1
|
Jamwal P, Chauhan S, Kumar K, Chauhan GS. Fabricating pine needles derived spherical nanocellulose with polyaniline and montmorillonite clay for simultaneous removal of cationic and anionic dyes from binary mixtures. Int J Biol Macromol 2025; 301:140340. [PMID: 39880263 DOI: 10.1016/j.ijbiomac.2025.140340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Herein, pine needles derived spherical nanocellulose (SNC) was combined with aniline to form SNC-polyaniline (SNC-PANI), followed by modification with montmorillonite (MMT) to form SNC-PANI-MMT composite. The as-synthesized materials were characterized by FTIR, XRD, XPS, TGA, FESEM, and EDS and evaluated for the simultaneous adsorption of cationic and anionic dyes, malachite green (MG), and Congo red (CR) from MG-CR mixture, and fuchsin basic (FB) and methyl orange (MO) from FB-MO mixture. Non-linear kinetics of adsorption showed the anionic dyes, CR and MO to follow pseudo-first order kinetics with 91.30 % and 85.50 % removal, respectively, while the cationic dyes, MG and FB followed Elovich model with 95.10 % and 83.10 % removal, respectively. Non-linear isotherm analysis showed all the dyes to follow Langmuir isotherm with maximum adsorption capacity of 282.394 and 298.420 mgg-1 (120 min, 25 °C, 7.0 pH) for MG and CR, respectively, whereas the same for FB and MO were 194.126 and 185.757 mgg-1, respectively. The dyes were adsorbed through electrostatic, π-π, ion-dipole interactions, and hydrogen-bonding. The SNC-PANI-MMT showed regeneration and reusability upto nine cycles with high cumulative adsorption capacity. Thus, the composite has appreciable cost-effectiveness, high sustainability, environmental friendliness, and holistic characteristics for the treatment of real dyes-polluted wastewater.
Collapse
Affiliation(s)
- Pooja Jamwal
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India
| | - Sandeep Chauhan
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India.
| | - Kiran Kumar
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India.
| | - Ghanshyam S Chauhan
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India
| |
Collapse
|
2
|
Yang C, Liu Y, Duan G, Zhang C, Huang Y, Li S, Jiang S. Research progress on improving dispersion stability of nanocellulose in different media: A review. Int J Biol Macromol 2025; 304:140967. [PMID: 39952515 DOI: 10.1016/j.ijbiomac.2025.140967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/26/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Nanocellulose has been widely used in various fields due to its good biocompatibility, mechanical properties, large specific surface area and environmental friendliness. Among these applications, uniformly dispersing nanocellulose in various media to improve its performance is an application with good development prospects. However, due to the presence of surface hydroxyl groups, nanocellulose tends to form aggregates between molecular chains and is less compatible with nonpolar solvents, thus making it difficult to be stably dispersed in solvents. How to break the aggregation between cellulose and improve its compatibility with the medium has become a challenging issue. In this paper, the dispersion system is classified into polar medium, nonpolar medium and polymer matrix according to the polarity and state of the medium, and a review is presented on how to improve the dispersion stability of nanocellulose in different media. The methods of using surface modification to improve the dispersion stability of nanocellulose in different media, such as carboxylation, amidation, and grafting of long-chain molecules to reduce the aggregation among nanocellulose and to improve the compatibility with solvents, are highlighted. Finally, suggestions are made for future research directions.
Collapse
Affiliation(s)
- Chen Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yanbo Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yong Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610000, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Seleka WM, Ramohlola KE, Modibane KD, Makhado E. Quaternary conducting Cs/GO/PANi hydrogel composites: A smart material for room temperature hydrogen sensing. DIAMOND AND RELATED MATERIALS 2024; 146:111156. [DOI: 10.1016/j.diamond.2024.111156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Zhang R, Li Y, Ci Y, Li F, Chen T, Tang Y. Synthesis and characterization of polyaniline-based composites using cellulose nanocrystals as biological templates. Int J Biol Macromol 2024; 269:132098. [PMID: 38710244 DOI: 10.1016/j.ijbiomac.2024.132098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Polyaniline (PANI) is considered as an ideal electrode material due to its remarkable Faradaic activity, exceptional conductivity, and ease of processing. However, the agglomeration and poor cycling stability of PANI largely limit its practical utilization in energy storage devices. To address these challenges, PANI was synthesized via a facile one-pot, two-step process using cellulose nanocrystals (CNCs) as bio-templates in this work. Zeta potential and particle size measurements revealed that the CNC template could impart improved dispersion stability to the synthesized PANI, which exhibited a decrease in average particle size from 1100 nm to 300 nm as a function of 10 % CNCs. Furthermore, the effect of CNC loadings on the performance of PANI was systematically investigated. The results showed that the specific capacitance of PANI/CNC increased from 102.52 F·g-1 to 138.12 F·g-1 with the CNC loading increase from 0 to 10 wt%. Particularly, the PANI/CNC composite film with a 1:9 ratio (C-P-10 %) demonstrated a capacity retention of 84.45 % after 6000 cycles and an outstanding conductivity of 526 S·m-1. This work generally offers an effective solution for the preparation of high-performance PANI-based composites, which might hold great promise in energy storage device applications.
