1
|
Catanzaro A, Genco A, Louca C, Ruiz-Tijerina DA, Gillard DJ, Sortino L, Kozikov A, Alexeev EM, Pisoni R, Hague L, Watanabe K, Taniguchi T, Ensslin K, Novoselov KS, Fal'ko V, Tartakovskii AI. Resonant Band Hybridization in Alloyed Transition Metal Dichalcogenide Heterobilayers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309644. [PMID: 38279553 DOI: 10.1002/adma.202309644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Indexed: 01/28/2024]
Abstract
Bandstructure engineering using alloying is widely utilized for achieving optimized performance in modern semiconductor devices. While alloying has been studied in monolayer transition metal dichalcogenides, its application in van der Waals heterostructures built from atomically thin layers is largely unexplored. Here, heterobilayers made from monolayers of WSe2 (or MoSe2) and MoxW1 - xSe2 alloy are fabricated and nontrivial tuning of the resultant bandstructure is observed as a function of concentration x. This evolution is monitored by measuring the energy of photoluminescence (PL) of the interlayer exciton (IX) composed of an electron and hole residing in different monolayers. In MoxW1 - xSe2/WSe2, a strong IX energy shift of ≈100 meV is observed for x varied from 1 to 0.6. However, for x < 0.6 this shift saturates and the IX PL energy asymptotically approaches that of the indirect bandgap in bilayer WSe2. This observation is theoretically interpreted as the strong variation of the conduction band K valley for x > 0.6, with IX PL arising from the K - K transition, while for x < 0.6, the bandstructure hybridization becomes prevalent leading to the dominating momentum-indirect K - Q transition. This bandstructure hybridization is accompanied with strong modification of IX PL dynamics and nonlinear exciton properties. This work provides foundation for bandstructure engineering in van der Waals heterostructures highlighting the importance of hybridization effects and opening a way to devices with accurately tailored electronic properties.
Collapse
Affiliation(s)
- Alessandro Catanzaro
- Department of Physics and Astronomy, The University of Sheffield, Sheffield, S3 7RH, UK
| | - Armando Genco
- Department of Physics and Astronomy, The University of Sheffield, Sheffield, S3 7RH, UK
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy
| | - Charalambos Louca
- Department of Physics and Astronomy, The University of Sheffield, Sheffield, S3 7RH, UK
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy
| | - David A Ruiz-Tijerina
- Departamento de Física Química, Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, C.P., 04510, Mexico, México
| | - Daniel J Gillard
- Department of Physics and Astronomy, The University of Sheffield, Sheffield, S3 7RH, UK
| | - Luca Sortino
- Department of Physics and Astronomy, The University of Sheffield, Sheffield, S3 7RH, UK
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Aleksey Kozikov
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Evgeny M Alexeev
- Department of Physics and Astronomy, The University of Sheffield, Sheffield, S3 7RH, UK
- Cambridge Graphene Centre, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Riccardo Pisoni
- Solid State Physics Laboratory, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Lee Hague
- National Graphene Institute, University of Manchester, Manchester, M13 9PL, UK
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Klaus Ensslin
- Solid State Physics Laboratory, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Kostya S Novoselov
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117546, Singapore
| | - Vladimir Fal'ko
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
- Henry Royce Institute for Advanced Materials, University of Manchester, Manchester, M13 9PL, United Kingdom
| | | |
Collapse
|
2
|
Conti S, Chaves A, Pandey T, Covaci L, Peeters FM, Neilson D, Milošević MV. Flattening conduction and valence bands for interlayer excitons in a moiré MoS 2/WSe 2 heterobilayer. NANOSCALE 2023; 15:14032-14042. [PMID: 37575033 DOI: 10.1039/d3nr01183f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
We explore the flatness of conduction and valence bands of interlayer excitons in MoS2/WSe2 van der Waals heterobilayers, tuned by interlayer twist angle, pressure, and external electric field. We employ an efficient continuum model where the moiré pattern from lattice mismatch and/or twisting is represented by an equivalent mesoscopic periodic potential. We demonstrate that the mismatch moiré potential is too weak to produce significant flattening. Moreover, we draw attention to the fact that the quasi-particle effective masses around the Γ-point and the band flattening are reduced with twisting. As an alternative approach, we show (i) that reducing the interlayer distance by uniform vertical pressure can significantly increase the effective mass of the moiré hole, and (ii) that the moiré depth and its band flattening effects are strongly enhanced by accessible electric gating fields perpendicular to the heterobilayer, with resulting electron and hole effective masses increased by more than an order of magnitude - leading to record-flat bands. These findings impose boundaries on the commonly generalized benefits of moiré twistronics, while also revealing alternative feasible routes to achieve truly flat electron and hole bands to carry us to strongly correlated excitonic phenomena on demand.
Collapse
Affiliation(s)
- Sara Conti
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium.
| | - Andrey Chaves
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Fortaleza 60455-760, Brazil
| | - Tribhuwan Pandey
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium.
| | - Lucian Covaci
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium
| | - François M Peeters
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium.
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Fortaleza 60455-760, Brazil
| | - David Neilson
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium.
| | - Milorad V Milošević
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium
- Instituto de Física, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso 78060-900, Brazil
| |
Collapse
|
3
|
Weber T, Kühner L, Sortino L, Ben Mhenni A, Wilson NP, Kühne J, Finley JJ, Maier SA, Tittl A. Intrinsic strong light-matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces. NATURE MATERIALS 2023; 22:970-976. [PMID: 37349392 PMCID: PMC10390334 DOI: 10.1038/s41563-023-01580-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/17/2023] [Indexed: 06/24/2023]
Abstract
Photonic bound states in the continuum (BICs) provide a standout platform for strong light-matter coupling with transition metal dichalcogenides (TMDCs) but have so far mostly been implemented as traditional all-dielectric metasurfaces with adjacent TMDC layers, incurring limitations related to strain, mode overlap and material integration. Here, we demonstrate intrinsic strong coupling in BIC-driven metasurfaces composed of nanostructured bulk tungsten disulfide (WS2) and exhibiting resonances with sharp, tailored linewidths and selective enhancement of light-matter interactions. Tuning of the BIC resonances across the exciton resonance in bulk WS2 is achieved by varying the metasurface unit cells, enabling strong coupling with an anticrossing pattern and a Rabi splitting of 116 meV. Crucially, the coupling strength itself can be controlled and is shown to be independent of material-intrinsic losses. Our self-hybridized metasurface platform can readily incorporate other TMDCs or excitonic materials to deliver fundamental insights and practical device concepts for polaritonic applications.
Collapse
Affiliation(s)
- Thomas Weber
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lucca Kühner
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Luca Sortino
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Amine Ben Mhenni
- Walter Schottky Institut, Department of Physics, School of Natural Sciences, Technische Universität München, Garching, Germany
| | - Nathan P Wilson
- Walter Schottky Institut, Department of Physics, School of Natural Sciences, Technische Universität München, Garching, Germany
| | - Julius Kühne
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jonathan J Finley
- Walter Schottky Institut, Department of Physics, School of Natural Sciences, Technische Universität München, Garching, Germany
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
- School of Physics and Astronomy, Monash University, Clayton, Victoria, Australia
- Department of Physics, Imperial College London, London, UK
| | - Andreas Tittl
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
4
|
Dai Y, Qi P, Tao G, Yao G, Shi B, Liu Z, Liu Z, He X, Peng P, Dang Z, Zheng L, Zhang T, Gong Y, Guan Y, Liu K, Fang Z. Phonon-assisted upconversion in twisted two-dimensional semiconductors. LIGHT, SCIENCE & APPLICATIONS 2023; 12:6. [PMID: 36588111 PMCID: PMC9806105 DOI: 10.1038/s41377-022-01051-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Phonon-assisted photon upconversion (UPC) is an anti-Stokes process in which incident photons achieve higher energy emission by absorbing phonons. This letter studies phonon-assisted UPC in twisted 2D semiconductors, in which an inverted contrast between UPC and conventional photoluminescence (PL) of WSe2 twisted bilayer is emergent. A 4-fold UPC enhancement is achieved in 5.5° twisted bilayer while PL weakens by half. Reduced interlayer exciton conversion efficiency driven by lattice relaxation, along with enhanced pump efficiency resulting from spectral redshift, lead to the rotation-angle-dependent UPC enhancement. The counterintuitive phenomenon provides a novel insight into a unique way that twisted angle affects UPC and light-matter interactions in 2D semiconductors. Furthermore, the UPC enhancement platform with various superimposable means offers an effective method for lighting bilayers and expanding the application prospect of 2D stacked van der Waals devices.
