1
|
Iorio L, Davanzo F, Cazzador D, Codirenzi M, Fiorin E, Zanatta E, Nicolai P, Doria A, Padoan R. Cocaine- and Levamisole-Induced Vasculitis: Defining the Spectrum of Autoimmune Manifestations. J Clin Med 2024; 13:5116. [PMID: 39274328 PMCID: PMC11396482 DOI: 10.3390/jcm13175116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Drug-induced or associated vasculitis is a prevalent form of vasculitis that resembles primary idiopathic antineutrophil cytoplasmic autoantibody (ANCA) vasculitis (AAV). Cocaine is a diffuse psychostimulant drug and levamisole is a synthetic compound used to cut cocaine. Their abuse may result in a spectrum of autoimmune manifestations which could be categorized into three overlapping clinical pictures: cocaine-induced midline destructive lesion (CIMDL), levamisole-adulterated cocaine (LAC) vasculopathy/vasculitis, and cocaine-induced vasculitis (CIV). The mechanisms by which cocaine use leads to disorders resembling AAV are not well understood. Cocaine can cause autoimmune manifestations ranging from localized nasal lesions to systemic diseases, with neutrophils playing a key role through NETosis and ANCA development, which exacerbates immune responses and tissue damage. Diagnosing and treating these conditions becomes challenging when cocaine and levamisole abuse is not suspected, due to the differences and overlaps in clinical, diagnostic, therapeutic, and prognostic aspects compared to primary idiopathic vasculitides.
Collapse
Affiliation(s)
- Luca Iorio
- Rheumatology Unit, Department of Medicine DIMED, University of Padua, 35128 Padua, Italy
| | - Federica Davanzo
- Rheumatology Unit, Department of Medicine DIMED, University of Padua, 35128 Padua, Italy
| | - Diego Cazzador
- Otorhinolaryngology Section, Department of Neuroscience DNS, University of Padua, 35128 Padua, Italy
| | - Marta Codirenzi
- Rheumatology Unit, Department of Medicine DIMED, University of Padua, 35128 Padua, Italy
| | - Eleonora Fiorin
- Rheumatology Unit, Department of Medicine DIMED, University of Padua, 35128 Padua, Italy
| | - Elisabetta Zanatta
- Rheumatology Unit, Department of Medicine DIMED, University of Padua, 35128 Padua, Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Piero Nicolai
- Otorhinolaryngology Section, Department of Neuroscience DNS, University of Padua, 35128 Padua, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine DIMED, University of Padua, 35128 Padua, Italy
| | - Roberto Padoan
- Rheumatology Unit, Department of Medicine DIMED, University of Padua, 35128 Padua, Italy
| |
Collapse
|
2
|
Geeraerts Z, Ishigami I, Lewis-Ballester A, Pham KN, Kozlova A, Mathieu C, Frédérick R, Yeh SR. Structural Insights into Protein-Inhibitor Interactions in Human Tryptophan Dioxygenase. J Med Chem 2024; 67:14543-14552. [PMID: 39106326 DOI: 10.1021/acs.jmedchem.4c01360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Human tryptophan dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) are two important targets in cancer immunotherapy. Extensive research has led to a large number of potent IDO inhibitors; in addition, 52 structures of IDO in complex with inhibitors with a wide array of chemical scaffolds have been documented. In contrast, progress in the development of TDO inhibitors has been limited. Only four structures of TDO in complex with competitive inhibitors that compete with the substrate L-tryptophan for binding to the active site have been reported to date. Here we systematically evaluated the structures of TDO in complex with competitive inhibitors with three types of pharmacophores, imidazo-isoindole, indole-tetrazole, and indole-benzotriazole. The comparative assessment of the protein-inhibitor interactions sheds new light into the structure-based design of enzyme-selective inhibitors.
Collapse
Affiliation(s)
- Zachary Geeraerts
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Izumi Ishigami
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Ariel Lewis-Ballester
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Khoa N Pham
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Arina Kozlova
- Medicinal Chemistry Research Group (CMFA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 73 avenue Mounier, Brussels B-1200, Belgium
| | - Caroline Mathieu
- Medicinal Chemistry Research Group (CMFA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 73 avenue Mounier, Brussels B-1200, Belgium
| | - Raphaël Frédérick
- Medicinal Chemistry Research Group (CMFA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 73 avenue Mounier, Brussels B-1200, Belgium
| | - Syun-Ru Yeh
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
3
|
Zhang J, Yu J, Liu M, Xie Z, Lei X, Yang X, Huang S, Deng X, Wang Z, Tang G. Small-molecule modulators of tumor immune microenvironment. Bioorg Chem 2024; 145:107251. [PMID: 38442612 DOI: 10.1016/j.bioorg.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
In recent years, tumor immunotherapy, aimed at increasing the activity of immune cells and reducing immunosuppressive effects, has attracted wide attention. Among them, immune checkpoint blocking (ICB) is the most commonly explored therapeutic approach. All approved immune checkpoint inhibitors (ICIs) are clinically effective monoclonal antibodies (mAbs). Compared with biological agents, small-molecule drugs have many unique advantages in tumor immunotherapy. Therefore, they also play an important role. Immunosuppressive signals such as PD-L1, IDO1, and TGF-β, etc. overexpressed in tumor cells form the tumor immunosuppressive microenvironment. In addition, the efficacy of multi-pathway combined immunotherapy has also been reported and verified. Here, we mainly reviewed the mechanism of tumor immunotherapy, analyzed the research status of small-molecule modulators, and discussed drug candidates' structure-activity relationship (SAR). It provides more opportunities for further research to design more immune small-molecule modulators with novel structures.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jia Yu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Meijing Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
4
|
Singh R, Kumar R, Roy A, Behera PM, Atri AK, Kumar K, Manna D, Dixit A, Patil MT, Mankamna Kumari R, Nimesh S, Salunke DB. Imidazo[2,1-b]thiazole based indoleamine-2,3-dioxygenase 1 (IDO1) inhibitor: Structure based design, synthesis, bio-evaluation and docking studies. Bioorg Med Chem Lett 2023; 96:129532. [PMID: 37866714 DOI: 10.1016/j.bmcl.2023.129532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) is an immunomodulatory enzyme known to catalyse the initial and rate limiting step of kynurenine pathway of l-tryptophan metabolism. IDO1 enzyme over expression plays a crucial role in progression of cancer, malaria, multiple sclerosis and other life-threatening diseases. Several efforts over the last two decades have been invested by the researchers for the discovery of different IDO1 inhibitors and the plasticity of the IDO1 enzyme ligand binding pocket provide ample opportunities to develop new heterocyclic scaffolds targeting this enzyme. In the present work, based on the X-ray crystal structure of human IDO1 coordinated with few ligands, we designed and synthesized new fused heterocyclic compounds and evaluated their potential human IDO1 inhibitory activity (compound 30 and 41 showed IC50 values of 23 and 13 µM, respectively). The identified HITs were observed to be non-toxic to HEK293 cells at 100 µM concentration. The observed activity of the synthesized compounds was correlated with the specific interactions of their structures at the enzyme pocket using docking studies. A detailed analysis of docking results of the synthesized analogues as well as selected known IDO1 inhibitors revealed that most of the inhibitors have some reasonable docking scores in at least two crystal structures and have similar orientation as that of co-crystal ligands.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ravinder Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ashalata Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Pabitra Mohan Behera
- Institute of Life Science, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India
| | - Ankit K Atri
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Kushvinder Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Debasis Manna
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Anshuman Dixit
- Institute of Life Science, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India
| | - Madhuri T Patil
- Department of Chemistry, Mehr Chand Mahajan DAV College for Women, Chandigarh 160 036, India
| | - R Mankamna Kumari
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305 801, India
| | - Surendra Nimesh
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305 801, India
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
5
|
Bao MF, Yang XN, Wu J, Liu JX, Cai XH. Discovery and biological evaluation of a new type of dual inhibitors of indoleamine 2,3-dioxygenase 1 and tryptophan 2,3-dioxygenase from ethnomedicinal plant Dactylicapnos scandens. PHYTOCHEMISTRY 2023; 214:113794. [PMID: 37499850 DOI: 10.1016/j.phytochem.2023.113794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
The root of Dactylicapnos scandens (D.Don.) Hutch (Papaveraceae), one of the most famous ethno-medicinal plants from the Bai communities in P. R. China, is used to treat various inflammations and tumours. Bioassay-guided phytochemical research on D. scandens followed by semi-synthesis led to a series of undescribed tetrahydroisoquinoline alkaloids with dual inhibitory activities against indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO). The previously undescribed dark-green alkaloid dactycapnine A exhibited the best dual inhibitor effects among the identified compounds. Structure-activity relationship analysis revealed the importance of the base skeleton with a hyperconjugation system. The performed semi-synthesis further yielded bioactive dimeric and trimeric compounds with hyperconjugated systems. Performed STD NMR experiments disclosed direct interactions between dactycapnine A and IDO1/TDO. Inhibition kinetics indicated dactycapnine A as a mixed-type dual inhibitor. These findings provided a possible explanation for the anticancer properties of the ethno-medicinal plant species D. scandens.