Collapse
Affiliation(s)
- Ruru Zhang
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Ya Li
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yuhui Ci
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Feiyun Li
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Tianying Chen
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yanjun Tang
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
5
|
Korábková E, Kašpárková V, Vašíček O, Víchová Z, Káčerová S, Valášková K, Urbánková L, Vícha J, Münster L, Skopalová K, Humpolíček P. Pickering emulsions as an effective route for the preparation of bioactive composites: A study of nanocellulose/polyaniline particles with immunomodulatory effect. Carbohydr Polym 2024; 323:121429. [PMID: 37940298 DOI: 10.1016/j.carbpol.2023.121429] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 11/10/2023]
Abstract
Several studies have reported on application of cellulose particles for stabilizing Pickering emulsions (PE). Here we employ an original approach that involves using these particles as a part of advanced composite colloids made of conducting polymer polyaniline (PANI) and cellulose nanocrystals (CNC) or nanofibrils (CNF). PANI/cellulose particles were prepared using oxidative polymerization of aniline in situ in the presence of CNC or CNF. The type and amount of celluloses (CNC vs CNF) and concentration of precursors (aniline monomer and oxidant) used in the reaction determined properties of the colloidal particles, such as size, morphology and content of PANI. The particles demonstrated intriguing biological characteristics, including no cytotoxicity, antibacterial activity against Staphylococcus aureus and Escherichia coli, antioxidant activity and related immunomodulatory activity. For the first time, such composites were used to successfully stabilize oil-in-water PE with undecane or capric/caprylic triglyceride oils. The properties of the emulsions were determined by the PANI/cellulose particles and oil used. The key finding of the study is the demonstrated ability of PANI/cellulose particles to stabilize PE, as well as the excellent antioxidant activity and ROS scavenging action originating from PANI presence, indicating potential of such systems for use in biomedicine, particularly for wound healing.
Collapse
Affiliation(s)
- Eva Korábková
- Centre of Polymer Systems, Tomas Bata University in Zlin, nám. T.G.Masaryka 5555, 760 01 Zlin, Czech Republic
| | - Věra Kašpárková
- Centre of Polymer Systems, Tomas Bata University in Zlin, nám. T.G.Masaryka 5555, 760 01 Zlin, Czech Republic; Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Ondřej Vašíček
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic.
| | - Zdenka Víchová
- Centre of Polymer Systems, Tomas Bata University in Zlin, nám. T.G.Masaryka 5555, 760 01 Zlin, Czech Republic
| | - Simona Káčerová
- Centre of Polymer Systems, Tomas Bata University in Zlin, nám. T.G.Masaryka 5555, 760 01 Zlin, Czech Republic
| | - Kristýna Valášková
- Centre of Polymer Systems, Tomas Bata University in Zlin, nám. T.G.Masaryka 5555, 760 01 Zlin, Czech Republic
| | - Lucie Urbánková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Jan Vícha
- Centre of Polymer Systems, Tomas Bata University in Zlin, nám. T.G.Masaryka 5555, 760 01 Zlin, Czech Republic
| | - Lukáš Münster
- Centre of Polymer Systems, Tomas Bata University in Zlin, nám. T.G.Masaryka 5555, 760 01 Zlin, Czech Republic
| | - Kateřina Skopalová
- Centre of Polymer Systems, Tomas Bata University in Zlin, nám. T.G.Masaryka 5555, 760 01 Zlin, Czech Republic
| | - Petr Humpolíček
- Centre of Polymer Systems, Tomas Bata University in Zlin, nám. T.G.Masaryka 5555, 760 01 Zlin, Czech Republic; Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic.
| |
Collapse
|
6
|
Ben Haj Fraj S, Ferlazzo A, El Haskouri J, Neri G, Baouab MHV. New fluorescent Schiff base modified nanocellulose-based chemosensors for the selective detection of Fe 3+, Zn 2+ and Cu 2+ in semi-aqueous media and application in seawater sample. Int J Biol Macromol 2023; 253:127762. [PMID: 37924906 DOI: 10.1016/j.ijbiomac.2023.127762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Stimulus-responsive fluorescent-modified biopolymers have received significant attention in the field of chemosensors. Herein, four new fluorescent dyes, namely, S1: (PDA-DANC), S2: (SAL-PDA-DANC), S3: (BrSAL-PDA-DANC) and S4: (ClSAL-PDA-DANC) have been successfully synthesized from 2,3-dialdehyde nanocellulose (DANC) for the detection of heavy metals. The microstructural and photophysical properties of nanocellulose (NC), microcrystalline cellulose (DANC) and the synthesized S1 to S4 dyes were investigated by FT-IR, SEM-EDX, XRD, TGA, DLS and photoluminescence. NC, obtained from conversion of MCC, shows an average size of 802.4 nm with 0.141 of polydispersity index (PdI), and a crystalline index (CI) of 82.40 % and crystallite size of 4.68 nm. The synthesized dyes present good fluorescent properties and have been therefore exploited for developing new probes for heavy metal ions detection. Remarkable "turn off" and/or "turn on" behaviors with Fe3+ and Cu2+ and with Zn2+ in DMF/water solution have been demonstrated, allowing the sensitive and selective determination of these heavy metal ions with a low limit of detection (LOD). Finally, the evaluation of the Fe3+ sensing in a real seawater sample was investigated.