Collapse
Affiliation(s)
- Yuchen Dai
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
| | - Pengfei Qi
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, 300350, Tianjin, China
| | - Guangyi Tao
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
- Photonics Research Center, School of Physics, MOE Key Lab of Weak-Light Nonlinear Photonics, and Tianjin Key Lab of Photonics Materials and Technology for Information Science, Nankai University, 300071, Tianjin, China
| | - Guangjie Yao
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
| | - Beibei Shi
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
| | - Zhixin Liu
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
| | - Zhengchang Liu
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
| | - Xiao He
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
| | - Pu Peng
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
| | - Zhibo Dang
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
| | - Liheng Zheng
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
| | - Tianhao Zhang
- Photonics Research Center, School of Physics, MOE Key Lab of Weak-Light Nonlinear Photonics, and Tianjin Key Lab of Photonics Materials and Technology for Information Science, Nankai University, 300071, Tianjin, China
| | - Yongji Gong
- School of Materials Science and Engineering, Beihang University, 100191, Beijing, China
| | - Yan Guan
- Center for Physicochemical Analysis and Measurements in ICCAS, Analytical Instrumentation Center, Peking University, 100871, Beijing, China
| | - Kaihui Liu
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
| | - Zheyu Fang
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China.
| |
Collapse
|
5
|
Kayal A, Barman PK, Sarma PV, Shaijumon MM, Kini RN, Mitra J. Symmetric domain segmentation in WS 2flakes: correlating spatially resolved photoluminescence, conductance with valley polarization. NANOTECHNOLOGY 2022; 33:495203. [PMID: 36041399 DOI: 10.1088/1361-6528/ac8d9d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The incidence of intra-flake heterogeneity of spectroscopic and electrical properties in chemical vapour deposited (CVD) WS2flakes is explored in a multi-physics investigation via spatially resolved spectroscopic maps correlated with electrical, electronic and mechanical properties. The investigation demonstrates that the three-fold symmetric segregation of spectroscopic response, in topographically uniform WS2flakes are accompanied by commensurate segmentation of electronic properties e.g. local carrier density and the differences in the mechanics of tip-sample interactions, evidenced via scanning probe microscopy phase maps. Overall, the differences are understood to originate from point defects, namely sulfur vacancies within the flake along with a dominant role played by the substrate. While evolution of the multi-physics maps upon sulfur annealing elucidates the role played by sulfur vacancy, substrate-induced effects are investigated by contrasting data from WS2flake on Si and Au surfaces. Local charge depletion induced by the nature of the sample-substrate junction in case of WS2on Au is seen to invert the electrical response with comprehensible effects on their spectroscopic properties. Finally, the role of these optoelectronic properties in preserving valley polarization that affects valleytronic applications in WS2flakes, is investigated via circular polarization discriminated photoluminescence experiments. The study provides a thorough understanding of spatial heterogeneity in optoelectronic properties of WS2and other transition metal chalcogenides, which are critical for device fabrication and potential applications.
Collapse
Affiliation(s)
- Arijit Kayal
- School of Physics, IISER Thiruvananthapuram, Kerala 695551, India
| | | | - Prasad V Sarma
- School of Physics, IISER Thiruvananthapuram, Kerala 695551, India
| | - M M Shaijumon
- School of Physics, IISER Thiruvananthapuram, Kerala 695551, India
| | - R N Kini
- School of Physics, IISER Thiruvananthapuram, Kerala 695551, India
| | - J Mitra
- School of Physics, IISER Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
6
|
Alam Q, Sardar S, Din HU, Khan SA, Idrees M, Amin B, Rehman F, Muhammad S, Laref A. A first principles study of a van der Waals heterostructure based on MS 2 (M = Mo, W) and Janus CrSSe monolayers. NANOSCALE ADVANCES 2022; 4:3557-3565. [PMID: 36134356 PMCID: PMC9400489 DOI: 10.1039/d2na00298a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/02/2022] [Indexed: 06/16/2023]
Abstract
The strategy of stacking two-dimensional materials for designing van der Waals heterostructures has gained tremendous attention in realizing innovative device applications in optoelectronics and renewable energy sources. Here, we performed the first principles calculations of the geometry, optoelectronic and photocatalytic performance of MS2-CrSSe (M = Mo, W) vdW heterostructures. The mirror asymmetry in the Janus CrSSe system allows the designing of two models of the MS2-CrSSe system by replacing S/Se atoms at opposite surfaces in CrSSe. The feasible configurations of both models of the MS2-CrSSe system are found energetically, dynamically and thermally stable. The studied heterobilayers possess an indirect type-I band alignment, indicating that the recombination of photogenerated electrons and holes in the CrSSe monolayer is hence crucial for photodetectors and laser applications. Remarkably, a red-shift in the optical absorption spectra of MS2-CrSSe makes them potential candidates for light harvesting applications. More interestingly, all heterobilayers (except W(Mo)S2-CrSSe of model-I(II)) reveal appropriate band edge positions of the oxidation and reduction potentials of the photocatalysis of water dissociation into H+/H2 and O2/H2O at pH = 0. These results shed light on the practical design of the MS2-CrSSe system for efficient optoelectronic and photocatalytic water splitting applications.
Collapse
Affiliation(s)
- Q Alam
- Department of Physics, Hazara University Mansehra KP Pakistan
| | - S Sardar
- Department of Physics, Hazara University Mansehra KP Pakistan
| | - H U Din
- Department of Physics, Bacha Khan University Charsadda KP Pakistan
| | - S A Khan
- Department of Physics, Hazara University Mansehra KP Pakistan
| | - M Idrees
- Department of Physics, Abbottabad University of Science & Technology Havelian Abbottabad KP Pakistan
| | - B Amin
- Department of Physics, Abbottabad University of Science & Technology Havelian Abbottabad KP Pakistan
| | - F Rehman
- Department of Physics, Khushal Khan Khattak University Karak KP Pakistan
| | - Saleh Muhammad
- Department of Physics, Hazara University Mansehra KP Pakistan
| | - A Laref
- Department of Physics and Astronomy, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
7
|
Bieniek M, Sadecka K, Szulakowska L, Hawrylak P. Theory of Excitons in Atomically Thin Semiconductors: Tight-Binding Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1582. [PMID: 35564291 PMCID: PMC9104105 DOI: 10.3390/nano12091582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023]
Abstract
Atomically thin semiconductors from the transition metal dichalcogenide family are materials in which the optical response is dominated by strongly bound excitonic complexes. Here, we present a theory of excitons in two-dimensional semiconductors using a tight-binding model of the electronic structure. In the first part, we review extensive literature on 2D van der Waals materials, with particular focus on their optical response from both experimental and theoretical points of view. In the second part, we discuss our ab initio calculations of the electronic structure of MoS2, representative of a wide class of materials, and review our minimal tight-binding model, which reproduces low-energy physics around the Fermi level and, at the same time, allows for the understanding of their electronic structure. Next, we describe how electron-hole pair excitations from the mean-field-level ground state are constructed. The electron-electron interactions mix the electron-hole pair excitations, resulting in excitonic wave functions and energies obtained by solving the Bethe-Salpeter equation. This is enabled by the efficient computation of the Coulomb matrix elements optimized for two-dimensional crystals. Next, we discuss non-local screening in various geometries usually used in experiments. We conclude with a discussion of the fine structure and excited excitonic spectra. In particular, we discuss the effect of band nesting on the exciton fine structure; Coulomb interactions; and the topology of the wave functions, screening and dielectric environment. Finally, we follow by adding another layer and discuss excitons in heterostructures built from two-dimensional semiconductors.
