1
|
Lamon S, Yu H, Zhang Q, Gu M. Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications. LIGHT, SCIENCE & APPLICATIONS 2024; 13:252. [PMID: 39277593 PMCID: PMC11401911 DOI: 10.1038/s41377-024-01547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 09/17/2024]
Abstract
Energy-intensive technologies and high-precision research require energy-efficient techniques and materials. Lens-based optical microscopy technology is useful for low-energy applications in the life sciences and other fields of technology, but standard techniques cannot achieve applications at the nanoscale because of light diffraction. Far-field super-resolution techniques have broken beyond the light diffraction limit, enabling 3D applications down to the molecular scale and striving to reduce energy use. Typically targeted super-resolution techniques have achieved high resolution, but the high light intensity needed to outperform competing optical transitions in nanomaterials may result in photo-damage and high energy consumption. Great efforts have been made in the development of nanomaterials to improve the resolution and efficiency of these techniques toward low-energy super-resolution applications. Lanthanide ion-doped upconversion nanoparticles that exhibit multiple long-lived excited energy states and emit upconversion luminescence have enabled the development of targeted super-resolution techniques that need low-intensity light. The use of lanthanide ion-doped upconversion nanoparticles in these techniques for emerging low-energy super-resolution applications will have a significant impact on life sciences and other areas of technology. In this review, we describe the dynamics of lanthanide ion-doped upconversion nanoparticles for super-resolution under low-intensity light and their use in targeted super-resolution techniques. We highlight low-energy super-resolution applications of lanthanide ion-doped upconversion nanoparticles, as well as the related research directions and challenges. Our aim is to analyze targeted super-resolution techniques using lanthanide ion-doped upconversion nanoparticles, emphasizing fundamental mechanisms governing transitions in lanthanide ions to surpass the diffraction limit with low-intensity light, and exploring their implications for low-energy nanoscale applications.
Collapse
Affiliation(s)
- Simone Lamon
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| | - Haoyi Yu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Qiming Zhang
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Min Gu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| |
Collapse
|
2
|
Stolte Bezerra Lisboa Oliveira L, Ristroph KD. Critical Review: Uptake and Translocation of Organic Nanodelivery Vehicles in Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5646-5669. [PMID: 38517744 DOI: 10.1021/acs.est.3c09757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Nanodelivery vehicles (NDVs) are engineered nanomaterials (ENMs) that, within the agricultural sector, have been investigated for their ability to improve uptake and translocation of agrochemicals, control release, or target specific tissues or subcellular compartments. Both inorganic and organic NDVs have been studied for agrochemical delivery in the literature, but research on the latter has been slower to develop than the literature on the former. Since the two classes of nanomaterials exhibit significant differences in surface chemistry, physical deformability, and even colloidal stability, trends that apply to inorganic NDVs may not hold for organic NDVs, and vice versa. We here review the current literature on the uptake, translocation, biotransformation, and cellular and subcellular internalization of organic NDVs in plants following foliar or root administration. A background on nanomaterials and plant physiology is provided as a leveling ground for researchers in the field. Trends in uptake and translocation are examined as a function of NDV properties and compared to those reported for inorganic nanomaterials. Methods for assessing fate and transport of organic NDVs in plants (a major bottleneck in the field) are discussed. We end by identifying knowledge gaps in the literature that must be understood in order to rationally design organic NDVs for precision agrochemical nanodelivery.
Collapse
Affiliation(s)
- Luiza Stolte Bezerra Lisboa Oliveira
- Agricultural and Biological Engineering Department, Purdue University, 225 South University Street, West Lafayette, Indiana 47907, United States
| | - Kurt D Ristroph
- Agricultural and Biological Engineering Department, Purdue University, 225 South University Street, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Ateş B, Ulu A, Asiltürk M, Noma SAA, Topel SD, Dik G, Özhan O, Bakar B, Yıldız A, Vardı N, Parlakpınar H. Enhancement of enzyme activity by laser-induced energy propulsion of upconverting nanoparticles under near-infrared light: A comprehensive methodology for in vitro and in vivo applications. Int J Biol Macromol 2024; 260:129343. [PMID: 38242401 DOI: 10.1016/j.ijbiomac.2024.129343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
If the appropriate immobilization method and carrier support are not selected, partial decreases in the activity of enzymes may occur after immobilization. Herein, to overcome this challenge, an excitation mechanism that enables energy transfer was proposed. Modified upconverting nanoparticles (UCNPs) were constructed and the important role of near-infrared (NIR) excitation in enhancing the catalytic activity of the enzyme was demonstrated. For this purpose, UCNPs were first synthesized via the hydrothermal method, functionalized with isocyanate groups, and then, PEG-L-ASNase was immobilized via covalent binding. UCNPs with and without PEG-L-ASNase were extensively characterized by different methods. These supports had immobilization yield and activity efficiency of >96 % and 78 %, respectively. Moreover, immobilized enzymes exhibited improved pH, thermal, and storage stability. In addition, they retained >65 % of their initial activity even after 20 catalytic cycles. Biochemical and histological findings did not indicate a trend of toxicity in rats due to UCNPs. Most importantly, PEG-L-ASNase activity was triggered approximately 5- and 2-fold under in vitro and in vivo conditions, respectively. Overall, it is anticipated that this pioneering work will shed new light on the realistic and promising usage of NIR-excited UCNPs for the immobilization of enzymes in expensive and extensive applications.
Collapse
Affiliation(s)
- Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye.
| | - Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye.
| | - Meltem Asiltürk
- Department of Material Science and Engineering, Faculty of Engineering, Akdeniz University, 07070 Antalya, Türkiye
| | - Samir Abbas Ali Noma
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye; Department of Chemistry, Faculty of Arts and Science, Bursa Uludag University, Bursa, Türkiye
| | - Seda Demirel Topel
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Antalya Bilim University, 07190 Antalya, Türkiye
| | - Gamze Dik
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| | - Onural Özhan
- Department of Medicinal Pharmacology, Medical Faculty, İnönü University, 44210 Malatya, Türkiye
| | - Büşra Bakar
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| | - Azibe Yıldız
- Department of Histology and Embryology, Medical Faculty, İnönü University, 44210 Malatya, Türkiye
| | - Nigar Vardı
- Department of Histology and Embryology, Medical Faculty, İnönü University, 44210 Malatya, Türkiye
| | - Hakan Parlakpınar
- Department of Medicinal Pharmacology, Medical Faculty, İnönü University, 44210 Malatya, Türkiye
| |
Collapse
|
4
|
Khusainova AI, Nizamutdinov AS, Shamsutdinov NI, Kalinichenko S, Safin DI, Gafurov M, Lukinova EV, Batygov SK, Kuznetsov SV, Zinchenko SV, Zelenikhin PV, Pudovkin M. Photo- and X-ray Induced Cytotoxicity of CeF 3-YF 3-TbF 3 Nanoparticle-Polyvinylpyrrolidone-"Radachlorin" Composites for Combined Photodynamic Therapy. MATERIALS (BASEL, SWITZERLAND) 2024; 17:316. [PMID: 38255483 PMCID: PMC10817462 DOI: 10.3390/ma17020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
The Ce0.5Y0.35Tb0.15F3 nanoparticles with a CeF3 hexagonal structure were synthesized using the co-precipitation technique. The average nanoparticle diameter was 14 ± 1 nm. The luminescence decay curves of the Ce0.5Y0.35Tb0.15F3 nanoparticles (λem = 541 nm, 5D4-7F5 transition of Tb3+) conjugated with Radachlorin using polyvinylpyrrolidone coating as well as without Radachlorin were detected. Efficient nonradiative energy transfer from Tb3+ to the Radachlorin was demonstrated. The maximum energy transfer coefficients for the nanoparticles conjugated with Radachlorin via polyvinylpyrrolidone and without the coating were 82% and 55%, respectively. The average distance between the nanoparticle surface and Radachlorin was R0 = 4.5 nm. The best results for X-ray-induced cytotoxicity were observed for the NP-PVP-Rch sample at the lowest Rch concentration. In particular, after X-ray irradiation, the survival of A549 human lung carcinoma cells decreased by ~12%.
Collapse
Affiliation(s)
- Alina I. Khusainova
- Institute of Physics, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia (N.I.S.); (S.K.); (D.I.S.); (S.V.Z.); (P.V.Z.); (M.P.)
| | - Alexey S. Nizamutdinov
- Institute of Physics, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia (N.I.S.); (S.K.); (D.I.S.); (S.V.Z.); (P.V.Z.); (M.P.)
| | - Nail I. Shamsutdinov
- Institute of Physics, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia (N.I.S.); (S.K.); (D.I.S.); (S.V.Z.); (P.V.Z.); (M.P.)
| | - Svetlana Kalinichenko
- Institute of Physics, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia (N.I.S.); (S.K.); (D.I.S.); (S.V.Z.); (P.V.Z.); (M.P.)
| | - Damir I. Safin
- Institute of Physics, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia (N.I.S.); (S.K.); (D.I.S.); (S.V.Z.); (P.V.Z.); (M.P.)
| | - Marat Gafurov
- Institute of Physics, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia (N.I.S.); (S.K.); (D.I.S.); (S.V.Z.); (P.V.Z.); (M.P.)
| | - Elena V. Lukinova
- Department of General Chemistry, Belgorod State National Research University, 85 Pobedy Str., 308015 Belgorod, Russia;
| | - Sergey Kh. Batygov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (S.K.B.)
| | - Sergey V. Kuznetsov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (S.K.B.)
| | - Sergey V. Zinchenko
- Institute of Physics, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia (N.I.S.); (S.K.); (D.I.S.); (S.V.Z.); (P.V.Z.); (M.P.)
| | - Pavel V. Zelenikhin
- Institute of Physics, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia (N.I.S.); (S.K.); (D.I.S.); (S.V.Z.); (P.V.Z.); (M.P.)
| | - Maksim Pudovkin
- Institute of Physics, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia (N.I.S.); (S.K.); (D.I.S.); (S.V.Z.); (P.V.Z.); (M.P.)
