1
|
Hu Y, Haq IU, Xu Y, Hua X. A high-performance anion-exchange chromatographic method for the fast analysis and precise determination of varied glucose-derived acids during biomass biorefinery. Food Chem 2024; 460:140626. [PMID: 39128363 DOI: 10.1016/j.foodchem.2024.140626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024]
Abstract
Glucose-derived acids for the further production of value-added medicine, food additives, and polymers, will promote lignocellulosic biomass biorefinery industry. In response to the diversity and complexity, a new method was established by employing high performance anion exchange chromatography (HPAEC) coupled with a CarboPac™ PA200 column, for the precise and fast determination of glucose, gluconic acid, glucuronic acid, 2-ketogluconic acid, 5-ketogluconic acid and glucaric acid. Based on the analysis of tiny varieties in retention behavior, a gradient elution mode was designed and optimized for the quantitative and qualitative analysis. The protocol displayed acceptable linearity (R2 ≥ 0.995), commendable average recovery rate (95.28% ∼ 99.89%), satisfactory precision (RSD% ≤ 1.5%), and sufficient resolution (R > 6). Additionally, this method was successfully applied to the high-value biorefining process, which confirmed the practicability and accuracy. The results demonstrated that HPAEC has good detection performance for glucose and its derivative acids, and provide key identification technical support for the high-value utilization of lignocellulose.
Collapse
Affiliation(s)
- YaTing Hu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, PR China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, PR China
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, GC University, Lahore 54000, Pakistan
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, PR China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, PR China.
| | - Xia Hua
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, PR China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, PR China.
| |
Collapse
|
2
|
Fu F, Hu F, Yu Z, Liang Y, Gan T, Hu H, Huang Z, Zhang Y. In-situ growth of MnO 2 on three-dimensional layered Bi 2MoO 6/kaolinite with enhanced oxygen adsorption sites for efficient photocatalytic oxidation of 5-hydroxymethylfurfural. J Colloid Interface Sci 2024; 679:1050-1062. [PMID: 39489133 DOI: 10.1016/j.jcis.2024.10.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
The existing photocatalytic systems are difficult to achieve high selectivity and conversion for the oxidation of 5-hydroxymethylfurfural (HMF) under mild conditions. MnO2 exhibits notable tunability in valence state, but its photocatalytic oxidation efficiency is limited by the poor absorption in near-infrared region, insufficient oxygen adsorption, and slow charge transfer. To overcome these limitations, an innovative MnO2@Bi2MoO6/kaolinite (MnO2@BMO/KL) composite photocatalyst was synthesized by the hydrothermal and co-precipitation techniques, and the as-prepared photocatalyst was used for selective photocatalytic oxidation of HMF to produce 2,5-diformylfuran (DFF). The combination of MnO2, three-dimensional layered Bi2MoO6 (BMO), and kaolinite enhanced electron transport and oxygen adsorption. The incorporation of kaolinite as a support material led to the structural transformation of BMO, while the in-situ grown amorphous MnO2 trapped and accelerated electron transfer to adsorbed O2, thus efficiently segregating the photo-generated charges to enhance the utilization rate. MnO2@BMO/KL achieved almost complete conversion of HMF (>99.0 %) and a DFF yield of 83.0 % after 6 h of visible light irradiation. Additionally, MnO2@BMO/KL exhibited excellent structural stability over 6 cycles. The synergistic action of singlet oxygen (1O2) and superoxide (•O2-) was crucial in promoting the selective oxidation of HMF, while minimal generation of hydroxyl radical (•OH) reduced the risk of overoxidation. This study provides new insights into the development of economical and stable non-precious metal photocatalysts for highly selective conversion of biomass-derived chemicals.
Collapse
Affiliation(s)
- Fuzheng Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Furui Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zi Yu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yongxin Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Tao Gan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China.
| |
Collapse
|
3
|
Xin Y, Fu H, Chen L, Ji Y, Li Y, Shen K. High-Entropy Engineering in Hollow Layered Hydroxide Arrays to Boost 5-Hydroxymethylfurfural Electrooxidation by Suppressing Oxygen Evolution. ACS CENTRAL SCIENCE 2024; 10:1920-1932. [PMID: 39463830 PMCID: PMC11503487 DOI: 10.1021/acscentsci.4c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024]
Abstract
The electricity-driven 5-hydroxymethylfurfural (HMF) oxidation reaction has exhibited increasing potential to produce high-value-added 2,5-furandicarboxylic acid (FDCA). Unfortunately, the competitive oxygen evolution reaction (OER) can decrease the yield and Faradaic efficiency (FE) of FDCA under high potentials. Here, we report a general MOF-templated strategy to construct a new class of hollow high-entropy layered hydroxide array (HE-LHA) electrocatalysts including quinary, senary, and septenary phases composed of CoNiMnCuZn with Cd and Mg on carbon cloth (CC) for boosting the HMF oxidation reaction (HMFOR) by suppressing the OER. Impressively, the septenary CC@CoNiMnCuZnCdMg-LHA exhibits a low potential of 1.42 VRHE for the HMFOR but a high potential of 1.68 VRHE for the OER to achieve 100 mA cm-2, ranking it among one of the best electrocatalysts for the HMFOR. Finite element simulations show its hollow array morphology can induce a strong local electric field over all of the shell, thus favoring the electrocatalytic process. In situ electrochemical impedance spectroscopy and theoretical calculations further reveal that the Co, Ni, Cu, Zn, Mn, Cd, and Mg metals in high-entropy LHAs can accelerate the HMFOR but suppress the OER by optimizing the adsorption energy of the HMF* and OH*. This work sheds light on the rational design and construction of high-entropy nanoarchitectures for advanced electrocatalysis.
Collapse
Affiliation(s)
- Yu Xin
- Guangdong
Provincial Key Lab of Green Chemical Product Technology, School of
Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510640, China
| | - Hongchuan Fu
- Guangdong
Provincial Key Lab of Green Chemical Product Technology, School of
Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510640, China
| | - Liyu Chen
- Guangdong
Provincial Key Lab of Green Chemical Product Technology, School of
Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510640, China
| | - Yongfei Ji
- School
of Chemistry and Chemical Engineering, Guangzhou
University, Guangzhou 510006, China
| | - Yingwei Li
- Guangdong
Provincial Key Lab of Green Chemical Product Technology, School of
Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510640, China
| | - Kui Shen
- Guangdong
Provincial Key Lab of Green Chemical Product Technology, School of
Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Niakan M, Qian C, Zhou S. One-Pot, Solvent Free Synthesis of 2,5-Furandicarboxylic Acid from Deep Eutectic Mixtures of Sugars as Mediated by Bifunctional Catalyst. CHEMSUSCHEM 2024:e202401930. [PMID: 39315907 DOI: 10.1002/cssc.202401930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/25/2024]
Abstract
Currently one-pot conversion of sugars to 2,5-furandicarboxylic acid (FDCA) is of significant interest due to the attainability of sugars as a feedstock and the enormous potential of FDCA as a bioplastic monomer. However, it remains challenging to construct efficient catalysts for this process. In this study, Co3O4 species were anchored to a sulfonated covalent organic framework thus affording a bifunctional catalyst (Co3O4@COF-SO3H). The sulfonic acid sites dehydrate sugars to 5-hydroxymethylfurfural (HMF), which is next oxidized to FDCA as catalyzed by the Co3O4 species. Such a process was applied in the conversion of various binary and ternary deep eutectic mixtures involving choline chloride and sugars without additional solvent. The maximum FDCA yield of 84 % was obtained using glucose-fructose eutectic mixture as the substrates. Moreover, the catalyst was recyclable and stable under the applied reaction conditions. Our process eliminates the employment of organic solvents and expensive noble metal catalysts, resulting in green and economic biomass conversions.
Collapse
Affiliation(s)
- Mahsa Niakan
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University- Quzhou, 324000, Quzhou, P.R. China
| | - Chao Qian
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University- Quzhou, 324000, Quzhou, P.R. China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University- Quzhou, 324000, Quzhou, P.R. China
| |
Collapse
|
5
|
Liu Y, Shang H, Zhang B, Yan D, Xiang X. Surface fluorination of BiVO 4 for the photoelectrochemical oxidation of glycerol to formic acid. Nat Commun 2024; 15:8155. [PMID: 39289360 PMCID: PMC11408720 DOI: 10.1038/s41467-024-52161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
The C-C bond cleavage of biomass-derived glycerol to generate value-added C1 products remains challenging owing to its slow kinetics. We propose a surface fluorination strategy to construct dynamic dual hydrogen bonds on a semiconducting BiVO4 photoelectrode to overcome the kinetic limit of the oxidation of glycerol to produce formic acid (FA) in acidic media. Intensive spectroscopic characterizations confirm that double hydrogen bonds are formed by the interaction of the F-Bi-F sites of modified BiVO4 with water molecules, and the unique structure promotes the generation of hydroxyl radicals under light irradiation, which accelerates the kinetics of C-C bond cleavage. Theoretical investigations and infrared adsorption spectroscopy reveal that the double hydrogen bond enhances the C=O adsorption of the key intermediate product 1,3-dihydroxyacetone on the Bi-O sites to initiate the FA pathway. We fabricated a self-powered tandem device with an FA selectivity of 79% at the anode and a solar-to-H2 conversion efficiency of 5.8% at the cathode, and these results are superior to most reported results in acidic electrolytes.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Huishan Shang
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, 450001, Zhengzhou, P. R. China
| | - Bing Zhang
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, 450001, Zhengzhou, P. R. China
| | - Dongpeng Yan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 100875, Beijing, P. R. China.
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China.
- Quzhou Institute for Innovation in Resource Chemical Engineering, 324000, Quzhou, P. R. China.
| |
Collapse
|
6
|
Chen C, Lv M, Hu H, Huai L, Zhu B, Fan S, Wang Q, Zhang J. 5-Hydroxymethylfurfural and its Downstream Chemicals: A Review of Catalytic Routes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311464. [PMID: 38808666 DOI: 10.1002/adma.202311464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Biomass assumes an increasingly vital role in the realm of renewable energy and sustainable development due to its abundant availability, renewability, and minimal environmental impact. Within this context, 5-hydroxymethylfurfural (HMF), derived from sugar dehydration, stands out as a critical bio-derived product. It serves as a pivotal multifunctional platform compound, integral in synthesizing various vital chemicals, including furan-based polymers, fine chemicals, and biofuels. The high reactivity of HMF, attributed to its highly active aldehyde, hydroxyl, and furan ring, underscores the challenge of selectively regulating its conversion to obtain the desired products. This review highlights the research progress on efficient catalytic systems for HMF synthesis, oxidation, reduction, and etherification. Additionally, it outlines the techno-economic analysis (TEA) and prospective research directions for the production of furan-based chemicals. Despite significant progress in catalysis research, and certain process routes demonstrating substantial economics, with key indicators surpassing petroleum-based products, a gap persists between fundamental research and large-scale industrialization. This is due to the lack of comprehensive engineering research on bio-based chemicals, making the commercialization process a distant goal. These findings provide valuable insights for further development of this field.
