1
|
Johnson CL, Storm DJ, Sajjad MA, Gyton MR, Duckett SB, Macgregor SA, Weller AS, Navarro M, Campos J. A Gold(I)-Acetylene Complex Synthesised using Single-Crystal Reactivity. Angew Chem Int Ed Engl 2024; 63:e202404264. [PMID: 38699962 DOI: 10.1002/anie.202404264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Using single-crystal to single-crystal solid/gas reactivity the gold(I) acetylene complex [Au(L1)(η2-HC≡CH)][BArF 4] is cleanly synthesized by addition of acetylene gas to single crystals of [Au(L1)(CO)][BArF 4] [L1=tris-2-(4,4'-di-tert-butylbiphenyl)phosphine, ArF=3,5-(CF3)2C6H3]. This simplest gold-alkyne complex has been characterized by single crystal X-ray diffraction, solution and solid-state NMR spectroscopy and periodic DFT. Bonding of HC≡CH with [Au(L1)]+ comprises both σ-donation and π-backdonation with additional dispersion interactions within the cavity-shaped phosphine.
Collapse
Affiliation(s)
- Chloe L Johnson
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Daniel J Storm
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - M Arif Sajjad
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Matthew R Gyton
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Simon B Duckett
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Stuart A Macgregor
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Andrew S Weller
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Miquel Navarro
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, 41092, Sevilla, Spain
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, 41092, Sevilla, Spain
| |
Collapse
|
2
|
Centeno-Vega I, Megías-Sayago C, Ivanova S. New insights for valorization of polyolefins/light alkanes: catalytic dehydrogenation of n-alkanes by immobilized pincer-iridium complexes. Dalton Trans 2024; 53:11216-11227. [PMID: 38887859 DOI: 10.1039/d4dt00847b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
This scientific review delves into the innovative realm of polyolefins/light alkanes valorization through their catalytic dehydrogenation employing pincer-ligated iridium organometallic complexes. These widely studied catalysts exhibit outstanding properties, although the intrinsic characteristics of homogeneous catalysis (such as challenging product-catalyst separation, poor applicability to continuous-flow processes and low recyclability) limit their activity and industrial application, as well as their thermal stability. Through the immobilization of complexes on inorganic supports, these downsides have been bypassed, harnessing the true potential of these catalysts, affording more selective and stable catalysts in addition to facilitating their implementation in industrial processes. The findings described herein contribute to the advancement in the understanding of catalytic processes in hydrocarbon transformations, offering promising avenues for sustainable and selective production of valuable chemical intermediates from readily available feedstocks.
Collapse
Affiliation(s)
- Ignacio Centeno-Vega
- Departamento de Química Inorgánica, Instituto de Investigaciones Químicas and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Centro Mixto CSIC-Universidad de Sevilla, 41092 Sevilla, Spain.
| | - Cristina Megías-Sayago
- Departamento de Química Inorgánica, Instituto de Investigaciones Químicas and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Centro Mixto CSIC-Universidad de Sevilla, 41092 Sevilla, Spain.
| | - Svetlana Ivanova
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, 41092 Sevilla, Spain
| |
Collapse
|
3
|
Brown S, Warren MR, Kubicki DJ, Fitzpatrick A, Pike SD. Photoinitiated Single-Crystal to Single-Crystal Redox Transformations of Titanium-Oxo Clusters. J Am Chem Soc 2024; 146:17325-17333. [PMID: 38865257 PMCID: PMC11212046 DOI: 10.1021/jacs.4c04068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Titanium-oxo clusters can undergo photochemical reactions under UV light, resulting in the reduction of the titanium-oxo core and oxidation of surface ligands. This is an important step in photocatalytic processes in light-absorbing Ti/O-based clusters, metal-organic frameworks, and (nano)material surfaces; however, studying the direct outcome of this photochemical process is challenging due to the fragility of the immediate photoproducts. In this report, titanium-oxo clusters [TiO(OiPr)(L)]n (n = 4, L = O2PPh2, or n = 6, L = O2CCH2tBu) undergo a two-electron photoredox reaction in the single-crystal state via an irreversible single-crystal to single-crystal (SC-SC) transformation initiated by a UV laser. The process is monitored by single crystal X-ray diffraction revealing the photoreduction of the cluster with coproduction of an (oxidized) acetone ligand, which is retained in the structure as a ligand to Ti(3+). The results demonstrate that photochemistry of inorganic molecules can be studied in the single crystal phase, allowing characterization of photoproducts which are unstable in the solution phase.
Collapse
Affiliation(s)
- Stephen
E. Brown
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Mark R. Warren
- Diamond
Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, U.K.
| | | | - Ann Fitzpatrick
- RAL
Space, Harwell Science & Innovation Campus, Didcot OX11 0QX, U.K.
| | - Sebastian D. Pike
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
4
|
Dias HVR, Parasar D, Yakovenko AA, Stephens PW, Muñoz-Castro Á, Vanga M, Mykhailiuk P, Slobodyanyuk E. In situ studies of reversible solid-gas reactions of ethylene responsive silver pyrazolates. Chem Sci 2024; 15:2019-2025. [PMID: 38332831 PMCID: PMC10848740 DOI: 10.1039/d3sc04182d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024] Open
Abstract
Solid-gas reactions and in situ powder X-ray diffraction investigations of trinuclear silver complexes {[3,4,5-(CF3)3Pz]Ag}3 and {[4-Br-3,5-(CF3)2Pz]Ag}3 supported by highly fluorinated pyrazolates reveal that they undergo intricate ethylene-triggered structural transformations in the solid-state producing dinuclear silver-ethylene adducts. Despite the complexity, the chemistry is reversible producing precursor trimers with the loss of ethylene. Less reactive {[3,5-(CF3)2Pz]Ag}3 under ethylene pressure and low-temperature conditions stops at an unusual silver-ethylene complex in the trinuclear state, which could serve as a model for intermediates likely present in more common trimer-dimer reorganizations described above. Complete structural data of three novel silver-ethylene complexes are presented together with a thorough computational analysis of the mechanism.