| |
Collapse
|
5
|
Schwarz C, Göring J, Grüttner C, Hilger I. Intravenous Injection of PEI-Decorated Iron Oxide Nanoparticles Impacts NF-kappaB Protein Expression in Immunologically Stressed Mice. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3166. [PMID: 38133063 PMCID: PMC10745731 DOI: 10.3390/nano13243166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Nanoparticle-based formulations are considered valuable tools for diagnostic and treatment purposes. The surface decoration of nanoparticles with polyethyleneimine (PEI) is often used to enhance their targeting and functional properties. Here, we aimed at addressing the long-term fate in vivo and the potential "off-target" effects of PEI decorated iron oxide nanoparticles (PEI-MNPs) in individuals with low-grade and persistent systemic inflammation. For this purpose, we synthesized PEI-MNPs (core-shell method, PEI coating under high pressure homogenization). Further on, we induced a low-grade and persistent inflammation in mice through regular subcutaneous injection of pathogen-associated molecular patterns (PAMPs, from zymosan). PEI-MNPs were injected intravenously. Up to 7 weeks thereafter, the blood parameters were determined via automated fluorescence flow cytometry, animals were euthanized, and the organs analyzed for iron contents (atomic absorption spectrometry) and for expression of NF-κB associated proteins (p65, IκBα, p105/50, p100/52, COX-2, Bcl-2, SDS-PAGE and Western blotting). We observed that the PEI-MNPs had a diameter of 136 nm and a zeta-potential 56.9 mV. After injection in mice, the blood parameters were modified and the iron levels were increased in different organs. Moreover, the liver of animals showed an increased protein expression of canonical NF-κB signaling pathway members early after PEI-MNP application, whereas at the later post-observation time, members of the non-canonical signaling pathway were prominent. We conclude that the synergistic effect between PEI-MNPs and the low-grade and persistent inflammatory state is mainly due to the hepatocytes sensing infection (PAMPs), to immune responses resulting from the intracellular metabolism of the uptaken PEI-MNPs, or to hepatocyte and immune cell communications. Therefore, we suggest a careful assessment of the safety and toxicity of PEI-MNP-based carriers for gene therapy, chemotherapy, and other medical applications not only in healthy individuals but also in those suffering from chronic inflammation.
Collapse
Affiliation(s)
- Claudia Schwarz
- Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, D-07740 Jena, Germany; (C.S.); (J.G.)
| | - Julia Göring
- Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, D-07740 Jena, Germany; (C.S.); (J.G.)
| | - Cordula Grüttner
- Micromod Partikeltechnologie GmbH, Schillingallee 68, D-18057 Rostock, Germany;
| | - Ingrid Hilger
- Micromod Partikeltechnologie GmbH, Schillingallee 68, D-18057 Rostock, Germany;
| |
Collapse
|
6
|
Zheng S, Zhang H, Sheng T, Xiang Y, Wang J, Tang Y, Wu Y, Liu J, Zhu X, Zhang Y. Photoswitchable upconversion nanoparticles with excitation-dependent emission for programmed stepwise NIR phototherapy. iScience 2023; 26:107859. [PMID: 37766981 PMCID: PMC10520541 DOI: 10.1016/j.isci.2023.107859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/12/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Programmable control over therapeutic processes in phototherapy, like photodynamic therapy (PDT), is promising but challenging. This study uses an energy segmentation-based strategy to synthesize core-multi-shell upconversion nanoparticles (UCNPs), which can release three different colors (red, green, and blue) upon exposure to different near-infrared light (1550 nm, 808 nm, and 980 nm). By combining these UCNPs with photosensitizers and nitric oxide (NO) donors, a smart "off-on" PDT nanoplatform is developed. UCNPs enable independent activation of imaging, release of NO, and generation of reactive oxygen species using specific light wavelengths. The results show that sequential NO release before PDT can greatly alleviate tumor hypoxia by reducing oxygen consumption. This stepwise approach shows potential for precise NIR light-activated and imaging-guided phototherapy.
Collapse
Affiliation(s)
- Shanshan Zheng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hengji Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ting Sheng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yi Xiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yao Tang
- China Steel Development Research Institute, Beijing 100029, China
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaohui Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yong Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
7
|
Song L, Zhu Y, Wang J, Wu T, Zhou S, Zhang X, Tang J, Wang J, Lin D, Chen G. Inorganic phosphate regulated high luminescence NaYF 4:Yb 3+, Er 3+ as an iron ion fluorescent nanoprobe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122903. [PMID: 37290241 DOI: 10.1016/j.saa.2023.122903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
The iron ion in industrial circulating cooling water is an important indicator for early warning of equipment corrosion and control level. It is interesting to construct an upconversion luminescence iron ion nanoprobe with a common inorganic phosphate water treatment agent. Herein, inorganic phosphate sodium hexametaphosphate (SHMP) was used to regulate the morphology and functionalization of NaYF4:Yb3+, Er3+ upconversion luminescent nanoprobe (UCNPs) and applied to fluorometric detection of trace Fe(III) in water based on the fluorescence quenching which is caused by the selective coordination between hexametaphosphate on the surface of UCNPs and Fe(III). The structure, morphology, and luminous intensity of UCNPs were regulated by disodium hydrogen phosphate (ADSP), sodium tripolyphosphate (STPP) and sodium hexametaphosphate(SHMP). The UCNPs functionalized with SHMP has high sensitivity and selectivity for Fe(III) detection. The linear range and detection limit are 1.0-50 μM and 0.2 μM, respectively. The method has satisfactory results for the detection of trace Fe(III) in industrial circulating cooling water.
Collapse
Affiliation(s)
- Lingyu Song
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yongbao Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jinfeng Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tingxia Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shuo Zhou
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xianbo Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Junping Tang
- School of Energy and Materials, Shanghai Thermophysical Properties Big Data Professional Technical Service Platform, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Polytechnic University, Shanghai 201209, China
| | - Jikui Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Donghai Lin
- School of Energy and Materials, Shanghai Thermophysical Properties Big Data Professional Technical Service Platform, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Polytechnic University, Shanghai 201209, China.
| | - Guosong Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
8
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
9
|
Zhong L, Li J, Zu B, Zhu X, Lei D, Wang G, Hu X, Zhang T, Dou X. Highly Retentive, Anti-Interference, and Covert Individual Marking Taggant with Exceptional Skin Penetration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201497. [PMID: 35748174 PMCID: PMC9443463 DOI: 10.1002/advs.202201497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The development of high-performance individual marking taggants is of great significance. However, the interaction between taggant and skin is not fully understood, and a standard for marking taggants has yet to be realized. To achieve a highly retentive, anti-interference, and covert individual marking fluorescent taggant, Mn2+ -doped NaYF4 :Yb/Er upconversion nanoparticles (UCNPs), are surface-functionalized with polyethyleneimine (PEI) to remarkably enhance the interaction between the amino groups and skin, and thus to facilitate the surface adhesion and chemical penetration of the taggant. Electrostatic interaction between PEI600 -UCNPs and skin as well as remarkable penetration inside the epidermis is responsible for excellent taggant retention capability, even while faced with robust washing, vigorous wiping, and rubbing for more than 100 cycles. Good anti-interference capability and reliable marking performance in real cases are ensured by an intrinsic upconversion characteristic with a distinct red luminescent emission under 980 nm excitation. The present methodology is expected to shed light on the design of high-performance individual marking taggants from the perspective of the underlying interaction between taggant and skin, and to help advance the use of fluorescent taggants for practical application, such as special character tracking.
Collapse
Affiliation(s)
- Lianggen Zhong
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jiguang Li
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Baiyi Zu
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
| | - Xiaodan Zhu
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Da Lei
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
| | - Guangfa Wang
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
| | - Xiaoyun Hu
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Tianshi Zhang
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xincun Dou
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
10
|
Huang Z, Xie L, Zhang J, Li Q, Liu Y, Fu X, Yuan M, Li Q. RNA-Seq Based Toxicity Analysis of Mesoporous Polydopamine Nanoparticles in Mice Following Different Exposure Routes. Front Bioeng Biotechnol 2022; 10:893608. [PMID: 35573233 PMCID: PMC9096556 DOI: 10.3389/fbioe.2022.893608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Mesoporous polydopamine nanoparticles (MPDA NPs) are promising nanomaterials that have the prospect of clinical application for multi-strategy antitumor therapy, while the biosecurity of MPDA NPs remains indistinct. Here, transcriptome sequencing (RNA-Seq) was performed to systematically reveal the toxicity of MPDA NPs to five categories of organs after three different exposure routes, including intravenous injection, intramuscular injection, and intragastric administration. Our results uncovered that MPDA NPs could be deposited in various organs in small amounts after intravenous administration, not for the other two exposure routes. The number of differentially expressed genes (DEGs) identified in the heart, liver, spleen, lung, and kidney from the intragastric administration group was from 22 to 519. Similarly, the corresponding number was from 23 to 64 for the intramuscular injection group and was from 11 to 153 for the intravenous injection group. Functional enrichment analyses showed 6, 39, and 4 GO terms enriched for DEGs in intragastric administration, intramuscular injection, and intravenous injection groups, respectively. One enriched pathway was revealed in intragastric administration group, while no enriched pathway was found in other groups. Our results indicated that MPDA NPs produced only slight changes at the transcriptome level in mice, which provided new insights for further clinical application of MPDA NPs.
Collapse
Affiliation(s)
- Zihua Huang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Luoyijun Xie
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jifan Zhang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qiyan Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yulin Liu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xuemei Fu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qingjiao Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
11
|
Dai W, Zhang J, Wang Y, Jiao C, Song Z, Ma Y, Ding Y, Zhang Z, He X. Radiolabeling of Nanomaterials: Advantages and Challenges. FRONTIERS IN TOXICOLOGY 2022; 3:753316. [PMID: 35295152 PMCID: PMC8915866 DOI: 10.3389/ftox.2021.753316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/15/2021] [Indexed: 12/01/2022] Open
Abstract
Quantifying the distribution of nanomaterials in complex samples is of great significance to the toxicological research of nanomaterials as well as their clinical applications. Radiotracer technology is a powerful tool for biological and environmental tracing of nanomaterials because it has the advantages of high sensitivity and high reliability, and can be matched with some spatially resolved technologies for non-invasive, real-time detection. However, the radiolabeling operation of nanomaterials is relatively complicated, and fundamental studies on how to optimize the experimental procedures for the best radiolabeling of nanomaterials are still needed. This minireview looks back into the methods of radiolabeling of nanomaterials in previous work, and highlights the superiority of the “last-step” labeling strategy. At the same time, the problems existing in the stability test of radiolabeling and the suggestions for further improvement are also addressed.
