick J Franzke
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Robin Grotjahn
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Arnim Hellweg
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Christof Holzer
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Uwe Huniar
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Alireza Marefat Khah
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | | | - Thomas Müller
- Forschungszentrum Jülich, Jülich Supercomputer Centre, Wilhelm-Jonen Straße, 52425 Jülich, Germany
| | - Fabian Mack
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Brian D Nguyen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Shane M Parker
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Eva Perlt
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Dmitrij Rappoport
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kevin Reiter
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), KIT Campus North, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Saswata Roy
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Matthias Rückert
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Gunnar Schmitz
- Department of Chemistry, Aarhus Universitet, Langelandsgade 140, DK-8000 Aarhus, Denmark
| | - Marek Sierka
- TURBOMOLE GmbH, Litzenhardtstraße 19, 76135 Karlsruhe, Germany
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, USA
| | - David P Tew
- Max Planck Institute for Solid State Research, Heisenbergstaße 1, 70569 Stuttgart, Germany
| | - Christoph van Wüllen
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Staße 52, 67663 Kaiserslautern, Germany
| | - Vamsee K Voora
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Florian Weigend
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), KIT Campus North, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Artur Wodyński
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Jason M Yu
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| |
Collapse
|
10
|
Pelloni S, Lazzeretti P. Anisotropy of the vorticity tensor as a magnetic indicator of aromaticity. Phys Chem Chem Phys 2020; 22:1299-1305. [DOI: 10.1039/c9cp05563k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The vorticity vector of the current density JB, induced in the electron cloud of a molecule by a magnetic field B, is defined by VB = ∇ × JB.
Collapse
Affiliation(s)
- S. Pelloni
- Istituto d'istruzione superiore Francesco Selmi
- 41126 Modena
- Italy
| | - P. Lazzeretti
- Istituto di Struttura della Materia
- Consiglio Nazionale delle Ricerche
- 00133 Roma
- Italy
| |
Collapse
|
11
|
Lazzeretti P. Continuity equations for electron charge densities and current densities induced in molecules by electric and magnetic fields. J Chem Phys 2019; 151:114108. [PMID: 31542030 DOI: 10.1063/1.5124250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Paolo Lazzeretti
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| |
Collapse
|
12
|
Lazzeretti P. Frequency-dependent current density tensors as density functions of dynamic polarizabilities. J Chem Phys 2019; 150:184117. [PMID: 31091911 DOI: 10.1063/1.5097578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Relationships accounting for contributions to the first-order charge density ρ(1) and current density J(1), induced in the electrons of a molecule by a monochromatic plane wave, have been obtained via time-dependent quantum mechanical perturbation theory. Their gauge invariance and invariance in passive translations of the coordinate system have been demonstrated (i) within the (long wavelengths) electric dipole approximation, in which only the electric field contributions to these densities are required, and (ii) within the electric quadrupole approximation, in which nonseparable terms provided by the magnetic field and by the electric field gradient, assumed uniform over the molecular domain, are needed. It is shown that the physical meaning of current density tensors depending on the frequency ω of the monochromatic wave shone on the molecule, and corresponding to derivatives of the current density J(1)(r, ω) with respect to components of the perturbing fields, is that of property density. Therefore, frequency-dependent current density tensors can be interpreted as the integrand function in 3d-space integrals defining dynamic molecular response tensors, e.g., electric dipole, mixed electric dipole-magnetic dipole, and electric dipole-quadrupole polarizabilites. Plots of current density tensors are expected to provide important information on the molecular domains giving dominant contributions to these properties.
Collapse
Affiliation(s)
- Paolo Lazzeretti
- Istituto di Struttura Della Materia, Consiglio Nazionale Delle Ricerche, Via Del Fosso Del Cavaliere, 100, 00133 Roma, Italy
| |
Collapse
|
13
|
Ghosh A, Larsen S, Conradie J, Foroutan-Nejad C. Local versus global aromaticity in azuliporphyrin and benziporphyrin derivatives. Org Biomol Chem 2019; 16:7964-7970. [PMID: 30325395 DOI: 10.1039/c8ob01672k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carbaporphyrinoids afford fascinating examples of competition between local and global aromaticity in conjugated, polycyclic systems. Thus, whereas density functional theory calculations reveal only a modest effect of metal complexation on the current density profiles of true carbaporphyrins and azuliporphyrins, the impact is much greater for benziporphyrins, underscoring a strong competition between local and global aromaticity in the latter system. Furthermore, the calculations shed light on the remarkable efficacy of suitably placed electron-donating substituents on the benzene ring in boosting the global diatropic currents in a metallobenziporphyrin.