Collapse
Affiliation(s)
- H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019 USA
| | - Devaborniny Parasar
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019 USA
| | - Andrey A Yakovenko
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Peter W Stephens
- Department of Physics and Astronomy, Stony Brook University Stony Brook NY 11794-3800 USA
| | - Álvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián Bellavista 7 Santiago 8420524 Chile
| | - Mukundam Vanga
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019 USA
| | - Pavel Mykhailiuk
- Enamine Ltd. Winston Churchill Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv, Faculty of Chemistry Volodymyrska 60 01601 Kyiv Ukraine
| | | |
Collapse
|
5
|
Obeso JL, Huxley MT, de Los Reyes JA, Humphrey SM, Ibarra IA, Peralta RA. Low-Valent Metals in Metal-Organic Frameworks Via Post-Synthetic Modification. Angew Chem Int Ed Engl 2023; 62:e202309025. [PMID: 37614026 DOI: 10.1002/anie.202309025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023]
Abstract
Metal-organic frameworks (MOFs) provide uniquely tunable, periodic platforms for site-isolation of reactive low-valent metal complexes of relevance in modern catalysis, adsorptive applications, and fundamental structural studies. Strategies for integrating such species in MOFs include post-synthetic metalation, encapsulation and direct synthesis using low-valent organometallic complexes as building blocks. These approaches have each proven effective in enhancing catalytic activity, modulating product distributions (i.e., by improving catalytic selectivity), and providing valuable mechanistic insights. In this minireview, we explore these different strategies, as applied to isolate low-valent species within MOFs, with a particular focus on examples that leverage the unique crystallinity, permanent porosity and chemical mutability of MOFs to achieve deep structural insights that lead to new paradigms in the field of hybrid catalysis.
Collapse
Affiliation(s)
- Juan L Obeso
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, Ciudad de México, 04510, Mexico
| | - Michael T Huxley
- School of Physics, Chemistry and Earth Sciences, Faculty of Sciences, Engineering & Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - José Antonio de Los Reyes
- Laboratory of Environmental Catalysis, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México, 09340, México
| | - Simon M Humphrey
- Department of Chemistry, University of Texas at Austin, 4.424 Welch Hall, 105 E. 24th St., Austin, TX, 78712-0165, USA
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, Ciudad de México, 04510, Mexico
| | - Ricardo A Peralta
- Department of Chemistry, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana (UAM-I), Ciudad de México, 09340, Mexico
| |
Collapse
|
6
|
Goodall JC, Sajjad MA, Thompson EA, Page SJ, Kerrigan AM, Jenkins HT, Lynam JM, Macgregor SA, Weller AS. In crystallo lattice adaptivity triggered by solid-gas reactions of cationic group 7 pincer complexes. Chem Commun (Camb) 2023; 59:10749-10752. [PMID: 37602809 PMCID: PMC10484290 DOI: 10.1039/d3cc03201a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
The group 7 complexes [M(κ3-2,6-(R2PO)2C5H3N)(CO)2L][BArF4] [M = Mn, R = iPr, L = THF; M = Re, R = tBu, L = vacant site] undergo in crystallo solid-gas reactivity with CO to form the products of THF substitution or CO addition respectively. There is a large, local, adaptive change of [BArF4] anions for M = Mn, whereas for M = Re the changes are smaller and also remote to the site of reactivity.
Collapse
Affiliation(s)
- Joe C Goodall
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - M Arif Sajjad
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | | | - Samuel J Page
- Department of Chemistry, University of Durham, Durham, DH1 3LE, UK
| | - Adam M Kerrigan
- The York-JEOL Nanocentre, University of York, Heslington, York, YO10 5BR, UK
| | - Huw T Jenkins
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Jason M Lynam
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Stuart A Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Andrew S Weller
- Department of Chemistry, University of York, York, YO10 5DD, UK
| |
Collapse
|
7
|
Sajjad MA, Macgregor SA, Weller AS. A comparison of non-covalent interactions in the crystal structures of two σ-alkane complexes of Rh exhibiting contrasting stabilities in the solid state. Faraday Discuss 2023; 244:222-240. [PMID: 37096331 DOI: 10.1039/d3fd00009e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Non-covalent interactions surrounding the cationic Rh σ-alkane complexes within the crystal structures of [(Cy2PCH2CH2PCy2)Rh(NBA)][BArF4], [1-NBA][BArF4] (NBA = norbornane, C7H12; ArF = 3,5-(CF3)2C6H3), and [1-propane][BArF4] are analysed using Quantum Theory of Atoms in Molecules (QTAIM) and Independent Gradient Model approaches, the latter under a Hirshfeld partitioning scheme (IGMH). In both structures the cations reside in an octahedral array of [BArF4]- anions within which the [1-NBA]+ cation system exhibits a greater number of C-H⋯F contacts to the anions. QTAIM and IGMH analyses indicate these include the strongest individual atom-atom non-covalent interactions between the cation and the anion in these systems. The IGMH approach highlights the directionality of these C-H⋯F contacts that contrasts with the more diffuse C-H⋯π interactions. The accumulative effects of the latter lead to a more significant stabilizing contribution. IGMH %δGatom plots provide a particularly useful visual tool to identify key interactions and highlight the importance of a -{C3H6}- propylene moiety that is present within both the propane and NBA ligands (the latter as a truncated -{C3H4}- unit) and the cyclohexyl rings of the phosphine substituents. The potential for this to act as a privileged motif that confers stability on the crystal structures of σ-alkane complexes in the solid-state is discussed. The greater number of C-H⋯F inter-ion interactions in the [1-NBA][BArF4] system, coupled with more significant C-H⋯π interactions are all consistent with greater non-covalent stabilisation around the [1-NBA]+ cation. This is also supported by larger computed δGatom indices as a measure of cation-anion non-covalent interaction energy.