Collapse
Affiliation(s)
- Maciej Bieniek
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
- Department of Theoretical Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074 Würzburg, Germany
| | - Katarzyna Sadecka
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
- Department of Theoretical Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ludmiła Szulakowska
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
| | - Paweł Hawrylak
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
| |
Collapse
|
8
|
Oliva R, Wozniak T, Faria PE, Dybala F, Kopaczek J, Fabian J, Scharoch P, Kudrawiec R. Strong Substrate Strain Effects in Multilayered WS 2 Revealed by High-Pressure Optical Measurements. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19857-19868. [PMID: 35442641 PMCID: PMC9073841 DOI: 10.1021/acsami.2c01726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
The optical properties of two-dimensional materials can be effectively tuned by strain induced from a deformable substrate. In the present work we combine first-principles calculations based on density functional theory and the effective Bethe-Salpeter equation with high-pressure optical measurements to thoroughly describe the effect of strain and dielectric environment onto the electronic band structure and optical properties of a few-layered transition-metal dichalcogenide. Our results show that WS2 remains fully adhered to the substrate at least up to a -0.6% in-plane compressive strain for a wide range of substrate materials. We provide a useful model to describe effect of strain on the optical gap energy. The corresponding experimentally determined out-of-plane and in-plane stress gauge factors for WS2 monolayers are -8 and 24 meV/GPa, respectively. The exceptionally large in-plane gauge factor confirms transition metal dichalcogenides as very promising candidates for flexible functionalities. Finally, we discuss the pressure evolution of an optical transition closely lying to the A exciton for bulk WS2 as well as the direct-to-indirect transition of the monolayer upon compression.
Collapse
Affiliation(s)
- Robert Oliva
- Department
of Semiconductor Materials Engineering, Faculty of Fundamental Problems
of Technology, Wroclaw University of Science
and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Tomasz Wozniak
- Department
of Semiconductor Materials Engineering, Faculty of Fundamental Problems
of Technology, Wroclaw University of Science
and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Paulo E. Faria
- Department
of Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Filip Dybala
- Department
of Semiconductor Materials Engineering, Faculty of Fundamental Problems
of Technology, Wroclaw University of Science
and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jan Kopaczek
- Department
of Semiconductor Materials Engineering, Faculty of Fundamental Problems
of Technology, Wroclaw University of Science
and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jaroslav Fabian
- Department
of Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Paweł Scharoch
- Department
of Semiconductor Materials Engineering, Faculty of Fundamental Problems
of Technology, Wroclaw University of Science
and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Robert Kudrawiec
- Department
of Semiconductor Materials Engineering, Faculty of Fundamental Problems
of Technology, Wroclaw University of Science
and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
9
|
Optical Response of CVD-Grown ML-WS2 Flakes on an Ultra-Dense Au NP Plasmonic Array. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The combination of metallic nanostructures with two-dimensional transition metal dichalcogenides is an efficient way to make the optical properties of the latter more appealing for opto-electronic applications. In this work, we investigate the optical properties of monolayer WS2 flakes grown by chemical vapour deposition and transferred onto a densely-packed array of plasmonic Au nanoparticles (NPs). The optical response was measured as a function of the thickness of a dielectric spacer intercalated between the two materials and of the system temperature, in the 75–350 K range. We show that a weak interaction is established between WS2 and Au NPs, leading to temperature- and spacer-thickness-dependent coupling between the localized surface plasmon resonance of Au NPs and the WS2 exciton. We suggest that the closely-packed morphology of the plasmonic array promotes a high confinement of the electromagnetic field in regions inaccessible by the WS2 deposited on top. This allows the achievement of direct contact between WS2 and Au while preserving a strong connotation of the properties of the two materials also in the hybrid system.
Collapse
|
10
|
Anisotropic Optical and Vibrational Properties of GeS. NANOMATERIALS 2021; 11:nano11113109. [PMID: 34835872 PMCID: PMC8624986 DOI: 10.3390/nano11113109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
The optical response of bulk germanium sulfide (GeS) is investigated systematically using different polarization-resolved experimental techniques, such as photoluminescence (PL), reflectance contrast (RC), and Raman scattering (RS). It is shown that while the low-temperature (T = 5 K) optical band-gap absorption is governed by a single resonance related to the neutral exciton, the corresponding emission is dominated by the disorder/impurity- and/or phonon-assisted recombination processes. Both the RC and PL spectra are found to be linearly polarized along the armchair direction. The measured RS spectra over a broad range from 5 to 300 K consist of six Raman peaks identified with the help of Density Functional Theory (DFT) calculations: Ag1, Ag2, Ag3, Ag4, B1g1, and B1g2, which polarization properties are studied under four different excitation energies. We found that the polarization orientations of the Ag2 and Ag4 modes under specific excitation energy can be useful tools to determine the GeS crystallographic directions: armchair and zigzag.
Collapse
|
11
|
Grzeszczyk M, Szpakowski J, Slobodeniuk AO, Kazimierczuk T, Bhatnagar M, Taniguchi T, Watanabe K, Kossacki P, Potemski M, Babiński A, Molas MR. The optical response of artificially twisted MoS[Formula: see text] bilayers. Sci Rep 2021; 11:17037. [PMID: 34426607 PMCID: PMC8382769 DOI: 10.1038/s41598-021-95700-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Two-dimensional layered materials offer the possibility to create artificial vertically stacked structures possessing an additional degree of freedom-the interlayer twist. We present a comprehensive optical study of artificially stacked bilayers (BLs) MoS[Formula: see text] encapsulated in hexagonal BN with interlayer twist angle ranging from 0[Formula: see text] to 60[Formula: see text] using Raman scattering and photoluminescence spectroscopies. It is found that the strength of the interlayer coupling in the studied BLs can be estimated using the energy dependence of indirect emission versus the A[Formula: see text]-E[Formula: see text] energy separation. Due to the hybridization of electronic states in the valence band, the emission line related to the interlayer exciton is apparent in both the natural (2H) and artificial (62[Formula: see text]) MoS[Formula: see text] BLs, while it is absent in the structures with other twist angles. The interlayer coupling energy is estimated to be of about 50 meV. The effect of temperature on energies and intensities of the direct and indirect emission lines in MoS[Formula: see text] BLs is also quantified.
Collapse
Affiliation(s)
- M. Grzeszczyk
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - J. Szpakowski
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - A. O. Slobodeniuk
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - T. Kazimierczuk
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - M. Bhatnagar
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - T. Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044 Japan
| | - K. Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044 Japan
| | - P. Kossacki
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - M. Potemski
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25, Avenue des Martyrs, 38042 Grenoble, France
| | - A. Babiński
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - M. R. Molas
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
12
|
Joh S, Na HK, Son JG, Lee AY, Ahn CH, Ji DJ, Wi JS, Jeong MS, Lee SG, Lee TG. Quantitative Analysis of Immunosuppressive Drugs Using Tungsten Disulfide Nanosheet-Assisted Laser Desorption Ionization Mass Spectrometry. ACS NANO 2021; 15:10141-10152. [PMID: 34097394 DOI: 10.1021/acsnano.1c02016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For organ transplantation patients, the therapeutic drug monitoring (TDM) of immunosuppressive drugs is essential to prevent the toxicity or rejection of the organ. Currently, TDM is done by immunoassays or liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods; however, these methods lack specificity or are expensive, require high levels of skill, and offer limited sample throughput. Although matrix-assisted (MA) laser desorption ionization (LDI) mass spectrometry (MS) can provide enhanced throughput and cost-effectiveness, its application in TDM is limited due to the limitations of the matrixes such as a lack of sensitivity and reproducibility. Here, we present an alternative quantification method for the TDM of the immunosuppressive drugs in the blood of organ transplant patients by utilizing laser desorption ionization mass spectrometry (LDI-MS) based on a tungsten disulfide nanosheet, which is well-known for its excellent physicochemical properties such as a strong UV absorbance and high electron mobility. By adopting a microliquid inkjet printing system, a high-throughput analysis of the blood samples with enhanced sensitivity and reproducibility was achieved. Furthermore, up to 80 cases of patient samples were analyzed and the results were compared with those of LC-MS/MS by using Passing-Bablok regression and Bland-Altman analysis to demonstrate that our LDI-MS platform is suitable to replace current TDM techniques. Our approach will facilitate the rapid and accurate analysis of blood samples from a large number of patients for immunosuppressive drug prescriptions.