Collapse
Affiliation(s)
- Wanqin Dai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing, China.,CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Junzhe Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing, China.,CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Chunlei Jiao
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing, China.,CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Zhuda Song
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing, China.,CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Yuhui Ma
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing, China.,CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yayun Ding
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing, China.,CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing, China.,CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao He
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing, China.,CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application. Mikrochim Acta 2022; 189:109. [PMID: 35175435 DOI: 10.1007/s00604-022-05180-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 01/26/2023]
Abstract
Various fluctuations of intracellular ions, biomolecules, and other conditions in the physiological environment play crucial roles in fundamental biological processes. These factors are of great importance for analysis in biomedical detection. Nevertheless, developments of the simple, rapid, and accurate proof for specific detection still encounter major challenges. Upconversion nanoparticles (UCNPs), which could absorb multiple low-energy near-infrared light (NIR) photon excitation and emits high-energy photons caused by anti-Stokes shift, show unique upconversion luminescence (UCL) properties, for example, sharp emission band, high physicochemical stability like near-zero photobleaching, photo blinking in biological tissues, and long luminescence lifetime. Furthermore, the NIR used for the light source to excite UCNPs enable lower photo-damage effect and deeper penetration of tissue, and in the meantime, it can avoid the auto-fluorescence and light scattering from biological tissue interference. Thus, the lanthanide-doped UCNP-based functional platform with controlled structure, crystalline phase, size, and multicolor emission has become an appropriate nanomaterial for bioapplications such as biosensing, bioimaging, drug release, and therapies. In this review, the recent progress about synthesis and biomedical applications of UCNPs related to sensing and bioimaging is summarized. Firstly, the different luminescence mechanisms of the upconversion process are presented. Secondly, four of the most common methods for synthesizing UCNPs are compared as well as the advantages and disadvantages of these synthetic routes. Meanwhile, the surface modification of lanthanide-doped UCNPs was introduced to pave the way for their biochemistry applications. Next, this review detailed the biological applications of lanthanide-doped UCNPs, particularly in bioimaging, including UCL and multi-modal imaging and biosensing (monitoring intracellular ions and biomolecules). Finally, the challenges and future perspectives in materials science and biomedical fields of UCNPs are concluded: the low quantum yield of the upconversion process should be considered when they are executed as imaging contrast agents. And the biosafety of lanthanide-doped UCNPs needs to be evaluated.
Collapse
|
13
|
Baoum AA. The fluorination effect on the transfection efficacy of cell penetrating peptide complexes. Plasmid 2022; 119-120:102619. [DOI: 10.1016/j.plasmid.2022.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
|
14
|
Chu H, Cao T, Dai G, Liu B, Duan H, Kong C, Tian N, Hou D, Sun Z. Recent advances in functionalized upconversion nanoparticles for light-activated tumor therapy. RSC Adv 2021; 11:35472-35488. [PMID: 35493151 PMCID: PMC9043211 DOI: 10.1039/d1ra05638g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/28/2021] [Indexed: 01/16/2023] Open
Abstract
Upconversion nanoparticles (UCNPs) are a class of optical nanocrystals doped with lanthanide ions that offer great promise for applications in controllable tumor therapy. In recent years, UCNPs have become an important tool for studying the treatment of various malignant and nonmalignant cutaneous diseases. UCNPs convert near-infrared (NIR) radiation into shorter-wavelength visible and ultraviolet (UV) radiation, which is much better than conventional UV activated tumor therapy as strong UV-light can be damaging to healthy surrounding tissue. Moreover, UV light generally does not penetrate deeply into the skin, an issue that UCNPs can now address. However, the current studies are still in the early stage of research, with a long way to go before clinical implementation. In this paper, we systematically analysed recent advances in light-activated tumor therapy using functionalized UCNPs. We summarized the purpose and mechanism of UCNP-based photodynamic therapy (PDT), gene therapy, immunotherapy, chemo-therapy and integrated therapy. We believe the creation of functional materials based on UCNPs will offer superior performance and enable innovative applications, increasing the scope and opportunities for cancer therapy in the future.
Collapse
Affiliation(s)
- Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing 101149 PR China
| | - Tingming Cao
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing 101149 PR China
| | - Guangming Dai
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing 101149 PR China
| | - Bei Liu
- School of Science, Minzu University of China Beijing 100081 PR China
| | - Huijuan Duan
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing 101149 PR China
| | - Chengcheng Kong
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing 101149 PR China
| | - Na Tian
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing 101149 PR China
| | - Dailun Hou
- Department of Radiology, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing 101149 PR China
| |
Collapse
|
15
|
Ferrera-González J, Francés-Soriano L, Galiana-Roselló C, González-Garcia J, González-Béjar M, Fröhlich E, Pérez-Prieto J. Initial Biological Assessment of Upconversion Nanohybrids. Biomedicines 2021; 9:1419. [PMID: 34680536 PMCID: PMC8533627 DOI: 10.3390/biomedicines9101419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022] Open
Abstract
Nanoparticles for medical use should be non-cytotoxic and free of bacterial contamination. Upconversion nanoparticles (UCNPs) coated with cucurbit[7]uril (CB[7]) made by combining UCNPs free of oleic acid, here termed bare UCNPs (UCn), and CB[7], i.e., UC@CB[7] nanohybrids, could be used as photoactive inorganic-organic hybrid scaffolds for biological applications. UCNPs, in general, are not considered to be highly toxic materials, but the release of fluorides and lanthanides upon their dissolution may cause cytotoxicity. To identify potential adverse effects of the nanoparticles, dehydrogenase activity of endothelial cells, exposed to various concentrations of the UCNPs, was determined. Data were verified by measuring lactate dehydrogenase release as the indicator of loss of plasma membrane integrity, which indicates necrotic cell death. This assay, in combination with calcein AM/Ethidium homodimer-1 staining, identified induction of apoptosis as main mode of cell death for both particles. The data showed that the UCNPs are not cytotoxic to endothelial cells, and the samples did not contain endotoxin contamination. Higher cytotoxicity, however, was seen in HeLa and RAW 264.7 cells. This may be explained by differences in lysosome content and particle uptake rate. Internalization of UCn and UC@CB[7] nanohybrids by cells was demonstrated by NIR laser scanning microscopy.
Collapse
Affiliation(s)
- Juan Ferrera-González
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain; (J.F.-G.); (L.F.-S.); (C.G.-R.); (J.G.-G.)
| | - Laura Francés-Soriano
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain; (J.F.-G.); (L.F.-S.); (C.G.-R.); (J.G.-G.)
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, CEDEX, 76821 Mont-Saint-Aignan, France
| | - Cristina Galiana-Roselló
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain; (J.F.-G.); (L.F.-S.); (C.G.-R.); (J.G.-G.)
| | - Jorge González-Garcia
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain; (J.F.-G.); (L.F.-S.); (C.G.-R.); (J.G.-G.)
| | - María González-Béjar
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain; (J.F.-G.); (L.F.-S.); (C.G.-R.); (J.G.-G.)
| | - Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain; (J.F.-G.); (L.F.-S.); (C.G.-R.); (J.G.-G.)
| |
Collapse
|
16
|
Zhang NN, Lu CY, Chen MJ, Xu XL, Shu GF, Du YZ, Ji JS. Recent advances in near-infrared II imaging technology for biological detection. J Nanobiotechnology 2021; 19:132. [PMID: 33971910 PMCID: PMC8112043 DOI: 10.1186/s12951-021-00870-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022] Open
Abstract
Molecular imaging technology enables us to observe the physiological or pathological processes in living tissue at the molecular level to accurately diagnose diseases at an early stage. Optical imaging can be employed to achieve the dynamic monitoring of tissue and pathological processes and has promising applications in biomedicine. The traditional first near-infrared (NIR-I) window (NIR-I, range from 700 to 900 nm) imaging technique has been available for more than two decades and has been extensively utilized in clinical diagnosis, treatment and scientific research. Compared with NIR-I, the second NIR window optical imaging (NIR-II, range from 1000 to 1700 nm) technology has low autofluorescence, a high signal-to-noise ratio, a high tissue penetration depth and a large Stokes shift. Recently, this technology has attracted significant attention and has also become a heavily researched topic in biomedicine. In this study, the optical characteristics of different fluorescence nanoprobes and the latest reports regarding the application of NIR-II nanoprobes in different biological tissues will be described. Furthermore, the existing problems and future application perspectives of NIR-II optical imaging probes will also be discussed.![]()
Collapse
Affiliation(s)
- Nan-Nan Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China
| | - Chen-Ying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China
| | - Min-Jiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China
| | - Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gao-Feng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jian-Song Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
17
|
Jia R, Teng L, Gao L, Su T, Fu L, Qiu Z, Bi Y. Advances in Multiple Stimuli-Responsive Drug-Delivery Systems for Cancer Therapy. Int J Nanomedicine 2021; 16:1525-1551. [PMID: 33658782 PMCID: PMC7920594 DOI: 10.2147/ijn.s293427] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Nanomedicines afford unique advantages in therapeutic intervention against tumors. However, conventional nanomedicines have failed to achieve the desired effect against cancers because of the presence of complicated physiological fluids and the tumor microenvironment. Stimuli-responsive drug-delivery systems have emerged as potential tools for advanced treatment of cancers. Versatile nano-carriers co-triggered by multiple stimuli in different levels of organisms (eg, extracorporeal, tumor tissue, cell, subcellular organelles) have aroused widespread interest because they can overcome sequential physiological and pathological barriers to deliver diverse therapeutic “payloads” to the desired targets. Furthermore, multiple stimuli-responsive drug-delivery systems (MSR-DDSs) offer a good platform for co-delivery of agents and reversing multidrug resistance. This review affords a comprehensive overview on the “landscape” of MSR-DDSs against tumors, highlights the design strategies of MSR-DDSs in recent years, discusses the putative advantage of oncotherapy or the obstacles that so far have hindered the clinical translation of MSR-DDSs.
