1
|
Darge H, Addisu KD, Tsai HC, Birhan YS, Hanurry EY, Mekonnen TW, Gebrie HT, Arunagiri V, Thankachan D, Wu TY, Lai JY, Chang HM, Huang CC, Wu SY. Actively Targeting Redox-Responsive Multifunctional Micelles for Synergistic Chemotherapy of Cancer. ACS OMEGA 2024; 9:34268-34280. [PMID: 39157138 PMCID: PMC11325410 DOI: 10.1021/acsomega.3c09817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 08/20/2024]
Abstract
Stimuli-responsive polymeric micelles decorated with cancer biomarkers represent an optimal choice for drug delivery applications due to their ability to enhance therapeutic efficacy while mitigating adverse side effects. Accordingly, we synthesized a digoxin-modified novel multifunctional redox-responsive disulfide-linked poly(ethylene glycol-b-poly(lactic-co-glycolic acid) copolymer (Bi(Dig-PEG-PLGA)-S2) for the targeted and controlled release of doxorubicin (DOX) in cancer cells. Within the micellar aggregate, the disulfide bond confers redox responsiveness, while the presence of the digoxin moiety acts as a targeting agent and chemosensitizer for DOX. Upon self-assembly in aqueous solution, Bi(Dig-PEG-PLGA)-S2 formed uniformly distributed spherical micelles with a hydrodynamic diameter (D h ) of 58.36 ± 0.78 nm and a zeta potential of -24.71 ± 1.01 mV. The micelles exhibited desirable serum and colloidal stability with a substantial drug loading capacity (DLC) of 6.26% and an encapsulation efficiency (EE) of 83.23%. In addition, the release of DOX demonstrated the redox-responsive behavior of the micelles, with approximately 89.41 ± 6.09 and 79.64 ± 6.68% of DOX diffusing from DOX@Bi(Dig-PEG-PLGA)-S2 in the presence of 10 mM GSH and 0.1 mM H2O2, respectively, over 96 h. Therefore, in HeLa cell lines, DOX@Bi(Dig-PEG-PLGA)-S2 showed enhanced intracellular accumulation and subsequent apoptotic effects, attributed to the targeting ability and chemosensitization potential of digoxin. Hence, these findings underscore the promising characteristics of Bi(Dig-PEG-PLGA)-S2 as a multifunctional drug delivery vehicle for cancer treatment.
Collapse
Affiliation(s)
- Haile
Fentahun Darge
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- College
of Medicine and Health Science, Bahir Dar
University, P.O. Box
79, Bahir Dar 00000, Ethiopia
- Centre
for Ocular Research & Education (CORE), School of Optometry and
Vision Science, University of Waterloo, 200 Columbia St W., Waterloo N2L 3W8, Canada
| | - Kefyalew Dagnew Addisu
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Institute
of Technology, Bahir Dar University, P.O. Box 79, Bahir Dar 00000, Ethiopia
| | - Hsieh-Chih Tsai
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Advanced
Membrane Materials Center, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
- R&D
Center
for Membrane Technology, Chung Yuan University, Chung-Li 320, Taiwan
| | - Yihenew Simegniew Birhan
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Department
of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos 00000, Ethiopia
| | - Endris Yibru Hanurry
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- School
of Medicine, Health Science College, Addis
Ababa University, P.O.
Box 1176, Addis Ababa 00000, Ethiopia
| | - Tefera Worku Mekonnen
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Hailemichael Tegenu Gebrie
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Vinothini Arunagiri
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Darieo Thankachan
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Tsung-Yun Wu
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Juin-Yih Lai
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Advanced
Membrane Materials Center, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
- R&D
Center
for Membrane Technology, Chung Yuan University, Chung-Li 320, Taiwan
| | - Hao-Ming Chang
- Division
of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chun-Chiang Huang
- Taiwan
Instrument Research Institute, National
Applied Research Laboratories, Hsinchu 300, Taiwan
| | - Szu-Yuan Wu
- Department
of Food Nutrition and Health Biotechnology, College of Medical and
Health Science, Asia University, Taichung 413, Taiwan
- Big
Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 256, Taiwan
- Division
of Radiation Oncology, Department of Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 256, Taiwan
- Department
of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
- Cancer
Center, Lo-Hsu Medical Foundation, Lotung
Poh-Ai Hospital, Yilan 256, Taiwan
- Graduate
Institute of Business Administration, Fu
Jen Catholic University, Taipei 242, Taiwan
- Centers
for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang
Hospital, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
2
|
Hashemi A, Ezati M, Nasr MP, Zumberg I, Provaznik V. Extracellular Vesicles and Hydrogels: An Innovative Approach to Tissue Regeneration. ACS OMEGA 2024; 9:6184-6218. [PMID: 38371801 PMCID: PMC10870307 DOI: 10.1021/acsomega.3c08280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 02/20/2024]
Abstract
Extracellular vesicles have emerged as promising tools in regenerative medicine due to their inherent ability to facilitate intercellular communication and modulate cellular functions. These nanosized vesicles transport bioactive molecules, such as proteins, lipids, and nucleic acids, which can affect the behavior of recipient cells and promote tissue regeneration. However, the therapeutic application of these vesicles is frequently constrained by their rapid clearance from the body and inability to maintain a sustained presence at the injury site. In order to overcome these obstacles, hydrogels have been used as extracellular vesicle delivery vehicles, providing a localized and controlled release system that improves their therapeutic efficacy. This Review will examine the role of extracellular vesicle-loaded hydrogels in tissue regeneration, discussing potential applications, current challenges, and future directions. We will investigate the origins, composition, and characterization techniques of extracellular vesicles, focusing on recent advances in exosome profiling and the role of machine learning in this field. In addition, we will investigate the properties of hydrogels that make them ideal extracellular vesicle carriers. Recent studies utilizing this combination for tissue regeneration will be highlighted, providing a comprehensive overview of the current research landscape and potential future directions.