Collapse
Affiliation(s)
- Chunlin Chen
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingxin Lv
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hualei Hu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyuan Huai
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zhu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilin Fan
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuge Wang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Xu S, Jiang Y, Liu J, Chun-Ho Lam J, Lin R, Shuai L, Shen F, Zhu W, Song B. Hydrothermal Valorization of Biosugars with Heterogeneous Catalysts: Advances, Catalyst Deactivation, Mitigation Strategies and Perspectives. CHEMSUSCHEM 2024:e202401405. [PMID: 39138129 DOI: 10.1002/cssc.202401405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
Sustainable production of valuable biochemicals and biofuels from lignocellulosic biomass necessitates the development of durable and high-performance catalysts. To assist the next-stage catalyst design for hydrothermal treatment of biosugars, this paper provides a critical review of (1) recent advances in biosugar hydrothermal valorization using heterogeneous catalysts, (2) the deactivation process of catalysts based on recycling tests of representative biosugar hydrothermal treatments, (3) state-of-the-art understandings of the deactivation mechanisms of heterogeneous catalysts, and (4) strategies for preparing durable catalysts and the regeneration of deactivated catalysts. Based on the review, challenges and perspectives are proposed. Some remarkable achievements in heterogeneous catalysis of biosugars are highlighted. The understanding of catalyst durability needs to be further enhanced based on full examination of the catalytic performance based on the conversion of substrates, the yield, and selectivity of products. Further, a full examination of the physiochemical changes based on multiple characterization techniques is required to eclucidate the relationships between treatment variables and catalyst durability. Collectively, a clear understanding of the relationships between chemical reaction pathways, treatment variables, and the physiochemistry of catalysts is encouraged to be gained to advise the development of heterogeneous catalysts for long-term and efficient hydrothermal upgrading of biosugars.
Collapse
Affiliation(s)
- Siyu Xu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yujing Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Juan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jason Chun-Ho Lam
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, PR China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Clear Water Bay, Kowloon, Hong Kong
| | - Richen Lin
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
- Civil, Structural, and Environmental Engineering, School of Engineering, University College Cork, Cork, Ireland
| | - Li Shuai
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feng Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin, 300191, P. R. China
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Bing Song
- Te Papa Tipu Innovation Park, Scion, 49 Sala Street, Rotorua 3046, Private Bag 3020, New Zealand
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Zhang W, Wang Z, Marianov A, Zhu Y, Wang L, Castignolles P, Gaborieau M, Baiker A, Huang J, Jiang Y. Boosting the Formation of Brønsted Acids on Flame-made WO x/ZrO 2 for Glucose Conversion. CHEMSUSCHEM 2024:e202400128. [PMID: 39045636 DOI: 10.1002/cssc.202400128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
Tungstate-zirconium oxide catalysts (WOx/ZrO2) with much higher concentrations of Brønsted acid sites (BAS) and a bigger ratio of Brønsted to Lewis acid sites (B/L) than achievable by conventional impregnation (IM) were synthesized using single-step flame spray pyrolysis (FSP). The rapid quenching and short residence time inherent to FSP prevent the accumulation of W atoms on the ZrO2 support and thus provide an excellent surface dispersion of WOx species. As a result, FSP-made WOx/ZrO2 (FSP-WOx/ZrO2) has a much higher surface concentration of three-dimensional Zr-WOx clusters than corresponding materials prepared by conventional impregnation (IM-WOx/ZrO2). The coordination of W-OH to the unsaturated Zr4+ sites in these clusters results in a remarkable decrease of the concentration of Lewis acid sites (LAS) on the surface of ZrO2 and promotes the formation of bridging W-O(H)-Zr hydroxyl groups acting as BAS. FSP-WOx/ZrO2 possesses ~80 % of BAS and a B/L ratio of around 4, while IM-WOx/ZrO2 exhibits ~50 % BAS and a B/L ratio of around 1. These catalysts were evaluated in the dehydration of glucose to 5-hydroxylmethylfurfural (HMF). The catalytic study demonstrated that the B/L ratio plays a crucial role in glucose conversion, virtually independent of the total acidity of the catalysts. The best catalyst, FSP-WOx/ZrO2 with a W/Zr ratio of 1/10 affords nearly 100 % glucose conversion and an HMF selectivity of 56-69 %, comparable to some homogenous catalysts.
Collapse
Affiliation(s)
- Wenwen Zhang
- School of Engineering, Macquarie University, 2109, Sydney, NSW, Australia
| | - Zichun Wang
- School of Engineering, Macquarie University, 2109, Sydney, NSW, Australia
| | - Aleksei Marianov
- School of Engineering, Macquarie University, 2109, Sydney, NSW, Australia
| | - Yuxiang Zhu
- School of Engineering, Macquarie University, 2109, Sydney, NSW, Australia
| | - Lizhuo Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Patrice Castignolles
- Australian Centre for Research on Separation Sciences, School of Science, Western Sydney University, Parramatta, NSW, 2150, Australia
| | - Marianne Gaborieau
- Australian Centre for Research on Separation Sciences, School of Science, Western Sydney University, Parramatta, NSW, 2150, Australia
| | - Alfons Baiker
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Hönggerberg, CH-8093, HCI Zurich, Switzerland
| | - Jun Huang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Yijiao Jiang
- School of Engineering, Macquarie University, 2109, Sydney, NSW, Australia
| |
Collapse
|
9
|
Lu X, Qi K, Dai X, Li Y, Wang D, Dou J, Qi W. Selective electrooxidation of 5-hydroxymethylfurfural to 5-formyl-furan-2-formic acid on non-metallic polyaniline catalysts: structure-function relationships. Chem Sci 2024; 15:11043-11052. [PMID: 39027310 PMCID: PMC11253170 DOI: 10.1039/d4sc01752h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
The biomass-derived HMF oxidation reaction (HMFOR) holds great promise for sustainable production of fine chemicals. However, selective electrooxidation of HMF to high value-added intermediate product 5-formyl-furan-2-formic acid (FFCA) is still challenging. Herein, we report the electrocatalytic HMFOR to selectively produce FFCA using carbon paper (CP) supported polyaniline (PANI) as a catalyst. The PANI/CP non-metallic hybrid catalyst with moderate oxidation capacity exhibitsoptimized FFCA selectivity up to 76% in alkaline media, which has reached the best performance in reported literature studies. Identification and quantification of active sites for the HMFOR are further realized via linking the activity to structural compositions of PANI; both polaronic-type nitrogen (N3) and positively charged nitrogen (N4) species are proved responsible for adsorption and activation of HMF, and the intrinsic activity of N4 is higher than that of N3. The present work provides new physical-chemical insights into the mechanism of the HMFOR on non-metallic catalysts, paving the way for the establishment of structure-function relations and further development of novel electrochemical synthesis systems.
Collapse
Affiliation(s)
- Xingyu Lu
- Institute of Metal Research, Chinese Academy of Sciences Shenyang Liaoning China
- School of Materials Science and Engineering, University of Science and Technology of China Shenyang Liaoning China
| | - Ke Qi
- Institute of Metal Research, Chinese Academy of Sciences Shenyang Liaoning China
- School of Materials Science and Engineering, University of Science and Technology of China Shenyang Liaoning China
| | - Xueya Dai
- Institute of Metal Research, Chinese Academy of Sciences Shenyang Liaoning China
- School of Materials Science and Engineering, University of Science and Technology of China Shenyang Liaoning China
| | - Yunlong Li
- Institute of Metal Research, Chinese Academy of Sciences Shenyang Liaoning China
- School of Materials Science and Engineering, University of Science and Technology of China Shenyang Liaoning China
| | - Di Wang
- School of Pharmacy, Shenyang Pharmaceutical University No. 26 Huatuo Rd, High & New Tech Development Zone Benxi Liaoning Province China
| | - Jing Dou
- Institute of Metal Research, Chinese Academy of Sciences Shenyang Liaoning China
- School of Materials Science and Engineering, University of Science and Technology of China Shenyang Liaoning China
| | - Wei Qi
- Institute of Metal Research, Chinese Academy of Sciences Shenyang Liaoning China
- School of Materials Science and Engineering, University of Science and Technology of China Shenyang Liaoning China
| |
Collapse
|
10
|
Pei A, Wang P, Zhang S, Zhang Q, Jiang X, Chen Z, Zhou W, Qin Q, Liu R, Du R, Li Z, Qiu Y, Yan K, Gu L, Ye J, Waterhouse GIN, Huang WH, Chen CL, Zhao Y, Chen G. Enhanced electrocatalytic biomass oxidation at low voltage by Ni 2+-O-Pd interfaces. Nat Commun 2024; 15:5899. [PMID: 39003324 PMCID: PMC11246419 DOI: 10.1038/s41467-024-50325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
Challenges in direct catalytic oxidation of biomass-derived aldehyde and alcohol into acid with high activity and selectivity hinder the widespread biomass application. Herein, we demonstrate that a Pd/Ni(OH)2 catalyst with abundant Ni2+-O-Pd interfaces allows electrooxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid with a selectivity near 100 % and 2, 5-furandicarboxylic acid yield of 97.3% at 0.6 volts (versus a reversible hydrogen electrode) in 1 M KOH electrolyte under ambient conditions. The rate-determining step of the intermediate oxidation of 5-hydroxymethyl-2-furancarboxylic acid is promoted by the increased OH species and low C-H activation energy barrier at Ni2+-O-Pd interfaces. Further, the Ni2+-O-Pd interfaces prevent the agglomeration of Pd nanoparticles during the reaction, greatly improving the stability of the catalyst. In this work, Pd/Ni(OH)2 catalyst can achieve 100% 5-hydroxymethylfurfural conversion and >90% 2, 5-furandicarboxylic acid selectivity in a flow-cell and work stably over 200 h under a fixed cell voltage of 0.85 V.
Collapse
Affiliation(s)
- An Pei
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Peng Wang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Shiyi Zhang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyi Jiang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Zhaoxi Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Weiwei Zhou
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Qizhen Qin
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Renfeng Liu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Ruian Du
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Zhengjian Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Keyou Yan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Materials Science and Engineering, Tsinghua University, Beijing, China.
| | - Jinyu Ye
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | | | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu, Taiwan
| | - Chi-Liang Chen
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu, Taiwan
| | - Yun Zhao
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China.