Collapse
Affiliation(s)
- Ruixin Jia
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Lesheng Teng
- School of Life Science, Jilin University, Changchun, Jilin, People's Republic of China
| | - Lingyu Gao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Ting Su
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Lu Fu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, People's Republic of China
| | - Zhidong Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Ye Bi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China.,Practice Training Center, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| |
Collapse
|
18
|
Munagala R, Aqil F, Jeyabalan J, Kandimalla R, Wallen M, Tyagi N, Wilcher S, Yan J, Schultz DJ, Spencer W, Gupta RC. Exosome-mediated delivery of RNA and DNA for gene therapy. Cancer Lett 2021; 505:58-72. [PMID: 33610731 DOI: 10.1016/j.canlet.2021.02.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Gene therapy promises to revolutionize biomedicine and personalized medicine by modulating or compensating the expression of abnormal genes. The biggest obstacle for clinical application is the lack of an effective, non-immunogenic delivery system. We show that bovine colostrum exosomes and polyethyleneimine matrix (EPM) delivers short interfering RNA (siRNA) or plasmid DNA (pDNA) for effective gene therapy. KRAS, a therapeutic focus for many cancers, was targeted by EPM-delivered KRAS siRNA (siKRAS) and inhibited lung tumor growth (>70%) and reduced KRAS expression (50%-80%). Aberrant p53 is another therapeutic focus for many cancers. EPM-mediated introduction of wild-type (WT) p53 pDNA (pcDNA-p53) resulted in p53 expression in p53-null H1299 cells in culture, subcutaneous lung tumor, and tissues of p53-knockout mice. Additionally, chemo-sensitizing effects of paclitaxel were restored by exogenous WT p53 in lung cancer cells. Together, this novel EPM technology represents an effective 'platform' for delivery of therapeutic nucleic acids to treat human disease.
Collapse
Affiliation(s)
| | - Farrukh Aqil
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA; Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | | | - Raghuram Kandimalla
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | | | - Neha Tyagi
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Sarah Wilcher
- Research Resources Center, University of Louisville, Louisville, KY, 40202, USA
| | - Jun Yan
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA; Department of Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - David J Schultz
- Department of Biology, University of Louisville, Louisville, KY, 40292, USA
| | - Wendy Spencer
- 3P Biotechnologies, Inc., Louisville, KY, 40202, USA
| | - Ramesh C Gupta
- 3P Biotechnologies, Inc., Louisville, KY, 40202, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
19
|
Dhas N, Kudarha R, Garkal A, Ghate V, Sharma S, Panzade P, Khot S, Chaudhari P, Singh A, Paryani M, Lewis S, Garg N, Singh N, Bangar P, Mehta T. Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: Current advancement and future breakthroughs. J Control Release 2020; 330:257-283. [PMID: 33345832 DOI: 10.1016/j.jconrel.2020.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
In recent years, there have been significant advancements in the nanotechnology for cancer therapy. Even though molybdenum disulphide (MoS2)-based nanocomposites demonstrated extensive applications in biosensing, bioimaging, phototherapy, the review article focusing on MoS2 nanocomposite platform has not been accounted for yet. The review summarizes recent strategies on design and fabrication of MoS2-based nanocomposites and their modulated properties in cancer treatment. The review also discussed several therapeutic strategies (photothermal, photodynamic, immunotherapy, gene therapy and chemotherapy) and their combinations for efficient cancer therapy along with certain case studies. The review also inculcates various diagnostic techniques viz. magnetic resonance imaging, computed tomography, photoacoustic imaging and fluorescence imaging for diagnosis of cancer.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Ritu Kudarha
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India
| | - Prabhakar Panzade
- Department of Pharmaceutics, Srinath College of Pharmacy, Dr. Babasaheb Ambedkar Technological University, Aurangabad, Maharashtra 431133, India
| | - Shubham Khot
- Sinhgad Institute of Pharmacy, Narhe, Pune, Maharashtra 411041, India
| | - Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Ashutosh Singh
- School of Basic Sciences, Indian Institute of Technology, Mandi, Kamand, Himachal Pradesh 175005, India
| | - Mitali Paryani
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh 221005, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India
| | - Priyanka Bangar
- Intas Pharmaceuticals Ltd., Ahmedabad, Gujarat 382213, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
20
|
Bekmukhametova A, Ruprai H, Hook JM, Mawad D, Houang J, Lauto A. Photodynamic therapy with nanoparticles to combat microbial infection and resistance. NANOSCALE 2020; 12:21034-21059. [PMID: 33078823 DOI: 10.1039/d0nr04540c] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Infections caused by drug-resistant pathogens are rapidly increasing in incidence and pose an urgent global health concern. New treatments are needed to address this critical situation while preventing further resistance acquired by the pathogens. One promising approach is antimicrobial photodynamic therapy (PDT), a technique that selectively damages pathogenic cells through reactive oxygen species (ROS) that have been deliberately produced by light-activated chemical reactions via a photosensitiser. There are currently some limitations to its wider deployment, including aggregation, hydrophobicity, and sub-optimal penetration capabilities of the photosensitiser, all of which decrease the production of ROS and lead to reduced therapeutic performance. In combination with nanoparticles, however, these challenges may be overcome. Their small size, functionalisable structure, and large contact surface allow a high degree of internalization by cellular membranes and tissue barriers. In this review, we first summarise the mechanism of PDT action and the interaction between nanoparticles and the cell membrane. We then introduce the categorisation of nanoparticles in PDT, acting as nanocarriers, photosensitising molecules, and transducers, in which we highlight their use against a range of bacterial and fungal pathogens. We also compare the antimicrobial efficiency of nanoparticles to unbound photosensitisers and examine the relevant safety considerations. Finally, we discuss the use of nanoparticulate drug delivery systems in clinical applications of antimicrobial PDT.
Collapse
Affiliation(s)
| | - Herleen Ruprai
- School of Science, Western Sydney University, Penrith, NSW 2750, Australia.
| | - James M Hook
- School of Chemistry, University of New South Wales, Kensington, NSW 2052, Australia
| | - Damia Mawad
- School of Materials Science and Engineering, University of New South Wales, Kensington, NSW 2052, Australia and Centre for Advanced Macromolecular Design, Australian Centre for NanoMedicine and ARC Centre of Excellence in Convergent BioNano Science and Technology, UNSW Australia, Sydney, NSW 2052, Australia
| | - Jessica Houang
- Biomedical Engineering, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia and Biomedical Engineering & Neuroscience Research Group, The MARCS Institute, Western Sydney University, Penrith, NSW 2750, Australia
| | - Antonio Lauto
- School of Science, Western Sydney University, Penrith, NSW 2750, Australia. and Biomedical Engineering & Neuroscience Research Group, The MARCS Institute, Western Sydney University, Penrith, NSW 2750, Australia
| |
Collapse
|
21
|
Dinic I, Vukovic M, Nikolic M, Tan Z, Milosevic O, Mancic L. Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect. J Chem Phys 2020; 153:084706. [PMID: 32872859 DOI: 10.1063/5.0016559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The synthesis of lanthanide doped up-converting nanoparticles (UCNPs), whose morphological, structural, and luminescence properties are well suited for applications in optoelectronics, forensics, security, or biomedicine, is of tremendous significance. The most commonly used synthesis method comprises decomposition of organometallic compounds in an oxygen-free environment and subsequent infliction of a biocompatible layer on the particle surface. In this work, hydroxyl-carboxyl (-OH/-COOH) type of chelating agents (citric acid and sodium citrate) are used in situ for the solvothermal synthesis of hydrophilic NaY0.5Gd0.3F4:Yb,Er UCNPs from rare earth nitrate salts and different fluoride sources (NaF, NH4F, and NH4HF2). X-ray powder diffraction showed crystallization of cubic and hexagonal NaY0.5Gd0.3F4:Yb,Er phases in nano- and micro-sized particles, respectively. The content of the hexagonal phase prevails in the samples obtained when Na-citrate is used, while the size and shape of the synthesized mesocrystals are affected by the choice of fluoride source used for precipitation. All particles are functionalized with citrate ligands and emit intense green light at 519 nm and 539 nm (2H11/2, 4S3/2 → 4I15/2) under near infrared light. The intensity of this emission is distressed by the change in the origin of phonon energy of the host matrix revealed by the change in the number of the excitation photons absorbed per emitted photon.