Collapse
Affiliation(s)
- Mei-Fen Bao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Ni Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jiang-Xin Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Xiang-Hai Cai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
6
|
Zheng Y, Deng W, Liu D, Li Y, Peng K, Lorimer GH, Wang J. Redox and spectroscopic properties of mammalian nitrite reductase-like hemoproteins. J Inorg Biochem 2022; 237:111982. [PMID: 36116154 DOI: 10.1016/j.jinorgbio.2022.111982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/18/2023]
Abstract
Besides the canonical pathway of L-arginine oxidation to produce nitric oxide (NO) in vivo, the nitrate-nitrite-NO pathway has been widely accepted as another source for circulating NO in mammals, especially under hypoxia. To date, there have been at least ten heme-containing nitrite reductase-like proteins discovered in mammals with activities mainly identified in vitro, including four globins (hemoglobin, myoglobin, neuroglobin (Ngb), cytoglobin (Cygb)), three mitochondrial respiratory chain enzymes (cytochrome c oxidase, cytochrome bc1, cytochrome c), and three other heme proteins (endothelial nitric oxide synthase, cytochrome P450 and indoleamine 2,3-dioxygenase 1 (IDO1)). The pathophysiological functions of these proteins are closely related to their redox and spectroscopic properties, as well as their protein structure, although the physiological roles of Ngb, Cygb and IDO1 remain unclear. So far, comprehensive summaries of the redox and spectroscopic properties of these nitrite reductase-like hemoproteins are still lacking. In this review, we have mainly summarized the published data on the application of ultraviolet-visible, electron paramagnetic resonance, circular dichroism and resonance Raman spectroscopies, and X-ray crystallography in studying nitrite reductase-like activity of these 10 proteins, in order to sort out the relationships among enzymatic function, structure and spectroscopic characterization, which might help in understanding their roles in redox biology and medicine.
Collapse
Affiliation(s)
- Yunlong Zheng
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Wenwen Deng
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Di Liu
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Youheng Li
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Kang Peng
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | | | - Jun Wang
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Mammoli A, Bianconi E, Ruta L, Riccio A, Bigiotti C, Souma M, Carotti A, Rossini S, Suvieri C, Pallotta MT, Grohmann U, Camaioni E, Macchiarulo A. Critical Assessment of a Structure-Based Screening Campaign for IDO1 Inhibitors: Tips and Pitfalls. Int J Mol Sci 2022; 23:ijms23073981. [PMID: 35409342 PMCID: PMC8999677 DOI: 10.3390/ijms23073981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/26/2022] Open
Abstract
Over the last two decades, indoleamine 2,3-dioxygenase 1 (IDO1) has attracted wide interest as a key player in immune regulation, fostering the design and development of small molecule inhibitors to restore immune response in tumor immunity. In this framework, biochemical, structural, and pharmacological studies have unveiled peculiar structural plasticity of IDO1, with different conformations and functional states that are coupled to fine regulation of its catalytic activity and non-enzymic functions. The large plasticity of IDO1 may affect its ligand recognition process, generating bias in structure-based drug design campaigns. In this work, we report a screening campaign of a fragment library of compounds, grounding on the use of three distinct conformations of IDO1 that recapitulate its structural plasticity to some extent. Results are instrumental to discuss tips and pitfalls that, due to the large plasticity of the enzyme, may influence the identification of novel and differentiated chemical scaffolds of IDO1 ligands in structure-based screening campaigns.
Collapse
Affiliation(s)
- Andrea Mammoli
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo n.1, 06123 Perugia, Italy; (A.M.); (E.B.); (L.R.); (A.R.); (C.B.); (M.S.); (A.C.); (E.C.)
| | - Elisa Bianconi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo n.1, 06123 Perugia, Italy; (A.M.); (E.B.); (L.R.); (A.R.); (C.B.); (M.S.); (A.C.); (E.C.)
| | - Luana Ruta
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo n.1, 06123 Perugia, Italy; (A.M.); (E.B.); (L.R.); (A.R.); (C.B.); (M.S.); (A.C.); (E.C.)
| | - Alessandra Riccio
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo n.1, 06123 Perugia, Italy; (A.M.); (E.B.); (L.R.); (A.R.); (C.B.); (M.S.); (A.C.); (E.C.)
| | - Carlo Bigiotti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo n.1, 06123 Perugia, Italy; (A.M.); (E.B.); (L.R.); (A.R.); (C.B.); (M.S.); (A.C.); (E.C.)
| | - Maria Souma
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo n.1, 06123 Perugia, Italy; (A.M.); (E.B.); (L.R.); (A.R.); (C.B.); (M.S.); (A.C.); (E.C.)
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo n.1, 06123 Perugia, Italy; (A.M.); (E.B.); (L.R.); (A.R.); (C.B.); (M.S.); (A.C.); (E.C.)
| | - Sofia Rossini
- Department of Medicine and Surgery, University of Perugia, P.le Gambuli, 06132 Perugia, Italy; (S.R.); (C.S.); (M.T.P.); (U.G.)
| | - Chiara Suvieri
- Department of Medicine and Surgery, University of Perugia, P.le Gambuli, 06132 Perugia, Italy; (S.R.); (C.S.); (M.T.P.); (U.G.)
| | - Maria Teresa Pallotta
- Department of Medicine and Surgery, University of Perugia, P.le Gambuli, 06132 Perugia, Italy; (S.R.); (C.S.); (M.T.P.); (U.G.)
| | - Ursula Grohmann
- Department of Medicine and Surgery, University of Perugia, P.le Gambuli, 06132 Perugia, Italy; (S.R.); (C.S.); (M.T.P.); (U.G.)
| | - Emidio Camaioni
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo n.1, 06123 Perugia, Italy; (A.M.); (E.B.); (L.R.); (A.R.); (C.B.); (M.S.); (A.C.); (E.C.)