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China.
| |
Collapse
|
11
|
Shi L, Zhang Q, Yang S, Ren P, Wu Y, Liu S. Optimizing the Activation Energy of Reactive Intermediates on Single-Atom Electrocatalysts: Challenges and Opportunities. SMALL METHODS 2024; 8:e2301219. [PMID: 38180156 DOI: 10.1002/smtd.202301219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Single-atom catalysts (SACs) have made great progress in recent years as potential catalysts for energy conversion and storage due to their unique properties, including maximum metal atoms utilization, high-quality activity, unique defined active sites, and sustained stability. Such advantages of single-atom catalysts significantly broaden their applications in various energy-conversion reactions. Given the extensive utilization of single-atom catalysts, methods and specific examples for improving the performance of single-atom catalysts in different reaction systems based on the Sabatier principle are highlighted and reactant binding energy volcano relationship curves are derived in non-homogeneous catalytic systems. The challenges and opportunities for single-atom catalysts in different reaction systems to improve their performance are also focused upon, including metal selection, coordination environments, and interaction with carriers. Finally, it is expected that this work may provide guidance for the design of high-performance single-atom catalysts in different reaction systems and thereby accelerate the rapid development of the targeted reaction.
Collapse
Affiliation(s)
- Lei Shi
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150001, P. R. China
| | - Qihan Zhang
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Shucheng Yang
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150001, P. R. China
| | - Peidong Ren
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150001, P. R. China
| | - Yingjie Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Song Liu
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150001, P. R. China
| |
Collapse
|
12
|
Hao Nguyen T, Dinh Le D, Le Nguyen DA, Liang CF, Bich Phan H, Hoang Tran P. One-Pot Effective Approach to 2,5-Diformylfuran From Carbohydrates Using MoS 2-Decorated Carbonaceous Sugarcane Bagasse. CHEMSUSCHEM 2024:e202400657. [PMID: 38942726 DOI: 10.1002/cssc.202400657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 06/30/2024]
Abstract
Exploring the transformation of carbohydrates into valuable chemicals offers a promising and eco-friendly method for utilizing renewable biomass resources. Developing a bi-functional, sustainable heterogeneous catalyst is of utmost importance to attain a high level of selectivity for the desired product, 2,5-diformylfuran (DFF), in this direct conversion process. In this study, we developed a highly effective catalytic system to convert diverse carbohydrates into DFF. Our approach involved utilizing a MoS2 catalyst supported by amorphous carbon derived from sulfonated sugarcane biomass. The MoS2@SBG-SO3H composite was successfully synthesized using a facile and highly efficient method. The transformation of fructose into DFF achieved a significant yield of 70 % for 5 h at 160 °C using a one-step and one-pot reaction through dehydration and oxidation with oxygen. The oxidation of 5-hydroxymethylfurfural (HMF) into DFF using MoS2@SBG-SO3H was obtained at 94 % DFF within 5 h; the activation energy was 38.3 kJ . mol-1. The catalyst displayed convenient recovery and reusability. The direct synthesis of DFF from various carbohydrates, such as sucrose, glucose, maltose, and lactose, resulted in favorable yields. Our research provides a quick, green, and efficient process for preparing carbon-based solid acid catalysts and DFF.
Collapse
Affiliation(s)
- Trinh Hao Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Diep Dinh Le
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Dao Anh Le Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Chien-Fu Liang
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Ha Bich Phan
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Institute of Public Health, Ho Chi Minh City, Vietnam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
13
|
Lu Y, Lee BG, Lin C, Liu TK, Wang Z, Miao J, Oh SH, Kim KC, Zhang K, Park JH. Solar-driven highly selective conversion of glycerol to dihydroxyacetone using surface atom engineered BiVO 4 photoanodes. Nat Commun 2024; 15:5475. [PMID: 38942757 PMCID: PMC11213950 DOI: 10.1038/s41467-024-49662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/14/2024] [Indexed: 06/30/2024] Open
Abstract
Dihydroxyacetone is the most desired product in glycerol oxidation reaction because of its highest added value and large market demand among all possible oxidation products. However, selectively oxidative secondary hydroxyl groups of glycerol for highly efficient dihydroxyacetone production still poses a challenge. In this study, we engineer the surface of BiVO4 by introducing bismuth-rich domains and oxygen vacancies (Bi-rich BiVO4-x) to systematically modulate the surface adsorption of secondary hydroxyl groups and enhance photo-induced charge separation for photoelectrochemical glycerol oxidation into dihydroxyacetone conversion. As a result, the Bi-rich BiVO4-x increases the glycerol oxidation photocurrent density of BiVO4 from 1.42 to 4.26 mA cm-2 at 1.23 V vs. reversible hydrogen electrode under AM 1.5 G illumination, as well as the dihydroxyacetone selectivity from 54.0% to 80.3%, finally achieving a dihydroxyacetone production rate of 361.9 mmol m-2 h-1 that outperforms all reported values. The surface atom customization opens a way to regulate the solar-driven organic transformation pathway toward a carbon chain-balanced product.
Collapse
Affiliation(s)
- Yuan Lu
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Byoung Guan Lee
- Computational Materials Design Laboratory, Department of Chemical Engineering, Konkuk University, Seoul, the Republic of Korea
| | - Cheng Lin
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Tae-Kyung Liu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Zhipeng Wang
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jiaming Miao
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Sang Ho Oh
- Department of Energy Engineering, Institute for Energy Materials and Devices, Korea Institute of Energy Technology (KENTECH), Naju, Republic of Korea
| | - Ki Chul Kim
- Computational Materials Design Laboratory, Department of Chemical Engineering, Konkuk University, Seoul, the Republic of Korea.
| | - Kan Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Jong Hyeok Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Hong K, Liu M, Qian L, Bao M, Chen G, Jiang X, Huang J, Xu X. Catalytic [4+2]- and [4+4]-cycloaddition using furan-fused cyclobutanone as a privileged C4 synthon. Nat Commun 2024; 15:5407. [PMID: 38926359 PMCID: PMC11208666 DOI: 10.1038/s41467-024-49664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cycloaddition reactions play a pivotal role in synthetic chemistry for the direct assembly of cyclic architectures. However, hurdles remain for extending the C4 synthon to construct diverse heterocycles via programmable [4+n]-cycloaddition. Here we report an atom-economic and modular intermolecular cycloaddition using furan-fused cyclobutanones (FCBs) as a versatile C4 synthon. In contrast to the well-documented cycloaddition of benzocyclobutenones, this is a complementary version using FCB as a C4 reagent. It involves a C-C bond activation and cycloaddition sequence, including a Rh-catalyzed enantioselective [4 + 2]-cycloaddition with imines and an Au-catalyzed diastereoselective [4 + 4]-cycloaddition with anthranils. The obtained furan-fused lactams, which are pivotal motifs that present in many natural products, bioactive molecules, and materials, are inaccessible or difficult to prepare by other methods. Preliminary antitumor activity study indicates that 6e and 6 f exhibit high anticancer potency against colon cancer cells (HCT-116, IC50 = 0.50 ± 0.05 μM) and esophageal squamous cell carcinoma cells (KYSE-520, IC50 = 0.89 ± 0.13 μM), respectively.
Collapse
Affiliation(s)
- Kemiao Hong
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Mengting Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Lixin Qian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Ming Bao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Gang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Xinyu Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Jingjing Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Xinfang Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
15
|
Amenaghawon AN, Ayere JE, Amune UO, Otuya IC, Abuga EC, Anyalewechi CL, Okoro OV, Okolie JA, Oyefolu PK, Eshiemogie SO, Osahon BE, Omede M, Eshiemogie SA, Igemhokhai S, Okedi MO, Kusuma HS, Muojama OE, Shavandi A, Darmokoesoemo H. A comprehensive review of recent advances in the applications and biosynthesis of oxalic acid from bio-derived substrates. ENVIRONMENTAL RESEARCH 2024; 251:118703. [PMID: 38518912 DOI: 10.1016/j.envres.2024.118703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Organic acids are important compounds with numerous applications in different industries. This work presents a comprehensive review of the biological synthesis of oxalic acid, an important organic acid with many industrial applications. Due to its important applications in pharmaceuticals, textiles, metal recovery, and chemical and metallurgical industries, the global demand for oxalic acid has increased. As a result, there is an increasing need to develop more environmentally friendly and economically attractive alternatives to chemical synthesis methods, which has led to an increased focus on microbial fermentation processes. This review discusses the specific strategies for microbial production of oxalic acid, focusing on the benefits of using bio-derived substrates to improve the economics of the process and promote a circular economy in comparison with chemical synthesis. This review provides a comprehensive analysis of the various fermentation methods, fermenting microorganisms, and the biochemistry of oxalic acid production. It also highlights key sustainability challenges and considerations related to oxalic acid biosynthesis, providing important direction for further research. By providing and critically analyzing the most recent information in the literature, this review serves as a comprehensive resource for understanding the biosynthesis of oxalic acid, addressing critical research gaps, and future advances in the field.
Collapse
Affiliation(s)
- Andrew Nosakhare Amenaghawon
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria.
| | - Joshua Efosa Ayere
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Ubani Oluwaseun Amune
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical Engineering, Faculty of Engineering, Edo State University, Uzairue, Edo State, Nigeria
| | - Ifechukwude Christopher Otuya
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical Engineering, Faculty of Engineering, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Emmanuel Christopher Abuga
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Chinedu Lewis Anyalewechi
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical Engineering, Faculty of Engineering, Federal Polytechnic Oko, Anambra State, Nigeria
| | - Oseweuba Valentine Okoro
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Jude A Okolie
- Engineering Pathways, Gallogly College of Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Peter Kayode Oyefolu
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Steve Oshiokhai Eshiemogie
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Blessing Esohe Osahon
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Melissa Omede
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Stanley Aimhanesi Eshiemogie
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Shedrach Igemhokhai
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Petroleum Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Maxwell Ogaga Okedi
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University, Tallahassee, FL 2310-6046, USA
| | - Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia.
| | - Obiora Ebuka Muojama
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, 35487-0203, USA
| | - Amin Shavandi
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia.
| |
Collapse
|
16
|
Kumar S, Choudhary P, Sharma D, Sajwan D, Kumar V, Krishnan V. Tailored Engineering of Layered Double Hydroxide Catalysts for Biomass Valorization: A Way Towards Waste to Wealth. CHEMSUSCHEM 2024:e202400737. [PMID: 38864756 DOI: 10.1002/cssc.202400737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/13/2024]
Abstract
Layered double hydroxides (LDH) have significant attention in recent times due to their unique characteristic properties, including layered structure, variable compositions, tunable acidity and basicity, memory effect, and their ability to transform into various kinds of catalysts, which make them desirable for various types of catalytic applications, such as electrocatalysis, photocatalysis, and thermocatalysis. In addition, the upcycling of lignocellulose biomass and its derived compounds has emerged as a promising strategy for the synthesis of valuable products and fine chemicals. The current review focuses on recent advancements in LDH-based catalysts for biomass conversion reactions. Specifically, this review highlights the structural features and advantages of LDH and LDH-derived catalysts for biomass conversion reactions, followed by a detailed summary of the different synthesis methods and different strategies used to tailor their properties. Subsequently, LDH-based catalysts for hydrogenation, oxidation, coupling, and isomerization reactions of biomass-derived molecules are critically summarized in a very detailed manner. The review concludes with a discussion on future research directions in this field which anticipates that further exploration of LDH-based catalysts and integration of cutting-edge technologies into biomass conversion reactions hold promise for addressing future energy challenges, potentially leading to a carbon-neutral or carbon-positive future.