Collapse
Affiliation(s)
- Sunho Joh
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
- Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Hee-Kyung Na
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Jin Gyeong Son
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - A Young Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Cheol-Hee Ahn
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Da-Jeong Ji
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jung-Sub Wi
- Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Korea
| | - Mun Seok Jeong
- Department of Physics, Hanyang University, Seoul 04763, Korea
| | - Sang-Guk Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tae Geol Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
- Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
13
|
Zinkiewicz M, Woźniak T, Kazimierczuk T, Kapuscinski P, Oreszczuk K, Grzeszczyk M, Bartoš M, Nogajewski K, Watanabe K, Taniguchi T, Faugeras C, Kossacki P, Potemski M, Babiński A, Molas MR. Excitonic Complexes in n-Doped WS 2 Monolayer. NANO LETTERS 2021; 21:2519-2525. [PMID: 33683895 PMCID: PMC7995249 DOI: 10.1021/acs.nanolett.0c05021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Indexed: 05/25/2023]
Abstract
We investigate the origin of emission lines apparent in the low-temperature photoluminescence spectra of n-doped WS2 monolayer embedded in hexagonal BN layers using external magnetic fields and first-principles calculations. Apart from the neutral A exciton line, all observed emission lines are related to the negatively charged excitons. Consequently, we identify emissions due to both the bright (singlet and triplet) and dark (spin- and momentum-forbidden) negative trions as well as the phonon replicas of the latter optically inactive complexes. The semidark trions and negative biexcitons are distinguished. On the basis of their experimentally extracted and theoretically calculated g-factors, we identify three distinct families of emissions due to exciton complexes in WS2: bright, intravalley, and intervalley dark. The g-factors of the spin-split subbands in both the conduction and valence bands are also determined.
Collapse
Affiliation(s)
- Małgorzata Zinkiewicz
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - Tomasz Woźniak
- Department
of Semiconductor Materials Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Tomasz Kazimierczuk
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - Piotr Kapuscinski
- Laboratoire
National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25, avenue des Martyrs, 38042 Grenoble, France
- Department
of Experimental Physics, Wrocław University
of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Kacper Oreszczuk
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - Magdalena Grzeszczyk
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - Miroslav Bartoš
- Laboratoire
National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25, avenue des Martyrs, 38042 Grenoble, France
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
656/123, 612 00 Brno, Czech Republic
| | - Karol Nogajewski
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Clement Faugeras
- Laboratoire
National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25, avenue des Martyrs, 38042 Grenoble, France
| | - Piotr Kossacki
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - Marek Potemski
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
- Laboratoire
National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25, avenue des Martyrs, 38042 Grenoble, France
| | - Adam Babiński
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - Maciej R. Molas
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
14
|
Ross AM, Paternò GM, Dal Conte S, Scotognella F, Cinquanta E. Anisotropic Complex Refractive Indices of Atomically Thin Materials: Determination of the Optical Constants of Few-Layer Black Phosphorus. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5736. [PMID: 33339218 PMCID: PMC7766739 DOI: 10.3390/ma13245736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 11/21/2022]
Abstract
In this work, studies of the optical constants of monolayer transition metal dichalcogenides and few-layer black phosphorus are briefly reviewed, with particular emphasis on the complex dielectric function and refractive index. Specifically, an estimate of the complex index of refraction of phosphorene and few-layer black phosphorus is given. The complex index of refraction of this material was extracted from differential reflectance data reported in the literature by employing a constrained Kramers-Kronig analysis combined with the transfer matrix method. The reflectance contrast of 1-3 layers of black phosphorus on a silicon dioxide/silicon substrate was then calculated using the extracted complex indices of refraction.
Collapse
Affiliation(s)
- Aaron M. Ross
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (A.M.R.); (S.D.C.)
| | - Giuseppe M. Paternò
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia (IIT), Via Giovanni Pascoli, 70/3, 20133 Milan, Italy;
| | - Stefano Dal Conte
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (A.M.R.); (S.D.C.)
| | - Francesco Scotognella
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (A.M.R.); (S.D.C.)
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia (IIT), Via Giovanni Pascoli, 70/3, 20133 Milan, Italy;
| | - Eugenio Cinquanta
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy;
| |
Collapse
|
15
|
Zinkiewicz M, Slobodeniuk AO, Kazimierczuk T, Kapuściński P, Oreszczuk K, Grzeszczyk M, Bartos M, Nogajewski K, Watanabe K, Taniguchi T, Faugeras C, Kossacki P, Potemski M, Babiński A, Molas MR. Neutral and charged dark excitons in monolayer WS 2. NANOSCALE 2020; 12:18153-18159. [PMID: 32853305 DOI: 10.1039/d0nr04243a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Low temperature and polarization resolved magneto-photoluminescence experiments are used to investigate the properties of dark excitons and dark trions in a monolayer of WS2 encapsulated in hexagonal BN (hBN). We find that this system is an n-type doped semiconductor and that dark trions dominate the emission spectrum. In line with previous studies on WSe2, we identify the Coulomb exchange interaction coupled neutral dark and grey excitons through their polarization properties, while an analogous effect is not observed for dark trions. Applying the magnetic field in both perpendicular and parallel configurations with respect to the monolayer plane, we determine the g-factor of dark trions to be g ∼ -8.6. Their decay rate is close to 0.5 ns, more than 2 orders of magnitude longer than that of bright excitons.
Collapse
Affiliation(s)
- M Zinkiewicz
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland.
| | - A O Slobodeniuk
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Praha 2 CZ-121 16, Czech Republic
| | - T Kazimierczuk
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland.
| | - P Kapuściński
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25, avenue des Martyrs, 38042 Grenoble, France and Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - K Oreszczuk
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland.
| | - M Grzeszczyk
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland.
| | - M Bartos
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25, avenue des Martyrs, 38042 Grenoble, France and Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic
| | - K Nogajewski
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland.
| | - K Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - T Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - C Faugeras
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25, avenue des Martyrs, 38042 Grenoble, France
| | - P Kossacki
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland.
| | - M Potemski
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland. and Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25, avenue des Martyrs, 38042 Grenoble, France
| | - A Babiński
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland.
| | - M R Molas
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland.
| |
Collapse
|
16
|
Sharma DK, Kumar S, Auluck S. Strain induced optoelectronic properties of two dimensional MnPSe 3/WS 2heterostructure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:315501. [PMID: 32163937 DOI: 10.1088/1361-648x/ab7f6d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
A series of first-principles calculations using Kohn-Sham density functional theory have been used to study MnPSe3/WS2heterostructures. The Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional has been chosen as the exchange-correlation potential because it gives energy gaps accurately. Five possible atomic stackings were considered to find most stable configuration for a heterostructure. Interestingly, all of the five configurations exhibit a maximum deviation in the binding energy equal to 47 meV which strongly indicates realization of the heterostructures. The calculated energy band gap (2.04 eV) of MnPSe3/WS2heterostructures is smaller (larger) than an isolated layer of MnPSe3(WS2). We simulated the role of (i) bi-axial strain, and (ii) interlayer spacing on the stability and electronic properties for pre-identified most stable configuration. Tuning of the energy band gap from 2.04 to 1.86 eV is achievable for case (i) while retaining stability of the system. However, in case (ii) band gaps can vary from 2.04 to 1.47 eV and the stability of the system decreases exponentially when following expansion or compression along thec-axis. Further, the effect of strain on valence and conduction band edges has been investigated in terms of band alignment with respect to vacuum level for cases (i) and (ii). To understand the optical features for the most stable configuration, absorption coefficient has been calculated using the frequency dependent real and imaginary parts of the dielectric functions. These calculations show an improved absorption capacity over the constituent layers. Our results may motivate experimentalists involved in developing efficient thin film heterostructure based optoelectronic devices.