Collapse
Affiliation(s)
- Sarah Ben Haj Fraj
- Research Unit Materials and Organic Synthesis (UR17ES31), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Tunisia; Instituto de Ciencias de Los Materiales de la Universitad de Valencia, Calle Catedratico José Beltran 2, 46980 Paterna, Valencia, Spain; Department of Engineering, University of Messina, C.da Di Dio, I-98166 Messina, Italy
| | - Angelo Ferlazzo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Jamal El Haskouri
- Instituto de Ciencias de Los Materiales de la Universitad de Valencia, Calle Catedratico José Beltran 2, 46980 Paterna, Valencia, Spain
| | - Giovanni Neri
- Department of Engineering, University of Messina, C.da Di Dio, I-98166 Messina, Italy
| | - Mohamed Hassen V Baouab
- Research Unit Materials and Organic Synthesis (UR17ES31), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Tunisia.
| |
Collapse
|
7
|
Norrrahim MNF, Knight VF, Nurazzi NM, Jenol MA, Misenan MSM, Janudin N, Kasim NAM, Shukor MFA, Ilyas RA, Asyraf MRM, Naveen J. The Frontiers of Functionalized Nanocellulose-Based Composites and Their Application as Chemical Sensors. Polymers (Basel) 2022; 14:polym14204461. [PMID: 36298039 PMCID: PMC9608972 DOI: 10.3390/polym14204461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Chemical sensors are a rapidly developing technology that has received much attention in diverse industries such as military, medicine, environmental surveillance, automotive power and mobility, food manufacturing, infrastructure construction, product packaging and many more. The mass production of low-cost devices and components for use as chemical sensors is a major driving force for improvements in each of these industries. Recently, studies have found that using renewable and eco-friendly materials would be advantageous for both manufacturers and consumers. Thus, nanotechnology has led to the investigation of nanocellulose, an emerging and desirable bio-material for use as a chemical sensor. The inherent properties of nanocellulose, its high tensile strength, large specific surface area and good porous structure have many advantages in its use as a composite material for chemical sensors, intended to decrease response time by minimizing barriers to mass transport between an analyte and the immobilized indicator in the sensor. Besides which, the piezoelectric effect from aligned fibers in nanocellulose composites is beneficial for application in chemical sensors. Therefore, this review presents a discussion on recent progress and achievements made in the area of nanocellulose composites for chemical sensing applications. Important aspects regarding the preparation of nanocellulose composites using different functionalization with other compounds are also critically discussed in this review.
Collapse
Affiliation(s)
- Mohd Nor Faiz Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: (M.N.F.N.); (V.F.K.); (N.M.N.)
| | - Victor Feizal Knight
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: (M.N.F.N.); (V.F.K.); (N.M.N.)
| | - Norizan Mohd Nurazzi
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Correspondence: (M.N.F.N.); (V.F.K.); (N.M.N.)
| | - Mohd Azwan Jenol
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | | | - Nurjahirah Janudin
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Noor Azilah Mohd Kasim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Muhammad Faizan A. Shukor
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Rushdan Ahmad Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Muhammad Rizal Muhammad Asyraf
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
- Engineering Design Research Group (EDRG), School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Jesuarockiam Naveen
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
8
|
Electroconductive cellulose nanocrystals — Synthesis, properties and applications: A review. Carbohydr Polym 2022; 289:119419. [DOI: 10.1016/j.carbpol.2022.119419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/29/2022]
|
9
|
Tanweer MS, Iqbal Z, Alam M. Experimental Insights into Mesoporous Polyaniline-Based Nanocomposites for Anionic and Cationic Dye Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8837-8853. [PMID: 35816402 DOI: 10.1021/acs.langmuir.2c00889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This work presents the preparation of inorganic-organic hybrid nanocomposites, namely three-dimensional polyaniline (Pani)/activated silica gel (ASG) (3D Pani@ASG), their characterization, and in removing application as a potential adsorbent for cationic brilliant green (BG), crystal violet (CV), and anionic Congo red (CR), and methyl orange (MO) dyes. Pani@ASG nanocomposites have been prepared by the in situ polymerization method and characterized using various techniques such as Fourier transform infrared (FTIR), X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) with selected area electron diffraction, thermogravimetric analysis with derivative thermogravimetry, zeta potential analyses, and Brunauer-Emmett-Teller (BET). The scanning electron microscopy (SEM) study confirms the average particle size of the Pani@ASG nanocomposite is in the range of 5 nm. FESEM, TEM, FTIR, and XRD analysis proved the successful decoration of ASG over Pani. The BET result of Pani@ASG shows a mesoporous nature with a pore diameter of less than 3 nm and a surface area of 423.90 m2 g-1. Both SEM and TEM analyses show the proportional distribution of ASG over Pani's surface. The adsorption trend of BG and MO on the studied materials at pH 7 was found as follows: Pani@ASG > Pani > ASG. The highest sorption capacities of MO and BG on Pani@ASG were 161.29 and 136.98 mg/g (T = 298.15 K, and Pani@ASG dose: 0.04 g for MO and 0.06 g for BG), which were greater compared with bare Pani and bare ASG, respectively. The interaction mechanism behind the adsorption of BG and MO dyes onto the Pani@ASG nanocomposite includes electrostatic interaction, π-π interaction, and hydrogen bonding. The mechanistic pathway and the interactions between the targeted dyes and Pani@ASG were further studied using adsorption isotherm, adsorption kinetics, and thermodynamics.