Collapse
Affiliation(s)
- Amir Hashemi
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Masoumeh Ezati
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Minoo Partovi Nasr
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Inna Zumberg
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Valentine Provaznik
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| |
Collapse
|
3
|
PCL-based hydrophobic chains grafted with two PEG-based hydrophilic branches: fluorescence and dynamic light scattering studies. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
4
|
Ren S, Li H, Xu X, Zhao H, He W, Zhang L, Cheng Z. Unimolecular micelles from star-shaped block polymers by photocontrolled BIT-RDRP for PTT/PDT synergistic therapy. Biomater Sci 2023; 11:509-517. [PMID: 36533394 DOI: 10.1039/d2bm01727j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unimolecular micelles (UIMs) exhibit promising potential in the precise diagnosis and accurate treatment of tumor tissues, a pressing problem in the field of medical treatment, because of their perfect stability in the complex and variable microenvironment. In this study, porphyrin-based four-armed star-shaped block polymers with narrow molar mass dispersity (Đ = 1.34) were facilely prepared by photocontrolled bromine-iodine transformation reversible-deactivation radical polymerization (BIT-RDRP). A photothermal conversion dye, ketocyanine, was covalently linked onto the PEG and then introduced into the polymers through a "grafting onto" strategy to obtain polymeric nanomaterial, THPP-4PMMA-b-4P(PEGMA-co-APMA)@NIR-800, with dual PTT/PDT function. The resulting polymers could form monodispersed UIMs in the water below critical aggregation concentration, meanwhile maintaining the capacities of singlet oxygen release and photothermal conversion. Importantly, the UIMs displayed excellent biocompatibility while exerting superior PTT and/or PDT therapeutic effects under the irradiation of specific wavelengths of light, according to in vitro cellular experiments, which is expected to become a new hot spot for cancer therapy and anti-tumor research. Overall, stable and powerful UIMs with dual PTT/PDT function is provided, which are expected to be competitive candidates in cancer therapy.
Collapse
Affiliation(s)
- Shusu Ren
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Haihui Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiang Xu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Haitao Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Weiwei He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RADX), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
5
|
Rezaei A, Behniafar H. Novel amphiphilic A2B2 type miktoarm star polymer with disulfide bonds based on PEG and PCL: micellization study. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Fang X, Shi Y, Yan C, Wang H, Hui J. Polycarboxylate ether superplasticizer with gradient structure: excellent dispersion capability and sulfate resistance. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-04994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Birhan YS, Hanurry EY, Mekonnen TW, Darge HF, Lin Y, Yang M, Tsai H. Biotin‐decorated redox‐responsive micelles from diselenide‐linked star‐shaped copolymers for the targeted delivery and controlled release of doxorubicin in cancer cells. J Appl Polym Sci 2022. [DOI: 10.1002/app.52327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei Taiwan
| | - Endris Yibru Hanurry
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei Taiwan
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei Taiwan
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei Taiwan
| | - Yu‐Hsuan Lin
- Department of Materials Science and Engineering National Taiwan University of Science and Technology Taipei Taiwan
| | - Ming‐Chien Yang
- Department of Materials Science and Engineering National Taiwan University of Science and Technology Taipei Taiwan
| | - Hsieh‐Chih Tsai
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei Taiwan
- Advanced Membrane Materials Center National Taiwan University of Science and Technology Taipei Taiwan
- R&D Center for Membrane Technology Chung Yuan Christian University Taoyuan Taiwan
| |
Collapse
|
8
|
Xu W, Wang Y, Guo QY, Wang X, Liu Y, Bian FG, Yan XY, Ni B, Cheng SZD. A robust platform to construct molecular patchy particles with a pentiptycene skeleton toward controlled mesoscale structures. Polym Chem 2022. [DOI: 10.1039/d2py00130f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new pentiptycene skeleton with orthogonally reactive sites and inherent D2h-symmetry to construct molecular pathy particles toward mesoscale structures.
Collapse
Affiliation(s)
- Wei Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Yicong Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Qing-Yun Guo
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Xiaoteng Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yuchu Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Feng-Gang Bian
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xiao-Yun Yan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Bo Ni
- College of Materials Science & Engineering, Nanjing Tech University, Nanjing, 210009, China
- Nanjing Julong Science & Technology Company Limited, Nanjing, 210009, China
| | - Stephen Z. D. Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
9
|
Suwardi A, Wang F, Xue K, Han MY, Teo P, Wang P, Wang S, Liu Y, Ye E, Li Z, Loh XJ. Machine Learning-Driven Biomaterials Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102703. [PMID: 34617632 DOI: 10.1002/adma.202102703] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Biomaterials is an exciting and dynamic field, which uses a collection of diverse materials to achieve desired biological responses. While there is constant evolution and innovation in materials with time, biomaterials research has been hampered by the relatively long development period required. In recent years, driven by the need to accelerate materials development, the applications of machine learning in materials science has progressed in leaps and bounds. The combination of machine learning with high-throughput theoretical predictions and high-throughput experiments (HTE) has shifted the traditional Edisonian (trial and error) paradigm to a data-driven paradigm. In this review, each type of biomaterial and their key properties and use cases are systematically discussed, followed by how machine learning can be applied in the development and design process. The discussions are classified according to various types of materials used including polymers, metals, ceramics, and nanomaterials, and implants using additive manufacturing. Last, the current gaps and potential of machine learning to further aid biomaterials discovery and application are also discussed.
Collapse
Affiliation(s)
- Ady Suwardi
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - FuKe Wang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Kun Xue
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Ming-Yong Han
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Peili Teo
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Pei Wang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Shijie Wang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Ye Liu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| |
Collapse
|
10
|
Guan L, Chen J, Tian Z, Zhu M, Bian Y, Zhu Y. Mesoporous organosilica nanoparticles: Degradation strategies and application in tumor therapy. VIEW 2021. [DOI: 10.1002/viw.20200117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Lei Guan
- School of Materials Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Jiajie Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
| | - Zhengfang Tian
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemical Engineering Huanggang Normal University Huanggang Hubei Province China
| | - Min Zhu
- School of Materials Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Yuhai Bian
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Yufang Zhu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemical Engineering Huanggang Normal University Huanggang Hubei Province China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
| |
Collapse
|
11
|
Li Z, Liu M, Ke L, Wang LJ, Wu C, Li C, Li Z, Wu YL. Flexible polymeric nanosized micelles for ophthalmic drug delivery: research progress in the last three years. NANOSCALE ADVANCES 2021; 3:5240-5254. [PMID: 36132623 PMCID: PMC9417891 DOI: 10.1039/d1na00596k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 05/17/2023]
Abstract
The eye is a complex structure with a variety of anatomical barriers and clearance mechanisms, so the provision of safe and effective ophthalmic drug delivery technology is a major challenge. In the past few decades, a number of reports have shown that nano-delivery platforms based on polymeric micelles are of great interest, because of their hydrophobic core that encapsulates lipid-soluble drugs and small size with high penetration, allowing long-term drug retention and posterior penetration in the eye. Furthermore, as an ocular delivery platform, polymeric micelles not only cover the single micellar drug delivery system formed by poloxamer, chitosan or other polymers, but also include composite drug delivery systems like micelle-encapsulated hydrogels and micelle-embedded contact lenses. In this review, a number of ophthalmic micelles that have emerged in the last three years will be systematically reviewed, with a summary of and discussion on their unique advantages or unique drug delivery performance. Last but not least, the current challenges of polymeric micelle formulations in potential clinical ophthalmic therapeutic applications will also be proposed, which might be helpful for future design of ocular drug delivery formulations.