Collapse
Affiliation(s)
- M Arif Sajjad
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Stuart A Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Andrew S Weller
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
8
|
Gyton M, Royle CG, Beaumont SK, Duckett SB, Weller AS. Mechanistic Insights into Molecular Crystalline Organometallic Heterogeneous Catalysis through Parahydrogen-Based Nuclear Magnetic Resonance Studies. J Am Chem Soc 2023; 145:2619-2629. [PMID: 36688560 PMCID: PMC9896567 DOI: 10.1021/jacs.2c12642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The heterogeneous solid-gas reactions of crystals of [Rh(L2)(propene)][BArF4] (1, L2 = tBu2PCH2CH2PtBu2) with H2 and propene, 1-butene, propyne, or 1-butyne are explored by gas-phase nuclear magnetic resonance (NMR) spectroscopy under batch conditions at 25 °C. The temporal evolution of the resulting parahydrogen-induced polarization (PHIP) effects measures catalytic flux and thus interrogates the efficiency of catalytic pairwise para-H2 transfer, speciation changes in the crystalline catalyst at the molecular level, and allows for high-quality single-scan 1H, 13C NMR gas-phase spectra for the products to be obtained, as well as 2D-measurements. Complex 1 reacts with H2 to form dimeric [Rh(L2)(H)(μ-H)]2[BArF4]2 (4), as probed using EXAFS; meanwhile, a single-crystal of 1 equilibrates NMR silent para-H2 with its NMR active ortho isomer, contemporaneously converting into 4, and 1 and 4 each convert para-H2 into ortho-H2 at different rates. Hydrogenation of propene using 1 and para-H2 results in very high initial polarization levels in propane (>85%). Strong PHIP was also detected in the hydrogenation products of 1-butene, propyne, and 1-butyne. With propyne, a competing cyclotrimerization deactivation process occurs to afford [Rh(tBu2PCH2CH2PtBu2)(1,3,4-Me3C6H3)][BArF4], while with 1-butyne, rapid isomerization of 1-butyne occurs to give a butadiene complex, which then reacts with H2 more slowly to form catalytically active 4. Surprisingly, the high PHIP hydrogenation efficiencies allow hyperpolarization effects to be seen when H2 is taken directly from a regular cylinder at 25 °C. Finally, changing the chelating phosphine to Cy2PCH2CH2PCy2 results in initial high polarization efficiencies for propene hydrogenation, but rapid quenching of the catalyst competes to form the zwitterion [Rh(Cy2PCH2CH2PCy2){η6-(CF3)2(C6H3)}BArF3].
Collapse
Affiliation(s)
- Matthew
R. Gyton
- Department
of Chemistry, University of York, York YO10 5DD, U.K.,Centre
for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Cameron G. Royle
- Department
of Chemistry, University of York, York YO10 5DD, U.K.,Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Simon K. Beaumont
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Simon B. Duckett
- Department
of Chemistry, University of York, York YO10 5DD, U.K.,Centre
for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K.,
| | - Andrew S. Weller
- Department
of Chemistry, University of York, York YO10 5DD, U.K.,
| |
Collapse
|
9
|
Watson JD, Field LD, Ball GE. [Fp(CH 4)] +, [η 5-CpRu(CO) 2(CH 4)] +, and [η 5-CpOs(CO) 2(CH 4)] +: A Complete Set of Group 8 Metal-Methane Complexes. J Am Chem Soc 2022; 144:17622-17629. [PMID: 36121779 DOI: 10.1021/jacs.2c07124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we report the NMR spectroscopic analysis of the group 8 transition metal methane σ-complexes [η5-CpM(CO)2(CH4)][Al(OC(CF3)3)4] (M = Fe, Ru) at -90 °C in the weakly coordinating solvent 1,1,1,3,3,3-hexafluoropropane. The iron(II)-methane complex has a 1H resonance at δ -4.27, a 13C resonance at δ -53.0, and 1JC-H = 126 Hz for the bound methane fragment. The ruthenium(II)-methane complex has a 1H resonance at δ -2.10, a 13C resonance at δ -48.8, and a 1JC-H = 126 Hz for the bound methane fragment. DFT and ab initio calculations support these experimental observations and provide further detail on the structures of the [η5-CpM(CO)2(CH4)]+ (M = Fe, Ru) complexes of the Group 8 metals. Both the iron centered methane complex, [η5-CpFe(CO)2(CH4)][Al(OC(CF3)3)4], and the ruthenium centered methane complex, [η5-CpRu(CO)2(CH4)][Al(OC(CF3)3)4], are significantly less stable than the previously reported osmium-methane complex [η5-CpOs(CO)2(CH4)][Al(OC(CF3)3)4].
Collapse
Affiliation(s)
- James D Watson
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Leslie D Field
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Graham E Ball
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
Royle CG, Sotorrios L, Gyton MR, Brodie CN, Burnage AL, Furfari SK, Marini A, Warren MR, Macgregor SA, Weller AS. Single-Crystal to Single-Crystal Addition of H 2 to [Ir( iPr-PONOP)(propene)][BAr F4] and Comparison Between Solid-State and Solution Reactivity. Organometallics 2022; 41:3270-3280. [DOI: 10.1021/acs.organomet.2c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Cameron G. Royle
- Department of Chemistry, University of York, Heslington YO10 5DD, York, U.K
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Lia Sotorrios
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Matthew R. Gyton
- Department of Chemistry, University of York, Heslington YO10 5DD, York, U.K
| | - Claire N. Brodie
- Department of Chemistry, University of York, Heslington YO10 5DD, York, U.K
| | - Arron L. Burnage
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | | | - Anna Marini
- Diamond Light Source Ltd, Didcot OX11 0DE, U.K
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | | | - Stuart A. Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Andrew S. Weller
- Department of Chemistry, University of York, Heslington YO10 5DD, York, U.K
| |
Collapse
|
11
|
Shi Y, Weller AS, Blacker AJ, Dyer PW. Conversion of butanol to propene in flow: A triple dehydration, isomerisation and metathesis cascade. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
12
|