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo n.1, 06123 Perugia, Italy; (A.M.); (E.B.); (L.R.); (A.R.); (C.B.); (M.S.); (A.C.); (E.C.)
- Correspondence: ; Tel.: +39-(075)-585-5131
| |
Collapse
|
8
|
Mondal P, Rajapakse S, Wijeratne GB. Following Nature's Footprint: Mimicking the High-Valent Heme-Oxo Mediated Indole Monooxygenation Reaction Landscape of Heme Enzymes. J Am Chem Soc 2022; 144:3843-3854. [PMID: 35112858 DOI: 10.1021/jacs.1c11068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pathways for direct conversion of indoles to oxindoles have accumulated considerable interest in recent years due to their significance in the clear comprehension of various pathogenic processes in humans and the multipotent therapeutic value of oxindole pharmacophores. Heme enzymes are predominantly responsible for this conversion in biology and are thought to proceed with a compound-I active oxidant. These heme-enzyme-mediated indole monooxygenation pathways are rapidly emerging therapeutic targets; however, a clear mechanistic understanding is still lacking. Additionally, such knowledge holds promise in the rational design of highly specific indole monooxygenation synthetic protocols that are also cost-effective and environmentally benign. We herein report the first examples of synthetic compound-I and activated compound-II species that can effectively monooxygenate a diverse array of indoles with varied electronic and steric properties to exclusively produce the corresponding 2-oxindole products in good to excellent yields. Rigorous kinetic, thermodynamic, and mechanistic interrogations clearly illustrate an initial rate-limiting epoxidation step that takes place between the heme oxidant and indole substrate, and the resulting indole epoxide intermediate undergoes rearrangement driven by a 2,3-hydride shift on indole ring to ultimately produce 2-oxindole. The complete elucidation of the indole monooxygenation mechanism of these synthetic heme models will help reveal crucial insights into analogous biological systems, directly reinforcing drug design attempts targeting those heme enzymes. Moreover, these bioinspired model compounds are promising candidates for the future development of better synthetic protocols for the selective, efficient, and sustainable generation of 2-oxindole motifs, which are already known for a plethora of pharmacological benefits.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| | - Shanuk Rajapakse
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| | - Gayan B Wijeratne
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| |
Collapse
|
9
|
Mammoli A, Riccio A, Bianconi E, Coletti A, Camaioni E, Macchiarulo A. One Key and Multiple Locks: Substrate Binding in Structures of Tryptophan Dioxygenases and Hydroxylases. ChemMedChem 2021; 16:2732-2743. [PMID: 34137184 PMCID: PMC8518741 DOI: 10.1002/cmdc.202100312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/14/2021] [Indexed: 12/18/2022]
Abstract
Since its discovery at the beginning of the past century, the essential nutrient l-Tryptophan (l-Trp) and its catabolic pathways have acquired an increasing interest in an ever wider scientific community for their pivotal roles in underlying many important physiological functions and associated pathological conditions. As a consequence, enzymes catalyzing rate limiting steps along l-Trp catabolic pathways - including IDO1, TDO, TPH1 and TPH2 - have turned to be interesting drug targets for the design and development of novel therapeutic agents for different disorders such as carcinoid syndrome, cancer and autoimmune diseases. This article provides a fresh comparative overview on the most recent advancements that crystallographic studies, biophysical and computational works have brought on structural aspects and molecular recognition patterns of these enzymes toward l-Trp. Finally, a conformational analysis of l-Trp is also discussed as part of the molecular recognition process governing the binding of a substrate to its cognate enzymes.
Collapse
Affiliation(s)
- Andrea Mammoli
- Department of Pharmaceutical SciencesUniversity of PerugiaVia del Liceo N. 106123PerugiaItaly
| | - Alessandra Riccio
- Department of Pharmaceutical SciencesUniversity of PerugiaVia del Liceo N. 106123PerugiaItaly
| | - Elisa Bianconi
- Department of Pharmaceutical SciencesUniversity of PerugiaVia del Liceo N. 106123PerugiaItaly
| | - Alice Coletti
- Department of Medicine and SurgeryUniversity of PerugiaP. le Gambuli06132PerugiaItaly
| | - Emidio Camaioni
- Department of Pharmaceutical SciencesUniversity of PerugiaVia del Liceo N. 106123PerugiaItaly
| | - Antonio Macchiarulo
- Department of Pharmaceutical SciencesUniversity of PerugiaVia del Liceo N. 106123PerugiaItaly
| |
Collapse
|
10
|
Fronik P, Poetsch I, Kastner A, Mendrina T, Hager S, Hohenwallner K, Schueffl H, Herndler-Brandstetter D, Koellensperger G, Rampler E, Kopecka J, Riganti C, Berger W, Keppler BK, Heffeter P, Kowol CR. Structure-Activity Relationships of Triple-Action Platinum(IV) Prodrugs with Albumin-Binding Properties and Immunomodulating Ligands. J Med Chem 2021; 64:12132-12151. [PMID: 34403254 PMCID: PMC8404199 DOI: 10.1021/acs.jmedchem.1c00770] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 12/27/2022]
Abstract
Chemotherapy with platinum complexes is essential for clinical anticancer therapy. However, due to side effects and drug resistance, further drug improvement is urgently needed. Herein, we report on triple-action platinum(IV) prodrugs, which, in addition to tumor targeting via maleimide-mediated albumin binding, release the immunomodulatory ligand 1-methyl-d-tryptophan (1-MDT). Unexpectedly, structure-activity relationship analysis showed that the mode of 1-MDT conjugation distinctly impacts the reducibility and thus activation of the prodrugs. This in turn affected ligand release, pharmacokinetic properties, efficiency of immunomodulation, and the anticancer activity in vitro and in a mouse model in vivo. Moreover, we could demonstrate that the design of albumin-targeted multi-modal prodrugs using platinum(IV) is a promising strategy to enhance the cellular uptake of bioactive ligands with low cell permeability (1-MDT) and to improve their selective delivery into the malignant tissue. This will allow tumor-specific anticancer therapy supported by a favorably tuned immune microenvironment.