Collapse
Affiliation(s)
- Durgesh Kumar Sharma
- Applied Physics Department, Faculty of Engineering and Technology, M. J. P. Rohilkhand University, Bareilly-243 006, India
| | - Sudhir Kumar
- Applied Physics Department, Faculty of Engineering and Technology, M. J. P. Rohilkhand University, Bareilly-243 006, India
| | - Sushil Auluck
- CSIR-National Physical Laboratory, Dr K. S. Krishnan Marg, New Delhi-110 012, India
| |
Collapse
|
17
|
Blackburn JL, Zhang H, Myers AR, Dunklin JR, Coffey DC, Hirsch RN, Vigil-Fowler D, Yun SJ, Cho BW, Lee YH, Miller EM, Rumbles G, Reid OG. Measuring Photoexcited Free Charge Carriers in Mono- to Few-Layer Transition-Metal Dichalcogenides with Steady-State Microwave Conductivity. J Phys Chem Lett 2020; 11:99-107. [PMID: 31790587 DOI: 10.1021/acs.jpclett.9b03117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photoinduced generation of mobile charge carriers is the fundamental process underlying many applications, such as solar energy harvesting, solar fuel production, and efficient photodetectors. Monolayer transition-metal dichalcogenides (TMDCs) are an attractive model system for studying photoinduced carrier generation mechanisms in low-dimensional materials because they possess strong direct band gap absorption, large exciton binding energies, and are only a few atoms thick. While a number of studies have observed charge generation in neat TMDCs for photoexcitation at, above, or even below the optical band gap, the role of nonlinear processes (resulting from high photon fluences), defect states, excess charges, and layer interactions remains unclear. In this study, we introduce steady-state microwave conductivity (SSMC) spectroscopy for measuring charge generation action spectra in a model WS2 mono- to few-layer TMDC system at fluences that coincide with the terrestrial solar flux. Despite utilizing photon fluences well below those used in previous pump-probe measurements, the SSMC technique is sensitive enough to easily resolve the photoconductivity spectrum arising in mono- to few-layer WS2. By correlating SSMC with other spectroscopy and microscopy experiments, we find that photoconductivity is observed predominantly for excitation wavelengths resonant with the excitonic transition of the multilayer portions of the sample, the density of which can be controlled by the synthesis conditions. These results highlight the potential of layer engineering as a route toward achieving high yields of photoinduced charge carriers in neat TMDCs, with implications for a broad range of optoelectronic applications.
Collapse
Affiliation(s)
- Jeffrey L Blackburn
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - Hanyu Zhang
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - Alexis R Myers
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , 15013 Denver West Parkway , Golden , Colorado 80401 , United States
- Department of Chemistry and Biochemistry , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | - Jeremy R Dunklin
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - David C Coffey
- Department of Physics , Warren Wilson College , 701 Warren Wilson Road , Swannanoa , North Carolina 28778 , United States
| | - Rebecca N Hirsch
- Department of Chemistry and Biochemistry , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | - Derek Vigil-Fowler
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - Seok Joon Yun
- Center for Integrated Nanostructure Physics (CINAP) , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
| | - Byeong Wook Cho
- Center for Integrated Nanostructure Physics (CINAP) , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics (CINAP) , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Elisa M Miller
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - Garry Rumbles
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , 15013 Denver West Parkway , Golden , Colorado 80401 , United States
- Renewable and Sustainable Energy Institute , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | - Obadiah G Reid
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , 15013 Denver West Parkway , Golden , Colorado 80401 , United States
- Renewable and Sustainable Energy Institute , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| |
Collapse
|
18
|
Kapuściński P, Vaclavkova D, Grzeszczyk M, Slobodeniuk AO, Nogajewski K, Bartos M, Watanabe K, Taniguchi T, Faugeras C, Babiński A, Potemski M, Molas MR. Valley polarization of singlet and triplet trions in a WS2 monolayer in magnetic fields. Phys Chem Chem Phys 2020; 22:19155-19161. [DOI: 10.1039/d0cp02737e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic field induced valley polarization of carriers is substantially different for the absorption and emission response of a WS2 monolayer.
Collapse
|
19
|
Molas MR, Slobodeniuk AO, Nogajewski K, Bartos M, Bala Ł, Babiński A, Watanabe K, Taniguchi T, Faugeras C, Potemski M. Energy Spectrum of Two-Dimensional Excitons in a Nonuniform Dielectric Medium. PHYSICAL REVIEW LETTERS 2019; 123:136801. [PMID: 31697524 DOI: 10.1103/physrevlett.123.136801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate that, in monolayers (MLs) of semiconducting transition metal dichalcogenides, the s-type Rydberg series of excitonic states follows a simple energy ladder: ε_{n}=-Ry^{*}/(n+δ)^{2}, n=1,2,…, in which Ry^{*} is very close to the Rydberg energy scaled by the dielectric constant of the medium surrounding the ML and by the reduced effective electron-hole mass, whereas the ML polarizability is accounted for only by δ. This is justified by the analysis of experimental data on excitonic resonances, as extracted from magneto-optical measurements of a high-quality WSe_{2} ML encapsulated in hexagonal boron nitride (hBN), and well reproduced with an analytically solvable Schrödinger equation when approximating the electron-hole potential in the form of a modified Kratzer potential. Applying our convention to other MoSe_{2}, WS_{2}, MoS_{2} MLs encapsulated in hBN, we estimate an apparent magnitude of δ for each of the studied structures. Intriguingly, δ is found to be close to zero for WSe_{2} as well as for MoS_{2} monolayers, what implies that the energy ladder of excitonic states in these two-dimensional structures resembles that of Rydberg states of a three-dimensional hydrogen atom.
Collapse
Affiliation(s)
- M R Molas
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25 avenue des Martyrs, 38042 Grenoble, France
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warszawa, Poland
| | - A O Slobodeniuk
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25 avenue des Martyrs, 38042 Grenoble, France
| | - K Nogajewski
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25 avenue des Martyrs, 38042 Grenoble, France
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warszawa, Poland
| | - M Bartos
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25 avenue des Martyrs, 38042 Grenoble, France
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 61200 Brno, Czech Republic
| | - Ł Bala
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25 avenue des Martyrs, 38042 Grenoble, France
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warszawa, Poland
| | - A Babiński
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warszawa, Poland
| | - K Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - T Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - C Faugeras
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25 avenue des Martyrs, 38042 Grenoble, France
| | - M Potemski
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25 avenue des Martyrs, 38042 Grenoble, France
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warszawa, Poland
| |
Collapse
|
20
|
Yang A, Blancon JC, Jiang W, Zhang H, Wong J, Yan E, Lin YR, Crochet J, Kanatzidis MG, Jariwala D, Low T, Mohite AD, Atwater HA. Giant Enhancement of Photoluminescence Emission in WS 2-Two-Dimensional Perovskite Heterostructures. NANO LETTERS 2019; 19:4852-4860. [PMID: 31268726 DOI: 10.1021/acs.nanolett.8b05105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transition metal dichalcogenides (TMDCs) and two-dimensional organic and inorganic hybrid lead halide perovskites (2DPVSKs) have emerged as highly promising materials for ultralight and ultrathin optoelectronics application. They both exhibit tunability of electronic properties such as band structure, and they can form heterostructures with various types of two-dimensional materials for novel physical properties not observed in single components. However, TMDCs exhibit poor emission efficiency due to defect states and direct-to-indirect interband transition, and 2DPVSKs suffer from poor stability in ambient atmosphere. Here we report that fabrication of TMDC-on-2DPVSK heterostructures using a solvent-free process leads to novel optical transitions unique to the heterostructure which arise from the hybrid interface and exhibit a strong photoluminescence. Moreover, a two orders of magnitude enhancement of the photoluminescence as compared to WS2 emission is observed. The TMDC on top of 2DPVSK also significantly improves the stability as compared to bare 2DPVSK. Enhanced emission can be explained by electronic structure modification of TMDC by novel interfacial interactions between TMDC and 2DPVSK materials, which shows promise of the heterostructure for high efficiency and stable optoelectronic devices.