Doyle LR, Thompson EA, Burnage AL, Whitwood AC, Jenkins HT, Macgregor SA, Weller AS. MicroED characterization of a robust cationic σ-alkane complex stabilized by the [B(3,5-(SF 5) 2C 6H 3) 4] - anion, via on-grid solid/gas single-crystal to single-crystal reactivity. Dalton Trans 2022; 51:3661-3665. [PMID: 35156982 PMCID: PMC8902584 DOI: 10.1039/d2dt00335j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Microcrystalline (∼1 μm) [Rh(Cy2PCH2CH2PCy2)(norbornadiene)][S-BArF4], [S-BArF4] = [B(3,5-(SF5)2C6H3)4]−, reacts with H2 in a single-crystal to single-crystal transformation to form the σ-alkane complex [Rh(Cy2PCH2CH2PCy2)(norbornane)][S-BArF4], for which the structure was determined by microcrystal Electron Diffraction (microED), to 0.95 Å resolution, via an on-grid hydrogenation, and a complementary single-crystal X-ray diffraction study on larger, but challenging to isolate, crystals. Comparison with the [BArF4]− analogue [ArF = 3,5-(CF3)2(C6H3)] shows that the [S-BArF4]− anion makes the σ-alkane complex robust towards decomposition both thermally and when suspended in pentane. Subsequent reactivity with dissolved ethene in a pentane slurry, forms [Rh(Cy2PCH2CH2PCy2)(ethene)2][S-BArF4], and the catalytic dimerisation/isomerisation of ethene to 2-butenes. The increased stability of [S-BArF4]− salts is identified as being due to increased non-covalent interactions in the lattice, resulting in a solid-state molecular organometallic material with desirable stability characteristics. The thermally and chemically robust σ-alkane complex [Rh(Cy2PCH2CH2PCy2)(norborane)][B(3,5-(SF5)2C6H3)4] is characterized by micro-electron diffraction using on-grid single-crystal to single-crystal reactivity.![]()
Collapse
Affiliation(s)
- Laurence R Doyle
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Emily A Thompson
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Arron L Burnage
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Adrian C Whitwood
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Huw T Jenkins
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Stuart A Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Andrew S Weller
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
13
|
Doyle LR, Galpin MR, Furfari SK, Tegner BE, Martínez-Martínez AJ, Whitwood AC, Hicks SA, Lloyd-Jones GC, Macgregor SA, Weller AS. Inverse Isotope Effects in Single-Crystal to Single-Crystal Reactivity and the Isolation of a Rhodium Cyclooctane σ-Alkane Complex. Organometallics 2022; 41:284-292. [PMID: 35273423 PMCID: PMC8900153 DOI: 10.1021/acs.organomet.1c00639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 12/15/2022]
Abstract
![]()
The
sequential solid/gas single-crystal to single-crystal reaction
of [Rh(Cy2P(CH2)3PCy2)(COD)][BArF4] (COD = cyclooctadiene) with H2 or
D2 was followed in situ by solid-state 31P{1H} NMR spectroscopy (SSNMR) and ex situ by solution quenching
and GC-MS. This was quantified using a two-step Johnson–Mehl–Avrami–Kologoromov
(JMAK) model that revealed an inverse isotope effect for the second
addition of H2, that forms a σ-alkane complex [Rh(Cy2P(CH2)3PCy2)(COA)][BArF4]. Using D2, a temporal window is determined
in which a structural solution for this σ-alkane complex is
possible, which reveals an η2,η2-binding mode to the Rh(I) center, as supported by periodic density
functional theory (DFT) calculations. Extensive H/D exchange occurs
during the addition of D2, as promoted by the solid-state
microenvironment.
Collapse
Affiliation(s)
- Laurence R. Doyle
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Martin R. Galpin
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, Oxford OX1 3QZ, United Kingdom
| | - Samantha K. Furfari
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Bengt E. Tegner
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom
| | | | - Adrian C. Whitwood
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Scott A. Hicks
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Guy C. Lloyd-Jones
- Department of Chemistry, University of Edinburgh, Edinburgh, Scotland EH9 3FJ, United Kingdom
| | - Stuart A. Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom
| | - Andrew S. Weller
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
14
|
Peralta RA, Huxley MT, Albalad J, Sumby CJ, Doonan CJ. Single-Crystal-to-Single-Crystal Transformations of Metal-Organic-Framework-Supported, Site-Isolated Trigonal-Planar Cu(I) Complexes with Labile Ligands. Inorg Chem 2021; 60:11775-11783. [PMID: 34160208 DOI: 10.1021/acs.inorgchem.1c00849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transition-metal complexes bearing labile ligands can be difficult to isolate and study in solution because of unwanted dinucleation or ligand substitution reactions. Metal-organic frameworks (MOFs) provide a unique matrix that allows site isolation and stabilization of well-defined transition-metal complexes that may be of importance as moieties for gas adsorption or catalysis. Herein we report the development of an in situ anion metathesis strategy that facilitates the postsynthetic modification of Cu(I) complexes appended to a porous, crystalline MOF. By exchange of coordinated chloride for weakly coordinating anions in the presence of carbon monoxide (CO) or ethylene, a series of labile MOF-appended Cu(I) complexes featuring CO or ethylene ligands are prepared and structurally characterized using X-ray crystallography. These complexes have an uncommon trigonal planar geometry because of the absence of coordinating solvents. The porous host framework allows small and moderately sized molecules to access the isolated Cu(I) sites and displace the "place-holder" CO ligand, mirroring the ligand-exchange processes involved in Cu-centered catalysis.
Collapse
Affiliation(s)
- Ricardo A Peralta
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Michael T Huxley
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Jorge Albalad
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Christopher J Sumby
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Christian J Doonan
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| |
Collapse
|
15
|
Abstract
X-ray crystallography is an invaluable tool in design and development of organometallic catalysis, but application typically requires species to display sufficiently high solution concentrations and lifetimes for single crystalline samples to be obtained. In crystallo organometallic chemistry relies on chemical reactions that proceed within the single-crystal environment to access crystalline samples of reactive organometallic fragments that are unavailable by alternate means. This highlight describes approaches to in crystallo organometallic chemistry including (a) solid-gas reactions between transition metal complexes in molecular crystals and diffusing small molecules, (b) reactions of organometallic complexes within the extended lattices of metal-organic frameworks (MOFs), and (c) intracrystalline photochemical transformations to generate reactive organometallic fragments. Application of these methods has enabled characterization of catalytically important transient species, including σ-alkane adducts of transition metals, metal alkyl intermediates implicated in metal-catalyzed carbonylations, and reactive M-L multiply bonded species involved in C-H functionalization chemistry. Opportunities and challenges for in crystallo organometallic chemistry are discussed.
Collapse
Affiliation(s)
- Kaleb A Reid
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA.