Collapse
Affiliation(s)
- Ivana Dinic
- Innovative Centre Faculty of Chemistry Belgrade, University of Belgrade, Belgrade, Serbia
| | - Marina Vukovic
- Innovative Centre Faculty of Chemistry Belgrade, University of Belgrade, Belgrade, Serbia
| | - Marko Nikolic
- Photonic Center, Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia
| | - Zhenquan Tan
- School of Petroleum and Chemical Engineering, Dalian University of Technology, Dalian, China
| | | | - Lidija Mancic
- Institute of Technical Sciences of SASA, Belgrade, Serbia
| |
Collapse
|
22
|
Chen Y, Fei X, Ye C, Qian Q, Ye Z, Xie S, Chen J, Zhu M, Ran N, Hou M, Xu L, Yu Z. Acute hepatotoxicity of multimodal targeted imaging contrast agent NaLuF 4:Gd,Yb,Er-PEG/PEI-FA in mice. J Toxicol Sci 2020; 44:621-632. [PMID: 31474743 DOI: 10.2131/jts.44.621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the past few decades, upconversion nanoparticles (abbreviated as UCNPs) have been more widely applied in the biomedical fields, such as in vitro and in vivo upconversion fluorescent bioimaging, photodynamic therapy, biological macromolecular detection, imaging mediated drug delivery and so on. But meanwhile, there is still not much research on the acute toxicity of upconversion nanoparticles in vivo, such as acute hepatotoxicity. In this work, we studied the in vivo biodistribution and acute hepatotoxicity of multimodal targeted contrast agent NaLuF4:Gd,Yb,Er-PEG/PEI-FA nanoprobe, which were synthesized by the solvothermal method and modified with Polyethylene glycol (PEG), Polyetherimide (PEI), folic acid (FA) on the surface. The acute hepatotoxicity in mice was systematically assessed after tail vein injection of different concentration of UCNPs. The results showed that NaLuF4:Gd,Yb,Er-PEG/PEI-FA nanoparticles with an average diameter of 44.5 ± 10.4 nm, and three typical upconversion fluorescence emission bands at 520 nm, 540 nm and 660 nm under the excitation of 980 nm laser. In vivo distribution experiments results demonstrated that approximately 87% of UCNPs injected through the tail vein accumulate in the liver. In the acute hepatotoxicity test, the intravenously injection dose of UCNPs was 10, 40, 70 and 100 mg/kg, respectively. The body weight, blood routine, serum biochemistry, histomorphology and liver oxidative stress were detected and observed no significant acute hepatotoxicity damage under the injection dose of 100 mg/kg. In conclusion, NaLuF4:Gd,Yb,Er-PEG/PEI-FA nanoprobes are safe and reliable, and have potential applications in the field of tumor targeted multimodal imaging.
Collapse
Affiliation(s)
- Yuan Chen
- School of Medicine, Shaoxing University, China
| | - Xiaoxiao Fei
- Cixi Maternity & Child Health Care Hospital, China
| | - Chenqiao Ye
- School of Medicine, Shaoxing University, China
| | | | - Zhiqiu Ye
- School of Medicine, Shaoxing University, China
| | - Siqi Xie
- School of Medicine, Shaoxing University, China
| | - Jiamin Chen
- School of Medicine, Shaoxing University, China
| | | | - Na Ran
- School of Medicine, Shaoxing University, China
| | - Mingsheng Hou
- Shaoxing Hospital of Traditional Chinese Medicine, China
| | - Lin Xu
- Affiliated Hospital of Shaoxing University, China
| | - Zhangsen Yu
- School of Medicine, Shaoxing University, China
| |
Collapse
|
23
|
Superior temperature sensing of small-sized upconversion nanocrystals for simultaneous bioimaging and enhanced synergetic therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 24:102135. [DOI: 10.1016/j.nano.2019.102135] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/12/2019] [Accepted: 11/29/2019] [Indexed: 01/10/2023]
|
24
|
Self-assembled PEI nanomicelles with a fluorinated core for improved siRNA delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Wang JH, Chen HY, Chuang CC, Chen JC. Study of near-infrared light-induced excitation of upconversion nanoparticles as a vector for non-viral DNA delivery. RSC Adv 2020; 10:41013-41021. [PMID: 35519194 PMCID: PMC9057729 DOI: 10.1039/d0ra05385f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/04/2021] [Accepted: 10/12/2020] [Indexed: 01/18/2023] Open
Abstract
Clinical requirements have necessitated the development of biomedical nanomaterials that can be implanted into tissues or bodies.
Collapse
Affiliation(s)
- Jen-Hsuan Wang
- Institute of Biomedical Engineering
- National Chiao Tung University
- HsinChu
- Republic of China
| | - Hsin-Yu Chen
- Institute of Biomedical Engineering
- National Chiao Tung University
- HsinChu
- Republic of China
| | - Ching-Cheng Chuang
- Institute of Biomedical Engineering
- National Chiao Tung University
- HsinChu
- Republic of China
- Department of Electrical and Computer Engineering
| | - Jung-Chih Chen
- Institute of Biomedical Engineering
- National Chiao Tung University
- HsinChu
- Republic of China
- Department of Electrical and Computer Engineering
| |
Collapse
|
26
|
Li D, He S, Wu Y, Liu J, Liu Q, Chang B, Zhang Q, Xiang Z, Yuan Y, Jian C, Yu A, Cheng Z. Excretable Lanthanide Nanoparticle for Biomedical Imaging and Surgical Navigation in the Second Near-Infrared Window. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1902042. [PMID: 31832325 PMCID: PMC6891904 DOI: 10.1002/advs.201902042] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/15/2019] [Indexed: 04/14/2023]
Abstract
Recently, various second near-infrared window (NIR-II, 1000-1700 nm) fluorophores have been synthesized for in vivo imaging with nonradiation, high resolution, and low autofluorescence. However, most of the NIR-II fluorophores, especially inorganic nanoprobes, are mainly retained in the reticuloendothelial system (RES) such as the liver and spleen, leading to long-term safety concerns. Herein, a type of lanthanide-based excretable NIR-II nanoparticle, RENPs@Lips, which can be quickly cleared out of body after intravenous administration with half-lives of 23.0 h for the liver and 14.9 h for the spleen, is reported. Interestingly, over 90% of RENPs@Lips can be excreted through a hepatobiliary system within 72 h postinjection. The moderate blood half-time (T 1/2 = 17.96 min) allows for multifunctional applications in delineating the hemodynamics of vascular disorders (artery thrombosis, ischemia, and tumor angiogenesis) and monitoring blood perfusion in response to acute ischemia. In addition, RENPs@Lips exhibit high performance in identifying orthotopic tumor vessels intraoperatively and embolization surgery under NIR-II imaging navigation. Moreover, excellent signal-to-background ratio (SBR) is successfully achieved to facilitate sentinel lymph nodes biopsy (SLNB) with tumor-bearing mice. The high biocompatibility, favorable excretability, and outstanding optical properties warrant RENPs@Lips as novel promising NIR-II nanoparticles for future applications and translation into an interdisciplinary amalgamation of research in diverse fields.
Collapse
Affiliation(s)
- Daifeng Li
- Department of Orthopedics Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
- Molecular Imaging Program at Stanford (MIPS)Bio‐X Program and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityStanfordCA94305‐5344USA
| | - Shuqing He
- Molecular Imaging Program at Stanford (MIPS)Bio‐X Program and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityStanfordCA94305‐5344USA
- Academy for Advanced Interdisciplinary Studies and Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Yifan Wu
- Department of Orthopedics Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
- Molecular Imaging Program at Stanford (MIPS)Bio‐X Program and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityStanfordCA94305‐5344USA
| | - Jianqiang Liu
- Department of OrthopedicsThe Fourth Hospital of JinanJinanShandong250031China
| | - Qiang Liu
- Molecular Imaging Program at Stanford (MIPS)Bio‐X Program and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityStanfordCA94305‐5344USA
| | - Baisong Chang
- Molecular Imaging Program at Stanford (MIPS)Bio‐X Program and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityStanfordCA94305‐5344USA
| | - Qing Zhang
- Molecular Imaging Program at Stanford (MIPS)Bio‐X Program and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityStanfordCA94305‐5344USA
| | - Zhanhong Xiang
- Molecular Imaging Program at Stanford (MIPS)Bio‐X Program and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityStanfordCA94305‐5344USA
| | - Ying Yuan
- Department of Orthopedics Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Chao Jian
- Department of Orthopedics Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Aixi Yu
- Department of Orthopedics Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS)Bio‐X Program and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityStanfordCA94305‐5344USA
| |
Collapse
|
27
|
Tse WH, Chen L, McCurdy CM, Tarapacki CM, Chronik BA, Zhang J. Development of biocompatible NaGdF
4
: Er
3+
, Yb
3+
upconversion nanoparticles used as contrast agents for bio‐imaging. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Wai Hei Tse
- Department of Medical BiophysicsUniversity of Western Ontario London ON Canada
| | - Longyi Chen
- Department of Chemical and Biochemical EngineeringUniversity of Western Ontario London ON Canada
| | - Colin M. McCurdy
- Department of Physics and AstronomyUniversity of Western Ontario London ON Canada
| | | | - Blaine A. Chronik
- Department of Medical BiophysicsUniversity of Western Ontario London ON Canada
- Department of Physics and AstronomyUniversity of Western Ontario London ON Canada
| | - Jin Zhang
- Department of Medical BiophysicsUniversity of Western Ontario London ON Canada
- Department of Physics and AstronomyUniversity of Western Ontario London ON Canada
| |
Collapse
|
28
|
Wei J, Lian W, Zheng W, Shang X, Zhang M, Dai T, Chen X. Sub-10 nm lanthanide-doped SrFCl nanoprobes: Controlled synthesis, optical properties and bioimaging. J RARE EARTH 2019. [DOI: 10.1016/j.jre.2018.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Thang DC, Wang Z, Lu X, Xing B. Precise cell behaviors manipulation through light-responsive nano-regulators: recent advance and perspective. Theranostics 2019; 9:3308-3340. [PMID: 31244956 PMCID: PMC6567964 DOI: 10.7150/thno.33888] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Nanotechnology-assisted spatiotemporal manipulation of biological events holds great promise in advancing the practice of precision medicine in healthcare systems. The progress in internal and/or external stimuli-responsive nanoplatforms for highly specific cellular regulations and theranostic controls offer potential clinical translations of the revolutionized nanomedicine. To successfully implement this new paradigm, the emerging light-responsive nanoregulators with unparalleled precise cell functions manipulation have gained intensive attention, providing UV-Vis light-triggered photocleavage or photoisomerization studies, as well as near-infrared (NIR) light-mediated deep-tissue applications for stimulating cellular signal cascades and treatment of mortal diseases. This review discusses current developments of light-activatable nanoplatforms for modulations of various cellular events including neuromodulations, stem cell monitoring, immunomanipulation, cancer therapy, and other biological target intervention. In summary, the propagation of light-controlled nanomedicine would place a bright prospect for future medicine.