Collapse
Affiliation(s)
- Philipp Fronik
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Isabella Poetsch
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Institute
of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Alexander Kastner
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Theresa Mendrina
- Institute
of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Sonja Hager
- Institute
of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Katharina Hohenwallner
- Faculty
of Chemistry, Institute of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Hemma Schueffl
- Institute
of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Dietmar Herndler-Brandstetter
- Institute
of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Faculty
of Chemistry, Institute of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Evelyn Rampler
- Faculty
of Chemistry, Institute of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Joanna Kopecka
- Department
of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | - Chiara Riganti
- Department
of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | - Walter Berger
- Institute
of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Bernhard K. Keppler
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Petra Heffeter
- Institute
of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Christian R. Kowol
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| |
Collapse
|
11
|
Valente A, Podolski-Renić A, Poetsch I, Filipović N, López Ó, Turel I, Heffeter P. Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance. Drug Resist Updat 2021; 58:100778. [PMID: 34403910 DOI: 10.1016/j.drup.2021.100778] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Drug resistance remains the major cause of cancer treatment failure especially at the late stage of the disease. However, based on their versatile chemistry, metal and metalloid compounds offer the possibility to design fine-tuned drugs to circumvent and even specifically target drug-resistant cancer cells. Based on the paramount importance of platinum drugs in the clinics, two main areas of drug resistance reversal strategies exist: overcoming resistance to platinum drugs as well as multidrug resistance based on ABC efflux pumps. The current review provides an overview of both aspects of drug design and discusses the open questions in the field. The areas of drug resistance covered in this article involve: 1) Altered expression of proteins involved in metal uptake, efflux or intracellular distribution, 2) Enhanced drug efflux via ABC transporters, 3) Altered metabolism in drug-resistant cancer cells, 4) Altered thiol or redox homeostasis, 5) Altered DNA damage recognition and enhanced DNA damage repair, 6) Impaired induction of apoptosis and 7) Altered interaction with the immune system. This review represents the first collection of metal (including platinum, ruthenium, iridium, gold, and copper) and metalloid drugs (e.g. arsenic and selenium) which demonstrated drug resistance reversal activity. A special focus is on compounds characterized by collateral sensitivity of ABC transporter-overexpressing cancer cells. Through this approach, we wish to draw the attention to open research questions in the field. Future investigations are warranted to obtain more insights into the mechanisms of action of the most potent compounds which target specific modalities of drug resistance.
Collapse
Affiliation(s)
- Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nenad Filipović
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Sadok I, Rachwał K, Jonik I, Staniszewska M. Reliable chromatographic assay for measuring of indoleamine 2,3-dioxygenase 1 (IDO1) activity in human cancer cells. J Enzyme Inhib Med Chem 2021; 36:581-592. [PMID: 33541164 PMCID: PMC8759722 DOI: 10.1080/14756366.2021.1882451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The kynurenine pathway is the major tryptophan degradation routes generating bioactive compounds important in physiology and diseases. Depending on cell type it is initiated enzymatically by tryptophan-2,3-dioxygenase (TDO) or indoleamine-2,3-dioxygenase 1 and 2 (IDO1 and IDO2) to yield N-formylkynurenine as the precursor of further metabolites. Herein, we describe an accurate high-pressure liquid chromatography coupled with a diode array detector (HPLC-DAD) method to serve for IDO1 activity determination in human cancer cells cultured in vitro. Enzymatic activity was expressed as the rate of ʟ-kynurenine generation by 1 mg of proteins obtained from cancer cells. Our approach shows the limit of detection and limit of quantification at 12.9 and 43.0 nM Kyn, respectively. Applicability of this method was demonstrated in different cells (ovarian and breast cancer)exposed to various conditions and has successfully passed the validation process. This approach presents a useful model to study the role of kynurenine pathway in cancer biology.
Collapse
Affiliation(s)
- Ilona Sadok
- Faculty of Science and Health, Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Kamila Rachwał
- Faculty of Science and Health, Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Ilona Jonik
- Faculty of Science and Health, Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Magdalena Staniszewska
- Faculty of Science and Health, Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
13
|
Cherney EC, Zhang L, Nara S, Zhu X, Gullo-Brown J, Maley D, Lin TA, Hunt JT, Huang C, Yang Z, Darienzo C, Discenza L, Ranasinghe A, Grubb M, Ziemba T, Traeger SC, Li X, Johnston K, Kopcho L, Fereshteh M, Foster K, Stefanski K, Fargnoli J, Swanson J, Brown J, Delpy D, Seitz SP, Borzilleri R, Vite G, Balog A. Discovery and Preclinical Evaluation of BMS-986242, a Potent, Selective Inhibitor of Indoleamine-2,3-dioxygenase 1. ACS Med Chem Lett 2021; 12:288-294. [PMID: 33603977 DOI: 10.1021/acsmedchemlett.0c00668] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/22/2021] [Indexed: 01/14/2023] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme-containing dioxygenase enzyme implicated in cancer immune response. This account details the discovery of BMS-986242, a novel IDO1 inhibitor designed for the treatment of a variety of cancers including metastatic melanoma and renal cell carcinoma. Given the substantial interest around this target for cancer immunotherapy, we sought to identify a structurally differentiated clinical candidate that performs comparably to linrodostat (BMS-986205) in terms of both in vitro potency and in vivo pharmacodynamic effect in a mouse xenograft model. On the basis of its preclinical profile, BMS-986242 was selected as a candidate for clinical development.
Collapse
Affiliation(s)
- Emily C. Cherney
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Liping Zhang
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Susheel Nara
- Biocon BMS R&D Center, Bommasandra Jigani Link Rd, Bommasandra Industrial Area, Bengaluru, Karnataka 560099, India
| | - Xiao Zhu
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Johnni Gullo-Brown
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Derrick Maley
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Tai-An Lin
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - John T. Hunt
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Christine Huang
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Zheng Yang
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Celia Darienzo
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Lorell Discenza
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Asoka Ranasinghe
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Mary Grubb
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Theresa Ziemba
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Sarah C. Traeger
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Xin Li
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Kathy Johnston
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Lisa Kopcho
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Mark Fereshteh
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Kimberly Foster
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Kevin Stefanski
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Joseph Fargnoli
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Jesse Swanson
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Jennifer Brown
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Diane Delpy
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Steven P. Seitz
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Robert Borzilleri
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Gregory Vite
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Aaron Balog
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| |
Collapse
|
14
|
Inuki S, Ohno H, Yamaguchi A, Ohta K, Oishi S, Asai A. Identification of a Novel Indoleamine 2,3-Dioxygenase Inhibitor Bearing an Eight-Membered Ring Fused Indole Scaffold and Its Structure-Activity Relationship. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Singh R, Salunke DB. Diverse chemical space of indoleamine-2,3-dioxygenase 1 (Ido1) inhibitors. Eur J Med Chem 2020; 211:113071. [PMID: 33341650 DOI: 10.1016/j.ejmech.2020.113071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/20/2022]
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) catalyses the first and rate limiting step of kynurenine pathway accounting for the major contributor of L-Tryptophan degradation. The Kynurenine metabolites are identified as essential cofactors, antagonists, neurotoxins, immunomodulators, antioxidants as well as carcinogens. The catalytic active site of IDO1 enzyme consists of hydrophobic Pocket-A positioned in the distal heme site and remains connected to a second hydrophobic Pocket-B towards the entrance of the active site. IDO1 enzyme also relates directly to the modulation of the innate and adaptive immune system. Various studies proved that the over expression of IDO1 enzyme play a predominant role in the escape of immunity during cancer progression. Recently, there has been considerable interest in evaluating the potential of IDO1 inhibitors to mobilize the body's immune system against solid tumours. In the last two decades, enormous attempts to advance new IDO1 inhibitors are on-going both in pharmaceutical industries and in academia which resulted in the discovery of a diverse range of selective and potent IDO1 inhibitors. The IDO1 inhibitors have therapeutic utility in various diseases and in the near future, it may have utility in the treatment of COVID-19. Despite various reviews on IDO1 inhibitors in last five years, none of the reviews provide a complete overview of diverse chemical space including naturally occurring and synthetic IDO1 inhibitors with detailed structure activity relationship studies. The present work provides a complete overview on the IDO1 inhibitors known in the literature so far along with the Structure-Activity Relationship (SAR) in each class of compounds.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160 014, India
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160 014, India; National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
16
|
Dolšak A, Gobec S, Sova M. Indoleamine and tryptophan 2,3-dioxygenases as important future therapeutic targets. Pharmacol Ther 2020; 221:107746. [PMID: 33212094 DOI: 10.1016/j.pharmthera.2020.107746] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Conversion of tryptophan to N-formylkynurenine is the first and rate-limiting step of the tryptophan metabolic pathway (i.e., the kynurenine pathway). This conversion is catalyzed by three enzyme isoforms: indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), and tryptophan 2,3-dioxygenase (TDO). As this pathway generates numerous metabolites that are involved in various pathological conditions, IDOs and TDO represent important targets for therapeutic intervention. This pathway has especially drawn attention due to its importance in tumor resistance. Over the last decade, a large number of IDO and TDO inhibitors have been developed, many of which have entered clinical trials. Here, detailed structural comparisons of these three enzymes (with emphasis on their active sites), their involvement in cellular signaling, and their role(s) in pathological conditions are discussed. Furthermore, the most important recent inhibitors described in papers and patents and involved in clinical trials are reviewed, with a focus on both selective and multiple inhibitors. A short overview of the biochemical and cellular assays used for inhibitory potency evaluation is also presented. This review summarizes recent advances on IDO and TDO as potential drug targets, and provides the key features and perspectives for further research and development of potent inhibitors of the kynurenine pathway.