Collapse
Affiliation(s)
- Zhiguo Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Lingjie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Li-Juan Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Cheng Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University Xiamen 361102 China
| | - Zibiao Li
- Department of Materials Science and Engineering, National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| |
Collapse
|
12
|
Yong HW, Kakkar A. Nanoengineering Branched Star Polymer-Based Formulations: Scope, Strategies, and Advances. Macromol Biosci 2021; 21:e2100105. [PMID: 34117840 DOI: 10.1002/mabi.202100105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Indexed: 12/24/2022]
Abstract
Soft nanoparticles continue to offer a promising platform for the encapsulation and controlled delivery of poorly water-soluble drugs and help enhance their bioavailability at targeted sites. Linear amphiphilic block copolymers are the most extensively investigated in formulating delivery vehicles. However, more recently, there has been increasing interest in utilizing branched macromolecules for nanomedicine, as these have been shown to lower critical micelle concentrations, form particles of smaller dimensions, facilitate the inclusion of varied compositions and function-based entities, as well as provide prolonged and sustained release of cargo. In this review, it is aimed to discuss some of the key variables that are studied in tailoring branched architecture-based assemblies, and their influence on drug loading and delivery. By understanding structure-property relationships in these formulations, one can better design branched star polymers with suitable characteristics for efficient therapeutic interventions. The role played by polymer composition, chain architecture, crosslinking, stereocomplexation, compatibility between polymers and drugs, drug/polymer concentrations, and self-assembly methods in their performance as nanocarriers is highlighted.
Collapse
Affiliation(s)
- Hui Wen Yong
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Quebec, H3A 0B8, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Quebec, H3A 0B8, Canada
| |
Collapse
|
13
|
Goyal P, Singh M, Kumar P, Gupta A. Chol-Dex nanomicelles: Synthesis, characterization and evaluation as efficient drug carriers for colon targeting. Carbohydr Res 2021; 500:108255. [PMID: 33556844 DOI: 10.1016/j.carres.2021.108255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/24/2020] [Accepted: 01/27/2021] [Indexed: 01/03/2023]
Abstract
Core-shell structures obtained from amphiphilic molecules on self-assembly in a medium have emerged as an important tool in the area of biomedical sciences. Here, we have synthesized cholesteryl-dextran (Chol-Dex) amphiphiles in sufficiently high yields via conjugation of cholesteryl hemisuccinate to dextran in two different concentrations (5 and 10%). After physicochemical and spectral analysis, the nanomicelles were subjected to size measurements. DLS and TEM confirmed the formation of core-shell type of nanomicelles. Hydrophobic drug-entrapped formulations (Metronidazole and Rifampicin) displayed sustained release behaviour of drugs from them. Sustained release at neutral pH demonstrated usefulness of the non-toxic delivery system for colon specific diseases.
Collapse
Affiliation(s)
- Preeti Goyal
- Chemistry Department, Dyal Singh College, University of Delhi, New Delhi, 110 003, India
| | - Mahak Singh
- Chemistry Department, Ramjas College, University of Delhi, Delhi, 110 007, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110 007, India.
| | - Alka Gupta
- Chemistry Department, Dyal Singh College, University of Delhi, New Delhi, 110 003, India.
| |
Collapse
|
14
|
Zheng Y, Sarkar J, Niino H, Chatani S, Hsu SY, Goto A. Synthesis of core-crosslinked star polymers via organocatalyzed living radical polymerization. Polym Chem 2021. [DOI: 10.1039/d1py00663k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Core-crosslinked star polymers synthesized via a grafting-through approach using RCMP.
Collapse
Affiliation(s)
- Yichao Zheng
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| | - Jit Sarkar
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| | - Hiroshi Niino
- Otake R&D Center
- Mitsubishi Chemical Corporation
- Hiroshima 739-0693
- Japan
| | - Shunsuke Chatani
- Otake R&D Center
- Mitsubishi Chemical Corporation
- Hiroshima 739-0693
- Japan
| | - Shu Yao Hsu
- Otake R&D Center
- Mitsubishi Chemical Corporation
- Hiroshima 739-0693
- Japan
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| |
Collapse
|
15
|
Li H, Zhao H, Yao L, Zhang L, Cheng Z, Zhu X. Photocontrolled bromine–iodine transformation reversible-deactivation radical polymerization: facile synthesis of star copolymers and unimolecular micelles. Polym Chem 2021. [DOI: 10.1039/d1py00006c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A facile strategy of synthesizing star copolymers was successfully established via photocontrolled BIT-RDRP. The obtained copolymers have well-defined four-arm amphiphilic block architecture and can form stable unimolecular micelles in water.