Collapse
Affiliation(s)
- Arky Yang
- California Institute of Technology , Pasadena , California 91125 , United States
| | - Jean-Christophe Blancon
- Department of Chemical and Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States
| | - Wei Jiang
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Hao Zhang
- Department of Chemical and Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States
| | - Joeson Wong
- California Institute of Technology , Pasadena , California 91125 , United States
| | - Ellen Yan
- California Institute of Technology , Pasadena , California 91125 , United States
| | - Yi-Rung Lin
- California Institute of Technology , Pasadena , California 91125 , United States
| | - Jared Crochet
- Department of Chemical and Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States
| | | | - Deep Jariwala
- California Institute of Technology , Pasadena , California 91125 , United States
| | - Tony Low
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Aditya D Mohite
- Department of Chemical and Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States
| | - Harry A Atwater
- California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
21
|
Scharf B, Van Tuan D, Žutić I, Dery H. Dynamical screening in monolayer transition-metal dichalcogenides and its manifestations in the exciton spectrum. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:203001. [PMID: 30763925 DOI: 10.1088/1361-648x/ab071f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Monolayer transition-metal dichalcogenides (ML-TMDs) offer exciting opportunities to test the manifestations of many-body interactions through changes in the charge density. The two-dimensional character and reduced screening in ML-TMDs lead to the formation of neutral and charged excitons with binding energies orders of magnitude larger than those in conventional bulk semiconductors. Tuning the charge density by a gate voltage leads to profound changes in the optical spectra of excitons in ML-TMDs. On the one hand, the increased screening at large charge densities should result in a blueshift of the exciton spectral lines due to reduction in the binding energy. On the other hand, exchange and correlation effects that shrink the band-gap energy at elevated charge densities (band-gap renormalization) should result in a redshift of the exciton spectral lines. While these competing effects can be captured through various approximations that model long-wavelength charge excitations in the Bethe-Salpeter equation, we show that a novel coupling between excitons and shortwave charge excitations is essential to resolve several experimental puzzles. Unlike ubiquitous and well-studied plasmons, driven by collective oscillations of the background charge density in the long-wavelength limit, we discuss the emergence of shortwave plasmons that originate from the short-range Coulomb interaction through which electrons transition between the [Formula: see text] and [Formula: see text] valleys. The shortwave plasmons have a finite energy-gap because of the removal of spin-degeneracy in both the valence- and conduction-band valleys (a consequence of breaking of inversion symmetry in combination with strong spin-orbit coupling in ML-TMDs). We study the coupling between the shortwave plasmons and the neutral exciton through the self-energy of the latter. We then elucidate how this coupling as well as the spin ordering in the conduction band give rise to an experimentally observed optical sideband in electron-doped W-based MLs, conspicuously absent in electron-doped Mo-based MLs or any hole-doped ML-TMDs. While the focus of this review is on the optical manifestations of many-body effects in ML-TMDs, a systematic description of the dynamical screening and its various approximations allow one to revisit other phenomena, such as nonequilibrium transport or superconducting pairing, where the use of the Bethe-Salpeter equation or the emergence of shortwave plasmons can play an important role.
Collapse
Affiliation(s)
- Benedikt Scharf
- Institute for Theoretical Physics and Astrophysics, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | | | |
Collapse
|
22
|
Molas MR, Gołasa K, Bala Ł, Nogajewski K, Bartos M, Potemski M, Babiński A. Tuning carrier concentration in a superacid treated MoS 2 monolayer. Sci Rep 2019; 9:1989. [PMID: 30760791 PMCID: PMC6374480 DOI: 10.1038/s41598-018-38413-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/27/2018] [Indexed: 11/25/2022] Open
Abstract
The effect of bis(trifluoromethane) sulfonimide (TFSI, superacid) treatment on the optical properties of MoS2 monolayers is investigated by means of photoluminescence, reflectance contrast and Raman scattering spectroscopy employed in a broad temperature range. It is shown that when applied multiple times, the treatment results in progressive quenching of the trion emission/absorption and in the redshift of the neutral exciton emission/absorption associated with both the A and B excitonic resonances. Based on this evolution, a trion complex related to the B exciton in monolayer MoS2 is unambiguously identified. A defect-related emission observed at low temperatures also disappears from the spectrum as a result of the treatment. Our observations are attributed to effective passivation of defects on the MoS2 monolayer surface. The passivation reduces the carrier density, which in turn affects the out-of-plane electric field in the sample. The observed tuning of the carrier concentration strongly influences also the Raman scattering in the MoS2 monolayer. An enhancement of Raman scattering at resonant excitation in the vicinity of the A neutral exciton is clearly seen for both the out-of-plane A′1 and in-plane E′ modes. On the contrary, when the excitation is in resonance with a corresponding trion, the Raman scattering features become hardly visible. These results confirm the role of the excitonic charge state plays in the resonance effect of the excitation energy on the Raman scattering in transition metal dichalcogenides.
Collapse
Affiliation(s)
- Maciej R Molas
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warszawa, Poland. .,Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25, avenue des Martyrs, 38042, Grenoble, France.
| | - Katarzyna Gołasa
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warszawa, Poland
| | - Łukasz Bala
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warszawa, Poland.,Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25, avenue des Martyrs, 38042, Grenoble, France
| | - Karol Nogajewski
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warszawa, Poland.,Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25, avenue des Martyrs, 38042, Grenoble, France
| | - Miroslav Bartos
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warszawa, Poland
| | - Marek Potemski
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warszawa, Poland.,Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25, avenue des Martyrs, 38042, Grenoble, France
| | - Adam Babiński
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warszawa, Poland.
| |
Collapse
|
23
|
Jadczak J, Bryja L, Kutrowska-Girzycka J, Kapuściński P, Bieniek M, Huang YS, Hawrylak P. Room temperature multi-phonon upconversion photoluminescence in monolayer semiconductor WS 2. Nat Commun 2019; 10:107. [PMID: 30631049 PMCID: PMC6328540 DOI: 10.1038/s41467-018-07994-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/07/2018] [Indexed: 12/01/2022] Open
Abstract
Photon upconversion is an anti-Stokes process in which an absorption of a photon leads to a reemission of a photon at an energy higher than the excitation energy. The upconversion photoemission has been already demonstrated in rare earth atoms in glasses, semiconductor quantum wells, nanobelts, carbon nanotubes and atomically thin semiconductors. Here, we demonstrate a room temperature upconversion photoluminescence process in a monolayer semiconductor WS2, with energy gain up to 150 meV. We attribute this process to transitions involving trions and many phonons and free exciton complexes. These results are very promising for energy harvesting, laser refrigeration and optoelectronics at the nanoscale.
Collapse
Affiliation(s)
- J Jadczak
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland.
| | - L Bryja
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland
| | - J Kutrowska-Girzycka
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland
| | - P Kapuściński
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland
| | - M Bieniek
- Department of Physics, University of Ottawa, Ottawa, K1N 6N5, Ontario, Canada
- Department of Theoretical Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland
| | - Y-S Huang
- Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - P Hawrylak
- Department of Physics, University of Ottawa, Ottawa, K1N 6N5, Ontario, Canada
| |
Collapse
|
24
|
Da Silva ACH, Caturello NAMS, Besse R, Lima MP, Da Silva JLF. Edge, size, and shape effects on WS2, WSe2, and WTe2 nanoflake stability: design principles from an ab initio investigation. Phys Chem Chem Phys 2019; 21:23076-23084. [DOI: 10.1039/c9cp03698a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The magic nanoflakes, obtained by the evaluation of the relative stability function, are n = 9 and 14 for all chemical compositions, whereas n = 12 is a magic number for WS2 and WSe2.