Collapse
Affiliation(s)
- Ana Dolšak
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Matej Sova
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
17
|
Alahdal M, Duan L, Ouyang H, Wang D. The role of indoleamine 2,3 dioxygenase 1 in the osteoarthritis. Am J Transl Res 2020; 12:2322-2343. [PMID: 32655775 PMCID: PMC7344072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease and a leading cause of disability. It involves articular cartilage destruction and a whole joint inflammation. In spite of OA pathogenesis is still unclear, new studies on the OA pathophysiological aetiology and immunomodulation therapy continuously achieve significant advances with new concepts. Here, we focus on the indoleamine-2,3-dioxygenase1 (IDO1) activity in the osteoarthritis (OA), which is one of the noticeable enzymes in the synovial fluid of arthritis patients. It was recognized as an essential mediator of autoreactive B and T cell responses in rheumatoid arthritis (RA) and an interesting therapeutic target against RA. However, the role IDO1 plays in the OA pathogenesis hasn't been discussed. The new OA experimental analysis evidenced IDO1 overexpression in the synovial fluid of OA patients, and recent studies reported that IDO1 metabolites were found higher in the OA synovial fluid than RA and spondyloarthropathies (SpA) patients. Moreover, the positive relation of IDO1 metabolites with OA pain and joint stiffness has been confirmed. Thus, the IDO1 plays a pivotal role in the pathogenesis of OA. In this review, the role IDO1 plays in the OA pathogenesis has been deeply discussed. It could be a promising target in the immunotherapy of OA disease.
Collapse
Affiliation(s)
- Murad Alahdal
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)Shenzhen 518035, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of MedicineHangzhou, P. R. China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, P. R. China
| | - Li Duan
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)Shenzhen 518035, P. R. China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, P. R. China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of MedicineHangzhou, P. R. China
| | - Daping Wang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)Shenzhen 518035, P. R. China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, P. R. China
| |
Collapse
|
18
|
Hajsl M, Hlavackova A, Broulikova K, Sramek M, Maly M, Dyr JE, Suttnar J. Tryptophan Metabolism, Inflammation, and Oxidative Stress in Patients with Neurovascular Disease. Metabolites 2020; 10:metabo10050208. [PMID: 32438592 PMCID: PMC7281607 DOI: 10.3390/metabo10050208] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a leading cause of major vascular events, myocardial infarction, and ischemic stroke. Tryptophan (TRP) catabolism was recognized as an important player in inflammation and immune response having together with oxidative stress (OS) significant effects on each phase of atherosclerosis. The aim of the study is to analyze the relationship of plasma levels of TRP metabolites, inflammation, and OS in patients with neurovascular diseases (acute ischemic stroke (AIS), significant carotid artery stenosis (SCAS)) and in healthy controls. Blood samples were collected from 43 patients (25 with SCAS, 18 with AIS) and from 25 healthy controls. The concentrations of twelve TRP metabolites, riboflavin, neopterin (NEO, marker of inflammation), and malondialdehyde (MDA, marker of OS) were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Concentrations of seven TRP metabolites (TRP, kynurenine (KYN), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA), anthranilic acid (AA), melatonin (MEL), tryptamine (TA)), NEO, and MDA were significantly different in the studied groups. Significantly lower concentrations of TRP, KYN, 3-HAA, MEL, TA, and higher MDA concentrations were found in AIS compared to SCAS patients. MDA concentration was higher in both AIS and SCAS group (p < 0.001, p = 0.004, respectively) compared to controls, NEO concentration was enhanced (p < 0.003) in AIS. MDA did not directly correlate with TRP metabolites in the study groups, except for 1) a negative correlation with kynurenine acid and 2) the activity of kynurenine aminotransferase in AIS patients (r = -0.552, p = 0.018; r = -0.504, p = 0.033, respectively). In summary, TRP metabolism is clearly more deregulated in AIS compared to SCAS patients; the effect of TRP metabolites on OS should be further elucidated.
Collapse
Affiliation(s)
- Martin Hajsl
- Department of Medicine, First Faculty of Medicine, Charles University in Prague and the Military University Hospital, 16902 Prague, Czech Republic; (M.H.); (K.B.); (M.M.)
- Department of Military Internal Medicine and Military Hygiene, Faculty of Military Health Sciences, University of Defence, 50002 Hradec Kralove, Czech Republic
| | - Alzbeta Hlavackova
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, 12820 Prague, Czech Republic; (A.H.); (J.E.D.)
| | - Karolina Broulikova
- Department of Medicine, First Faculty of Medicine, Charles University in Prague and the Military University Hospital, 16902 Prague, Czech Republic; (M.H.); (K.B.); (M.M.)
- Department of Military Internal Medicine and Military Hygiene, Faculty of Military Health Sciences, University of Defence, 50002 Hradec Kralove, Czech Republic
| | - Martin Sramek
- Department of Neurosurgery and Neurooncology, First Faculty of Medicine, Charles University in Prague and the Military University Hospital, 16902 Prague, Czech Republic;
| | - Martin Maly
- Department of Medicine, First Faculty of Medicine, Charles University in Prague and the Military University Hospital, 16902 Prague, Czech Republic; (M.H.); (K.B.); (M.M.)
| | - Jan E. Dyr
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, 12820 Prague, Czech Republic; (A.H.); (J.E.D.)
| | - Jiri Suttnar
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, 12820 Prague, Czech Republic; (A.H.); (J.E.D.)
- Correspondence:
| |
Collapse
|
19
|
Mammoli A, Coletti A, Ballarotto M, Riccio A, Carotti A, Grohmann U, Camaioni E, Macchiarulo A. New Insights from Crystallographic Data: Diversity of Structural Motifs and Molecular Recognition Properties between Groups of IDO1 Structures. ChemMedChem 2020; 15:891-899. [PMID: 32190988 DOI: 10.1002/cmdc.202000116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Indexed: 01/04/2023]
Abstract
A large number of crystallographic structures of IDO1 in different ligand-bound and -unbound states have been disclosed over the last decade. Yet, only a few of them have been exploited for structure-based drug design (SBDD) campaigns. In this study, we analyzed the structural motifs and molecular-recognition properties of three groups of IDO1 structures: 1) structures containing the heme group and inhibitors in the catalytic site; 2) heme-free structures of IDO1; 3) substrate-bound structures of IDO1. The results suggest that unrelated conformations of the enzyme have been solved with different ligand-induced changes of secondary motifs that localize even in regions remote from the catalytic site. Moreover, the study identified an uncharted region of molecular-recognition space covered by IDO1 binding sites that could guide the selection of diverse structures for additional SBDD studies aimed at the identification of novel lead compounds with differentiated chemical scaffolds.