Collapse
Affiliation(s)
- Haihui Li
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Haitao Zhao
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Lan Yao
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Lifen Zhang
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Zhenping Cheng
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Xiulin Zhu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|
16
|
Mi X, Zhang X, Ding M, Zhang M, Pei M. Structure and properties of polycarboxylic acid dispersants synthesized by
RAFT
method. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiangyun Mi
- School of Chemistry and Chemical Engineering University of Jinan Jinan China
| | - Xiuzhi Zhang
- School of Materials Science and Engineering University of Jinan Jinan China
| | - Mei Ding
- School of Chemistry and Chemical Engineering University of Jinan Jinan China
| | - Ming Zhang
- School of Chemistry and Chemical Engineering University of Jinan Jinan China
| | - Meishan Pei
- School of Chemistry and Chemical Engineering University of Jinan Jinan China
| |
Collapse
|
17
|
Hosseinzadeh A, Pashaei S, Hosseinzadeh S, Namazi H. Surface modification of multiwalled carbon nanotubes via surface RAFT copolymerization method and capecitabine-loaded anticancer hydrogel for controlled drug delivery in stomach. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1765387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | | | | | - Hassan Namazi
- Chemistry Department, Faculty of Chemistry, University of Tabriz , Tabriz, Iran
| |
Collapse
|
18
|
Li G, Gan Z, Liu Y, Wang S, Guo QY, Liu Z, Tan R, Zhou D, Kong D, Wen T, Dong XH. Molecular Patchy Clusters with Controllable Symmetry Breaking for Structural Engineering. ACS NANO 2020; 14:13816-13823. [PMID: 32935968 DOI: 10.1021/acsnano.0c06189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anisotropic patchy particles with molecular precision are exquisite building blocks for constructing diverse meso-structures of high complexity. In this research, a library of molecular patchy clusters consisting of a collection of functional polyhedral oligomeric silsesquioxane cages with exact regio-configuration and composition were prepared through a robust and modular approach. By meticulously tuning the composition, molecular symmetry, and other parameters, these patchy clusters could assemble into diverse nanostructures, including unconventional complex spherical phases (i.e., Frank-Kasper σ phase and dodecagonal quasicrystalline phase). As the size of the hydrophilic patch expands, a transition sequence from disorder to hexagonally packed cylinders and then to double gyroids was recorded, corresponding to a progressive decrease of interfacial curvature. On the other hand, regioisomers with the same composition but different regio-configuration adopt similar molecular packing but varied phase stability, as a result of the local self-sorting process to alleviate excess unfavorable interfacial contact. These precisely defined molecular patchy clusters provide a model system for a general understanding of the hierarchical structure formation and evolution based on anisotropic spherical building blocks at the nanoscale.
Collapse
Affiliation(s)
- Gang Li
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuchu Liu
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Shuai Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qing-Yun Guo
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Zhongguo Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rui Tan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongdong Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Deyu Kong
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tao Wen
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
19
|
How effective are cyclodextrin-mediated carriers for advanced therapeutic delivery? Ther Deliv 2020; 11:537-540. [PMID: 32594857 DOI: 10.4155/tde-2020-0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
20
|
Yan K, Kong H, Cui Z, Fu P, Liu M, Qiao X, Pang X. A Versatile Strategy for Unimolecular Micelle-Derived Hollow Polymer Nanoparticles as General Nanoreactors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6690-6697. [PMID: 32493013 DOI: 10.1021/acs.langmuir.0c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We reported the synthesis of a well-defined hollow polymer nanoparticle derived from star-shaped unimolecular micelles. β-Cyclodextrin was first applied as an efficient macroinitiator to prepare a star-shaped PCL via ring-opening polymerization (ROP). Then, the star-shaped PCL was modified to be a macro-RAFT agent for photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of S-Cl monomers. The prepared unimolecular micelles can be photocross-linked under UV irradiation after a simple nucleophilic substitution reaction, which made -Cl groups to be -N3 groups. After the selective removal of the PCL core, hollow polymer nanoparticles were achieved and exhibited to be a general nanoreactor strategy for the fabrication of nanocrystals with well-controlled architectures. Compared with unimolecular micelle templates, the nanocrystals prepared by hollow templates are absolutely pure as no polymer chains are embedded in the inorganic nanocrystals. In addition, by changing the concentration of the precursor, the structure of the nanocrystal can be changed from a normal spherical structure to a hollow structure.
Collapse
Affiliation(s)
- Kailong Yan
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Huimin Kong
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhe Cui
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Fu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Minying Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
21
|
Murjan S, Saeedi S, Nabid MR. Comparison between novel star-like redox-sensitive amphiphilic block copolymer and its linear counterpart copolymer as nanocarriers for doxorubicin. Drug Dev Ind Pharm 2020; 46:646-658. [PMID: 32208035 DOI: 10.1080/03639045.2020.1742147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Linear and star-like redox-sensitive amphiphilic block copolymers have been studied as anticancer drug delivery systems. However, few reports directly compared the properties of those two structures especially when they are used as nanocarriers for antitumor drugs. To address this, a novel star-like copolymer and its linear counterpart were synthesized with a hydrophobic/redox-responsive/hydrophilic structure. The overall molecular weight of the star-shaped copolymer was nearly equal to that of the linear counterpart. The star-like micelles exhibit size of 90 nm, which was smaller than that of linear copolymers (151.6 nm) and critical micelle concentration of 1 mg/L, which was lower than that of the linear micelles (8.9 mg/L). The disassembly behaviors and the redox-sensitivity of the nanoparticles to reductive stimuli of glutathione was evaluated from the changes of the micellar size and morphology. Furthermore, doxorubicin was physically loaded into the hydrophobic part of the copolymers. The drug-loading capacities in the star-like and linear micelles were 15.94 and 7.53 wt%, respectively. Drug release studies carried out at two different glutathione concentrations. A cytotoxicity study of the micelles was performed by MTT assay. The prepared star copolymer showed no significant toxicity against HDF cells while enhanced cytotoxicity of the DOX-loaded micelles against MCF-7 cells was observed. Therefore, developing sucrose-PCL-SS-PEG copolymer reported in this paper as an effective reduction-responsive carrier with excellent properties and cell biocompatibility is promising for the efficient intracellular delivery of hydrophobic chemotherapeutic drugs. This work also indicates that modification of the nanocarrier structure is a potential strategy for optimizing drug delivery.