| | - David C Powers
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
16
|
Bukvic A, Burnage AL, Tizzard GJ, Martínez-Martínez AJ, McKay AI, Rees NH, Tegner BE, Krämer T, Fish H, Warren MR, Coles SJ, Macgregor SA, Weller AS. A Series of Crystallographically Characterized Linear and Branched σ-Alkane Complexes of Rhodium: From Propane to 3-Methylpentane. J Am Chem Soc 2021; 143:5106-5120. [PMID: 33769815 PMCID: PMC8154534 DOI: 10.1021/jacs.1c00738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 12/12/2022]
Abstract
Using solid-state molecular organometallic (SMOM) techniques, in particular solid/gas single-crystal to single-crystal reactivity, a series of σ-alkane complexes of the general formula [Rh(Cy2PCH2CH2PCy2)(ηn:ηm-alkane)][BArF4] have been prepared (alkane = propane, 2-methylbutane, hexane, 3-methylpentane; ArF = 3,5-(CF3)2C6H3). These new complexes have been characterized using single crystal X-ray diffraction, solid-state NMR spectroscopy and DFT computational techniques and present a variety of Rh(I)···H-C binding motifs at the metal coordination site: 1,2-η2:η2 (2-methylbutane), 1,3-η2:η2 (propane), 2,4-η2:η2 (hexane), and 1,4-η1:η2 (3-methylpentane). For the linear alkanes propane and hexane, some additional Rh(I)···H-C interactions with the geminal C-H bonds are also evident. The stability of these complexes with respect to alkane loss in the solid state varies with the identity of the alkane: from propane that decomposes rapidly at 295 K to 2-methylbutane that is stable and instead undergoes an acceptorless dehydrogenation to form a bound alkene complex. In each case the alkane sits in a binding pocket defined by the {Rh(Cy2PCH2CH2PCy2)}+ fragment and the surrounding array of [BArF4]- anions. For the propane complex, a small alkane binding energy, driven in part by a lack of stabilizing short contacts with the surrounding anions, correlates with the fleeting stability of this species. 2-Methylbutane forms more short contacts within the binding pocket, and as a result the complex is considerably more stable. However, the complex of the larger 3-methylpentane ligand shows lower stability. Empirically, there therefore appears to be an optimal fit between the size and shape of the alkane and overall stability. Such observations are related to guest/host interactions in solution supramolecular chemistry and the holistic role of 1°, 2°, and 3° environments in metalloenzymes.
Collapse
Affiliation(s)
- Alexander
J. Bukvic
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
- Department
of Chemistry, Chemistry Research Laboratories, University of Oxford, Oxford OX1 3TA, U.K.
| | - Arron L. Burnage
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS. U.K.
| | - Graham J. Tizzard
- UK
National Crystallography Service, University
of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | | | - Alasdair I. McKay
- Department
of Chemistry, Chemistry Research Laboratories, University of Oxford, Oxford OX1 3TA, U.K.
| | - Nicholas H. Rees
- Department
of Chemistry, Chemistry Research Laboratories, University of Oxford, Oxford OX1 3TA, U.K.
| | - Bengt E. Tegner
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS. U.K.
| | - Tobias Krämer
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS. U.K.
| | - Heather Fish
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Mark R. Warren
- Diamond
Light Source Ltd., Diamond House,
Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Simon J. Coles
- UK
National Crystallography Service, University
of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Stuart A. Macgregor
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS. U.K.
| | - Andrew S. Weller
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| |
Collapse
|
17
|
Furfari SK, Tegner BE, Burnage AL, Doyle LR, Bukvic AJ, Macgregor SA, Weller AS. Selectivity of Rh⋅⋅⋅H-C Binding in a σ-Alkane Complex Controlled by the Secondary Microenvironment in the Solid State. Chemistry 2021; 27:3177-3183. [PMID: 33112000 PMCID: PMC7898853 DOI: 10.1002/chem.202004585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Single-crystal to single-crystal solid-state molecular organometallic (SMOM) techniques are used for the synthesis and structural characterization of the σ-alkane complex [Rh(tBu2 PCH2 CH2 CH2 PtBu2 )(η2 ,η2 -C7 H12 )][BArF 4 ] (ArF =3,5-(CF3 )2 C6 H3 ), in which the alkane (norbornane) binds through two exo-C-H⋅⋅⋅Rh interactions. In contrast, the bis-cyclohexyl phosphine analogue shows endo-alkane binding. A comparison of the two systems, supported by periodic DFT calculations, NCI plots and Hirshfeld surface analyses, traces this different regioselectivity to subtle changes in the local microenvironment surrounding the alkane ligand. A tertiary periodic structure supporting a secondary microenvironment that controls binding at the metal site has parallels with enzymes. The new σ-alkane complex is also a catalyst for solid/gas 1-butene isomerization, and catalyst resting states are identified for this.
Collapse
Affiliation(s)
| | - Bengt E. Tegner
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Arron L. Burnage
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | | | - Alexander J. Bukvic
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
- Department of ChemistryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | | | | |
Collapse
|
18
|
Albalad J, Sumby CJ, Maspoch D, Doonan CJ. Elucidating pore chemistry within metal–organic frameworks via single crystal X-ray diffraction; from fundamental understanding to application. CrystEngComm 2021. [DOI: 10.1039/d1ce00067e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The application of metal–organic frameworks (MOFs) to diverse chemical sectors is aided by their crystallinity, which permits the use of X-ray crystallography to characterise their pore chemistry and provides invaluable insight into their properties.
Collapse
Affiliation(s)
- Jorge Albalad
- Department of Chemistry and Centre for Advanced Nanomaterials
- The University of Adelaide
- Adelaide
- Australia
| | - Christopher J. Sumby
- Department of Chemistry and Centre for Advanced Nanomaterials
- The University of Adelaide
- Adelaide
- Australia
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC
- Barcelona Institute of Science and Technology
- Barcelona
- Spain
| | - Christian J. Doonan
- Department of Chemistry and Centre for Advanced Nanomaterials
- The University of Adelaide
- Adelaide
- Australia
| |
Collapse
|
19
|
Peralta RA, Huxley MT, Evans JD, Fallon T, Cao H, He M, Zhao XS, Agnoli S, Sumby CJ, Doonan CJ. Highly Active Gas Phase Organometallic Catalysis Supported Within Metal-Organic Framework Pores. J Am Chem Soc 2020; 142:13533-13543. [PMID: 32650640 DOI: 10.1021/jacs.0c05286] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal-organic frameworks (MOFs) can act as a platform for the heterogenization of molecular catalysts, providing improved stability, allowing easy catalyst recovery and a route toward structural elucidation of the active catalyst. We have developed a MOF, 1, possessing vacant N,N-chelating sites which are accessible via the porous channels that penetrate the structure. In the present work, cationic rhodium(I) norbornadiene (NBD) and bis(ethylene) (ETH) complexes paired with both noncoordinating and coordinating anions have been incorporated into the N,N-chelation sites of 1 via postsynthetic metalation and facile anion exchange. Exploiting the crystallinity of the host framework, the immobilized Rh(I) complexes were structurally characterized using X-ray crystallography. Ethylene hydrogenation catalysis by 1·[Rh(NBD)]X and 1·[Rh(ETH)2]X (X = Cl and BF4) was studied in the gas phase (2 bar, 46 °C) to reveal that 1·[Rh(ETH)2](BF4) was the most active catalyst (TOF = 64 h-1); the NBD materials and the chloride salt were notably less active. On the basis of these observations, the activity of the Rh(I) bis(ethylene) complexes, 1·[Rh(ETH)2]BF4 and 1·[Rh(ETH)2]Cl, in butene isomerization was also studied using gas-phase NMR spectroscopy. Under one bar of butene at 46 °C, 1·[Rh(ETH)2]BF4 rapidly catalyzes the conversion of 1-butene to 2-butene with a TOF averaging 2000 h-1 over five cycles. Notably, the chloride derivative, 1 [Rh(ETH)2]Cl displays negligible activity in comparison. XPS analysis of the postcatalysis sample, supported by DFT calculations, suggest that the catalytic activity is inhibited by the strong interactions between a Rh(III) allyl hydride intermediate and the chloride anion.