Collapse
Affiliation(s)
- Mohd Saquib Tanweer
- Environmental Science Research Lab, Department of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi 110025, India
| | - Zafar Iqbal
- Environmental Science Research Lab, Department of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi 110025, India
| | - Masood Alam
- Environmental Science Research Lab, Department of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
10
|
Shahriar SMS, Nafiujjaman M, An JM, Revuri V, Nurunnabi M, Han DW, Lee YK. Graphene: A Promising Theranostic Agent. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:149-176. [DOI: 10.1007/978-981-16-4923-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
da Silva LS, Biondo MM, Feitosa BDA, Rocha ALF, Pinto CDC, Lima SX, Nogueira CDL, de Souza SM, Ruiz YL, Campelo PH, Sanches EA. Semiconducting nanocomposite based on the incorporation of polyaniline on the cellulose extracted from Bambusa vulgaris: structural, thermal and electrical properties. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Alruwashid FS, Dar MA, Alharthi NH, Abdo HS, Almotairy S. The synthesis and characterization of graphene-based cobalt ferrite nanocomposite materials and its electrochemical properties. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Zia TUH, Ali Shah AUH. Understanding the adsorption of 1 NLB antibody on polyaniline nanotubes as a function of zeta potential and surface charge density for detection of hepatitis C core antigen: A label-free impedimetric immunosensor. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Alruwashid FS, Dar MA, Alharthi NH, Abdo HS. Effect of Graphene Concentration on the Electrochemical Properties of Cobalt Ferrite Nanocomposite Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2523. [PMID: 34684964 PMCID: PMC8538039 DOI: 10.3390/nano11102523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 01/28/2023]
Abstract
A two-step process was applied to synthesize the cobalt ferrite-graphene composite materials in a one-pot hydrothermal reaction process. Graphene Oxide (GO) was synthesized by a modified Hummer's method. The synthesized composite materials were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR). The XRD and FTIR results were in good agreement with the TGA/DTG observations. SEM and TEM disclosed the spherical shape of the nanoparticles in 4-10 nm. The optimized CoFe2O4-G (1-5 wt.%) composite materials samples were tried for their conductivity, supercapacity, and corrosion properties. The CV results demonstrated a distinctive behavior of the supercapacitor, while the modified CoFe2O4-G (5 wt.%) electrode demonstrated a strong reduction in the Rct value (~94 Ω). The highest corrosion current density valves and corrosion rates were attained in the CoFe2O4-G (5 wt.%) composite materials as 5.53 and 0.20, respectively. The high conductivity of graphene that initiated the poor corrosion rate of the CoFe2O4-graphene composite materials could be accredited to the high conductivity and reactivity.
Collapse
Affiliation(s)
- Firas S. Alruwashid
- Department of Mechanical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia; (F.S.A.); (N.H.A.)
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saudi University, Riyadh 11421, Saudi Arabia; or
| | - Mushtaq A. Dar
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saudi University, Riyadh 11421, Saudi Arabia; or
| | - Nabeel H. Alharthi
- Department of Mechanical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia; (F.S.A.); (N.H.A.)
| | - Hany S. Abdo
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saudi University, Riyadh 11421, Saudi Arabia; or
- Mechanical Design and Materials Department, Faculty of Energy Engineering, Aswan University, Aswan 81521, Egypt
| |
Collapse
|
15
|
Anisimov YA, Evitts RW, Cree DE, Wilson LD. Polyaniline/Biopolymer Composite Systems for Humidity Sensor Applications: A Review. Polymers (Basel) 2021; 13:2722. [PMID: 34451261 PMCID: PMC8400915 DOI: 10.3390/polym13162722] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/18/2022] Open
Abstract
The development of polyaniline (PANI)/biomaterial composites as humidity sensor materials represents an emerging area of advanced materials with promising applications. The increasing attention to biopolymer materials as desiccants for humidity sensor components can be explained by their sustainability and propensity to absorb water. This review represents a literature survey, covering the last decade, which is focused on the interrelationship between the core properties and moisture responsiveness of multicomponent polymer/biomaterial composites. This contribution provides an overview of humidity-sensing materials and the corresponding sensors that emphasize the resistive (impedance) type of PANI devices. The key physicochemical properties that affect moisture sensitivity include the following: swelling, water vapor adsorption capacity, porosity, electrical conductivity, and enthalpies of adsorption and vaporization. Some key features of humidity-sensing materials involve the response time, recovery time, and hysteresis error. This work presents a discussion on various types of humidity-responsive composite materials that contain PANI and biopolymers, such as cellulose, chitosan and structurally related systems, along with a brief overview of carbonaceous and ceramic materials. The effect of additive components, such as polyvinyl alcohol (PVA), for film fabrication and their adsorption properties are also discussed. The mechanisms of hydration and proton transfer, as well as the relationship with conductivity is discussed. The literature survey on hydration reveals that the textural properties (surface area and pore structure) of a material, along with the hydrophile-lipophile balance (HLB) play a crucial role. The role of HLB is important in PANI/biopolymer materials for understanding hydration phenomena and hydrophobic effects. Fundamental aspects of hydration studies that are relevant to humidity sensor materials are reviewed. The experimental design of humidity sensor materials is described, and their relevant physicochemical characterization methods are covered, along with some perspectives on future directions in research on PANI-based humidity sensors.