Collapse
Affiliation(s)
- Samar Murjan
- Department of Polymer and Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Sara Saeedi
- Department of Polymer and Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Reza Nabid
- Department of Polymer and Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
22
|
Preparation of mixed micelles carrying folates and stable radicals through PLA stereocomplexation for drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110464. [DOI: 10.1016/j.msec.2019.110464] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/06/2019] [Accepted: 11/17/2019] [Indexed: 01/09/2023]
|
23
|
Xian C, Yuan Q, Bao Z, Liu G, Wu J. Progress on intelligent hydrogels based on RAFT polymerization: Design strategy, fabrication and the applications for controlled drug delivery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.03.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Reversible stimuli-responsive nanomaterials with on-off switching ability for biomedical applications. J Control Release 2019; 314:162-176. [DOI: 10.1016/j.jconrel.2019.10.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022]
|
25
|
Khan I, Joshi G, Nakhate KT, Kumar R, Gupta U. Nano-Co-Delivery of Berberine and Anticancer Drug Using PLGA Nanoparticles: Exploration of Better Anticancer Activity and In Vivo Kinetics. Pharm Res 2019; 36:149. [PMID: 31420752 DOI: 10.1007/s11095-019-2677-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Combinatorial approach can be beneficial for cancer treatment with better patient recovery. Co-delivery of natural and synthetic anticancer drug not only valuable to achieve better anticancer effectivity but also to ascertain toxicity. This study was aimed to co-deliver berberine (natural origin) and doxorubicin (synthetic origin) utilizing conjugation/encapsulation strategy through poly (lactic-co-glycolic acid) (PLGA) nanoparticles. METHODS Doxorubicin was efficiently conjugated to PLGA via carbodiimide chemistry and the PLGA-doxorubicin conjugate (PDC) was used for encapsulation of berberine (PDBNP). RESULTS Significant anti-proliferative against MDA-MB-231 and T47D breast cancer cell lines were observed with IC50 of 1.94 ± 0.22 and 1.02 ± 0.36 μM, which was significantly better than both the bio-actives (p < 0.05). The ROS study revealed that the PDBNP portrayed the slight increase in the reactive oxygen species (ROS) pattern in MDA-MB-231 cell line in a dose-dependent manner, while in T47D cells, no significant change in ROS was seen. PDBNP exhibits significant alteration (depolarization) in mitochondrial membrane permeability and arrest of cell cycle progression at sub G1 phase while the Annexin V/PI assay followed by confocal microscopy resulted into cell death mode to be because of necrosis against MDA-MB-231 cells. In vivo studies in Sprague Dawley rats revealed almost 14-fold increase in half life and a significant increase in plasma drug concentration. CONCLUSION The overall approach of PLGA based co-delivery of doxorubicin and berberine witnessed synergetic effect and reduced toxicity as evidenced by preliminary toxicity studies.
Collapse
Affiliation(s)
- Iliyas Khan
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Kartik T Nakhate
- Rungta College of Pharmaceutical Science and Research, Kohka, Bhilai, Chhattisgarh, 490024, India
| | - Raj Kumar
- Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
26
|
Song YH, Agrawal NK, Griffin JM, Schmidt CE. Recent advances in nanotherapeutic strategies for spinal cord injury repair. Adv Drug Deliv Rev 2019; 148:38-59. [PMID: 30582938 PMCID: PMC6959132 DOI: 10.1016/j.addr.2018.12.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/12/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a devastating and complicated condition with no cure available. The initial mechanical trauma is followed by a secondary injury characterized by inflammatory cell infiltration and inhibitory glial scar formation. Due to the limitations posed by the blood-spinal cord barrier, systemic delivery of therapeutics is challenging. Recent development of various nanoscale strategies provides exciting and promising new means of treating SCI by crossing the blood-spinal cord barrier and delivering therapeutics. As such, we discuss different nanomaterial fabrication methods and provide an overview of recent studies where nanomaterials were developed to modulate inflammatory signals, target inhibitory factors in the lesion, and promote axonal regeneration after SCI. We also review emerging areas of research such as optogenetics, immunotherapy and CRISPR-mediated genome editing where nanomaterials can provide synergistic effects in developing novel SCI therapy regimens, as well as current efforts and barriers to clinical translation of nanomaterials.
Collapse
Affiliation(s)
- Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Nikunj K Agrawal
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jonathan M Griffin
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
27
|
Luo Z, Jiang L, Yang S, Li Z, Soh WMW, Zheng L, Loh XJ, Wu Y. Light-Induced Redox-Responsive Smart Drug Delivery System by Using Selenium-Containing Polymer@MOF Shell/Core Nanocomposite. Adv Healthc Mater 2019; 8:e1900406. [PMID: 31183979 DOI: 10.1002/adhm.201900406] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/17/2019] [Indexed: 12/11/2022]
Abstract
Rational design of controllable drug release systems is important for tumor treatments due to the nonspecific toxicity of many chemotherapeutics. Herein, laser or light responsive pharmaceutical delivery nanoparticles are designed, by taking the advantages of redox responsive selenium (Se) substituted polymer as shell and photosensitive porphyrin zirconium metal-organic frameworks (MOF) as core. In detail, redox cleavable di-(1-hydroxylundecyl) selenide (DH-Se), biocompatible poly(ethylene glycol) (PEG), and poly(propylene glycol) (PPG) are randomly polymerized to form poly(DH-Se/PEG/PPG urethane), which is used to coat the reactive oxygen species' (ROS) producible porous porphyrin zirconium metal organization formulation (PCN-224 MOF) to form the final poly(DH-Se/PEG/PPG urethane)@MOF shell-core nanoparticle with spherical shape by emulsion approach. Interestingly, poly(DH-Se/PEG/PPG urethane)@MOF nanoparticles with loading of chemotherapeutic doxorubicin (DOX) experience a fast and controllable release, which can realize the combination of chemotherapy and photodynamic therapy upon irradiation with laser light, due to the light-triggered ROS production by MOF which further causes the cleavage of poly(DH-Se/PEG/PPG urethane) polymer chain and the release of encapsulated DOX. To the best of the authors' knowledge, this is the first design of utilizing MOF and selenium substituted polymer as controllable drug release carriers, which might be beneficial for precise chemotherapy and photodynamic therapy combination.