Collapse
Affiliation(s)
- Ricardo A Peralta
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Michael T Huxley
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Jack D Evans
- Department of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, 01062 Dresden, Germany
| | - Thomas Fallon
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Haijie Cao
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Xiu Song Zhao
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.,School of Chemical Engineering, The University of Queensland, St Lucia,Brisbane 4072, Australia
| | - Stefano Agnoli
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Christopher J Sumby
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Christian J Doonan
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| |
Collapse
|
20
|
Bukvic AJ, Crivoi DG, Garwood HG, McKay AI, Chen TTD, Martínez-Martínez AJ, Weller AS. Tolerant to air σ-alkane complexes by surface modification of single crystalline solid-state molecular organometallics using vapour-phase cationic polymerisation: SMOM@polymer. Chem Commun (Camb) 2020; 56:4328-4331. [PMID: 32191244 DOI: 10.1039/d0cc01140a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vapour-phase surface-initiated cationic polymerisation of ethylvinylether occurs at single-crystals of the σ-alkane complex [Rh(Cy2PCH2CH2PCy2)(NBA)][BArF4]. This new surface interface makes these normally very air sensitive materials tolerant to air, while also allowing for onward single-crystal to single-crystal reactivity at metal sites within the lattice.
Collapse
Affiliation(s)
- Alexander J Bukvic
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Boyd TM, Tegner BE, Tizzard GJ, Martínez‐Martínez AJ, Neale SE, Hayward MA, Coles SJ, Macgregor SA, Weller AS. A Structurally Characterized Cobalt(I) σ-Alkane Complex. Angew Chem Int Ed Engl 2020; 59:6177-6181. [PMID: 31943626 PMCID: PMC7187152 DOI: 10.1002/anie.201914940] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Indexed: 11/11/2022]
Abstract
A cobalt σ-alkane complex, [Co(Cy2 P(CH2 )4 PCy2 )(norbornane)][BArF 4 ], was synthesized by a single-crystal to single-crystal solid/gas hydrogenation from a norbornadiene precursor, and its structure was determined by X-ray crystallography. Magnetic data show this complex to be a triplet. Periodic DFT and electronic structure analyses revealed weak C-H→Co σ-interactions, augmented by dispersive stabilization between the alkane ligand and the anion microenvironment. The calculations are most consistent with a η1 :η1 -alkane binding mode.
Collapse
Affiliation(s)
- Timothy M. Boyd
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of OxfordOxfordOX1 3TAUK
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
| | - Bengt E. Tegner
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Graham J. Tizzard
- UK National Crystallography ServiceChemistryFaculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | | | - Samuel E. Neale
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Michael A. Hayward
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of OxfordOxfordOX1 3TAUK
| | - Simon J. Coles
- UK National Crystallography ServiceChemistryFaculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | | | - Andrew S. Weller
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of OxfordOxfordOX1 3TAUK
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
| |
Collapse
|
22
|
Young RJ, Huxley MT, Pardo E, Champness NR, Sumby CJ, Doonan CJ. Isolating reactive metal-based species in Metal-Organic Frameworks - viable strategies and opportunities. Chem Sci 2020; 11:4031-4050. [PMID: 34122871 PMCID: PMC8152792 DOI: 10.1039/d0sc00485e] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/19/2020] [Indexed: 02/01/2023] Open
Abstract
Structural insight into reactive species can be achieved via strategies such as matrix isolation in frozen glasses, whereby species are kinetically trapped, or by confinement within the cavities of host molecules. More recently, Metal-Organic Frameworks (MOFs) have been used as molecular scaffolds to isolate reactive metal-based species within their ordered pore networks. These studies have uncovered new reactivity, allowed observation of novel metal-based complexes and clusters, and elucidated the nature of metal-centred reactions responsible for catalysis. This perspective considers strategies by which metal species can be introduced into MOFs and highlights some of the advantages and limitations of each approach. Furthermore, the growing body of work whereby reactive species can be isolated and structurally characterised within a MOF matrix will be reviewed, including discussion of salient examples and the provision of useful guidelines for the design of new systems. Novel approaches that facilitate detailed structural analysis of reactive chemical moieties are of considerable interest as the knowledge garnered underpins our understanding of reactivity and thus guides the synthesis of materials with unprecedented functionality.
Collapse
Affiliation(s)
- Rosemary J Young
- Department of Chemistry, Centre for Advanced Nanomaterials, The University of Adelaide Adelaide Australia
- School of Chemistry, The University of Nottingham Nottingham UK
| | - Michael T Huxley
- Department of Chemistry, Centre for Advanced Nanomaterials, The University of Adelaide Adelaide Australia
| | - Emilio Pardo
- Institute of Molecular Science, University of Valencia Valencia Spain
| | | | - Christopher J Sumby
- Department of Chemistry, Centre for Advanced Nanomaterials, The University of Adelaide Adelaide Australia
| | - Christian J Doonan
- Department of Chemistry, Centre for Advanced Nanomaterials, The University of Adelaide Adelaide Australia
| |
Collapse
|
23
|
McKay AI, Barwick‐Silk J, Savage M, Willis MC, Weller AS. Synthesis of Highly Fluorinated Arene Complexes of [Rh(Chelating Phosphine)] + Cations, and their use in Synthesis and Catalysis. Chemistry 2020; 26:2883-2889. [PMID: 31749160 PMCID: PMC7078928 DOI: 10.1002/chem.201904668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/19/2019] [Indexed: 11/17/2022]
Abstract
The synthesis of rhodium complexes with weakly binding highly fluorinated benzene ligands is described: 1,2,3-F3 C6 H3 , 1,2,3,4-F4 C6 H2 and 1,2,3,4,5-F5 C6 H are shown to bind with cationic [Rh(Cy2 P(CH2 )x PCy2 )]+ fragments (x=1, 2). Their structures and reactivity with alkenes, and use in catalysis for promoting the Tishchenko reaction of a simple aldehyde, are demonstrated. Key to the synthesis of these complexes is the highly concentrated reaction conditions and use of the [Al{OC(CF3 )3 }4 ]- anion.