Collapse
Affiliation(s)
- Yuriy A. Anisimov
- Department of Chemistry, University of Saskatchewan, 110 Science Place (Room 156 Thorvaldson Building), Saskatoon, SK S7N 5C9, Canada;
| | - Richard W. Evitts
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada;
| | - Duncan E. Cree
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place (Room 156 Thorvaldson Building), Saskatoon, SK S7N 5C9, Canada;
| |
Collapse
|
16
|
Highly sensitive self-healable strain biosensors based on robust transparent conductive nanocellulose nanocomposites: Relationship between percolated network and sensing mechanism. Biosens Bioelectron 2021; 191:113467. [PMID: 34218176 DOI: 10.1016/j.bios.2021.113467] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/31/2022]
Abstract
The conventional skin sensor detection of human physiological signals can be an effective method for disease diagnosis and health monitoring, but the poor biocompatibility, low sensitivity and complex design largely limit their applications. Developing natural nanofiller-reinforced composites as strain biosensors is an appealing solution to reduce environmental impacts and overcome technical bottleneck. Herein, a versatile nature skin-inspired composite film as flexible strain biosensor was developed based on cellulose nanocrystals-polyaniline (CNC-PANI) composites by utilizing their percolated conductive network in polyvinyl alcohol (PVA) matrix. The composite electronic skin showed robust mechanical strength (50.62 MPa) and high sensitivity (Gauge Factor = 11.467) with easy water-induced self-healing abilities. Moreover, we investigated the functioning mechanism of percolated network and the sensory behavior determined by CNC nanocomposite alignment. The percolation threshold of CNC-polyaniline (PANI) was determined at 4.278% and 5% CNC-PANI composite film shows the best overall sensing property. It was also discovered that the sensitivity of this type of conductive-filler electronic skin can be divided into two separate regions at different strain range due to its percolated network. With films prepared by dry casting and dip coating, the alignment of CNC-PANI also contributes to this unique change in electrical property. Generally, our results demonstrated the mechanism and tunability of conductive nanofiller-based composite strain biosensors as a potential alternative to commercial synthetic sensors.
Collapse
|
17
|
Chen PY, Hsu C, Venkatesan M, Tseng YL, Cho CJ, Han ST, Zhou Y, Chiang WH, Kuo CC. Enhanced electrical and thermal properties of semi-conductive PANI-CNCs with surface modified CNCs. RSC Adv 2021; 11:11444-11456. [PMID: 35423653 PMCID: PMC8695952 DOI: 10.1039/d0ra10663a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/11/2021] [Indexed: 12/27/2022] Open
Abstract
Cellulose nanocrystals (CNCs) are the most commonly used natural polymers for biomaterial synthesis. However, their low dispersibility, conductivity, and poor compatibility with the hydrophobic matrix hinder their potential applications. Therefore, we grafted sulfate half-ester and carboxylic functional groups onto CNC surfaces (S-CNC and C-CNC) to overcome these shortcomings. The effect of the dopants, surfactant ratios, and properties of CNCs on the thermal stability, conductivity, and surface morphology of polyaniline (PANI)-doped CNC nanocomposites were investigated through emulsion and in situ polymerization. The higher electrical conductivity and well-dispersed morphology of SCNC-PANI30 (1.1 × 10-2 S cm-1) but lower thermal stability than that of CCNC-PANI30 (T 0: 189 °C) nanocomposites are highly related to dispersibility of S-CNCs. However, after 4-dodecylbenzenesulfonic acid (DBSA) was added, the conductivity and thermal stability of SCNC/PANI increased up to 2.5 × 10-1 S cm-1 and 192 °C with almost no particle aggregation because of the increase in charge dispersion. The proposed biodegradable, renewable, and surface-modified S-CNC and C-CNC can be used in high-thermal-stability applications such as food packaging, optical films, reinforcement fillers, flexible semiconductors, and electromagnetic materials.