Collapse
Affiliation(s)
- Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress BiologySchool of Pharmaceutical SciencesXiamen University Xiamen 361102 China
| | - Lu Jiang
- Institute of Materials Research and EngineeringA*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| | - Shaoxiong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)Ministry of EducationSchool of Chemical Science and TechnologyYunnan University Kunming Yunnan 650091 China
| | - Zibiao Li
- Institute of Materials Research and EngineeringA*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| | - Wee Mia Wilson Soh
- Department of Biomedical EngineeringNational University of Singapore 4 Engineering Drive 3, Engineering Block 4, #04‐08 Singapore 117583 Singapore
| | - Liyan Zheng
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)Ministry of EducationSchool of Chemical Science and TechnologyYunnan University Kunming Yunnan 650091 China
| | - Xian Jun Loh
- Institute of Materials Research and EngineeringA*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| | - Yun‐Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress BiologySchool of Pharmaceutical SciencesXiamen University Xiamen 361102 China
| |
Collapse
|
28
|
Lin S, Huang X, Guo R, Chen S, Lan J, Theato P. UV‐triggered CO
2
‐responsive behavior of nanofibers and their controlled drug release properties. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shaojian Lin
- College of Light Industry, Textile and Food EngineeringSichuan University No. 24 South Section 1, Yihuan Road, 610065 Chengdu China
| | - Xia Huang
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces IIIKarlsruhe Institute of Technology (KIT) Herrmann‐von‐Helmholtz‐Platz 1, D‐76344 Eggenstein‐Leopoldshafen Germany
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT) Engesser Street 18, D‐76131 Karlsruhe Germany
| | - Ronghui Guo
- College of Light Industry, Textile and Food EngineeringSichuan University No. 24 South Section 1, Yihuan Road, 610065 Chengdu China
| | - Sheng Chen
- College of Light Industry, Textile and Food EngineeringSichuan University No. 24 South Section 1, Yihuan Road, 610065 Chengdu China
| | - Jianwu Lan
- College of Light Industry, Textile and Food EngineeringSichuan University No. 24 South Section 1, Yihuan Road, 610065 Chengdu China
| | - Patrick Theato
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces IIIKarlsruhe Institute of Technology (KIT) Herrmann‐von‐Helmholtz‐Platz 1, D‐76344 Eggenstein‐Leopoldshafen Germany
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT) Engesser Street 18, D‐76131 Karlsruhe Germany
| |
Collapse
|
29
|
Chen YP, Zhang JL, Zou Y, Wu YL. Recent Advances on Polymeric Beads or Hydrogels as Embolization Agents for Improved Transcatheter Arterial Chemoembolization (TACE). Front Chem 2019; 7:408. [PMID: 31231636 PMCID: PMC6560223 DOI: 10.3389/fchem.2019.00408] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
Abstract
Transcatheter arterial chemoembolization (TACE), aiming to block the hepatic artery for inhibiting tumor blood supply, became a popular therapy for hepatocellular carcinoma (HCC) patients. Traditional TACE formulation of anticancer drug emulsion in ethiodized oil (i.e., Lipiodol®) and gelatin sponge (i.e., Gelfoam®) had drawbacks on patient tolerance and resulted in undesired systemic toxicity, which were both significantly improved by polymeric beads, microparticles, or hydrogels by taking advantage of the elegant design of biocompatible or biodegradable polymers, especially amphiphilic polymers or polymers with both hydrophilic and hydrophobic chains, which could self-assemble into proposed microspheres or hydrogels. In this review, we aimed to summarize recent advances on polymeric embolization beads or hydrogels as TACE agents, with emphasis on their material basis of polymer architectures, which are important but have not yet been comprehensively summarized.
Collapse
Affiliation(s)
- Yun-Ping Chen
- Department of Oncology, The 910 Hospital of PLA, Quanzhou, China
| | - Jiang-Ling Zhang
- Department of Oncology, The 910 Hospital of PLA, Quanzhou, China
| | - Yanhong Zou
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
30
|
|
31
|
Luo Z, Xu Y, Ye E, Li Z, Wu YL. Recent Progress in Macromolecule-Anchored Hybrid Gold Nanomaterials for Biomedical Applications. Macromol Rapid Commun 2019; 40:e1800029. [PMID: 29869424 DOI: 10.1002/marc.201800029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/12/2018] [Indexed: 12/16/2022]
Abstract
Gold nanoparticles (AuNPs), with elegant thermal, optical, or chemical properties due to quantum size effects, may serve as unique species for therapeutic or diagnostic applications. It is worth mentioning that their small size also results in high surface activity, leading to significantly impaired stability, which greatly hinders their biomedical utilizations. To overcome this problem, various types of macromolecular materials are utilized to anchor AuNPs so as to achieve advanced synergistic effect by dispersing, protecting, and stabilizing the AuNPs in polymeric-Au hybrid self-assemblies. In this review, the most recent development of polymer-AuNP hybrid systems, including AuNPs@polymeric nanoparticles, AuNPs@polymeric micelle, AuNPs@polymeric film, and AuNPs@polymeric hydrogel are discussed with respect to their different synthetic strategies. These sophisticated materials with diverse functions, oriented toward biomedical applications, are further summarized into several active domains in the areas of drug delivery, gene delivery, photothermal therapy, antibacterials, bioimaging, etc. Finally, the possible approaches for future design of multifunctional polymer-AuNP hybrids by combining hybrid chemistry with biological interface science are proposed.
Collapse
Affiliation(s)
- Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yang Xu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
32
|
Low ZWK, Li Z, Owh C, Chee PL, Ye E, Kai D, Yang DP, Loh XJ. Using Artificial Skin Devices as Skin Replacements: Insights into Superficial Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805453. [PMID: 30690897 DOI: 10.1002/smll.201805453] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Artificial skin devices are able to mimic the flexibility and sensory perception abilities of the skin. They have thus garnered attention in the biomedical field as potential skin replacements. This Review delves into issues pertaining to these skin-deep devices. It first elaborates on the roles that these devices have to fulfill as skin replacements, and identify strategies that are used to achieve such functionality. Following which, a comparison is done between the current state of these skin-deep devices and that of natural skin. Finally, an outlook on artificial skin devices is presented, which discusses how complementary technologies can create skin enhancements, and what challenges face such devices.
Collapse
Affiliation(s)
- Zhi Wei Kenny Low
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Pei Lin Chee
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Dan Kai
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, 362000, Fujian Province, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| |
Collapse
|
33
|
|
34
|
Fallah iri sofla S, Abbasian M, Mirzaei M. A novel gold nanorods-based pH-sensitive thiol-ended triblock copolymer for chemo-photothermo therapy of cancer cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:12-33. [DOI: 10.1080/09205063.2018.1504193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Mortaza Mirzaei
- Department of Chemistry (Organic chemistry), Miyaneh Branch, Islamic Azad University, Miyaneh, Iran
| |
Collapse
|
35
|
Huo H, Tan T, Gou L, Chen L, Zhang L, Zhang Q, Liu F. Single-chain tethered nanoparticles with tunable softness: scalable synthesis and unique self-assembly behavior. Polym Chem 2019. [DOI: 10.1039/c9py00849g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A scalable method to prepare single-chain tethered nanoparticles with tunable softness, which results in unique self-assembly behaviors.