Collapse
Affiliation(s)
- Andrea Mammoli
- Department of Pharmaceutical Sciences, University of Perugia, via del liceo n.1, 06123, Perugia, Italy
| | - Alice Coletti
- Department of Pharmacy, University of Chieti-Pescara, via dei Vestini n. 31, 66100, Chieti, Italy
| | - Marco Ballarotto
- Department of Pharmaceutical Sciences, University of Perugia, via del liceo n.1, 06123, Perugia, Italy
| | - Alessandra Riccio
- Department of Pharmaceutical Sciences, University of Perugia, via del liceo n.1, 06123, Perugia, Italy
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, via del liceo n.1, 06123, Perugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, P.le Gambuli, 06132, Perugia, Italy
| | - Emidio Camaioni
- Department of Pharmaceutical Sciences, University of Perugia, via del liceo n.1, 06123, Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, via del liceo n.1, 06123, Perugia, Italy
| |
Collapse
|
20
|
Serafini M, Torre E, Aprile S, Grosso ED, Gesù A, Griglio A, Colombo G, Travelli C, Paiella S, Adamo A, Orecchini E, Coletti A, Pallotta MT, Ugel S, Massarotti A, Pirali T, Fallarini S. Discovery of Highly Potent Benzimidazole Derivatives as Indoleamine 2,3-Dioxygenase-1 (IDO1) Inhibitors: From Structure-Based Virtual Screening to in Vivo Pharmacodynamic Activity. J Med Chem 2020; 63:3047-3065. [PMID: 32150677 DOI: 10.1021/acs.jmedchem.9b01809] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this study, a successful medicinal chemistry campaign that exploited virtual, biophysical, and biological investigations led to the identification of a novel class of IDO1 inhibitors based on a benzimidazole substructure. This family of compounds is endowed with an extensive bonding network in the protein active site, including the interaction with pocket C, a region not commonly exploited by previously reported IDO1 inhibitors. The tight packing of selected compounds within the enzyme contributes to the strong binding interaction with IDO1, to the inhibitory potency at the low nanomolar level in several tumoral settings, and to the selectivity toward IDO1 over TDO and CYPs. Notably, a significant reduction of L-Kyn levels in plasma, together with a potent effect on abrogating immunosuppressive properties of MDSC-like cells isolated from patients affected by pancreatic ductal adenocarcinoma, was observed, pointing to this class of molecules as a valuable template for boosting the antitumor immune system.
Collapse
Affiliation(s)
- Marta Serafini
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Enza Torre
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Silvio Aprile
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Erika Del Grosso
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Alessandro Gesù
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Alessia Griglio
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, Università degli Studi di Pavia, Pavia 27100, Italy
| | - Salvatore Paiella
- General and Pancreatic Surgery, Pancreas Institute, University of Verona, Verona 37134, Italy
| | - Annalisa Adamo
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona37126, Italy
| | - Elena Orecchini
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Alice Coletti
- Department of Medicine, University of Perugia, Piazza Lucio Severi 1, Perugia 06132, Italy
| | | | - Stefano Ugel
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona37126, Italy
| | - Alberto Massarotti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Tracey Pirali
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Silvia Fallarini
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| |
Collapse
|
21
|
Positive allosteric modulation of indoleamine 2,3-dioxygenase 1 restrains neuroinflammation. Proc Natl Acad Sci U S A 2020; 117:3848-3857. [PMID: 32024760 DOI: 10.1073/pnas.1918215117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
l-tryptophan (Trp), an essential amino acid for mammals, is the precursor of a wide array of immunomodulatory metabolites produced by the kynurenine and serotonin pathways. The kynurenine pathway is a paramount source of several immunoregulatory metabolites, including l-kynurenine (Kyn), the main product of indoleamine 2,3-dioxygenase 1 (IDO1) that catalyzes the rate-limiting step of the pathway. In the serotonin pathway, the metabolite N-acetylserotonin (NAS) has been shown to possess antioxidant, antiinflammatory, and neuroprotective properties in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, little is known about the exact mode of action of the serotonin metabolite and the possible interplay between the 2 Trp metabolic pathways. Prompted by the discovery that NAS neuroprotective effects in EAE are abrogated in mice lacking IDO1 expression, we investigated the NAS mode of action in neuroinflammation. We found that NAS directly binds IDO1 and acts as a positive allosteric modulator (PAM) of the IDO1 enzyme in vitro and in vivo. As a result, increased Kyn will activate the ligand-activated transcription factor aryl hydrocarbon receptor and, consequently, antiinflammatory and immunoregulatory effects. Because NAS also increased IDO1 activity in peripheral blood mononuclear cells of a significant proportion of MS patients, our data may set the basis for the development of IDO1 PAMs as first-in-class drugs in autoimmune/neuroinflammatory diseases.
Collapse
|
22
|
Mondal P, Wijeratne GB. Modeling Tryptophan/Indoleamine 2,3-Dioxygenase with Heme Superoxide Mimics: Is Ferryl the Key Intermediate? J Am Chem Soc 2020; 142:1846-1856. [PMID: 31870154 DOI: 10.1021/jacs.9b10498] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Tryptophan oxidation in biology has been recently implicated in a vast array of paramount pathogenic conditions in humans, including multiple sclerosis, rheumatoid arthritis, type-I diabetes, and cancer. This 2,3-dioxygenative cleavage of the indole ring of tryptophan with dioxygen is mediated by two heme enzymes, tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO), during its conversion to N-formylkynurenine in the first and rate-limiting step of kynurenine pathway. Despite the pivotal significance of this enzymatic transformation, a vivid viewpoint of the precise mechanistic events is far from complete. A heme superoxide adduct is thought to be the active oxidant in both TDO and IDO, which, following O-O bond cleavage, presumably generates a key ferryl (FeIV=O) reaction intermediate. This study, for the first time in model chemistry, demonstrates the potential of synthetic heme superoxide adducts to mimic the bioinorganic chemistry of indole dioxygenation by TDO and IDO, challenging the widely accepted categorization of these metal adducts as weak oxidants. Herein, an electronically divergent series of ferric heme superoxo oxidants mediates the facile conversion of an array of indole substrates into their corresponding 2,3-dioxygenated products, while shedding light on an unequivocally occurring, putative ferryl intermediate. The oxygenated indole products have been isolated in ∼31% yield, and characterized by LC-MS, 1H and 13C NMR, and FT-IR methodologies, as well as by 18O2(g) labeling experiments. Distinctly, the most electron-deficient superoxo adduct is observed to react the fastest, specifically with the most electron-rich indole substrate, underscoring the cruciality of electrophilicity of the heme superoxide moiety in facilitating the initial indole activation step. Comprehensive understanding of such mechanistic subtleties will benefit future attempts in the rational design of salient therapeutic agents, including next generation anticancer drug targets with amplified effectivity.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry , University of Alabama at Birmingham , Birmingham , Alabama 35205 , United States
| | - Gayan B Wijeratne
- Department of Chemistry , University of Alabama at Birmingham , Birmingham , Alabama 35205 , United States
| |
Collapse
|
23
|
Cui G, Lai F, Wang X, Chen X, Xu B. Design, synthesis and biological evaluation of indole-2-carboxylic acid derivatives as IDO1/TDO dual inhibitors. Eur J Med Chem 2019; 188:111985. [PMID: 31881488 DOI: 10.1016/j.ejmech.2019.111985] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are involved in the key steps of tryptophan metabolism and are potential new targets for tumor immunotherapy. In this work, a variety of indole-2-carboxylic acid derivatives were synthesized, and their inhibitory activities against both enzymes along with structure-activity relationships were investigated. As a result, a number of 6-acetamido-indole-2-carboxylic acid derivatives were found to be potent dual inhibitors with IC50 values at low micromolar levels. Among them, compound 9o-1 was the most potent inhibitor with an IC50 value of 1.17 μM for IDO1, and 1.55 μM for TDO, respectively. In addition, a para-benzoquinone derivative 9p-O, resulted from the oxidation of compound 9p, was also identified and it showed strong inhibition against the two enzymes with IC50 values at the double digit nanomolar level. Using molecular docking and molecular dynamic simulations, we predicted the binding modes of this class of compounds within IDO1 and TDO binding pocket. The results provide insights for further structural optimization of this series of IDO1/TDO dual inhibitors.