Collapse
Affiliation(s)
- Do Cong Thang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhimin Wang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Xiaoling Lu
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Bengang Xing
- Sino-Singapore International Joint Research Institute (SSIJRI), Guangzhou 510000, China
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
30
|
Zhou M, Ge X, Ke DM, Tang H, Zhang JZ, Calvaresi M, Gao B, Sun L, Su Q, Wang H. The Bioavailability, Biodistribution, and Toxic Effects of Silica-Coated Upconversion Nanoparticles in vivo. Front Chem 2019; 7:218. [PMID: 31024902 PMCID: PMC6468325 DOI: 10.3389/fchem.2019.00218] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/19/2019] [Indexed: 01/10/2023] Open
Abstract
Lanthanide-doped upconversion nanoparticles can convert long wavelength excitation radiation to short wavelength emission. They have great potential in biomedical applications, such as bioimaging, biodetection, drug delivery, and theranostics. However, there is little information available on their bioavailability and biological effects after oral administration. In this study, we systematically investigated the bioavailability, biodistribution, and toxicity of silica-coated upconversion nanoparticles administrated by gavage. Our results demonstrate that these nanoparticles can permeate intestinal barrier and enter blood circulation by microstructure observation of Peyer's patch in the intestine. Comparing the bioavailability and the biodistribution of silica-coated upconversion nanoparticles with oral and intravenous administration routes, we found that the bioavailability and biodistribution are particularly dependent on the administration routes. After consecutive gavage for 14 days, the body weight, pathology, Zn and Cu level, serum biochemical analysis, oxidative stress, and inflammatory cytokines were studied to further evaluate the potential toxicity of the silica-coated upconversion nanoparticles. The results suggest that these nanoparticles do not show overt toxicity in mice even at a high dose of 100 mg/kg body weight.
Collapse
Affiliation(s)
- Mingzhu Zhou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Xiaoqian Ge
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University, Shanghai, China
| | - Da-Ming Ke
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Huan Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jun-Zheng Zhang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Matteo Calvaresi
- Dipartimento di Chimica “G. Ciamician,” Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Bin Gao
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Lining Sun
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University, Shanghai, China
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| |
Collapse
|
31
|
Himmelstoß SF, Hirsch T. A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging. Methods Appl Fluoresc 2019; 7:022002. [PMID: 30822759 DOI: 10.1088/2050-6120/ab0bfa] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The right choice of a fluorescent probe is essential for successful luminescence imaging and sensing and especially concerning in vivo and in vitro applications, the development of new classes have gained more and more attention in the last years. One of the most promising class are upconversion nanoparticles (UCNPs)-inorganic nanocrystals capable to convert near-infrared light in high energy radiation. In this review we will compare UCNPs with other fluorescent probes in terms of (a) the optical properties of the probes, such as their brightness, photostability and excitation wavelength; (b) their chemical properties such as the dispersibility, stability under experimental or physiological conditions, availability of chemical modification strategies for labelling; and (c) the potential toxicity and biocompatibility of the probe. Thereby we want to provide a better understanding of the advantages and drawbacks of UCNPs and address future challenges in the design of the nanocrystals.
Collapse
Affiliation(s)
- Sandy F Himmelstoß
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | | |
Collapse
|
32
|
Mei L, Zhang X, Yin W, Dong X, Guo Z, Fu W, Su C, Gu Z, Zhao Y. Translocation, biotransformation-related degradation, and toxicity assessment of polyvinylpyrrolidone-modified 2H-phase nano-MoS 2. NANOSCALE 2019; 11:4767-4780. [PMID: 30816394 DOI: 10.1039/c8nr10319d] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nano-MoS2 has been extensively investigated in materials science and biomedicine. However, the effects of different methods of exposure on their translocation, biosafety, and biotransformation-related degradability remain unclear. In this study, we combined the advantages of synchrotron radiation (SR) X-ray absorption near-edge structure (XANES) and high-resolution single-cell SR transmission X-ray microscopy (SR-TXM) with traditional analytical techniques to investigate translocation, precise degraded species/ratio, and correlation between the degradation and toxicity levels of polyvinylpyrrolidone-modified 2H-phase MoS2 nanosheets (MoS2-PVP NSs). These NSs demonstrated different biodegradability levels in biomicroenvironments with H2O2, catalase, and human myeloperoxidase (hMPO) (H2O2 < catalase < hMPO). The effects of NSs and their biodegraded byproducts on cell viability and 3D translocation at the single-cell level were also assessed. Toxicity and translocation in mice via intravenous (i.v.), intraperitoneal (i.p.), and intragastric (i.g.) administration routes guided by fluorescence (FL) imaging were investigated within the tested dosage. After i.g. administration, NSs accumulated in the gastrointestinal organs and were excreted from feces within 48 h. After i.v. injection, NSs showed noticeable clearance due to their decreased accumulation in the liver and spleen within 30 days when compared with that in the i.p. group, which exhibited slight accumulation in the spleen. This work paves the way for understanding the biological behaviors of nano-MoS2 using SR techniques that provide more opportunities for future applications.
Collapse
Affiliation(s)
- Linqiang Mei
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang K, Li Y, Li H, Yin M, Liu H, Deng Q, Wang S. Upconversion fluorescent nanoparticles based-sensor array for discrimination of the same variety red grape wines. RSC Adv 2019; 9:7349-7355. [PMID: 35519955 PMCID: PMC9061164 DOI: 10.1039/c8ra09959f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/22/2019] [Indexed: 11/21/2022] Open
Abstract
A fluorescent sensor array composed of upconversion nanomaterials to distinguish the same variety of red grape wines was constructed.
Collapse
Affiliation(s)
- Kewei Wang
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin Key Laboratory of Food Nutrition and Safety
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
| | - Yanli Li
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin Key Laboratory of Food Nutrition and Safety
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
| | - Haijie Li
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin Key Laboratory of Food Nutrition and Safety
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
| | - Mingyuan Yin
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin Key Laboratory of Food Nutrition and Safety
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
| | - Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Technology and Business University
- Beijing
- China
| | - Qiliang Deng
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin Key Laboratory of Food Nutrition and Safety
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin Key Laboratory of Food Nutrition and Safety
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
| |
Collapse
|
34
|
Meng J, Zhang Z, Zhang B, Gao Y, Li G, Fu Z, Zheng H. Preparation and spectroscopic study of a water-soluble NaYF4:Yb3+/Er3+@NaGdF4 crystal particle and its application in bioimaging. NEW J CHEM 2019. [DOI: 10.1039/c8nj05558k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Water-soluble, magnetic and up-conversion luminescent NaYF4:Yb3+/Er3+@NaGdF4 core–shell particles were prepared directly by the hydrothermal method.
Collapse
Affiliation(s)
- Jiajia Meng
- School of Physics and Information Technology
- Shaanxi Normal University
- Xi’an 710119
- P. R. China
| | - Zhenglong Zhang
- School of Physics and Information Technology
- Shaanxi Normal University
- Xi’an 710119
- P. R. China
| | - Baobao Zhang
- School of Physics and Information Technology
- Shaanxi Normal University
- Xi’an 710119
- P. R. China
| | - Ye Gao
- College of Life Sciences
- Shaanxi Normal University
- Xi’an 710119
- P. R. China
| | - Guian Li
- School of Physics and Information Technology
- Shaanxi Normal University
- Xi’an 710119
- P. R. China
| | - Zhengkun Fu
- School of Physics and Information Technology
- Shaanxi Normal University
- Xi’an 710119
- P. R. China
| | - Hairong Zheng
- School of Physics and Information Technology
- Shaanxi Normal University
- Xi’an 710119
- P. R. China
| |
Collapse
|
35
|
Son J, Yi G, Yoo J, Park C, Koo H, Choi HS. Light-responsive nanomedicine for biophotonic imaging and targeted therapy. Adv Drug Deliv Rev 2019; 138:133-147. [PMID: 30321619 DOI: 10.1016/j.addr.2018.10.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/16/2018] [Accepted: 10/08/2018] [Indexed: 12/26/2022]
Abstract
Nanoparticles (NPs) play a key role in nanomedicine in multimodal imaging, drug delivery and targeted therapy of human diseases. Consequently, due to the attractive properties of NPs including high stability, high payload, multifunctionality, design flexibility, and efficient delivery to target tissues, nanomedicine employs various types of NPs to enhance targeting and treatment efficacy. In this review, we primarily focus on light-responsive materials, such as fluorophores, photosensitizers, semiconducting polymers, carbon structures, gold particles, quantum dots, and upconversion crystals, for their biomedical applications. Armed with these nanomaterials, NPs represent a growing potential in biophotonic imaging (luminescence, photoacoustic, surface enhanced Raman scattering, and optical coherence tomography) as well as targeted therapy (photodynamic therapy, photothermal therapy, and light-responsive drug release).
Collapse
Affiliation(s)
- Jihwan Son
- Department of Medical Lifescience, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea; Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Gawon Yi
- Department of Medical Lifescience, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea; Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jihye Yoo
- Department of Medical Lifescience, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea; Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Changhee Park
- Department of Medical Lifescience, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea; Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Heebeom Koo
- Department of Medical Lifescience, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea; Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea; Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
36
|
Prasad R, Chauhan DS, Yadav AS, Devrukhkar J, Singh B, Gorain M, Temgire M, Bellare J, Kundu GC, Srivastava R. A biodegradable fluorescent nanohybrid for photo-driven tumor diagnosis and tumor growth inhibition. NANOSCALE 2018; 10:19082-19091. [PMID: 30288516 DOI: 10.1039/c8nr05164j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Specific targeting and phototriggered therapy in mouse model have recently emerged as the starting point of cancer theragnosis. Herein, we report a bioresponsive and degradable nanohybrid, a liposomal nanohybrid decorated with red emissive carbon dots, for localized tumor imaging and light-mediated tumor growth inhibition. Unsaturated carbon dots (C-dots) anchored to liposomes convert near-infrared (NIR) light into heat and also produce reactive oxygen species (ROS), demonstrating the capability of phototriggered cancer cell death and tumor regression. The photothermal and oxidative damage of breast tumor by the nonmetallic nanohybrid has also been demonstrated. Designed nanoparticles show excellent aqueous dispersibility, biocompatibility, light irradiated enhanced cellular uptake, release of reactive oxygen species, prolonged and specific tumor binding ability and good photothermal response (62 °C in 5 minutes). Safe and localized irradiation of 808 nm light demonstrates significant tumor growth inhibition and bioresponsive degradation of the fluorescent nanohybrid without affecting the surrounding healthy tissues.