Collapse
Affiliation(s)
| | | | - Rafael Besse
- São Carlos Institute of Physics
- University of São Paulo
- São Carlos
- Brazil
| | - Matheus P. Lima
- Department of Physics
- Federal University of São Carlos
- São Carlos
- Brazil
| | | |
Collapse
|
25
|
Miao R, Zhang Y, Tang Y, You J, Zhang Y, Shi L, Jiang T. Photoluminescence enhancement and ultrafast relaxation dynamics in a low-dimensional heterostructure: effect of plasmon-exciton coupling. OPTICS LETTERS 2018; 43:6093-6096. [PMID: 30548013 DOI: 10.1364/ol.43.006093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
In this work, we present an in-depth study on a low-dimensional heterostructure comprising monolayer (ML) tungsten disulfide (WS2) and 1D plasmonic photonic crystal (PPC). Stable-state photoluminescence (PL) experiments are employed to study the optical properties of WS2 films with and without PPC. In addition, angle-resolved reflectance and PL microscopy measurements are used to identify the coupling effects between ML WS2 and 1D PPC. Furthermore, by means of femtosecond pump-probe experiments, the relaxation time for the newly proposed heterostructure is extracted to be 0.74 ps and 21.9 ps. Importantly, the underlying mechanism of the relaxation processes is also revealed in the hybrid for the first time, to the best of our knowledge.
Collapse
|
26
|
Grzeszczyk M, Gołasa K, Molas MR, Nogajewski K, Zinkiewicz M, Potemski M, Wysmołek A, Babiński A. Raman scattering from the bulk inactive out-of-plane [Formula: see text] mode in few-layer MoTe 2. Sci Rep 2018; 8:17745. [PMID: 30531971 PMCID: PMC6288152 DOI: 10.1038/s41598-018-35510-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/05/2018] [Indexed: 11/17/2022] Open
Abstract
We report a study of Raman scattering in few-layer MoTe2 focused on high-frequency out-of-plane vibrational modes near 291 cm-1 which are associated with the bulk-inactive [Formula: see text] mode. Our temperature-dependent measurements reveal a double peak structure of the feature related to these modes in the Raman scattering spectra of 4- and 5-layer MoTe2. In accordance with literature data, the doublet's lower- and higher-energy components are ascribed to the Raman-active A1g/[Formula: see text] vibrations involving, respectively, only the inner and surface layers. We demonstrate a strong enhancement of the inner mode's intensity at low temperature for 1.91 eV and 1.96 eV laser light excitation which suggests a resonant character of the Raman scattering processes probed under such conditions. A resonance of the laser light with a singularity of the electronic density of states at the M point of the MoTe2 Brillouin zone is proposed to be responsible for the observed effects.
Collapse
Affiliation(s)
- M. Grzeszczyk
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - K. Gołasa
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - M. R. Molas
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA, 25, Avenue des Martyrs, 38042 Grenoble, France
| | - K. Nogajewski
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA, 25, Avenue des Martyrs, 38042 Grenoble, France
| | - M. Zinkiewicz
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - M. Potemski
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA, 25, Avenue des Martyrs, 38042 Grenoble, France
| | - A. Wysmołek
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - A. Babiński
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
27
|
Hossain E, Rahman AA, Bapat RD, Parmar JB, Shah AP, Arora A, Bratschitsch R, Bhattacharya A. Facile synthesis of WS 2 nanotubes by sulfurization of tungsten thin films: formation mechanism, and structural and optical properties. NANOSCALE 2018; 10:16683-16691. [PMID: 30155539 DOI: 10.1039/c8nr03138j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While 2D layers of WS2 have been extensively studied, there are very few investigations of WS2 nanotubes. These have usually been grown via a 2-step process involving a WO3-x intermediate. We report a simple process for the synthesis of WS2 nanotubes via the sulfurization of tungsten films under appropriate conditions and present details of their structural and optical properties that help elucidate the formation mechanism. Electron-beam evaporated films of tungsten are sulfurized under flowing N2 gas at 950-1000 °C temperature under atmospheric pressure to obtain WS2 nanotubes. High-resolution scanning and transmission electron microscopy studies show that 2D WS2 flakes curl up and wrap around themselves to form nanotubes. Interlayer spacings in both 'a' and 'c' directions are slightly smaller than the corresponding values in bulk and thin film WS2. Micro-photoluminescence and micro-transmission studies show a resonance that seems intrinsic to the WS2 nanotubes since it cannot be related to the known optical characteristics of WS2 flakes.
Collapse
Affiliation(s)
- Emroj Hossain
- Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Arora A, Deilmann T, Marauhn P, Drüppel M, Schneider R, Molas MR, Vaclavkova D, Michaelis de Vasconcellos S, Rohlfing M, Potemski M, Bratschitsch R. Valley-contrasting optics of interlayer excitons in Mo- and W-based bulk transition metal dichalcogenides. NANOSCALE 2018; 10:15571-15577. [PMID: 30090905 DOI: 10.1039/c8nr03764g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recently, spatially indirect ("interlayer") excitons have been discovered in bulk 2H-MoTe2. They are theoretically predicted to exist in other Mo-based transition metal dichalcogenides (TMDCs) and are expected to be present in W-based TMDCs as well. We investigate interlayer excitons (XIL) in bulk 2H-MoSe2 and 2H-WSe2 using valley-resolved magneto-reflectance spectroscopy under high magnetic fields of up to 29 T combined with ab initio GW-BSE calculations. In the experiments, we observe interlayer excitons in MoSe2, while their signature is surprisingly absent in WSe2. In the calculations, we find that interlayer excitons exist in both Mo- and W-based TMDCs. However, their energetic positions and their oscillator strengths are remarkably different. In Mo-based compounds, the interlayer exciton resonance XIL is clearly separated from the intralayer exciton X1sA and has a high amplitude. In contrast, in W-based compounds, XIL is close in energy to the intralayer A exciton X1sA and possesses a small oscillator strength, which explains its absence in the experimental data of WSe2. Our combined experimental and theoretical observations demonstrate that interlayer excitons can gain substantial oscillator strength by mixing with intralayer states and hence pave the way for exploring interlayer exciton physics in Mo-based bulk transition metal dichalcogenides.
Collapse
Affiliation(s)
- Ashish Arora
- Institute of Physics and Center for Nanotechnology, University of Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kłopotowski Ł, Czechowski N, Mitioglu AA, Backes C, Maude DK, Plochocka P. Long-lived photoluminescence polarization of localized excitons in liquid exfoliated monolayer enriched WS 2. NANOTECHNOLOGY 2018; 29:335703. [PMID: 29790860 DOI: 10.1088/1361-6528/aac73e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Monolayer transition metal dichalcogenides (TMDs) constitute a family of materials, in which coupled spin-valley physics can be explored and which could find applications in novel optoelectronic devices. However, before applications can be designed, a scalable method of monolayer extraction is required. Liquid phase exfoliation is a technique providing large quantities of the monolayer material, but the spin-valley properties of thus obtained TMDs are unknown. In this work, we employ steady-state and time-resolved photoluminescence (PL) to investigate the relaxation dynamics of localized excitons (LXs) in liquid exfoliated WS2. The results reveal that the circular polarization lifetime of the PL exceeds by at least an order of magnitude the PL lifetime. A rate equations model allows us to reproduce quantitatively the experimental data and to conclude that the observed large and long-lived PL polarization originates from efficient trapping of free excitons at localization sites hindering the intervalley relaxation. Furthermore, our results show that the depolarization process is inefficient for LXs. We discuss various mechanisms leading to this effect such as suppression of intervalley scattering of the LXs or inefficient spin relaxation of the holes.