Collapse
Affiliation(s)
- Guonan Cui
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100050, China
| | - Fangfang Lai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100050, China
| | - Xiaoyu Wang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100050, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100050, China.
| | - Bailing Xu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
24
|
Greco FA, Albini E, Coletti A, Dolciami D, Carotti A, Orabona C, Grohmann U, Macchiarulo A. Tracking Hidden Binding Pockets Along the Molecular Recognition Path ofl‐Trp to Indoleamine 2,3‐Dioxygenase 1. ChemMedChem 2019; 14:2084-2092. [DOI: 10.1002/cmdc.201900529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/17/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Francesco A. Greco
- Department of Pharmaceutical SciencesUniversity of Perugia via del liceo n.1 06123 Perugia Italy
| | - Elisa Albini
- Department of Experimental MedicineUniversity of Perugia P.le Gambuli 06132 Perugia Italy
| | - Alice Coletti
- Department of Pharmaceutical SciencesUniversity of Perugia via del liceo n.1 06123 Perugia Italy
| | - Daniela Dolciami
- Department of Pharmaceutical SciencesUniversity of Perugia via del liceo n.1 06123 Perugia Italy
| | - Andrea Carotti
- Department of Pharmaceutical SciencesUniversity of Perugia via del liceo n.1 06123 Perugia Italy
| | - Ciriana Orabona
- Department of Experimental MedicineUniversity of Perugia P.le Gambuli 06132 Perugia Italy
| | - Ursula Grohmann
- Department of Experimental MedicineUniversity of Perugia P.le Gambuli 06132 Perugia Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical SciencesUniversity of Perugia via del liceo n.1 06123 Perugia Italy
| |
Collapse
|
25
|
Yang C, He B, Zheng Q, Wang D, Qin M, Zhang H, Dai W, Zhang Q, Meng X, Wang X. Nano-encapsulated tryptanthrin derivative for combined anticancer therapy via inhibiting indoleamine 2,3-dioxygenase and inducing immunogenic cell death. Nanomedicine (Lond) 2019; 14:2423-2440. [DOI: 10.2217/nnm-2019-0074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: We developed a polycaprolactone-based nanoparticle (NP) to encapsulate tryptanthrin derivative CY-1-4 and evaluated its antitumor efficacy. Materials & methods: CY-1-4 NPs were prepared and evaluated for their cytotoxicity and associated mechanisms, indoleamine 2,3-dioxygenase (IDO)-inhibitory ability, immunogenic cell death (ICD)-inducing ability and antitumor efficacy. Results: CY-1-4 NPs were 123 nm in size. In vitro experiments indicated that they could both induce ICD and inhibit IDO. In vivo studies indicated that a medium dose reduced 58% of the tumor burden in a B16-F10-bearing mouse model, decreased IDO expression in tumor tissues and regulated lymphocytes subsets in spleen and tumors. Conclusion: CY-1-4 is a potential antitumor candidate that could act as a single agent with combined functions of IDO inhibition and ICD induction.
Collapse
Affiliation(s)
- Canyu Yang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Qiang Zheng
- State Key Laboratory of Natural & Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Dakuan Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Mengmeng Qin
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
- State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Xiangbao Meng
- State Key Laboratory of Natural & Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| |
Collapse
|
26
|
Wang XX, Sun SY, Dong QQ, Wu XX, Tang W, Xing YQ. Recent advances in the discovery of indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. MEDCHEMCOMM 2019; 10:1740-1754. [PMID: 32055299 DOI: 10.1039/c9md00208a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), an important immunoregulatory enzyme ubiquitously expressed in various tissues and cells, plays a key role in tryptophan metabolism via the kynurenine pathway and has emerged as an attractive therapeutic target for the treatment of cancer and other diseases, such as Alzheimer's disease and arthritis. IDO1 has diverse biological roles in immune suppression and tumor progression by tryptophan catabolism. In addition, IDO1-mediated immune tolerance assists tumor cells in escaping the immune surveillance. Recently, extensive and enormous investigations have been made in the discovery of IDO1 inhibitors in both academia and pharmaceutical companies. In this review, IDO1 inhibitors are grouped as tryptophan derivatives, inhibitors with an imidazole, 1,2,3-triazole or tetrazole scaffold, inhibitors with quinone or iminoquinone, N-hydroxyamidines and other derivatives, and their enzymatic inhibitory activity, selectivity and other biological activities are also introduced and summarized.
Collapse
Affiliation(s)
- Xiu-Xiu Wang
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| | - Si-Yu Sun
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| | - Qing-Qing Dong
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| | - Xiao-Xiang Wu
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| | - Wei Tang
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| | - Ya-Qun Xing
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| |
Collapse
|
27
|
Yanagisawa S, Kayama K, Hara M, Sugimoto H, Shiro Y, Ogura T. UV Resonance Raman Characterization of a Substrate Bound to Human Indoleamine 2,3-Dioxygenase 1. Biophys J 2019; 117:706-716. [PMID: 31405517 DOI: 10.1016/j.bpj.2019.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 01/25/2023] Open
Abstract
Human indoleamine 2,3-dioxygenase 1 (IDO) is a heme enzyme that catalyzes the first reaction of the main metabolic pathway of L-tryptophan (Trp) to produce N-formylkynurenin. The reaction involves cleavage of the C2=C3 bond in the Trp indole ring and insertion of two atomic oxygens from the iron-bound O2 into the indole 2 and 3 position. For establishment of the chemical mechanism of this unique enzymatic reaction, it is necessary to determine the conformation and electronic state of the substrate Trp bound to IDO. In this study, we measured the ultraviolet resonance Raman spectra of IDO in the presence of Trp to detect the vibrational modes of the substrate Trp. We compared the ultraviolet resonace Raman spectra of Trp in a ternary complex (Trp-bound cyanide enzyme) and a binary complex (Trp-bound reduced enzyme) of IDO with that of free Trp in solution and found that binding to IDO influences the conformation of Trp, resulting in similar changes in the two complexes, especially around the C3-Cβ bond. However, the presence of the diatomic ligand at the heme sixth coordination site in the ternary complex significantly alters the mobility and electronic structure of Trp, most likely resulting in the C2=C3 bond cleavage in the enzymatic reaction.