Collapse
Affiliation(s)
- Po-Yun Chen
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology Taipei 10608 Taiwan +886-2-27317174 +886-2-27712171 ext. 2407
| | - Chieh Hsu
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology Taipei 10608 Taiwan +886-2-27317174 +886-2-27712171 ext. 2407
| | - Manikandan Venkatesan
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology Taipei 10608 Taiwan +886-2-27317174 +886-2-27712171 ext. 2407
| | - Yen-Lin Tseng
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology Taipei 10608 Taiwan +886-2-27317174 +886-2-27712171 ext. 2407
| | - Chia-Jung Cho
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology Taipei 10608 Taiwan +886-2-27317174 +886-2-27712171 ext. 2407
| | - Su-Ting Han
- Institute of Microscale Optoelectronics, Shenzhen University Shenzhen P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University Shenzhen P. R. China
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology 10607 Taipei Taiwan
| | - Chi-Ching Kuo
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology Taipei 10608 Taiwan +886-2-27317174 +886-2-27712171 ext. 2407
| |
Collapse
|
18
|
Luo B, An X, Yang J, Liu L, Zhang H, Hu Q, Zhang R, Nie S, Wu S, Cao H, Cheng Z, Liu H. Isolation and utilization of tobacco-based cellulose nanofiber (TCNF) for high performance reconstructed tobacco sheet (RTS). Carbohydr Polym 2021; 261:117865. [PMID: 33766353 DOI: 10.1016/j.carbpol.2021.117865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/31/2021] [Accepted: 02/23/2021] [Indexed: 11/17/2022]
Abstract
Nowadays, wood pulp addition (such as softwood, hardwood, etc.) into manufacture reconstructed tobacco sheet (RTS) via a paper-making process is a feasible and sustainable technology. However, the addition of wood pulp in RTS would weaken the tobacco fragrance of cigarette by bring wood gas when smoking. In this study, a practical and feasible pretreatment by hot water/cooking process combined with cationic modification/homogenization treatment was proposed to directly isolate desirable cellulose nanofibers from tobacco stem, named TCNF. The obtained TCNF was applied in the preparation of RTS to improve its physical properties but with a reduced wood pulp proportion (from 25 wt% decreased to 16 wt%). Results showed that TCNF exhibit a similar morphology with wood based nanocellulose, and that the addition of TCNF (0.5 wt% based dried tobacco pulp) can substitute 9 % of wood pulp compared with that of the control at the similar physical properties.
Collapse
Affiliation(s)
- Boya Luo
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin, 300457, PR China
| | - Xingye An
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin, 300457, PR China.
| | - Jian Yang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin, 300457, PR China
| | - Liqin Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin, 300457, PR China
| | - Hao Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin, 300457, PR China
| | - Qin Hu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin, 300457, PR China
| | - Runqing Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin, 300457, PR China
| | - Shuangxi Nie
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Shijie Wu
- China Tobacco Yunnan Industrial Co., Ltd., Kunming, 650231, PR China
| | - Haibing Cao
- Zhejiang Jing Xing Paper Joint Stock Co., Ltd., No. 1, Jing Xing Industry Zone, Jing Xing First Road, Caoqiao Street, Pinghu, Zhejiang Province, 314214, PR China
| | - Zhengbai Cheng
- Zhejiang Jing Xing Paper Joint Stock Co., Ltd., No. 1, Jing Xing Industry Zone, Jing Xing First Road, Caoqiao Street, Pinghu, Zhejiang Province, 314214, PR China
| | - Hongbin Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin, 300457, PR China.
| |
Collapse
|
19
|
Moradian JM, Fang Z, Yong YC. Recent advances on biomass-fueled microbial fuel cell. BIORESOUR BIOPROCESS 2021; 8:14. [PMID: 38650218 PMCID: PMC10992463 DOI: 10.1186/s40643-021-00365-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Biomass is one of the most abundant renewable energy resources on the earth, which is also considered as one of the most promising alternatives to traditional fuel energy. In recent years, microbial fuel cell (MFC) which can directly convert the chemical energy from organic compounds into electric energy has been developed. By using MFC, biomass energy could be directly harvested with the form of electricity, the most convenient, wide-spread, and clean energy. Therefore, MFC was considered as another promising way to harness the sustainable energies in biomass and added new dimension to the biomass energy industry. In this review, the pretreatment methods for biomass towards electricity harvesting with MFC, and the microorganisms utilized in biomass-fueled MFC were summarized. Further, strategies for improving the performance of biomass-fueled MFC as well as future perspectives were highlighted.
Collapse
Affiliation(s)
- Jamile Mohammadi Moradian
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Zhen Fang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
20
|
Souza AG, Santos DF, Ferreira RR, Pinto VZ, Rosa DS. Innovative process for obtaining modified nanocellulose from soybean straw. Int J Biol Macromol 2020; 165:1803-1812. [PMID: 33075342 DOI: 10.1016/j.ijbiomac.2020.10.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022]
Abstract
In the present research, soybean straw was used to prepare nanocellulose (NC) via a ball mill, in different milling times (6, 9, and 12 h) and in-situ modified with an anionic surfactant. NCs were characterized for their chemical structure, surface composition, dimension and stability, morphology, crystalline structure, and thermal stability. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy results indicated a cellulosic structure for NCs and a physical interaction due to the electronic attractions between nanocellulose hydroxyls and surfactant end chain groups. The dynamic light scattering, Zeta potential, and transmission electron microscopy indicated that the in situ modified samples showed smaller sizes and good electrostatic stability. Besides, while ball mill resulted in nanofibers, the in situ modified-NC showed a nanocrystal shape, indicating that the surfactant alters the milling process and cellulose scale reduction. The modified-NC showed lower crystallinity and crystal size than unmodified nanocelluloses due to the surfactant chains' addition and influence during the milling process. The modified-NC showed slightly superior thermal stability. The NC-12S showed smaller particle sizes, high electrostatic, and thermal stability and indicated that 12 h is adequate to prepare modified nanocellulose via in situ modification. The prepared samples could be potentially used as coatings, emulsifiers, and nanocomposites reinforcing agents.