Collapse
Affiliation(s)
- Ł Kłopotowski
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
30
|
Vaclavkova D, Wyzula J, Nogajewski K, Bartos M, Slobodeniuk AO, Faugeras C, Potemski M, Molas MR. Singlet and triplet trions in WS 2 monolayer encapsulated in hexagonal boron nitride. NANOTECHNOLOGY 2018; 29:325705. [PMID: 29781447 DOI: 10.1088/1361-6528/aac65c] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Embedding a WS2 monolayer in flakes of hexagonal boron nitride allowed us to resolve and study the photoluminescence response due to both singlet and triplet states of negatively charged excitons (trions) in this atomically thin semiconductor. The energy separation between the singlet and triplet states has been found to be relatively small reflecting rather weak effects of the electron-electron exchange interaction for the trion triplet in a WS2 monolayer, which involves two electrons with the same spin but from different valleys. Polarization-resolved experiments demonstrate that the helicity of the excitation light is better preserved in the emission spectrum of the triplet trion than in that of the singlet trion. Finally, the singlet (intravalley) trions are found to be observable even at ambient conditions whereas the emission due to the triplet (intervalley) trions is only efficient at low temperatures.
Collapse
Affiliation(s)
- D Vaclavkova
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25, avenue des Martyrs, F-38042 Grenoble, France. Department of Experimental Physics, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czechia
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang M, Fu J, Dias AC, Qu F. Optically dark excitonic states mediated exciton and biexciton valley dynamics in monolayer WSe 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:265502. [PMID: 29775182 DOI: 10.1088/1361-648x/aac61a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a theory to address the photoluminescence (PL) intensity and valley polarization (VP) dynamics in monolayer WSe2, under the impact of excitonic dark states of both excitons and biexcitons. We find that the PL intensity of all excitonic channels including intravalley exciton (Xb), intravalley biexciton (XXk,k) and intervalley biexciton (XX[Formula: see text]) in particular for the XXk,k PL is enhanced by laser excitation fluence. In addition, our results indicate the anomalous temperature dependence of PL, i.e. increasing with temperature, as a result of favored phonon assisted dark-to-bright scatterings at high temperatures. Moreover, we observe that the PL is almost immune to intervalley scatterings, which trigger the exchange of excitonic states between the two valleys. As far as the valley polarization is concerned, we find that the VP of Xb shrinks as temperature increases, exhibiting opposite temperature response to PL, while the intravalley XXk,k VP is found almost independent of temperature. In contrast to both Xb and XXk,k, the intervalley XX[Formula: see text] VP identically vanishes, because of equal populations of excitons in the K and [Formula: see text] valleys bounded to form intervalley biexcitons. Notably, it is found that the Xb VP much more strongly depends on bright-dark scattering than that of XXk,k, making dark state act as a robust reservoir for valley polarization against intervalley scatterings for Xb at strong bright-dark scatterings, but not for XXk,k. Dark excitonic states enabled enhancement of VP benefits quantum technology for information processing based on the valley degree of freedom in valleytronic devices. Furthermore, the VP has strong dependence on intervalley scattering but maintains essentially constant with excitation fluence. Finally, the dependence of time evolution of PL and VP on temperature and excitation fluence is discussed.
Collapse
Affiliation(s)
- Minghua Zhang
- Department of Physics, Jining University, Qufu, Shandong 273155, People's Republic of China
| | | | | | | |
Collapse
|
32
|
Deilmann T, Thygesen KS. Interlayer Excitons with Large Optical Amplitudes in Layered van der Waals Materials. NANO LETTERS 2018; 18:2984-2989. [PMID: 29665688 DOI: 10.1021/acs.nanolett.8b00438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vertically stacked two-dimensional materials form an ideal platform for controlling and exploiting light-matter interactions at the nanoscale. As a unique feature, these materials host electronic excitations of both intra- and interlayer type with distinctly different properties. In this Letter, using first-principles many-body calculations, we provide a detailed picture of the most prominent excitons in bilayer MoS2, a prototypical van der Waals material. By applying an electric field perpendicular to the bilayer, we explore the evolution of the excitonic states as the band alignment is varied from perfect line-up to staggered (Type II) alignment. For moderate field strengths, the lowest exciton has intralayer character and is almost independent of the electric field. However, we find higher lying excitons that have interlayer character. They can be described as linear combinations of the intralayer B exciton and optically dark charge transfer excitons, and interestingly, these mixed interlayer excitons have strong optical amplitude and can be easily tuned by the electric field. The first-principles results can be accurately reproduced by a simple excitonic model Hamiltonian that can be straightforwardly generalized to more complex van der Waals materials.
Collapse
Affiliation(s)
- Thorsten Deilmann
- CAMD, Department of Physics , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - Kristian Sommer Thygesen
- CAMD, Department of Physics , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
- Center for Nanostructured Graphene (CNG) , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| |
Collapse
|
33
|
Orsi Gordo V, Balanta MAG, Galvão Gobato Y, Covre FS, Galeti HVA, Iikawa F, Couto ODD, Qu F, Henini M, Hewak DW, Huang CC. Revealing the nature of low-temperature photoluminescence peaks by laser treatment in van der Waals epitaxially grown WS 2 monolayers. NANOSCALE 2018; 10:4807-4815. [PMID: 29469923 DOI: 10.1039/c8nr00719e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Monolayers of transition metal dichalcogenides (TMD) are promising materials for optoelectronics devices. However, one of the challenges is to fabricate large-scale growth of high quality TMD monolayers with the desired properties in order to expand their use in potential applications. Here, we demonstrate large-scale tungsten disulfide (WS2) monolayers grown by van der Waals Epitaxy (VdWE). We show that, in addition to the large structural uniformity and homogeneity of these samples, their optical properties are very sensitive to laser irradiation. We observe a time instability in the photoluminescence (PL) emission at low temperatures in the scale of seconds to minutes. Interestingly, this change of the PL spectra with time, which is due to laser induced carrier doping, is employed to successfully distinguish the emission of two negatively charged bright excitons. Furthermore, we also detect blinking sharp bound exciton emissions which are usually attractive for single photon sources. Our findings contribute to a deeper understanding of this complex carrier dynamics induced by laser irradiation which is very important for future optoelectronic devices based on large scale TMD monolayers.
Collapse
Affiliation(s)
- V Orsi Gordo
- Departamento de Física, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
McDonnell LP, Huang CC, Cui Q, Hewak DW, Smith DC. Probing Excitons, Trions, and Dark Excitons in Monolayer WS 2 Using Resonance Raman Spectroscopy. NANO LETTERS 2018; 18:1428-1434. [PMID: 29297693 DOI: 10.1021/acs.nanolett.7b05184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We present temperature-dependent resonance Raman measurements on monolayer WS2 for the temperature range 4-295 K using excitation photon energies from 1.9 to 2.15 eV in ∼7 meV steps. These are analyzed to determine the resonance profiles of five previously assigned phonon based Raman peaks (A1', E', 2ZA, LA, 2LA) and a previously unassigned peak at 485 cm-1 whose possible attributions are discussed. The resonance profiles obtained are fitted to a perturbation theory derived model and it is shown that both excitons and trions are required to explain the profiles. The model is used to separate the contribution of exciton-exciton, trion-trion, and exciton-trion scattering to each of the Raman peaks at 4 K. This separation allows the ratios of the rates of scattering involving the A1' and E' phonons for each of the three types of scattering to be determined. The explanation of the multiphonon Raman peaks requires the coupling of bright excitons and trions to large wavevector dark states. The fitting of the resonance Raman profiles for these Raman peaks demonstrates scattering of bright excitons to bright trions via these large wavevector dark states.
Collapse
Affiliation(s)
- Liam P McDonnell
- School of Physics and Astronomy and ‡Optoelectronic Research Centre, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Chung-Che Huang
- School of Physics and Astronomy and ‡Optoelectronic Research Centre, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Qingsong Cui
- School of Physics and Astronomy and ‡Optoelectronic Research Centre, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Dan W Hewak
- School of Physics and Astronomy and ‡Optoelectronic Research Centre, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - David C Smith
- School of Physics and Astronomy and ‡Optoelectronic Research Centre, University of Southampton , Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
35
|
Palacios-Berraquero C. Atomically-Thin Quantum Light Emitting Diodes. QUANTUM CONFINED EXCITONS IN 2-DIMENSIONAL MATERIALS 2018. [DOI: 10.1007/978-3-030-01482-7_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|