Collapse
Affiliation(s)
- Sahil Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Priyanka Choudhary
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Devendra Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Devanshu Sajwan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Vinit Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
17
|
Zhang Y, Zheng Y, Deng H, Long Y, Jiang W, Li C, Li S, Li Z, Li G. Bioelectrochemical cascade reaction for energy-saving hydrogen production and innovative Zn-air batteries. Bioelectrochemistry 2024; 157:108666. [PMID: 38346369 DOI: 10.1016/j.bioelechem.2024.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
The oxygen evolution reaction (OER) is an important half-reaction in electrochemical hydrogen production (EHP) and rechargeable metal-air batteries. However, the sluggish OER kinetics has seriously impeded their performance. Herein, we report a bioelectrochemical cascade system composed of glucose oxidase (GOx)-functionalized N-doped porous carbon nanofibers to replace OER in EHP and rechargeable Zn-air batteries (ZABs) applications. In this cascade system, GOx catalyzes oxidation of glucose to produce value-added gluconic acid accompanied with the generation of H2O2 under aerobic conditions. The subsequent electrocatalytic oxidation of H2O2 replacing the OER results in an onset voltage below 1.10 V for EHP, and a low charging voltage of 1.35 V as well as a small charging/discharging voltage gap of ∼ 280 mV over 170 h for ZABs in neutral aqueous electrolytes. The advantages of employing the innovative bioelectrochemical cascade reaction are demonstrated in EHP and ZABs, achieving the full utilization of biomass energy in energy-saving electrochemical systems for energy storage and conversion.
Collapse
Affiliation(s)
- Yuxia Zhang
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yan Zheng
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Hongfen Deng
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yating Long
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Wenna Jiang
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Chen Li
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Siping Li
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Zhi Li
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Gangyong Li
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
18
|
Tayebi M, Masoumi Z, Seo B, Lim CS, Hong CH, Kim HJ, Kyung D, Kim HG. Production of H 2 and Glucaric Acid Using Electrocatalyst Glucose Oxidation by the Ta NiFe LDH Electrode. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26107-26120. [PMID: 38725264 DOI: 10.1021/acsami.4c02260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The slow anodic oxygen evolution reaction (OER) significantly limits electrocatalytic water splitting for hydrogen production. We proposed the electrocatalyst for glucose oxidation by Ta-doping NiFe LDH nanosheets to simultaneously obtain glucaric acid (GRA) and hydrogen gas as a useful byproduct. Superior glucose oxidation reaction (GOR) activity is demonstrated by the optimized Ta-NiFe LDH, which has a low overpotential of 192 mV, allowing for a small Tafel slope of 70 mV dec-1 and a current density of 50 mA cm-2. The Ta NiFe LDH-oxidized glucose to GRA with a 72.94% yield and 64.3% Faradaic efficiency at 1.45 VRHE. Herein, we report the Ta NiFe LDH/NF electrode for the GOR&hydrogen evolution reaction (HER), which exhibits a cell voltage of 1.62 V to reach a current density of 10 mA cm-2, which is 250 mV lower compared to OER&HER (1.87 V). This study reveals that GOR is an energy-efficient and cost-effective method for producing H2 and valorizing biomass.
Collapse
Affiliation(s)
- Meysam Tayebi
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Zohreh Masoumi
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea
| | - Bongkuk Seo
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Choong-Sun Lim
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Chae Hwan Hong
- Research & Development Division, Hyundai Motor Company, Uiwang 16082, Gyeonggi-do, Republic of Korea
| | - Hye Jin Kim
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Daeseung Kyung
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea
| | - Hyeon-Gook Kim
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| |
Collapse
|
19
|
Sendeku MG, Shifa TA, Dajan FT, Ibrahim KB, Wu B, Yang Y, Moretti E, Vomiero A, Wang F. Frontiers in Photoelectrochemical Catalysis: A Focus on Valuable Product Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308101. [PMID: 38341618 DOI: 10.1002/adma.202308101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Photoelectrochemical (PEC) catalysis provides the most promising avenue for producing value-added chemicals and consumables from renewable precursors. Over the last decades, PEC catalysis, including reduction of renewable feedstock, oxidation of organics, and activation and functionalization of C─C and C─H bonds, are extensively investigated, opening new opportunities for employing the technology in upgrading readily available resources. However, several challenges still remain unsolved, hindering the commercialization of the process. This review offers an overview of PEC catalysis targeted at the synthesis of high-value chemicals from sustainable precursors. First, the fundamentals of evaluating PEC reactions in the context of value-added product synthesis at both anode and cathode are recalled. Then, the common photoelectrode fabrication methods that have been employed to produce thin-film photoelectrodes are highlighted. Next, the advancements are systematically reviewed and discussed in the PEC conversion of various feedstocks to produce highly valued chemicals. Finally, the challenges and prospects in the field are presented. This review aims at facilitating further development of PEC technology for upgrading several renewable precursors to value-added products and other pharmaceuticals.
Collapse
Affiliation(s)
- Marshet Getaye Sendeku
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, P. R. China
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tofik Ahmed Shifa
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Fekadu Tsegaye Dajan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Kassa Belay Ibrahim
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Binglan Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying Yang
- Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Elisa Moretti
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Alberto Vomiero
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Italy
- Department of Engineering Sciences and Mathematics, Division of Materials Science, Luleå University of Technology, Luleå, 97187, Sweden
| | - Fengmei Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
20
|
Kim S, Oh D, Jang JW. Unassisted Photoelectrochemical H 2O 2 Production with In Situ Glycerol Valorization Using α-Fe 2O 3. NANO LETTERS 2024; 24:5146-5153. [PMID: 38526525 DOI: 10.1021/acs.nanolett.3c05136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Photoelectrochemical (PEC) H2O2 production via two-electron O2 reduction is promising for H2O2 production without emitting CO2. For PEC H2O2 production, α-Fe2O3 is an ideal semiconductor owing to its earth abundance, superior stability in water, and an appropriate band gap for efficient solar light utilization. Moreover, its conduction band is suitable for O2 reduction to produce H2O2. However, a significant overpotential for water oxidation is required due to the poor surface properties of α-Fe2O3. Thus, unassisted solar H2O2 production is not yet possible. Herein, we demonstrate unassisted PEC H2O2 production using α-Fe2O3 for the first time by applying glycerol oxidation, which requires less bias compared with water oxidation. We obtain maximum Faradaic efficiencies of 96.89 ± 0.6% and 100% for glycerol oxidation and H2O2 production, respectively, with high stability for 25 h. Our results indicate that unassisted and stable PEC H2O2 production is feasible with in situ glycerol valorization using the α-Fe2O3 photoanode.
Collapse
Affiliation(s)
- Sarang Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Dongrak Oh
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Ji-Wook Jang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Centre, UNIST, Ulsan 44919, Republic of Korea
| |
Collapse
|
21
|
Araya A, Guajardo N, Lienqueo ME. Control of selectivity in the oxidation of 5-hydroxymethylfurfural to 5- formyl-2-furancarboxylic acid catalyzed by laccase in a multiphasic gas-liquid microbioreactor. BIORESOURCE TECHNOLOGY 2024; 394:130154. [PMID: 38056680 DOI: 10.1016/j.biortech.2023.130154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
The selectivity of 5-formyl-2-furancarboxylic acid (FFCA) was studied in a batch bioreactor and microbioreactors with different internal diameters (ID). Using microbioreactors, the effect of the flow rate of the liquid and gas phase on the yield, space time yield (STYFFCA), and gas-liquid mixture velocity (UM) of the reaction was evaluated. The biooxidation in flow microbioreactors, a selectivity of 100 % for FFCA was achieved, while with the batch bioreactor at the same substrate concentration a selectivity of 6.7 % was obtained. The highest yield (30 %) with 15 mM of 5-hydroxymethylfurfural (HMF) was reached at a gas-liquid flow rate of 0.5 µL/min and the highest STYFFCA (0.07 mol m-3 min-1) was achieved at a gas-liquid flow rate of 1.5 µL/min with the microbioreactor with an ID of 0.5 mm. The UM values (0.5 to 1.6 cm min1) indicated that the reaction takes place under a kinetic regime without mass transfer limitations.
Collapse
Affiliation(s)
- Aura Araya
- Magíster en Ciencias de la Ingeniería, mención Química, Universidad de Chile, Beauchef 851, Santiago, Chile
| | - Nadia Guajardo
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile.
| | - María Elena Lienqueo
- Centro de Biotecnología y Bioingeniería (CeBiB), Departamento de Ingeniería Química, Biotecnología y Materiales, Universidad de Chile, Beauchef 851, Santiago, Chile
| |
Collapse
|
22
|
van Strien N, Niskanen J, Berghuis A, Pöhler H, Rautiainen S. Production of 2,5-Furandicarboxylic Acid Methyl Esters from Pectin-Based Aldaric Acid: from Laboratory to Bench Scale. CHEMSUSCHEM 2024; 17:e202300732. [PMID: 37632359 DOI: 10.1002/cssc.202300732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/14/2023] [Accepted: 08/25/2023] [Indexed: 08/28/2023]
Abstract
2,5-Furandicarboxylic acid (FDCA) is one of the most attractive emerging renewable monomers, which has gained interest especially in polyester applications, such as the production of polyethylene furanoate (PEF). Recently, the attention has shifted towards FDCA esters due to their better solubility as well as the easier purification and polymerisation compared to FDCA. In our previous work, we reported the synthesis of FDCA butyl esters by dehydration of aldaric acids as stable intermediates. Here, we present the synthesis of FDCA methyl esters in high yields from pectin-based galactaric acid using a solid acid catalyst. The process enables high substrate concentrations (up to 20 wt %) giving up to 50 mol % FDCA methyl esters with total furancarboxylates yields of up to 90 mol %. The synthesis was successfully scaled up from gram-scale to kilogram-scale in batch reactors showing the feasibility of the process. The stability of the catalyst was tested in re-use experiments. Purification of the crude product by vacuum distillation and precipitation gave furan-2,5-dimethylcarboxylate with a 98 % purity.