Collapse
Affiliation(s)
- Rajendra Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang L, Hu W, Wu Y, Wei P, Dong L, Hao Z, Fan S, Song Y, Lu Y, Liang C, Wen L. Microwave-Assisted Facile Synthesis of Eu(OH) 3 Nanoclusters with Pro-Proliferative Activity Mediated by miR-199a-3p. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31044-31053. [PMID: 30148600 DOI: 10.1021/acsami.8b10543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As a pharmaceutical excipient, dextran serves as an efficient ligand for stabilizing some clinically available inorganic nanomaterials such as iron oxide nanocrystals. Herein, dextran-capped nanosized europium(III) hydroxides [Eu(OH)3] nanoclusters (NCs) composed of 5 nm Eu(OH)3 nanoparticles have been large-scale synthesized via a microwave-accelerated hydrothermal reaction. The as-synthesized Eu(OH)3 NCs exhibited excellent physiological stability and biocompatibility both in vitro and in vivo and possessed considerable pro-proliferative activities in human umbilical vein endothelial cells (HUVECs). To investigate the epigenetic modulation of Eu(OH)3 NCs-elicited proliferation, the newly developed high-throughput next generation sequencing technology was employed herein. As a result, we have screened 371 dysregulated miRNAs in Eu(OH)3 NCs-treated HUVECs and obtained 26 potentially functional miRNAs in promoting cell proliferation. Furthermore, upregulated miR-199a-3p was predicted, validated, and eventually confirmed to be a crucial modulator in the pro-proliferative activity of Eu(OH)3 NCs by targeting zinc fingers and homeoboxes protein 1 (ZHX1). Importantly, these findings provide potential therapeutic strategy for ischemic heart/limb diseases and tissue regeneration by combination of nanomedicine and gene therapy with Eu(OH)3 NCs and miR-199a-3p-ZHX1 axis modulation.
Collapse
Affiliation(s)
- Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University and Institute of Urology , Anhui Medical University , Hefei , Anhui 230022 , People's Republic of China
| | - Wanglai Hu
- Department of Immunology , Anhui Medical University , Hefei , Anhui 230032 , People's Republic of China
| | - Yadong Wu
- School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , People's Republic of China
| | - Pengfei Wei
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center , University of Science and Technology of China , Hefei , Anhui 230027 , People's Republic of China
| | - Liang Dong
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center , University of Science and Technology of China , Hefei , Anhui 230027 , People's Republic of China
| | - Zongyao Hao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University and Institute of Urology , Anhui Medical University , Hefei , Anhui 230022 , People's Republic of China
| | - Song Fan
- Department of Urology, the First Affiliated Hospital of Anhui Medical University and Institute of Urology , Anhui Medical University , Hefei , Anhui 230022 , People's Republic of China
| | - Yonghong Song
- School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , People's Republic of China
| | - Yang Lu
- School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , People's Republic of China
| | - Chaozhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University and Institute of Urology , Anhui Medical University , Hefei , Anhui 230022 , People's Republic of China
| | - Longping Wen
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center , University of Science and Technology of China , Hefei , Anhui 230027 , People's Republic of China
- School of Medicine , South China University of Technology , Guangzhou 510006 , People's Republic of China
| |
Collapse
|
38
|
Lei P, An R, Zheng X, Zhang P, Du K, Zhang M, Dong L, Gao X, Feng J, Zhang H. Ultrafast synthesis of ultrasmall polyethylenimine-protected AgBiS 2 nanodots by "rookie method" for in vivo dual-modal CT/PA imaging and simultaneous photothermal therapy. NANOSCALE 2018; 10:16765-16774. [PMID: 30156243 DOI: 10.1039/c8nr04870c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Developing a biocompatible nanotheranostic platform integrating diagnostic and therapeutic functions is a great prospect for cancer treatment. However, it is still a great challenge to synthesize nanotheranostic agents using an ultra-facile method. In the research reported here, ultrasmall polyethylenimine-protected silver bismuth sulfide (PEI-AgBiS2) nanodots were successfully synthesized using an ultra-facile and environmentally friendly strategy (1 min only at room temperature), which could be described as a "rookie method". PEI-AgBiS2 nanodots show good monodispersity and biocompatibility. For the first time, PEI-AgBiS2 nanodots were reported as a powerful and safe nanotheranostic agent for cancer treatment. PEI-AgBiS2 nanodots exhibit excellent computed tomography (CT) and photoacoustic (PA) dual-modal imaging ability, which could effectively guide photothermal cancer therapy. Furthermore, PEI-AgBiS2 nanodots exhibit a high photothermal conversion efficiency (η = 35.2%). The photothermal therapy (PTT) results demonstrated a highly efficient tumor ablation ability. More importantly, the blood biochemistry and histology analyses verify that the PEI-AgBiS2 nanodots have negligible long-term toxicity. This work highlights that PEI-AgBiS2 nanodots produced using this extremely effective method are a high-performance and safe PTT agent. These findings open a new gateway for synthesizing nanotheranostic agents by using this ultra-facile method in the future.
Collapse
Affiliation(s)
- Pengpeng Lei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jalani G, Tam V, Vetrone F, Cerruti M. Seeing, Targeting and Delivering with Upconverting Nanoparticles. J Am Chem Soc 2018; 140:10923-10931. [PMID: 30113851 DOI: 10.1021/jacs.8b03977] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Efficient control over drug release is critical to increasing drug efficacy and avoiding side effects. An ideal drug delivery system would deliver drugs in the right amount, at the right location and at the right time noninvasively. This can be achieved using light-triggered delivery: light is noninvasive, spatially precise and safe if appropriate wavelengths are chosen. However, the use of light-controlled delivery systems has been limited to areas that are not too deep inside the body because ultraviolet (UV) or visible (Vis) light, the typical wavelengths used for photoreactions, have limited penetration and are toxic to biological tissues. The advent of upconverting nanoparticles (UCNPs) has made it possible to overcome this crucial challenge. UCNPs can convert near-infrared (NIR) radiation, which can penetrate deeper inside the body, to shorter wavelength NIR, Vis and UV radiation. UCNPs have been used as bright, in situ sources of light for on-demand drug release and bioimaging applications. These remote-controlled, NIR-triggered drug delivery systems are especially attractive in applications where a drug is required at a specific location and time such as in anesthetics, postwound healing, cardiothoracic surgery and cancer treatment. In this Perspective, we discuss recent progress and challenges as well as propose potential solutions and future directions, especially with regard to their translation to the clinic.
Collapse
Affiliation(s)
- Ghulam Jalani
- Department of Mining and Materials Engineering , McGill University , Montreal , Quebec H3A 0C5 , Canada
| | - Vivienne Tam
- Department of Mining and Materials Engineering , McGill University , Montreal , Quebec H3A 0C5 , Canada
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications , Université du Québec , Varennes , Quebec J3X 1S2 , Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering , McGill University , Montreal , Quebec H3A 0C5 , Canada
| |
Collapse
|
40
|
Li J, Huang J, Ao Y, Li S, Miao Y, Yu Z, Zhu L, Lan X, Zhu Y, Zhang Y, Yang X. Synergizing Upconversion Nanophotosensitizers with Hyperbaric Oxygen to Remodel the Extracellular Matrix for Enhanced Photodynamic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22985-22996. [PMID: 29877702 DOI: 10.1021/acsami.8b07090] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photodynamic therapy (PDT) holds great promise as a noninvasive and selective cancer therapeutic treatment in preclinical research and clinical practice; however, it has limited efficacy in the ablation of deep-seated tumor because of hypoxia-associated circumstance and poor penetration of photosensitizers to cancer cells away from the blood vessels. To tackle the obstacles, we propose a therapeutic strategy that synergizes upconversion nanophotosensitizers (UNPSs) with hyperbaric oxygen (HBO) to remodel the extracellular matrix for enhanced photodynamic cancer therapy. The UNPSs are designed to have an Nd3+-sensitized sandwiched structure, wherein the upconversion core serves as light transducers to transfer energy to the neighboring photosensitizers to produce reactive oxygen species (ROS). With HBO, photodynamic process can generate abundant ROS in the intrinsically hypoxic tumor. It is revealed for the first time that HBO-assisted PDT decomposes collagen in the extracellular matrix of tumor and thus facilitates the diffusion of oxygen and penetration of UNPSs into the deeper area of tumor. Such a synergic effect eventually results in a significantly enhanced therapeutic efficacy at a low laser power density as compared with that using UNPSs alone. In view of its good biosafety, the HBO-assisted and UNPSs-mediated PDT provides new possibilities for treatment of solid tumors.
Collapse
Affiliation(s)
- Jingqiu Li
- National Research Centre for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Jinzhao Huang
- National Research Centre for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Yanxiao Ao
- National Research Centre for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Shiyu Li
- National Research Centre for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Yu Miao
- National Research Centre for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Zhongzheng Yu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 637459 , Singapore
| | - Lingtao Zhu
- National Research Centre for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Hubei Province Key Laboratory of Molecular Imaging , Huazhong University of Science and Technology , Wuhan 430022 , P. R. China
| | - Yanhong Zhu
- National Research Centre for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Yan Zhang
- National Research Centre for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Xiangliang Yang
- National Research Centre for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| |
Collapse
|
41
|
Han Y, An Y, Jia G, Wang X, He C, Ding Y, Tang Q. Theranostic micelles based on upconversion nanoparticles for dual-modality imaging and photodynamic therapy in hepatocellular carcinoma. NANOSCALE 2018; 10:6511-6523. [PMID: 29569668 DOI: 10.1039/c7nr09717d] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is frequently metastatic once diagnosed and less likely to respond to curative surgery, emphasizing the need for the development of more sensitive and effective diagnostic and therapeutic strategies. Epithelial cell adhesion molecule (EpCAM) is deemed as the biomarker of cancer stem cells (CSCs), which are mainly responsible for the recurrence, metastasis and prognosis of HCC. In this study, we discuss the use of mitoxantrone (MX), an antitumor drug and a photosensitizer, for designing upconversion nanoparticle-based micelles grafted with the anti-EpCAM antibody, for dual-modality magnetic resonance/upconversion luminescence (MR/UCL)-guided synergetic chemotherapy and photodynamic therapy (PDT). The obtained micelles exhibit good biocompatibility, high specificity to HCC cells and superior fluorescent/magnetic properties in vitro. In vivo results demonstrate that the targeted micelles exhibited much better MR/UCL imaging qualities compared to the nontargeted micelles after the intravenous injection. More importantly, PEGylated UCNP micelles loaded with MX and grafted with anti-EpCAM antibody, denoted as anti-EpCAM-UPGs-MX, showcased the most effective synergetic antitumor efficacy compared with other treatment groups both in vitro and vivo. The remarkable antitumor effect, coupled with superior simultaneous dual-modality MR/UCL imaging as well as good biocompatibility and negligible toxicity, makes the UPG micelles promising for future translational research in HCC diagnosis and therapy.