Collapse
Affiliation(s)
- Alasdair I. McKay
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - James Barwick‐Silk
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Max Savage
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Michael C. Willis
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Andrew S. Weller
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
| |
Collapse
|
24
|
Boyd TM, Tegner BE, Tizzard GJ, Martínez‐Martínez AJ, Neale SE, Hayward MA, Coles SJ, Macgregor SA, Weller AS. A Structurally Characterized Cobalt(I) σ‐Alkane Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Timothy M. Boyd
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of Oxford Oxford OX1 3TA UK
- Department of ChemistryUniversity of York York YO10 5DD UK
| | - Bengt E. Tegner
- Institute of Chemical SciencesHeriot-Watt University Edinburgh EH14 4AS UK
| | - Graham J. Tizzard
- UK National Crystallography ServiceChemistryFaculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| | | | - Samuel E. Neale
- Institute of Chemical SciencesHeriot-Watt University Edinburgh EH14 4AS UK
| | - Michael A. Hayward
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of Oxford Oxford OX1 3TA UK
| | - Simon J. Coles
- UK National Crystallography ServiceChemistryFaculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| | | | - Andrew S. Weller
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of Oxford Oxford OX1 3TA UK
- Department of ChemistryUniversity of York York YO10 5DD UK
| |
Collapse
|
25
|
Martínez-Martínez AJ, Royle CG, Furfari SK, Suriye K, Weller AS. Solid-State Molecular Organometallic Catalysis in Gas/Solid Flow (Flow-SMOM) as Demonstrated by Efficient Room Temperature and Pressure 1-Butene Isomerization. ACS Catal 2020; 10:1984-1992. [PMID: 32296595 PMCID: PMC7147255 DOI: 10.1021/acscatal.9b03727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/05/2020] [Indexed: 02/06/2023]
Abstract
![]()
The
use of solid–state molecular organometallic chemistry
(SMOM–chem) to promote the efficient double bond isomerization
of 1-butene to 2-butenes under flow–reactor conditions is reported.
Single crystalline catalysts based upon the σ-alkane complexes
[Rh(R2PCH2CH2PR2)(η2η2-NBA)][BArF4] (R
= Cy, tBu; NBA = norbornane; ArF = 3,5-(CF3)2C6H3) are prepared by hydrogenation
of a norbornadiene precursor. For the tBu-substituted system
this results in the loss of long-range order, which can be re-established
by addition of 1-butene to the material to form a mixture of [Rh(tBu2PCH2CH2PtBu2)(cis-2-butene)][BArF4] and [Rh(tBu2PCH2CH2PtBu2)(1-butene)][BArF4], in an order/disorder/order phase change. Deployment under flow-reactor
conditions results in very different on-stream stabilities. With R
= Cy rapid deactivation (3 h) to the butadiene complex occurs, [Rh(Cy2PCH2CH2PCy2)(butadiene)][BArF4], which can be reactivated by simple addition
of H2. While the equivalent butadiene complex does not
form with R = tBu at 298 K and on-stream conversion
is retained up to 90 h, deactivation is suggested to occur via loss
of crystallinity of the SMOM catalyst. Both systems operate under
the industrially relevant conditions of an isobutene co-feed. cis:trans
selectivites for 2-butene are biased in favor of cis for the tBu system and are more leveled for Cy.
Collapse
Affiliation(s)
| | - Cameron G. Royle
- Department of Chemistry, Chemistry Research Laboratories, University of Oxford, Oxford OX1 3TA, United Kingdom
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingsdom
| | - Samantha K. Furfari
- Department of Chemistry, Chemistry Research Laboratories, University of Oxford, Oxford OX1 3TA, United Kingdom
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingsdom
| | - Kongkiat Suriye
- SCG Chemicals, 1 Siam Cement Road, Bangsue, Bangkok 10800, Thailand
| | - Andrew S. Weller
- Department of Chemistry, Chemistry Research Laboratories, University of Oxford, Oxford OX1 3TA, United Kingdom
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingsdom
| |
Collapse
|
26
|
Martínez‐Martínez AJ, Rees NH, Weller AS. Reversible Encapsulation of Xenon and CH
2
Cl
2
in a Solid‐State Molecular Organometallic Framework (Guest@SMOM). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Antonio J. Martínez‐Martínez
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of Oxford Oxford OX1 3TA UK
- Current Address: CIQSO-Centre for Research in Sustainable Chemistry and Department of ChemistryUniversity of Huelva Campus El Carmen 21007 Huelva Spain
| | - Nicholas H. Rees
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of Oxford Oxford OX1 3TA UK
| | - Andrew S. Weller
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of Oxford Oxford OX1 3TA UK
| |
Collapse
|
27
|
Martínez‐Martínez AJ, Rees NH, Weller AS. Reversible Encapsulation of Xenon and CH 2 Cl 2 in a Solid-State Molecular Organometallic Framework (Guest@SMOM). Angew Chem Int Ed Engl 2019; 58:16873-16877. [PMID: 31539184 PMCID: PMC6899477 DOI: 10.1002/anie.201910539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Indexed: 12/22/2022]
Abstract
Reversible encapsulation of CH2 Cl2 or Xe in a non-porous solid-state molecular organometallic framework of [Rh(Cy2 PCH2 PCy2 )(NBD)][BArF4 ] occurs in single-crystal to single-crystal transformations. These processes are probed by solid-state NMR spectroscopy, including 129 Xe SSNMR. Non-covalent interactions with the -CF3 groups, and hydrophobic channels formed, of [BArF4 ]- anions are shown to be important, and thus have similarity to the transport of substrates and products to and from the active site in metalloenzymes.