Collapse
Affiliation(s)
- A G Souza
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas - CECS/Universidade Federal do ABC (UFABC) - Santo André, SP, Avenida dos Estados, 5001, CEP: 09210-580, Brazil
| | - D F Santos
- Universidade Federal da Fronteira Sul (UFFS) - Laranjeiras do Sul, PR, Rodovia BR 158 - Km 405, CEP: 85301-970, Brazil
| | - R R Ferreira
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas - CECS/Universidade Federal do ABC (UFABC) - Santo André, SP, Avenida dos Estados, 5001, CEP: 09210-580, Brazil
| | - V Z Pinto
- Universidade Federal da Fronteira Sul (UFFS) - Laranjeiras do Sul, PR, Rodovia BR 158 - Km 405, CEP: 85301-970, Brazil.
| | - D S Rosa
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas - CECS/Universidade Federal do ABC (UFABC) - Santo André, SP, Avenida dos Estados, 5001, CEP: 09210-580, Brazil.
| |
Collapse
|
21
|
Fang Y, Meng L, Prominski A, Schaumann E, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020; 49:7978-8035. [PMID: 32672777 PMCID: PMC7674226 DOI: 10.1039/d0cs00333f] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in bioelectronics is highly interdisciplinary, with many new developments being based on techniques from across the physical and life sciences. Advances in our understanding of the fundamental chemistry underlying the materials used in bioelectronic applications have been a crucial component of many recent discoveries. In this review, we highlight ways in which a chemistry-oriented perspective may facilitate novel and deep insights into both the fundamental scientific understanding and the design of materials, which can in turn tune the functionality and biocompatibility of bioelectronic devices. We provide an in-depth examination of several developments in the field, organized by the chemical properties of the materials. We conclude by surveying how some of the latest major topics of chemical research may be further integrated with bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Erik Schaumann
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Seebald
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
22
|
Design and Characterization of Type I Cellulose-Polyaniline Composites from Various Cellulose Sources: A Comparative Study. CHEMISTRY AFRICA 2020. [DOI: 10.1007/s42250-020-00148-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Antistatic Structural Color and Photoluminescent Membranes from Co-assembling Cellulose Nanocrystals and Carbon Nanomaterials for Anti-counterfeiting. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2414-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Patel DK, Dutta SD, Lim KT. Nanocellulose-based polymer hybrids and their emerging applications in biomedical engineering and water purification. RSC Adv 2019; 9:19143-19162. [PMID: 35516880 PMCID: PMC9065078 DOI: 10.1039/c9ra03261d] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/29/2019] [Indexed: 01/03/2023] Open
Abstract
Nanocellulose, derived from cellulose hydrolysis, has unique optical and mechanical properties, high surface area, and good biocompatibility. It is frequently used as a reinforcing agent to improve the native properties of materials. The presence of functional groups in its surface enables the alteration of its behavior and its use under different conditions. Nanocellulose is typically used in the form of cellulose nanocrystals (CNCs), cellulose nanofibers (CNFs), or bacterial nanocellulose (BNC). CNCs and CNFs have a high aspect ratio with typical lengths of ∼100-250 nm and 0.1-2 μm, respectively; BNC is nanostructured cellulose produced by bacteria. Nanohybrid materials are a combination of organic or inorganic nanomaterials with macromolecules forming a single composite and typically exhibit superior optical, thermal, and mechanical properties to those of native polymers, owing to the greater interactions between the macromolecule matrix and the nanomaterials. Excellent biocompatibility and biodegradability make nanocellulose an ideal material for applications in biomedicine. Unlike native polymers, nanocellulose-based nanohybrids exhibit a sustained drug release ability, which can be further optimized by changing the content or chemical environment of the nanocellulose, as well as the external stimuli, such as the pH and electric fields. In this review, we describe the process of extraction of nanocellulose from different natural sources; its effects on the structural, morphological, and mechanical properties of polymers; and its various applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- The Institute of Forest Science, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
25
|
3D porous structured polyaniline/reduced graphene oxide/copper oxide decorated electrode for high performance nonenzymatic glucose detection. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Abdi MM, Razalli RL, Tahir PM, Chaibakhsh N, Hassani M, Mir M. Optimized fabrication of newly cholesterol biosensor based on nanocellulose. Int J Biol Macromol 2019; 126:1213-1222. [DOI: 10.1016/j.ijbiomac.2019.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/29/2018] [Accepted: 01/01/2019] [Indexed: 01/05/2023]
|
27
|