Collapse
Affiliation(s)
- Nicolaas van Strien
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044, VTT, Finland
| | - Jukka Niskanen
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044, VTT, Finland
| | - Anneloes Berghuis
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044, VTT, Finland
| | - Holger Pöhler
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044, VTT, Finland
| | - Sari Rautiainen
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044, VTT, Finland
| |
Collapse
|
23
|
Cao YD, Mu WX, Gong M, Fan LL, Han J, Liu H, Qi B, Gao GG. Enhanced catalysis of a vanadium-substituted Keggin-type polyoxomolybdate supported on the M 3O 4/C (M = Fe or Co) surface enables efficient and recyclable oxidation of HMF to DFF. Dalton Trans 2023; 52:16303-16314. [PMID: 37855372 DOI: 10.1039/d3dt02935b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In the reaction of oxidizing 5-hydroxymethylfurfural (HMF), attaining high efficiency and selectivity in the conversion of HMF into DFF presents a challenge due to the possibility of forming multiple products. Polyoxometalates are considered highly active catalysts for HMF oxidation. However, the over-oxidation of products poses a challenge, leading to decreased purity and yield. In this work, metal-organic framework-derived Fe3O4/C and Co3O4/C were designed as carriers for the vanadium-substituted Keggin-type polyoxomolybdate H5PMo10V2O40·35H2O (PMo10V2). In this complex system, spinel oxides can effectively adsorb HMF molecules and cooperate with PMo10V2 to catalyze the aerobic oxidation of HMF. As a result, the as-prepared PMo10V2@Fe3O4/C and PMo10V2@Co3O4/C catalysts can achieve efficient conversion of HMF into DFF with almost 100% selectivity. Among them, PMo10V2@Fe3O4/C exhibits a higher conversion rate (99.1%) under milder reaction conditions (oxygen pressure of 0.8 MPa). Both catalysts exhibited exceptional stability and retained their activity and selectivity even after undergoing multiple cycles. Studies on mechanisms by in situ diffuse reflectance infrared Fourier transform spectroscopy and X-ray photoelectron spectroscopy revealed that the V5+ and Mo6+ in PMo10V2, together with the metal ions in the spinel oxides, act as active centers for the catalytic conversion of HMF. Therefore, it is proposed that PMo10V2 and M3O4/C (M = Fe, Co) cooperatively catalyze the transformation of HMF into DFF via a proton-coupled electron transfer mechanism. This study offers an innovative approach for designing highly selective and recyclable biomass oxidation catalysts.
Collapse
Affiliation(s)
- Yun-Dong Cao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Wen-Xia Mu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Mengdi Gong
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Lin-Lin Fan
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Jie Han
- School of Science and Technology, Hong Kong Metropolitan University, Homantin, Kowloon, Hong Kong, China
| | - Hong Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Bin Qi
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Guang-Gang Gao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| |
Collapse
|
24
|
Yan W, Guan Q, Jin F. Catalytic conversion of cellulosic biomass to harvest high-valued organic acids. iScience 2023; 26:107933. [PMID: 37841594 PMCID: PMC10570130 DOI: 10.1016/j.isci.2023.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Catalytic conversion of biomass provides an alternative way for the production of organic acids from renewable feedstocks. The emerging process contains complex reactions and strategies to cut down those complex biogenic materials into target molecules. Here, we review the catalytic conversion of cellulosic biomass toward high-valued organic acids. This work has summarized the key controlling reactions which lead toward formic acid, glycolic acid, or sugar acids in oxidative conditions and the main pathways for lactic acid or levulinic acid in the anaerobic environment from cellulosic biomass and its derivatives. We evaluate and compare different strategies and methods such as one-pot and two-step conversion. Additionally, the optimization of catalytic reactions has been discussed to realize the design of C-C coupling reactions, the development of multifunctional materials, and new efficient system. In all, this article gives an insight guide to precisely convert cellulosic biomass into target organic acids.
Collapse
Affiliation(s)
- Wubin Yan
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Guan
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Fangming Jin
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Zhang W, Xu X, Yuan Y, Wang Z. Sustainable application of rice-waste for fuels and valuable chemicals-a mini review. Front Chem 2023; 11:1225073. [PMID: 37927567 PMCID: PMC10620727 DOI: 10.3389/fchem.2023.1225073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
The global annual production of rice is over 750 million tons, and generates a huge amount of biomass waste, such as straw, husk, and bran, making rice waste an ideal feedstock for biomass conversion industries. This review focuses on the current progress in the transformation of rice waste into valuable products, including biochar, (liquid and gaseous) biofuels, valuable chemicals (sugars, furan derivatives, organic acids, and aromatic hydrocarbons), and carbon/silicon-based catalysts and catalyst supports. The challenges and future prospectives are highlighted to guide future studies in rice waste valorization for sustainable production of fuels and chemicals.
Collapse
Affiliation(s)
- Wenwen Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Xiaoyu Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yongjun Yuan
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Zichun Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
26
|
Chen Y, Shi J, Wu Y, Guo Z, Li S, Li W, Wu Z, Wang H, Jiang H, Jiang Z. NADH Photosynthesis System with Affordable Electron Supply and Inhibited NADH Oxidation. Angew Chem Int Ed Engl 2023; 62:e202310238. [PMID: 37665568 DOI: 10.1002/anie.202310238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/05/2023]
Abstract
Photosynthesis offers a green approach for the recycling of nicotinamide cofactors primarily NADH in bio-redox reactions. Herein, we report an NADH photosynthesis system where the oxidation of biomass derivatives is designed as an electron supply module (ESM) to afford electrons and superoxide dismutase/catalase (SOD/CAT) cascade catalysis is designed as a reactive oxygen species (ROS) elimination module (REM) to inhibit NADH degradation. Glucose as the electron donor guarantees the reaction sustainability accompanied with oxidative products of gluconic acid and formic acid. Meanwhile, enzyme cascades of SOD/CAT greatly eliminate ROS, leading to a ≈2.00-fold elevation of NADH yield (61.1 % vs. 30.7 %). The initial reaction rate and turnover frequency (TOF) increased by 2.50 times and 2.54 times, respectively, compared with those systems without REM. Our study establishes a novel and efficient platform for NADH photosynthesis coupled to biomass-to-chemical conversion.
Collapse
Affiliation(s)
- Yu Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Jiafu Shi
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 10090, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Yizhou Wu
- School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, China
| | - Zheyuan Guo
- School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Shihao Li
- School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Wenping Li
- School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Zhenhua Wu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Hongjian Wang
- School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Haifei Jiang
- School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Zhongyi Jiang
- School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
27
|
Luo X, Wu B, Li J, Wang Y, Tang X, Li C, Shao M, Wei Z. Benzoic Acid: Electrode-Regenerated Molecular Catalyst to Boost Cycloolefin Epoxidation. J Am Chem Soc 2023; 145:20665-20671. [PMID: 37672764 DOI: 10.1021/jacs.3c08227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Stoichiometric oxidants are always consumed in organic oxidation reactions. For example, olefins react with peroxy acids to be converted to epoxy, while the oxidant, peroxy acid, is downgraded to carboxylic acid. In this paper, we aim to regenerate carboxylic acid into peroxy acid through electric water splitting at the anode, in order to construct an electrochemical catalytic cycle to accomplish the cycloolefin epoxidation reaction. Benzoic acid, which can be strongly adsorbed onto the anode and rapidly converted to peroxy acid, was selected to catalyze the cycloolefin epoxidation. Furthermore, the peroxybenzoic acid will be further activated on the electrode to fulfill the epoxidation and release the benzoic acid to complete the catalytic cycle. In this designed reaction cycle, benzoic acid acts as a molecular catalyst with the assistance of the electrode-generated reactive oxygen species (ROS). This method can successfully reform the consumable oxidants to molecular catalysts, which can be generalized to other green organic syntheses.
Collapse
Affiliation(s)
- Xiaoxue Luo
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Baijing Wu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Jinrui Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Yufeng Wang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Xiaoxia Tang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Cunpu Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zidong Wei
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
28
|
Zhou H, Ren Y, Yao B, Li Z, Xu M, Ma L, Kong X, Zheng L, Shao M, Duan H. Scalable electrosynthesis of commodity chemicals from biomass by suppressing non-Faradaic transformations. Nat Commun 2023; 14:5621. [PMID: 37699949 PMCID: PMC10497620 DOI: 10.1038/s41467-023-41497-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Electrooxidation of biomass platforms provides a sustainable route to produce valuable oxygenates, but the practical implementation is hampered by the severe carbon loss stemming from inherent instability of substrates and/or intermediates in alkaline electrolyte, especially under high concentration. Herein, based on the understanding of non-Faradaic degradation, we develop a single-pass continuous flow reactor (SPCFR) system with high ratio of electrode-area/electrolyte-volume, short duration time of substrates in the reactor, and separate feeding of substrate and alkaline solution, thus largely suppressing non-Faradaic degradation. By constructing a nine-stacked-modules SPCFR system, we achieve electrooxidation of glucose-to-formate and 5-hydroxymethylfurfural (HMF)-to-2,5-furandicarboxylic acid (FDCA) with high single-pass conversion efficiency (SPCE; 81.8% and 95.8%, respectively) and high selectivity (formate: 76.5%, FDCA: 96.9%) at high concentrations (formate: 562.8 mM, FDCA: 556.9 mM). Furthermore, we demonstrate continuous and kilogram-scale electrosynthesis of potassium diformate (0.7 kg) from wood and soybean oil, and FDCA (1.17 kg) from HMF. This work highlights the importance of understanding and suppressing non-Faradaic degradation, providing opportunities for scalable biomass upgrading using electrochemical technology.