Collapse
Affiliation(s)
- Haohui Huo
- State Key Laboratory for Mechanical Behaviour of Materials
- Shaanxi International Research Center for Soft Matter
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| | - Tianyi Tan
- State Key Laboratory for Mechanical Behaviour of Materials
- Shaanxi International Research Center for Soft Matter
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| | - Lu Gou
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- School of Science
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Long Chen
- State Key Laboratory for Mechanical Behaviour of Materials
- Shaanxi International Research Center for Soft Matter
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- School of Science
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Qilu Zhang
- State Key Laboratory for Mechanical Behaviour of Materials
- Shaanxi International Research Center for Soft Matter
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| | - Feng Liu
- State Key Laboratory for Mechanical Behaviour of Materials
- Shaanxi International Research Center for Soft Matter
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| |
Collapse
|
36
|
Grimm O, Maßmann SC, Schacher FH. Synthesis and solution behaviour of dual light- and temperature-responsive poly(triethylene glycol-co-spiropyran) copolymers and block copolymers. Polym Chem 2019. [DOI: 10.1039/c9py00458k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We herein report on the synthesis and characterization of materials featuring a dual-responsive copolymer segment consisting of photo-responsive spiropyran (SPA) and temperature-responsive triethylene glycol acrylate (TEGA).
Collapse
Affiliation(s)
- Oliver Grimm
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich-Schiller-University Jena
- D-07743 Jena
- Germany
| | - Sarina C. Maßmann
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich-Schiller-University Jena
- D-07743 Jena
- Germany
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich-Schiller-University Jena
- D-07743 Jena
- Germany
- Jena Centre for Soft Matter (JCSM)
| |
Collapse
|
37
|
Dai Y, Chen X, Zhang X. Recent advances in stimuli-responsive polymeric micelles via click chemistry. Polym Chem 2019. [DOI: 10.1039/c8py01174e] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stimuli-responsive polymeric micelles via click chemistry are divided into six major sections (temperature, light, ultrasound, pH, enzymes, and redox).
Collapse
Affiliation(s)
- Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Xin Chen
- School of Chemical Engineering and Technology
- Shanxi Key Laboratory of Energy Chemical Process Intensification
- Xi'an Jiao Tong University
- Xi'an 710049
- China
| | - Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| |
Collapse
|
38
|
Zhou Z, Li G, Wang N, Guo F, Guo L, Liu X. Synthesis of temperature/pH dual-sensitive supramolecular micelles from β-cyclodextrin-poly(N-isopropylacrylamide) star polymer for drug delivery. Colloids Surf B Biointerfaces 2018; 172:136-142. [DOI: 10.1016/j.colsurfb.2018.08.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022]
|
39
|
Luo Z, Jiang L, Ding C, Hu B, Loh XJ, Li Z, Wu Y. Surfactant Free Delivery of Docetaxel by Poly[(R)-3-hydroxybutyrate-(R)-3-hydroxyhexanoate]-Based Polymeric Micelles for Effective Melanoma Treatments. Adv Healthc Mater 2018; 7:e1801221. [PMID: 30398017 DOI: 10.1002/adhm.201801221] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/23/2018] [Indexed: 12/13/2022]
Abstract
Docetaxel (DTX) is a new semisynthetic chemical in the taxoid family and serves a wide spectrum of chemotherapeutics. Current commercial formulation of DTX is based on the addition of the nonionic surfactants (i.e., ethanol and Tween 80), which are reported to cause severe hemolysis, hypersensitivity reactions, or neurotoxic toxicity and greatly hinders patient tolerance or compliance. In this report, a novel low-toxic, biodegradable, and amphiphilic poly[(R)-3-hydroxybutyrate-(R)-3-hydroxyhexanoate] (PHBHx)-based polyurethane (a copolymer made of hydrophobic PHBHx with biocompatible D-3-hydroxybutyric acid as degradation product, thermosensitive polypropylene glycol (PPG), and hydrophilic polyethylene glycol (PEG) segments) with nanosized micelle formation ability to encapsulate DTX, as a surfactant free formulation, is reported. Interestingly, this DTX-loaded poly(PHBHx/PEG/PPG urethane) micelle formulation with >90% drug loading efficiency shows significantly improved DTX solubility in aqueous medium, reduced hemolysis for better blood compatibility, and increased drug uptake in A375 melanoma cells, which provides the possibility of systematic delivery of DTX. As a proof-of-concept, an A375 melanoma xenograft mouse model is established to verify the therapeutic effect of this DTX-loaded poly(PHBHx/PEG/PPG urethane) micelle formulation, indicating the promising application of PHBHx-based polymeric nanosized micelle as a surfactant free formulation of chemotherapeutics which might greatly be beneficial for controllable delivery of pharmaceutics and cancer therapy.
Collapse
Affiliation(s)
- Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress BiologySchool of Pharmaceutical SciencesXiamen University Xiamen 361102 P. R. China
| | - Lu Jiang
- Institute of Materials Research and EngineeringA*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| | - Chizhu Ding
- College of ScienceHuazhong Agricultural University Wuhan 430074 P. R. China
| | - Benhui Hu
- School of Biomedical Engineering and InformaticsNanjing Medical University Nanjing 211166 P. R. China
| | - Xian Jun Loh
- Institute of Materials Research and EngineeringA*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| | - Zibiao Li
- Institute of Materials Research and EngineeringA*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| | - Yun‐Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress BiologySchool of Pharmaceutical SciencesXiamen University Xiamen 361102 P. R. China
| |
Collapse
|
40
|
Ordanini S, Cellesi F. Complex Polymeric Architectures Self-Assembling in Unimolecular Micelles: Preparation, Characterization and Drug Nanoencapsulation. Pharmaceutics 2018; 10:E209. [PMID: 30388744 PMCID: PMC6321574 DOI: 10.3390/pharmaceutics10040209] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 02/04/2023] Open
Abstract
Unimolecular polymeric micelles are a class of single-molecule amphiphilic core-shell polymeric architectures, where the hydrophobic core is well stabilized by the hydrophilic shell, avoiding intermolecular core-core interactions. Multi-arm copolymers with a dendritic core, as well as hyperbranched and comb-like polymers, can form unimolecular micelles easily. In this review, examples of polymers able to form detectable unimolecular micelles will be presented, summarizing the analytical techniques used to characterize the unimolecular micelles and discriminate them from other supramolecular aggregates, such as multi-micelle aggregates. Unimolecular micelles are suitable for the nanoencapsulation of guest molecules. Compared to traditional supramolecular micelles, unimolecular micelles do not disassemble under dilution and are stable to environmental modifications. Recent examples of their application as drug delivery systems, endowed with increased stability and transport properties, will be discussed.