A Surfactant Directed Microcrystalline Cellulose/Polyaniline Composite with Enhanced Electrochemical Properties. MOLECULES (BASEL, SWITZERLAND) 2018; 23:molecules23102470. [PMID: 30261640 PMCID: PMC6222904 DOI: 10.3390/molecules23102470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/09/2018] [Accepted: 08/24/2018] [Indexed: 11/17/2022]
Abstract
In this study a cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as a soft template for in situ chemical polymerization of aniline on the surface of microcrystalline cellulose (MCC). The morphology of the wire-like and porous nanostructure of the resulting composite was highly dependent on the MCC and CTAB concentrations. The effect of the MCC and CTAB concentrations on the electrochemical and morphological properties of the polyaniline (PAni) nanocomposite was studied. Cyclic voltammograms of modified PAni/MCC/CTAB electrode displayed a high current response and the effect of scan rate on the current response confirmed a diffusion controlled process on the surface of the electrode that makes it suitable for sensor applications. The overlapping characteristic peaks of pure PAni and MCC caused peak broadening at 3263 cm-1 in the IR spectra of PAni/MCC/CTAB nanocomposite that revealed the interaction between NH of PAni and OH group of MCC via electrostatic interactions. The addition of MCC to PAni through chemical polymerization decreased the thermal stability of composite compared to pure PAni. Lower crystallinity was observed in the XRD diffractogram, with 2 theta values of 22.8, 16.5, and 34.6 for PAni/MCC, confirming the formation of PAni on the MCC surface.
Collapse
|
28
|
Shak KPY, Pang YL, Mah SK. Nanocellulose: Recent advances and its prospects in environmental remediation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2479-2498. [PMID: 30345212 PMCID: PMC6176822 DOI: 10.3762/bjnano.9.232] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/27/2018] [Indexed: 05/20/2023]
Abstract
Among many other sustainable functional nanomaterials, nanocellulose is drawing increasing interest for use in environmental remediation technologies due to its numerous unique properties and functionalities. Nanocellulose is usually derived from the disintegration of naturally occurring polymers or produced by the action of bacteria. In this review, some invigorating perspectives on the challenges, future direction, and updates on the most relevant uses of nanocellulose in environmental remediation are discussed. The reported applications and properties of nanocellulose as an adsorbent, photocatalyst, flocculant, and membrane are reviewed in particular. However, additional effort will be required to implement and commercialize nanocellulose as a viable nanomaterial for remediation technologies. In this regard, the main challenges and limitations in working with nanocellulose-based materials are identified in an effort to improve the development and efficient use of nanocellulose in environmental remediation.
Collapse
Affiliation(s)
- Katrina Pui Yee Shak
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000 Kajang, Selangor Darul Ehsan, Malaysia
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000 Kajang, Selangor Darul Ehsan, Malaysia
| | - Shee Keat Mah
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000 Kajang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
29
|
T. V. J, K. P. SH, N. S, V. S, Balan AK, E. P. Polyaniline modified lignocellulosic fibers from sago seed shell powder for electrochemical devices. RSC Adv 2018; 8:34388-34396. [PMID: 35548630 PMCID: PMC9086912 DOI: 10.1039/c8ra05774e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/29/2018] [Indexed: 11/21/2022] Open
Abstract
We report the development of a novel electrode material from agrarian waste, sago (Cycas circinalis) seed shell powder (SSP). Lignocellulosic fibers obtained from sago seed shell powder were modified with polyaniline (PANI) by an in situ oxidative polymerization technique. Morphological changes, thermal stability and crystallinity of modified SSP were investigated using FTIR, XRD, SEM, TGA and DSC techniques. The structural organization of SSP with the monomer of PANI significantly influenced the thermal and electrical properties of resulting PANI-SSP composite material. The developed PANI-SSP composite showed enhanced thermal stability up to 308 °C with appreciable dc-conductivity in the range of 10−1 S cm−1 having very low activation energy of 0.0153 eV. The I–V characteristics of the composite exhibited nonohmic behaviour similar to a diode. Thus, the chemical modification of lignocelluloses fibers opens up a new avenue for fabricating cheap, eco-friendly substrates for energy storage devices, disposable electronic applications and diverse scopes for research and development. We report the development of a novel electrode material from agrarian waste, sago (Cycas circinalis) seed shell powder (SSP).![]()
Collapse
Affiliation(s)
- Jinitha T. V.
- Department of Chemistry
- University of Calicut
- Malappuram
- India 673635
| | | | - Subair N.
- Department of Chemistry
- University of Calicut
- Malappuram
- India 673635
| | - Shaniba V.
- Department of Chemistry
- University of Calicut
- Malappuram
- India 673635
| | - Aparna K. Balan
- Department of Chemistry
- University of Calicut
- Malappuram
- India 673635
| | - Purushothaman E.
- Department of Chemistry
- University of Calicut
- Malappuram
- India 673635
| |
Collapse
|