Collapse
Affiliation(s)
- Hua Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, China
| | - Yue Ren
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bingxin Yao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lina Ma
- Shandong Institute of Petroleum and Chemical Technology, Dongying, 257061, China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingfei Shao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
| |
Collapse
|
29
|
Chen D, Ding Y, Cao X, Wang L, Lee H, Lin G, Li W, Ding G, Sun L. Highly Efficient Biomass Upgrading by a Ni-Cu Electrocatalyst Featuring Passivation of Water Oxidation Activity. Angew Chem Int Ed Engl 2023; 62:e202309478. [PMID: 37486710 DOI: 10.1002/anie.202309478] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/25/2023]
Abstract
Electricity-driven organo-oxidations have shown an increasing potential recently. However, oxygen evolution reaction (OER) is the primary competitive reaction, especially under high current densities, which leads to low Faradaic efficiency (FE) of the product and catalyst detachment from the electrode. Here, we report a bimetallic Ni-Cu electrocatalyst supported on Ni foam (Ni-Cu/NF) to passivate the OER process while the oxidation of 5-hydroxymethylfurfural (HMF) is significantly enhanced. A current density of 1000 mA cm-2 can be achieved at 1.50 V vs. reversible hydrogen electrode, and both FE and yield keep close to 100 % over a wide range of potentials. Both experimental results and theoretical calculations reveal that Cu doping impedes the OH* deprotonation to O* and hereby OER process is greatly passivated. Those instructive results provide a new approach to realizing highly efficient biomass upgrading by regulating the OER activity.
Collapse
Affiliation(s)
- Dexin Chen
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Yunxuan Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Xing Cao
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Husileng Lee
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Gaoxin Lin
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Wenlong Li
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Guoheng Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| |
Collapse
|
30
|
Du M, Zhang Y, Kang S, Xu C, Ma Y, Cai L, Zhu Y, Chai Y, Qiu B. Electrochemical Production of Glycolate Fuelled By Polyethylene Terephthalate Plastics with Improved Techno-Economics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303693. [PMID: 37231558 DOI: 10.1002/smll.202303693] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Electrochemical valorization of polyethylene terephthalate (PET) waste streams into commodity chemicals offers a potentially sustainable route for creating a circular plastic economy. However, PET wastes upcycling into valuable C2 product remains a huge challenge by the lack of an electrocatalyst that can steer the oxidation economically and selectively. Here, it is reported a catalyst comprising Pt nanoparticles hybridized with γ-NiOOH nanosheets supported on Ni foam (Pt/γ-NiOOH/NF) that favors electrochemical transformation of real-word PET hydrolysate into glycolate with high Faradaic efficiency (> 90%) and selectivity (> 90%) across wide reactant (ethylene glycol, EG) concentration ranges under a marginal applied voltage of 0.55 V, which can be paired with cathodic hydrogen production. Computational studies combined with experimental characterizations elucidate that the Pt/γ-NiOOH interface with substantial charge accumulation gives rise to an optimized adsorption energy of EG and a decreased energy barrier of potential determining step. A techno-economic analysis demonstrates that, with the nearly same amount of resource investment, the electroreforming strategy towards glycolate production can raise revenue by up to 2.2 times relative to conventional chemical process. This work may thus serve as a framework for PET wastes valorization process with net-zero carbon footprint and high economic viability.
Collapse
Affiliation(s)
- Mengmeng Du
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Sailei Kang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Xu
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingxin Ma
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lejuan Cai
- Songshan Lake Materials Laboratory, Guangdong, 523000, China
| | - Ye Zhu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Bocheng Qiu
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
31
|
Raabe JC, Poller MJ, Voß D, Albert J. H 8 [PV 5 Mo 7 O 40 ] - A Unique Polyoxometalate for Acid and RedOx Catalysis: Synthesis, Characterization, and Modern Applications in Green Chemical Processes. CHEMSUSCHEM 2023; 16:e202300072. [PMID: 37129162 DOI: 10.1002/cssc.202300072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Polyoxometalates (POMs) are a fascinating group of anionic metal-oxide clusters with a broad variety of structural properties and several catalytic applications, especially in the conversion of bio-derived platform chemicals. H8 [PV5 Mo7 O40 ] (HPA-5) is a unique POM catalyst that ideally links numerous fascinating research fields for the following reasons: a) HPA-5 can be synthesized by rational design approaches; b) HPA-5 can be well characterized using multiple analytical tools explaining its catalytic properties; and c) HPA-5 is suitable for multiple important catalytic transformations of bio-based feedstock. This Review combines the fields of synthesis, spectroscopic, electrochemical, and crystallographic characterization of HPA-5 with those of sustainable catalysis and green chemistry. Selected catalytic applications include esterification, dehydration, and delignification of biomass as well as selective oxidation and fractionation of bio-based feedstock. The unique HPA-5 is a fascinating POM that has a broad application scope for biomass valorization.
Collapse
Affiliation(s)
- Jan-Christian Raabe
- Institute of Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstr. 45, 20146, Hamburg, Germany
| | - Maximilian J Poller
- Institute of Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstr. 45, 20146, Hamburg, Germany
| | - Dorothea Voß
- Institute of Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstr. 45, 20146, Hamburg, Germany
| | - Jakob Albert
- Institute of Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstr. 45, 20146, Hamburg, Germany
| |
Collapse
|
32
|
Xiong JS, Qi T, Hu YX, Yang HM, Zhu LF, Hu CW, Yang HQ. Cooperative Catalysis Mechanism of Brønsted and Lewis Acids from Al(OTf) 3 with Methanol for β-Cellobiose-to-Fructose Conversion: An Experimental and Theoretical Study. J Phys Chem A 2023; 127:6400-6411. [PMID: 37498222 DOI: 10.1021/acs.jpca.3c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Al-containing catalysts, e.g., Al(OTf)3, show good catalytic performance toward the conversion of cellulose to fructose in methanol solution. Here, we report the catalytic isomerization and alcoholysis mechanisms for the conversion of cellobiose to fructose at the PBE0/6-311++G(d,p), aug-cc-pVTZ theoretical level, combining the relevant experimental verifications of electrospray ionization mass spectrometry (ESI-MS), high-performance liquid chromatography (HPLC), and the attenuated total reflection-infrared (ATR-IR) spectra. From the alcoholysis of Al(OTf)3 in methanol solution, the catalytically active species involves both the [CH3OH2]+ Brønsted acid and the [Al(CH3O)(OTf)(CH3OH)4]+ Lewis acid. There are two reaction pathways, i.e., one through glucose (glycosidic bond cleavage followed by isomerization, w-G) and another through cellobiulose (isomerization followed by glycosidic bond cleavage, w-L). The Lewis acid ([Al(CH3O)(OTf)(CH3OH)4]+) is responsible for the aldose-ketose tautomerization, while the Brønsted acid ([CH3OH2]+) is in charge of ring-opening, ring-closure, and glycosidic bond cleavage. For both w-G and w-L, the rate-determining steps are related to the intramolecular [1,2]-H shift between C1-C2 for the aldose-ketose tautomerization catalyzed by the [Al(CH3O)(OTf)(CH3OH)4]+ species. The Lewis acid ([Al(CH3O)(OTf)(CH3OH)4]+) exhibits higher catalytic activity toward the aldose-ketose tautomerization of glycosyl-chain-glucose to glycosyl-chain-fructose than that of chain-glucose to chain-fructose. Besides, the Brønsted acid ([CH3OH2]+) shows higher catalytic activity toward the glycosidic bond cleavage of cellobiulose than that of cellobiose. Kinetically, the w-L pathway is predominant, whereas the w-G pathway is minor. The theoretically proposed mechanism has been experimentally testified. These insights may advance on the novel design of the catalytic system toward the conversion of cellulose to fructose.
Collapse
Affiliation(s)
- Jin-Shan Xiong
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Ting Qi
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Ye-Xin Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Hong-Mei Yang
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Liang-Fang Zhu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Chang-Wei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Hua-Qing Yang
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| |
Collapse
|
33
|
Wang J, Erdem E, Woodley JM. Effect of Nitrogen, Air, and Oxygen on the Kinetic Stability of NAD(P)H Oxidase Exposed to a Gas-Liquid Interface. Org Process Res Dev 2023; 27:1111-1121. [PMID: 38779303 PMCID: PMC11108306 DOI: 10.1021/acs.oprd.3c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Indexed: 05/25/2024]
Abstract
Biocatalytic oxidation is an interesting prospect for the selective synthesis of active pharmaceutical intermediates. Bubbling air or oxygen is considered as an efficient method to increase the gas-liquid interface and thereby enhance oxygen transfer. However, the enzyme is deactivated in this process and needs to be further studied and understood to accelerate the implementation of oxidative biocatalysis in larger production processes. This paper reports data on the stability of NAD(P)H oxidase (NOX) when exposed to different gas-liquid interfaces introduced by N2 (0% oxygen), air (21% oxygen), and O2 (100% oxygen) in a bubble column. A pH increase was observed during gas bubbling, with the highest increase occurring under air bubbling from 6.28 to 7.40 after 60 h at a gas flow rate of 0.15 L min-1. The kinetic stability of NOX was studied under N2, air, and O2 bubbling by measuring the residual activity, the deactivation constants (kd1) were 0.2972, 0.0244, and 0.0346 with the corresponding half-lives of 2.2, 28.6, and 20.2 h, respectively. A decrease in protein concentration of the NOX solution was also observed and was attributed to likely enzyme aggregation at the gas-liquid interface. Most aggregation occurred at the air-water interface and decreased greatly from 100 to 14.16% after 60 h of bubbling air. Furthermore, the effect of the gas-liquid interface and the dissolved gas on the NOX deactivation process was also studied by bubbling N2 and O2 alternately. It was found that the N2-water interface and O2-water interface both had minor effects on the protein concentration decrease compared with the air-water interface, whilst the dissolved N2 in water caused serious deactivation of NOX. This was attributed not only to the NOX unfolding and aggregation at the interface but also to the N2 occupying the oxygen channel of the enzyme and the resultant inaccessibility of dissolved O2 to the active site of NOX. These results shed light on the enzyme deactivation process and might further inspire bioreactor operation and enzyme engineering to improve biocatalyst performance.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Chemical and
Biochemical Engineering, Technical University
of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Elif Erdem
- Department of Chemical and
Biochemical Engineering, Technical University
of Denmark, 2800 Kgs. Lyngby, Denmark
| | - John M. Woodley
- Department of Chemical and
Biochemical Engineering, Technical University
of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
34
|
El Mohammad S, Proux O, Aguilar A, Hazemann JL, Legens C, Chizallet C, Larmier K. Elucidation of Metal-Sugar Complexes: When Tungstate Combines with d-Mannose. Inorg Chem 2023; 62:7545-7556. [PMID: 37130307 DOI: 10.1021/acs.inorgchem.3c00911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The control of metal-sugar complexes speciation in solution is crucial in an energy transition context. Herein, the formation of tungstate-mannose complexes is unraveled in aqueous solution using a multitechnique experimental and theoretical approach. 13C nuclear magnetic resonance (NMR), as well as 13C-1H and 1H-1H correlation spectra, analyzed in the light of coordination-induced shift method and conformation analysis, were employed to characterize the structure of the sugar involved in the complexes. X-ray absorption near edge structure spectroscopy was performed to provide relevant information about the metal electronic and coordination environment. The calculation of 13C NMR chemical shifts for a series of tungstate-mannose complexes using density functional theory (DFT) is a key to identify the appropriate structure among several candidates. Furthermore, a parametric study based on several relevant parameters, namely, pH and tungstate concentration, was carried out to look over the change of the nature and concentrations of the complexes. Two series of complexes were detected, in which the metallic core is either in a ditungstate or a monotungstate form. With respect to previous proposals, we identify two new species. Dinuclear complexes involve both α- and β-furanose forms chelating the metallic center in a tetradentate fashion. A hydrate form chelating a ditungstate core is also revealed. One monotungstate complex appears at high pH, in which a tetrahedral tungstate center is bound to α-mannofuranose through a monodentate site at the second deprotonated hydroxyl group. This unequalled level of knowledge opens the door to structure-reactivity relationships.