Collapse
Affiliation(s)
- Abhik Ghosh
- Department of Chemistry, UiT - The Arctic University of Norway, 9037 Tromsø, Norway.
| | | | | | | |
Collapse
|
14
|
Lazzeretti P. Gauge invariance and origin independence of electronic charge density and current density induced by optical fields. J Chem Phys 2018; 149:154106. [PMID: 30342457 DOI: 10.1063/1.5052352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Expressions for the first-order polarization charge density ρ (1) and current density J (1) induced in a molecule by a monochromatic plane wave, obtained by time-dependent quantum mechanical perturbation theory, have been investigated to assess their gauge invariance and independence of the coordinate system in passive and active translations. The conditions arrived at show that, within the (long wavelengths) dipole approximation, only the electric contributions to these densities are needed to rationalize the phenomenology. To the next higher quadrupole approximation, assuming that the magnetic field and the electric field gradient are uniform over the molecular dimensions, corresponding contributions to ρ (1) and J (1) are considered. It has been found that total densities are independent of the origin, whereas the contributions from electric and magnetic fields are not separately invariant. A magnetic contribution to J (1), which is by itself origin independent, can be defined by means of an approach based on continuous translation of the origin of the coordinate system.
Collapse
Affiliation(s)
- Paolo Lazzeretti
- Istituto di Struttura della Materia Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| |
Collapse
|
15
|
Foroutan-Nejad C, Larsen S, Conradie J, Ghosh A. Isocorroles as Homoaromatic NIR-Absorbing Chromophores: A First Quantum Chemical Study. Sci Rep 2018; 8:11952. [PMID: 30097587 PMCID: PMC6086901 DOI: 10.1038/s41598-018-29819-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022] Open
Abstract
Density functional theory calculations of magnetically induced current densities have revealed high diatropic ring currents in unsubstituted isocorrole consistent with homoaromatic character. An examination of the Kohn-Sham molecular orbitals showed clear evidence of homoconjugative interactions in four occupied π-type molecular orbitals as well as in the LUMO. Remarkably, substituents at the saturated meso position were found to exert a dramatic influence on the overall current density pattern. Thus, whereas bis(trimethylsilyl)-substitution strongly enhanced the peripheral diatropic current (consistent with enhanced homoaromaticity), difluoro-substitution engendered a strong, net paratropic current (consistent with antihomoaromaticity). In this respect, isocorroles stand in sharp contrast to benzenoid aromatics, for which substituents typically exert a small influence on the current density distribution.
Collapse
Affiliation(s)
- Cina Foroutan-Nejad
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ - 62500, Brno, Czech Republic.
| | - Simon Larsen
- Department of Chemistry, UiT - The Arctic University of Norway, 9037, Tromsø, Norway
| | - Jeanet Conradie
- Department of Chemistry, UiT - The Arctic University of Norway, 9037, Tromsø, Norway.
- Department of Chemistry, University of the Free State, 9300, Bloemfontein, Republic of South Africa.
| | - Abhik Ghosh
- Department of Chemistry, UiT - The Arctic University of Norway, 9037, Tromsø, Norway.
| |
Collapse
|
16
|
Casademont-Reig I, Woller T, Contreras-García J, Alonso M, Torrent-Sucarrat M, Matito E. New electron delocalization tools to describe the aromaticity in porphyrinoids. Phys Chem Chem Phys 2018; 20:2787-2796. [DOI: 10.1039/c7cp07581b] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
There are several possible pathways in the macrocycle of large porphyrinoids and, among aromaticity indices, only AVminis capable of recognizing the most aromatic one.
Collapse
Affiliation(s)
- Irene Casademont-Reig
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU)
- and Donostia International Physics Center (DIPC)
- P.K. 1072
- 20080 Donostia
| | - Tatiana Woller
- Eenheid Algemene Chemie (ALGC). Vrije Universiteit Brussel (VUB)
- Pleinlaan 2
- 1050 Brussels
- Belgium
| | - Julia Contreras-García
- Sorbonne Universités, UPMC Univ. Paris
- UMR 7616 Laboratoire de Chimie Théorique
- CNRS
- UMR 7616
- Paris
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC). Vrije Universiteit Brussel (VUB)
- Pleinlaan 2
- 1050 Brussels
- Belgium
| | - Miquel Torrent-Sucarrat
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU)
- and Donostia International Physics Center (DIPC)
- P.K. 1072
- 20080 Donostia
| | - Eduard Matito
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU)
- and Donostia International Physics Center (DIPC)
- P.K. 1072
- 20080 Donostia
| |
Collapse
|