Collapse
Affiliation(s)
- Stefania Ordanini
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| | - Francesco Cellesi
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| |
Collapse
|
41
|
Zhang X, Tan BH, Li Z. Biodegradable polyester shape memory polymers: Recent advances in design, material properties and applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:1061-1074. [DOI: 10.1016/j.msec.2017.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 01/09/2023]
|
42
|
Ding D, Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:1041-1060. [DOI: 10.1016/j.msec.2017.12.036] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 12/30/2017] [Indexed: 01/06/2023]
|
43
|
Polyester-based nanoparticles for nucleic acid delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:983-994. [DOI: 10.1016/j.msec.2018.07.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022]
|
44
|
Zhao C, Zhang J, Hu H, Qiao M, Chen D, Zhao X, Yang C. Design of lactoferrin modified lipid nano-carriers for efficient brain-targeted delivery of nimodipine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:1031-1040. [DOI: 10.1016/j.msec.2018.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/07/2017] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
|
45
|
Controlled construction of gold nanoparticles in situ from β-cyclodextrin based unimolecular micelles for in vitro computed tomography imaging. J Colloid Interface Sci 2018; 528:135-144. [DOI: 10.1016/j.jcis.2018.05.082] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 11/17/2022]
|
46
|
|
47
|
Yao H, Wu LP, Chen GQ. Synthesis and Characterization of Electroconductive PHA- graft-Graphene Nanocomposites. Biomacromolecules 2018; 20:645-652. [PMID: 30222322 DOI: 10.1021/acs.biomac.8b01257] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
With increasing demand of environmentally friendly materials, development on biobased polymers such as polyhydroxyalkanoate (PHA) is indispensable. An unsaturated PHA, namely, poly(3-hydroxydodecanoate- co-3-hydroxy-9-decenoate), short as P(3HDD- co-3H9D), provides possibilities for functionalization. Two different strategies are explored for synthesis of PHA- graft-graphene nanocomposites with graphene content ranging from 0.2 to 1.5 wt %. Chemical structures of intermediates and products were confirmed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). Uniform dispersion of graphene was observed in formed PHA nanocomposites under scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). PHA- graft-graphene nanocomposites exhibited higher thermal degradation temperature and enhanced electricity conductivity compared with that of neat PHA. Moreover, lower critical filling content and lower electrical resistivity at same graphene content demonstrated enhanced electrical conductivity of PHA- graft-graphene nanocomposites compared with previously reported blends. The lowest electrical resistivity was 2 Ω·m in sample PHA- graft-graphene nanocomposites with approximately 1.5 wt % graphene content.
Collapse
Affiliation(s)
- Hui Yao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China
| | - Lin-Ping Wu
- Guangzhou Institute of Biomedicine and Health , Chinese Academy of Sciences , Guangzhou , 510530 , China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Science , Tsinghua University , Beijing 100084 , China.,MOE Key Lab for Industrial Biocatalysis , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
48
|
Chi H, Wang M, Xiao Y, Wang F, K S J. Self-Assembly and Applications of Amphiphilic Hybrid POSS Copolymers. Molecules 2018; 23:E2481. [PMID: 30262758 PMCID: PMC6222655 DOI: 10.3390/molecules23102481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 01/22/2023] Open
Abstract
Understanding the mechanism of molecular self-assembly to form well-organized nanostructures is essential in the field of supramolecular chemistry. Particularly, amphiphilic copolymers incorporated with polyhedral oligomeric silsesquioxanes (POSSs) have been one of the most promising materials in material science, engineering, and biomedical fields. In this review, new ideas and research works which have been carried out over the last several years in this relatively new area with a main focus on their mechanism in self-assembly and applications are discussed. In addition, insights into the unique role of POSSs in synthesis, microphase separation, and confined size were encompassed. Finally, perspectives and challenges related to the further advancement of POSS-based amphiphilics are discussed, followed by the proposed design considerations to address the challenges that we may face in the future.
Collapse
Affiliation(s)
- Hong Chi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry of Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Mingyue Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry of Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yiting Xiao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry of Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Fuke Wang
- Polymeric Materials Department, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore.
| | - Joshy K S
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India.
| |
Collapse
|
49
|
Liu X, Fan X, Jiang L, Loh XJ, Wu YL, Li Z. Biodegradable polyester unimolecular systems as emerging materials for therapeutic applications. J Mater Chem B 2018; 6:5488-5498. [PMID: 32254961 DOI: 10.1039/c8tb01883a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Unimolecular micelles, as a class of single-molecular micelles, are structurally stable regardless of their concentrations or alterations of the outer environment such as pH, temperature, ion strength etc. in comparison with conventional polymeric micelles. Polyester unimolecular micelles are extensively applied in bio-medical fields because of their stability, biocompatibility, biodegradability, structural-controllabilty etc. In this review, the most recent developments in polyester unimolecular micelle designs in terms of Boltorn polymer H40 core, cyclodextrin, dendrimer or dendrimer-like polymer, or polyhedral oligomeric silsesquioxane (POSS) based polyester unimolecular micelles are presented. The significance and application in biomedical fields including drug delivery, bio-imaging and theranostics are also classified in this review. Finally, the remaining challenges and future perspectives for further development of unimolecular micelles as therapeutic materials are also discussed.
Collapse
Affiliation(s)
- Xuan Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, P. R. China.
| | | | | | | | | | | |
Collapse
|
50
|
Liu X, Bai X, Li J, Wang C, Ren Q. Synthesis and characterization of amphiphilic graft copolymers with poly(ethylene glycol) as the hydrophilic backbone and poly(butyl methacrylate) as the hydrophobic graft chain. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4369-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|