Collapse
Affiliation(s)
- Sabah El Mohammad
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, Solaize 69360, France
| | - Olivier Proux
- OSUG, UAR 832 CNRS, Université Grenoble Alpes, Grenoble 38041, France
| | - Antonio Aguilar
- ICMG, UAR 2607 CNRS, Université Grenoble Alpes, Grenoble 38041, France
| | - Jean-Louis Hazemann
- Institut Néel, CNRS, Université Grenoble Alpes, 25 Avenue des Martyrs, Grenoble 38042, France
| | - Christèle Legens
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, Solaize 69360, France
| | - Céline Chizallet
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, Solaize 69360, France
| | - Kim Larmier
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, Solaize 69360, France
| |
Collapse
|
35
|
Wang X, Guo X, Wang X, Li C, Wang S, Li H, Gao Y, Li Y, Wang J, Xu H. Conversion of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid by a simple and metal-free catalytic system. RSC Adv 2023; 13:13819-13823. [PMID: 37181510 PMCID: PMC10170353 DOI: 10.1039/d3ra01104f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023] Open
Abstract
A simple and metal-free catalytic system composed of NaOtBu/DMF and an O2 balloon efficiently converted 5-hydroxymethylfurfural (5-HMF) to furan-2,5-dicarboxylic acid with an 80.85% yield. 5-HMF analogues and various types of alcohols were also transformed to their corresponding acids in satisfactory to excellent yield by this catalytic system.
Collapse
Affiliation(s)
- Xue Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University Harbin China
| | - Xinyuan Guo
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Xinmei Wang
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Chi Li
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Shanjun Wang
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Han Li
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Yan'an Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical, Island Resources, Hainan University Haikou 570228 China
| | - Yiying Li
- College of Basic Medicine and Life Sciences, Hainan Medical University Haikou China
| | - Jinhui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University Harbin China
- Key Laboratory of Child Cognition and Behavior Development of Hainan Province, Qiongtai Normal University Haikou China
| | - Huanjun Xu
- School of Science, Qiongtai Normal University Haikou 571127 China
- Key Laboratory of Child Cognition and Behavior Development of Hainan Province, Qiongtai Normal University Haikou China
| |
Collapse
|
36
|
Costa JM, Strieder MM, Saldaña MDA, Rostagno MA, Forster-Carneiro T. Recent Advances in the Processing of Agri-food By-products by Subcritical Water. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
37
|
Chizallet C, Bouchy C, Larmier K, Pirngruber G. Molecular Views on Mechanisms of Brønsted Acid-Catalyzed Reactions in Zeolites. Chem Rev 2023; 123:6107-6196. [PMID: 36996355 DOI: 10.1021/acs.chemrev.2c00896] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The Brønsted acidity of proton-exchanged zeolites has historically led to the most impactful applications of these materials in heterogeneous catalysis, mainly in the fields of transformations of hydrocarbons and oxygenates. Unravelling the mechanisms at the atomic scale of these transformations has been the object of tremendous efforts in the last decades. Such investigations have extended our fundamental knowledge about the respective roles of acidity and confinement in the catalytic properties of proton exchanged zeolites. The emerging concepts are of general relevance at the crossroad of heterogeneous catalysis and molecular chemistry. In the present review, emphasis is given to molecular views on the mechanism of generic transformations catalyzed by Brønsted acid sites of zeolites, combining the information gained from advanced kinetic analysis, in situ, and operando spectroscopies, and quantum chemistry calculations. After reviewing the current knowledge on the nature of the Brønsted acid sites themselves, and the key parameters in catalysis by zeolites, a focus is made on reactions undergone by alkenes, alkanes, aromatic molecules, alcohols, and polyhydroxy molecules. Elementary events of C-C, C-H, and C-O bond breaking and formation are at the core of these reactions. Outlooks are given to take up the future challenges in the field, aiming at getting ever more accurate views on these mechanisms, and as the ultimate goal, to provide rational tools for the design of improved zeolite-based Brønsted acid catalysts.
Collapse
Affiliation(s)
- Céline Chizallet
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Christophe Bouchy
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Kim Larmier
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Gerhard Pirngruber
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| |
Collapse
|
38
|
Wang J, Zhao H, Larter SR, Kibria MG, Hu J. One-pot sequential cascade reaction for selective gluconic acid production from cellulose photobiorefining. Chem Commun (Camb) 2023; 59:3451-3454. [PMID: 36866729 DOI: 10.1039/d2cc06462f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
We demonstrate the feasibility of cellulose photobiocatalytic conversion with >75% cellulose conversion and >75% gluconic acid selectivity from converted glucose. This process is realized via a one-pot sequential cascade reaction by cellulase enzymes and a carbon nitride photocatalyst that can realize selective glucose photoreforming into gluconic acid. Cellulase enzymes breakdown cellulose into glucose, which will subsequently be converted into gluconic acid by essential oxidative species (˙O2- and ˙OH) via a selective photocatalysis process with simultaneous H2O2 formation. This work demonstrates a good example to realize direct cellulose photobiorefining into value-added chemicals via the photo-bio hybrid system.
Collapse
Affiliation(s)
- Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| | - Stephen R Larter
- Department of Geosciences, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
39
|
Mechanistic Studies into the Selective Production of 2,5-furandicarboxylic Acid from 2,5-bis(hydroxymethyl)furan Using Au-Pd Bimetallic Catalyst Supported on Nitrated Carbon Material. Catalysts 2023. [DOI: 10.3390/catal13020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Aerobic oxidation of bio-sourced 2,5-bis(hydroxymethyl)furan (BHMF) to 2, 5-furandicarboxylic acid (FDCA), a renewable and green alternative to petroleum-derived terephthalic acid (TPA), is of great significance in green chemicals production. Herein, hierarchical porous bowl-like nitrogen-rich (nitrated) carbon-supported bimetallic Au-Pd nanocatalysts (AumPdn/ N-BNxC) with different nitrogen content and bimetal nanoparticle sizes were developed and employed for the highly efficient aerobic oxidation of BHMF to FDCA in sodium carbonate aqueous solution. The reaction pathway for catalytic oxidation of BHMF went through the steps of BHMF→HMF→HMFCA→FFCA→FDCA. Kinetics studies showed that the activation energies of BHMF, HMF, HMFCA, and FFCA were 58.1 kJ·moL−1, 39.1 kJ·moL−1, 129.2 kJ·moL−1, and 56.3 kJ·moL−1, respectively, indicating that the oxidation of intermediate HMFCA to FFCA was the rate-determining step. ESR tests proved that the active species was a superoxide radical. Owing to the synergy between the nitrogen-rich carbon support and bimetallic Au-Pd nanoparticles, the Au1Pd1/N-BN2C nanocatalysts exhibited BHMF conversion of 100% and FDCA yield of 95.8% under optimal reaction conditions. Furthermore, the nanocatalysts showed good stability and reusability. This work provides a versatile strategy for the design of heterogeneous catalysts for the highly efficient production of FDCA from BHMF.
Collapse
|
40
|
Wang J, Chen L, Zhao H, Kumar P, Larter SR, Kibria MG, Hu J. In Situ Photo-Fenton-Like Tandem Reaction for Selective Gluconic Acid Production from Glucose Photo-Oxidation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AlbertaT2N 1N4, Canada
| | - Lin Chen
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96Göteborg, Sweden
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AlbertaT2N 1N4, Canada
| | - Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AlbertaT2N 1N4, Canada
| | - Stephen R. Larter
- Department of Geosciences, University of Calgary, 2500 University Drive, NW, CalgaryAlberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AlbertaT2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AlbertaT2N 1N4, Canada
| |
Collapse
|
41
|
Ding Z, Kumar Awasthi S, Kumar M, Kumar V, Mikhailovich Dregulo A, Yadav V, Sindhu R, Binod P, Sarsaiya S, Pandey A, Taherzadeh MJ, Rathour R, Singh L, Zhang Z, Lian Z, Kumar Awasthi M. A thermo-chemical and biotechnological approaches for bamboo waste recycling and conversion to value added product: Towards a zero-waste biorefinery and circular bioeconomy. FUEL 2023; 333:126469. [DOI: 10.1016/j.fuel.2022.126469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
42
|
Guo L, Zhang X, Gan L, Pan L, Shi C, Huang Z, Zhang X, Zou J. Advances in Selective Electrochemical Oxidation of 5-Hydroxymethylfurfural to Produce High-Value Chemicals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205540. [PMID: 36480314 PMCID: PMC9896064 DOI: 10.1002/advs.202205540] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/02/2022] [Indexed: 06/17/2023]
Abstract
The conversion of biomass is a favorable alternative to the fossil energy route to solve the energy crisis and environmental pollution. As one of the most versatile platform compounds, 5-hydroxymethylfural (HMF) can be transformed to various value-added chemicals via electrolysis combining with renewable energy. Here, the recent advances in electrochemical oxidation of HMF, from reaction mechanism to reactor design are reviewed. First, the reaction mechanism and pathway are summarized systematically. Second, the parameters easy to be ignored are emphasized and discussed. Then, the electrocatalysts are reviewed comprehensively for different products and the reactors are introduced. Finally, future efforts on exploring reaction mechanism, electrocatalysts, and reactor are prospected. This review provides a deeper understanding of mechanism for electrochemical oxidation of HMF, the design of electrocatalyst and reactor, which is expected to promote the economical and efficient electrochemical conversion of biomass for industrial applications.