Collapse
Affiliation(s)
- Sachiko Yanagisawa
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan.
| | - Kure'e Kayama
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Masayuki Hara
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | | | - Yoshitsugu Shiro
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Takashi Ogura
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| |
Collapse
|
28
|
Jain S, Bhardwaj B, Amin SA, Adhikari N, Jha T, Gayen S. Exploration of good and bad structural fingerprints for inhibition of indoleamine-2,3-dioxygenase enzyme in cancer immunotherapy using Monte Carlo optimization and Bayesian classification QSAR modeling. J Biomol Struct Dyn 2019; 38:1683-1696. [PMID: 31057090 DOI: 10.1080/07391102.2019.1615000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) is an extrahepatic, heme-containing and tryptophan-catalyzing enzyme responsible for causing blockade of T-cell proliferation and differentiation by depleting tryptophan level in cancerous cells. Therefore, inhibition of IDO1 may be a useful strategy for immunotherapy against cancer. In this study, 448 structurally diverse IDO1 inhibitors with a wide range of activity has been taken into consideration for classification QSAR analysis through Monte Carlo Optimization by using different splits as well as different combinations of SMILES-based, graph-based and hybrid descriptors. The best model from Monte Carlo optimization was interpreted to find out the good and bad structural fingerprints for IDO1 and further justified by using Bayesian classification QSAR modeling. Among the three splits in Monte Carlo optimization, the statistics of the best model was obtained from Split 3: sensitivity = 0.87, specificity = 0.91, accuracy = 0.89 and MCC = 0.78. In Bayesian classification modeling, the ROC scores for training and test set were found to be 0.91 and 0.86, respectively. The combined modeling analysis revealed that the presence of aryl hydrazyl sulphonyl moiety, furazan ring, halogen substitution, nitro group and hetero atoms in aromatic system can be very useful in designing IDO1 inhibitors. All the good and bad structural fingerprints for IDO1 were identified and are justified by correlating these fragments to the inhibition of IDO1 enzyme. These structural fingerprints will guide the researchers in this field to design better inhibitors against IDO1 enzyme for cancer immunotherapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sanskar Jain
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. HarisinghGour University, Sagar, Madhya Pradesh, India
| | - Bhagwati Bhardwaj
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. HarisinghGour University, Sagar, Madhya Pradesh, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, West Bengal, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, West Bengal, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. HarisinghGour University, Sagar, Madhya Pradesh, India
| |
Collapse
|
29
|
Yang R, Chen Y, Pan L, Yang Y, Zheng Q, Hu Y, Wang Y, Zhang L, Sun Y, Li Z, Meng X. Design, synthesis and structure-activity relationship study of novel naphthoindolizine and indolizinoquinoline-5,12-dione derivatives as IDO1 inhibitors. Bioorg Med Chem 2018; 26:4886-4897. [DOI: 10.1016/j.bmc.2018.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/05/2018] [Accepted: 08/21/2018] [Indexed: 01/27/2023]
|
30
|
Fiorito S, Greco FA, Coletti A, Dolciami D, Viola S, Grohmann U, Macchiarulo A. Microscale Thermophoresis and Docking Studies Suggest Lapachol and Auraptene are Ligands of IDO1. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a key target for the development of small molecule immunotherapies in oncology. In this framework, the screening of chemotherapeutic agents to identify compounds binding to IDO1 represents a valuable strategy for the development of multitarget drug candidates that combine synergic immunoregulatory properties to cytotoxic activity. In this study, we report that two natural compounds endowed with anticancer activity, namely lapachol and auraptene, act as IDO1 ligands with dissociation constant (Kd) in the micromolar range of potency. Docking studies provide plausible binding modes of these compounds to the catalytic cleft of IDO1. Our results support the notion that lapachol and auraptene may be considered interesting lead compounds in the immuno-oncology setting.
Collapse
Affiliation(s)
- Serena Fiorito
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo, 1 - 06123, Perugia, Italy
| | - Francesco A. Greco
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo, 1 - 06123, Perugia, Italy
| | - Alice Coletti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo, 1 - 06123, Perugia, Italy
| | - Daniela Dolciami
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo, 1 - 06123, Perugia, Italy
| | - Silvia Viola
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo, 1 - 06123, Perugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, via Gambuli, 1 - 06132, Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo, 1 - 06123, Perugia, Italy
| |
Collapse
|
31
|
Roy A, Das S, Manna D. Effect of Molecular Crowding Agents on the Activity and Stability of Immunosuppressive Enzyme Indoleamine 2,3‐Dioxygenase 1. ChemistrySelect 2018. [DOI: 10.1002/slct.201801366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ashalata Roy
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati-781039 Assam India
| | - Sreeparna Das
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati-781039 Assam India
| | - Debasis Manna
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati-781039 Assam India
| |
Collapse
|
32
|
Fang K, Dong G, Li Y, He S, Wu Y, Wu S, Wang W, Sheng C. Discovery of Novel Indoleamine 2,3-Dioxygenase 1 (IDO1) and Histone Deacetylase (HDAC) Dual Inhibitors. ACS Med Chem Lett 2018; 9:312-317. [PMID: 29670692 DOI: 10.1021/acsmedchemlett.7b00487] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/26/2018] [Indexed: 02/08/2023] Open
Abstract
In order to take advantage of both immunotherapeutic and epigenetic antitumor agents, the first generation of dual indoleamine 2,3-dioxygenase 1 (IDO1) and histone deacetylase (HDAC) inhibitors were designed. The highly active dual inhibitor 10 showed excellent and balanced activity against both IDO1 (IC50 = 69.0 nM) and HDAC1 (IC50 = 66.5 nM), whose dual targeting mechanisms were validated in cancer cells. Compound 10 had good pharmacokinetic profiles as an orally active antitumor agent and significantly reduced the l-kynurenine level in plasma. In particular, it showed excellent in vivo antitumor efficacy in the murine LLC tumor model with low toxicity. This proof-of-concept study provided a novel strategy for cancer treatment. Compound 10 represents a promising lead compound for the development of novel antitumor agents and can also be used as a valuable probe to clarify the relationships and mechanisms between cancer immunotherapy and epigenetics.
Collapse
Affiliation(s)
- Kun Fang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, P. R. China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, P. R. China
| | - Yu Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, P. R. China
| | - Shipeng He
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ying Wu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, P. R. China
| | - Shanchao Wu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, P. R. China
| | - Wei Wang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
- Department of Chemistry and Chemical Biology, University of New Mexico, MSC03 2060, Albuquerque, New Mexico 87131-0001, United States
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, P. R. China
| |
Collapse
|
33
|
Cheong JE, Sun L. Targeting the IDO1/TDO2–KYN–AhR Pathway for Cancer Immunotherapy – Challenges and Opportunities. Trends Pharmacol Sci 2018; 39:307-325. [PMID: 29254698 DOI: 10.1016/j.tips.2017.11.007] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Jae Eun Cheong
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lijun Sun
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
34
|
Fragment-based approach to identify IDO1 inhibitor building blocks. Eur J Med Chem 2017; 141:169-177. [DOI: 10.1016/j.ejmech.2017.09.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 11/20/2022]
|