Collapse
Affiliation(s)
- Yong Han
- Medical School of Southeast University, Nanjing 210009, China.
| | - Yanli An
- Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Gang Jia
- Medical School of Southeast University, Nanjing 210009, China.
| | - Xihui Wang
- Medical School of Southeast University, Nanjing 210009, China.
| | - Chen He
- Medical School of Southeast University, Nanjing 210009, China.
| | - Yinan Ding
- Medical School of Southeast University, Nanjing 210009, China.
| | - Qiusha Tang
- Medical School of Southeast University, Nanjing 210009, China.
| |
Collapse
|
42
|
Kim D, Kim J, Park YI, Lee N, Hyeon T. Recent Development of Inorganic Nanoparticles for Biomedical Imaging. ACS CENTRAL SCIENCE 2018; 4:324-336. [PMID: 29632878 PMCID: PMC5879478 DOI: 10.1021/acscentsci.7b00574] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 05/04/2023]
Abstract
Inorganic nanoparticle-based biomedical imaging probes have been studied extensively as a potential alternative to conventional molecular imaging probes. Not only can they provide better imaging performance but they can also offer greater versatility of multimodal, stimuli-responsive, and targeted imaging. However, inorganic nanoparticle-based probes are still far from practical use in clinics due to safety concerns and less-optimized efficiency. In this context, it would be valuable to look over the underlying issues. This outlook highlights the recent advances in the development of inorganic nanoparticle-based probes for MRI, CT, and anti-Stokes shift-based optical imaging. Various issues and possibilities regarding the construction of imaging probes are discussed, and future research directions are suggested.
Collapse
Affiliation(s)
- Dokyoon Kim
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jonghoon Kim
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong Il Park
- School
of Chemical Engineering, Chonnam National
University, Gwangju 61186, Republic of Korea
| | - Nohyun Lee
- School
of Advanced Materials Engineering, Kookmin
University, Seoul 02707, Republic of Korea
| | - Taeghwan Hyeon
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
43
|
Dong X, Yin W, Zhang X, Zhu S, He X, Yu J, Xie J, Guo Z, Yan L, Liu X, Wang Q, Gu Z, Zhao Y. Intelligent MoS 2 Nanotheranostic for Targeted and Enzyme-/pH-/NIR-Responsive Drug Delivery To Overcome Cancer Chemotherapy Resistance Guided by PET Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4271-4284. [PMID: 29318879 DOI: 10.1021/acsami.7b17506] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Chemotherapy resistance remains a major hurdle for cancer therapy in clinic because of the poor cellular uptake and insufficient intracellular release of drugs. Herein, an intelligent, multifunctional MoS2 nanotheranostic (MoS2-PEI-HA) ingeniously decorated with biodegradable hyaluronic acid (HA) assisted by polyethyleneimine (PEI) is reported to combat drug-resistant breast cancer (MCF-7-ADR) after loading with the chemotherapy drug doxorubicin (DOX). HA can not only target CD44-overexpressing MCF-7-ADR but also be degraded by hyaluronidase (HAase) that is concentrated in the tumor microenvironment, thus accelerating DOX release. Furthermore, MoS2 with strong near-infrared (NIR) photothermal conversion ability can also promote the release of DOX in the acidic tumor environment at a mild 808 nm laser irradiation, achieving a superior antitumor activity based on the programmed response to HAase and NIR laser actuator. Most importantly, HA targeting combined with mild NIR laser stimuli, rather than using hyperthermia, can potently downregulate the expression of drug-resistance-related P-glycoprotein (P-gp), resulting in greatly enhanced intracellular drug accumulation, thus achieving drug resistance reversal. After labeled with 64Cu by a simple chelation strategy, MoS2 was employed for real-time positron emission tomography (PET) imaging of MCF-7-ADR tumor in vivo. This multifunctional nanoplatform paves a new avenue for PET imaging-guided spatial-temporal-controlled accurate therapy of drug-resistant cancer.
Collapse
Affiliation(s)
- Xinghua Dong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Xiao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Xiao He
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Jie Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Jiani Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Zhao Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Xiangfeng Liu
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Qing Wang
- School of Material Science and Engineering, Institute of Nano Engineering, Shandong University of Science and Technology , Qingdao 266590, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences , Beijing 100049, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
44
|
Kuang Y, Xu J, Wang C, Wang C, Shao H, Yang D, Gai S, He F, Yang P. Synthesis and luminescence properties of NaGdF4: Yb3+, Ce3+, and Ho3+ upconversion nanoparticles doped with Zn2+. CrystEngComm 2018. [DOI: 10.1039/c8ce00079d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Due to shrinkage of crystal lattice and formation of F− vacancies, the luminescence intensities show a rise-and-fall change with growing Zn2+ concentration in β-NaGdF4 UCNPs.
Collapse
Affiliation(s)
- Ye Kuang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Jiating Xu
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Chen Wang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Chuanqing Wang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Hua Shao
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| |
Collapse
|
45
|
Yu J, Ma D, Mei L, Gao Q, Yin W, Zhang X, Yan L, Gu Z, Ma X, Zhao Y. Peroxidase-like activity of MoS2 nanoflakes with different modifications and their application for H2O2 and glucose detection. J Mater Chem B 2018; 6:487-498. [DOI: 10.1039/c7tb02676e] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peroxidase-like activity of MoS2 NFs was enhanced by cysteine modification which is beneficial to the detection of glucose and H2O2 and a new catalytic mechanism was proposed.
Collapse
|
46
|
Gao Y, Liu L, Shen B, Chen X, Wang L, Wang L, Feng W, Huang C, Li F. Amphiphilic PEGylated Lanthanide-Doped Upconversion Nanoparticles for Significantly Passive Accumulation in the Peritoneal Metastatic Carcinomatosis Models Following Intraperitoneal Administration. ACS Biomater Sci Eng 2017; 3:2176-2184. [PMID: 33440565 DOI: 10.1021/acsbiomaterials.7b00416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inorganic nanoparticles have emerged as attractive materials for cancer research, because of their exceptional physical properties and multifunctional engineering. However, inorganic nanoparticle accumulation in the tumors located in the abdominal cavity after intravenous (IV) administration is confined because of the peritoneum-plasma barrier. To improve this situation, we developed lanthanide-doped upconversion nanoparticles (UCNPs), coated by amphiphilic polyethylene glycol (P-PEG), serving as a representative of inorganic nanoparticles. Following intraperitoneal (IP) administration into the peritoneal metastatic carcinomatosis models, UCNPs coated by P-PEG (P-PEG-UCNPs) passively accumulated in the cancerous tissues at a larger amount than that in the main normal organs. On the basis of spatial proximity, P-PEG-UCNPs administrated via the IP route exhibited higher passive accumulation in the tumors in the abdominal cavity compared to that via the IV route. It is suggested that IP administration could be a promising strategy for inorganic nanoparticles to be efficaciously applied in peritoneal cancer research.
Collapse
Affiliation(s)
- Yilin Gao
- Department of Chemistry & Institute of Biomedicine Science & State Key Laboratory of Molecular Engineering of polymers, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Lang Liu
- College of Chemical and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P.R. China
| | - Bin Shen
- Department of Chemistry & Institute of Biomedicine Science & State Key Laboratory of Molecular Engineering of polymers, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Xiaofeng Chen
- Center of Analysis and Measurement, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Li Wang
- Center of Analysis and Measurement, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Liya Wang
- College of Chemical and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P.R. China
| | - Wei Feng
- Department of Chemistry & Institute of Biomedicine Science & State Key Laboratory of Molecular Engineering of polymers, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Chunhui Huang
- Department of Chemistry & Institute of Biomedicine Science & State Key Laboratory of Molecular Engineering of polymers, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Fuyou Li
- Department of Chemistry & Institute of Biomedicine Science & State Key Laboratory of Molecular Engineering of polymers, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| |
Collapse
|
47
|
Gil AG, Irache JM, Peñuelas I, González Navarro CJ, López de Cerain A. Toxicity and biodistribution of orally administered casein nanoparticles. Food Chem Toxicol 2017; 106:477-486. [DOI: 10.1016/j.fct.2017.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/30/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022]
|
48
|
Chen X, Li J, Huang Y, Wei J, Sun D, Zheng N. The biodistribution, excretion and potential toxicity of different-sized Pd nanosheets in mice following oral and intraperitoneal administration. Biomater Sci 2017; 5:2448-2455. [DOI: 10.1039/c7bm00769h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The biodistribution, excretion and potential toxicity of different-sized Pd nanosheets in mice following oral and intraperitoneal administration were systematically investigated.
Collapse
Affiliation(s)
- Xiaolan Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- Engineering Research Center for Nano-Preparation Technology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Jingchao Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- Engineering Research Center for Nano-Preparation Technology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Yizhuan Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- Engineering Research Center for Nano-Preparation Technology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Jingping Wei
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- Engineering Research Center for Nano-Preparation Technology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Duo Sun
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- Engineering Research Center for Nano-Preparation Technology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- Engineering Research Center for Nano-Preparation Technology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| |
Collapse
|