Collapse
Affiliation(s)
- Lei Guo
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Xiaoxue Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Li Gan
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Zhen‐Feng Huang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Ji‐Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| |
Collapse
|
43
|
Selective glucose oxidation to organic acids over synthesized bimetallic oxides at low temperatures. REACTION KINETICS MECHANISMS AND CATALYSIS 2023. [DOI: 10.1007/s11144-022-02342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
Yu L, Ren Z, Yang Y, Wei M. Directed Preparation of Biomass-based Polyester Monomers by Catalytic Conversion. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22110459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
45
|
Vahalová P, Cifra M. Biological autoluminescence as a perturbance-free method for monitoring oxidation in biosystems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:80-108. [PMID: 36336139 DOI: 10.1016/j.pbiomolbio.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Biological oxidation processes are in the core of life energetics, play an important role in cellular biophysics, physiological cell signaling or cellular pathophysiology. Understanding of biooxidation processes is also crucial for biotechnological applications. Therefore, a plethora of methods has been developed for monitoring oxidation so far, each with distinct advantages and disadvantages. We review here the available methods for monitoring oxidation and their basic characteristics and capabilities. Then we focus on a unique method - the only one that does not require input of additional external energy or chemicals - which employs detection of biological autoluminescence (BAL). We highlight the pros and cons of this method and provide an overview of how BAL can be used to report on various aspects of cellular oxidation processes starting from oxygen consumption to the generation of oxidation products such as carbonyls. This review highlights the application potential of this completely non-invasive and label-free biophotonic diagnostic method.
Collapse
Affiliation(s)
- Petra Vahalová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| |
Collapse
|
46
|
Oh LS, Park M, Park YS, Kim Y, Yoon W, Hwang J, Lim E, Park JH, Choi SM, Seo MH, Kim WB, Kim HJ. How to Change the Reaction Chemistry on Nonprecious Metal Oxide Nanostructure Materials for Electrocatalytic Oxidation of Biomass-Derived Glycerol to Renewable Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203285. [PMID: 35679126 DOI: 10.1002/adma.202203285] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Au and Pt are well-known catalysts for electrocatalytic oxidation of biomass-derived glycerol. Although some nonprecious-metal-based materials to replace the costly Au and Pt are used for this reaction, the fundamental question of how the nonprecious catalysts affect the reaction chemistry and mechanism compared to Au and Pt catalysts is still unanswered. In this work, both experimental and computational methods are used to understand how and why the reaction performance and chemistry for the electrocatalytic glycerol oxidation reaction (EGOR) change with electrochemically-synthesized CuCo-oxide, Cu-oxide, and Co-oxide catalysts compared to conventional Au and Pt catalysts. The Au and Pt catalysts generate major glyceric acid and glycolic acid products from the EGOR. Interestingly, the prepared Cu-based oxides produce glycolic acid and formic acid with high selectivity of about 90.0%. This different reaction chemistry is related to the enhanced ability of CC bond cleavage on the Cu-based oxide materials. The density functional theory calculations demonstrate that the formic acids are mainly formed on the Cu-based oxide surfaces rather than in the process of glycolic acid formation in the free energy diagram. This study provides critical scientific insights into developing future nonprecious-based materials for electrochemical biomass conversions.
Collapse
Affiliation(s)
- Lee Seul Oh
- Chemical and Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Minseon Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Yoo Sei Park
- Department of Energy and Electronic Materials, Surface Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Youngmin Kim
- Chemical and Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Wongeun Yoon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Jeemin Hwang
- Fuel Cell Research and Demonstration Center, Future Energy Research Division, Korea Institute of Energy Research (KIER), 20-41 Sinjaesaengeneogi-ro, Haseo-myeon, Buan-gun, Jeollabuk-do, 56332, Republic of Korea
| | - Eunho Lim
- Chemical and Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jong Hyeok Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sung Mook Choi
- Department of Energy and Electronic Materials, Surface Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
- Advanced Materials Engineering, University of Science and Technology (UST), 113 Gwahangno, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Min Ho Seo
- Department of Nanotechnology Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48547, Republic of Korea
| | - Won Bae Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Hyung Ju Kim
- Chemical and Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), 113 Gwahangno, Yuseong-gu, Daejeon, 34113, Republic of Korea
| |
Collapse
|
47
|
Nejrotti S, Antenucci A, Pontremoli C, Gontrani L, Barbero N, Carbone M, Bonomo M. Critical Assessment of the Sustainability of Deep Eutectic Solvents: A Case Study on Six Choline Chloride-Based Mixtures. ACS OMEGA 2022; 7:47449-47461. [PMID: 36591154 PMCID: PMC9798394 DOI: 10.1021/acsomega.2c06140] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
An outline of the advantages, in terms of sustainability, of Deep Eutectic Solvents (DESs) is provided, by analyzing some of the most popular DESs, obtained by the combination of choline chloride, as a hydrogen bond acceptor, and six hydrogen bond donors. The analysis is articulated into four main issues related to sustainability, which are recurrently mentioned in the literature, but are often taken for granted without any further critical elaboration, as the prominent green features of DESs: their low toxicity, good biodegradability, renewable sourcing, and low cost. This contribution is intended to provide a more tangible, evidence-based evaluation of the actual green credentials of the considered DESs, to reinforce or question their supposed sustainability, also in mutual comparison with one another.
Collapse
Affiliation(s)
- Stefano Nejrotti
- Department
of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, Via Gioacchino Quarello 15/a, 10125 Torino, Italy
| | - Achille Antenucci
- Department
of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, Via Gioacchino Quarello 15/a, 10125 Torino, Italy
- Centro
Ricerche per la Chimica Fine s.r.l. for Silvateam s.p.a., Via Torre 7, San Michele Mondovì (CN) 12080, Italy
| | - Carlotta Pontremoli
- Department
of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, Via Gioacchino Quarello 15/a, 10125 Torino, Italy
| | - Lorenzo Gontrani
- Department
of Chemical Science and Technologies, University
of Rome, Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy
| | - Nadia Barbero
- Department
of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, Via Gioacchino Quarello 15/a, 10125 Torino, Italy
- Institute
of Science, Technology and Sustainability
for the Development of Ceramic Materials (ISSMC-CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Marilena Carbone
- Department
of Chemical Science and Technologies, University
of Rome, Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy
| | - Matteo Bonomo
- Department
of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, Via Gioacchino Quarello 15/a, 10125 Torino, Italy
| |
Collapse
|
48
|
Zhou Y, Lv S, Li H, Wu Q, Chen T, Liu S, Li W, Yang W, Chen Z. MIL-47(V)-derived carbon-doped vanadium oxide for selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Dalton Trans 2022; 51:18473-18479. [PMID: 36421021 DOI: 10.1039/d2dt03338k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The development and transformation of biomass-derived platform compounds is a sustainable way to deal with the fossil fuel crisis. 5-Hydroxymethylfurfural (HMF) can be reduced or oxidized to produce many high-value compounds; however, it is challenging to effectively produce 2,5-diformylfuran (DFF) due to overoxidation. In this work, a carbon-doped V2O5 (C-V2O5) material was obtained through pyrolysis of MIL-47(V) nanorods, a typical metal-organic framework material. The X-ray diffraction patterns and X-ray photoelectron spectra showed that the graphitized carbon species were incorporated in C-V2O5. High-efficiency HMF oxidation, high specific selectivity for DFF and excellent recycling could be achieved with the C-V2O5 catalyst. Fourier-transform infrared spectroscopy combined with density functional theory (DFT) calculation revealed that graphitized carbon weakens the VO bond and promotes the formation of oxygen vacancies in C-V2O5, thus improving the catalytic activity in the oxidation of furfuryl alcohols. The V4+ induced by oxygen vacancies will be oxidized by O2 to form V5+, so that the cycle can be realized. It exhibits remarkable selectivity in the oxidation of different alcohols produced from biomass based on the relatively constant active sites in C-V2O5.
Collapse
Affiliation(s)
- Yan Zhou
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Shanshan Lv
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Han Li
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Qikang Wu
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Taiyu Chen
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Shaohuan Liu
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Wanying Li
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Wenjuan Yang
- Julong College, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Zheng Chen
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
49
|
Valorisation of Corncob Residue towards the Sustainable Production of Glucuronic Acid. Catalysts 2022. [DOI: 10.3390/catal12121603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The production of glucuronic acid (GA) directly from actual biomass via chemocatalysis is of great significance to the effective valorisation of biomass for a sustainable future. Herein, we have developed a one-step strategy for the conversion of cellulose in corncob residue into GA with the cooperation of Au/CeO2 and maleic acid, achieving a 60.3% yield. Experimental and density functional theory (DFT) results show that maleic acid is effective in the fractionation of cellulose from corncob residue and the depolymerisation of cellulose fragments to glucose, on account of the good capacity for proton migration. Au/CeO2 is responsible for the selective oxidation of glucose to GA, in which the formation of glucaric acid is restrained, due to the weak capacity of Au/CeO2 on the proton transfer without the occurrence of the ring-opening reaction of glucose. Therefore, the relay catalysis of Au/CeO2 and maleic acid enables the production of GA via the complex cascade reactions. This work may provide insight regarding the conversion of actual biomass to targeted products.
Collapse
|
50
|
Wang F, Qu D, Wang S, Liu G, Zhao Q, Hu J, Dong W, Huang Y, Xu J, Chen Y. Bismuth-Decorated Beta Zeolites Catalysts for Highly Selective Catalytic Oxidation of Cellulose to Biomass-Derived Glycolic Acid. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16298. [PMID: 36498370 PMCID: PMC9738590 DOI: 10.3390/ijerph192316298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Catalytic conversion of cellulose to liquid fuel and highly valuable platform chemicals remains a critical and challenging process. Here, bismuth-decorated β zeolite catalysts (Bi/β) were exploited for highly efficient hydrolysis and selective oxidation of cellulose to biomass-derived glycolic acid in an O2 atmosphere, which exhibited an exceptionally catalytic activity and high selectivity as well as excellent reusability. It was interestingly found that as high as 75.6% yield of glycolic acid over 2.3 wt% Bi/β was achieved from cellulose at 180 °C for 16 h, which was superior to previously reported catalysts. Experimental results combined with characterization revealed that the synergetic effect between oxidation active sites from Bi species and surface acidity on H-β together with appropriate total surface acidity significantly facilitated the chemoselectivity towards the production of glycolic acid in the direct, one-pot conversion of cellulose. This study will shed light on rationally designing Bi-based heterogeneous catalysts for sustainably generating glycolic acid from renewable biomass resources in the future.
Collapse
Affiliation(s)
- Fenfen Wang
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Dongxue Qu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shaoshuai Wang
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guojun Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qiang Zhao
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiaxue Hu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wendi Dong
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yong Huang
- Joint International Research Laboratory of Biomass Energy and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jinjia Xu
- Department of Chemistry and Biochemistry, University of Missouri St. Louis, One University Boulevard, St. Louis, MO 63121, USA
| | - Yuhui Chen
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|