Collapse
Affiliation(s)
- Antonio J. Martínez‐Martínez
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of OxfordOxfordOX1 3TAUK
- Current Address: CIQSO-Centre for Research in Sustainable Chemistry and Department of ChemistryUniversity of HuelvaCampus El Carmen21007HuelvaSpain
| | - Nicholas H. Rees
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of OxfordOxfordOX1 3TAUK
| | - Andrew S. Weller
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of OxfordOxfordOX1 3TAUK
| |
Collapse
|
28
|
Møller MS, Haag A, McKee V, McKenzie CJ. NO sorption, in-crystal nitrite and nitrate production with arylamine oxidation in gas-solid single crystal to single crystal reactions. Chem Commun (Camb) 2019; 55:10551-10554. [PMID: 31414677 DOI: 10.1039/c9cc05315h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bridging nitrite and a nitrate counter anion per Co2 site are generated in-crystal and an arylamine group on the ligand scaffold is oxidised to a nitro group when nitric oxide (NO) is chemisorbed by molecular crystals of cobalt complexes.
Collapse
Affiliation(s)
- Mads Sondrup Møller
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | | | | | |
Collapse
|
29
|
McKay AI, Bukvic AJ, Tegner BE, Burnage AL, Martı Nez-Martı Nez AJ, Rees NH, Macgregor SA, Weller AS. Room Temperature Acceptorless Alkane Dehydrogenation from Molecular σ-Alkane Complexes. J Am Chem Soc 2019; 141:11700-11712. [PMID: 31246012 PMCID: PMC7007236 DOI: 10.1021/jacs.9b05577] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The non-oxidative catalytic dehydrogenation of light alkanes via C-H activation is a highly endothermic process that generally requires high temperatures and/or a sacrificial hydrogen acceptor to overcome unfavorable thermodynamics. This is complicated by alkanes being such poor ligands, meaning that binding at metal centers prior to C-H activation is disfavored. We demonstrate that by biasing the pre-equilibrium of alkane binding, by using solid-state molecular organometallic chemistry (SMOM-chem), well-defined isobutane and cyclohexane σ-complexes, [Rh(Cy2PCH2CH2PCy2)(η:η-(H3C)CH(CH3)2][BArF4] and [Rh(Cy2PCH2CH2PCy2)(η:η-C6H12)][BArF4] can be prepared by simple hydrogenation in a solid/gas single-crystal to single-crystal transformation of precursor alkene complexes. Solid-gas H/D exchange with D2 occurs at all C-H bonds in both alkane complexes, pointing to a variety of low energy fluxional processes that occur for the bound alkane ligands in the solid-state. These are probed by variable temperature solid-state nuclear magnetic resonance experiments and periodic density functional theory (DFT) calculations. These alkane σ-complexes undergo spontaneous acceptorless dehydrogenation at 298 K to reform the corresponding isobutene and cyclohexadiene complexes, by simple application of vacuum or Ar-flow to remove H2. These processes can be followed temporally, and modeled using classical chemical, or Johnson-Mehl-Avrami-Kologoromov, kinetics. When per-deuteration is coupled with dehydrogenation of cyclohexane to cyclohexadiene, this allows for two successive KIEs to be determined [kH/kD = 3.6(5) and 10.8(6)], showing that the rate-determining steps involve C-H activation. Periodic DFT calculations predict overall barriers of 20.6 and 24.4 kcal/mol for the two dehydrogenation steps, in good agreement with the values determined experimentally. The calculations also identify significant C-H bond elongation in both rate-limiting transition states and suggest that the large kH/kD for the second dehydrogenation results from a pre-equilibrium involving C-H oxidative cleavage and a subsequent rate-limiting β-H transfer step.
Collapse
Affiliation(s)
- Alasdair I McKay
- Chemistry Research Laboratories, University of Oxford , Oxford OX1 3TA , United Kingdom
| | - Alexander J Bukvic
- Chemistry Research Laboratories, University of Oxford , Oxford OX1 3TA , United Kingdom
| | - Bengt E Tegner
- Institute of Chemical Sciences, Heriot Watt University , Edinburgh EH14 4AS , United Kingdom
| | - Arron L Burnage
- Institute of Chemical Sciences, Heriot Watt University , Edinburgh EH14 4AS , United Kingdom
| | | | - Nicholas H Rees
- Chemistry Research Laboratories, University of Oxford , Oxford OX1 3TA , United Kingdom
| | - Stuart A Macgregor
- Institute of Chemical Sciences, Heriot Watt University , Edinburgh EH14 4AS , United Kingdom
| | - Andrew S Weller
- Chemistry Research Laboratories, University of Oxford , Oxford OX1 3TA , United Kingdom
| |
Collapse
|
30
|
Bartlett SA, Besley NA, Dent AJ, Diaz-Moreno S, Evans J, Hamilton ML, Hanson-Heine MWD, Horvath R, Manici V, Sun XZ, Towrie M, Wu L, Zhang X, George MW. Monitoring the Formation and Reactivity of Organometallic Alkane and Fluoroalkane Complexes with Silanes and Xe Using Time-Resolved X-ray Absorption Fine Structure Spectroscopy. J Am Chem Soc 2019; 141:11471-11480. [DOI: 10.1021/jacs.8b13848] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stuart A. Bartlett
- DySS, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, U.K
- School of Chemistry, The University of Sydney, Eastern Avenue, Sydney, NSW 2006, Australia
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Nicholas A. Besley
- School of Chemistry, University of Nottingham, University Park NG7 2RD, U.K
| | - Andrew J. Dent
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - Sofia Diaz-Moreno
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - John Evans
- DySS, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, U.K
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
- Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Michelle L. Hamilton
- DySS, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, U.K
- School of Chemistry, University of Nottingham, University Park NG7 2RD, U.K
| | | | - Raphael Horvath
- School of Chemistry, University of Nottingham, University Park NG7 2RD, U.K
| | - Valentina Manici
- DySS, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, U.K
- School of Chemistry, University of Nottingham, University Park NG7 2RD, U.K
| | - Xue-Zhong Sun
- School of Chemistry, University of Nottingham, University Park NG7 2RD, U.K
| | - Michael Towrie
- DySS, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, U.K
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, U.K
| | - Lingjun Wu
- School of Chemistry, University of Nottingham, University Park NG7 2RD, U.K
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Michael W. George
- DySS, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, U.K
- School of Chemistry, University of Nottingham, University Park NG7 2RD, U.K
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China
| |
Collapse
|
31
|
Swidan A, St. Onge PBJ, Binder JF, Suter R, Burford N, Macdonald CLB. 2,6-Bis(benzimidazol-2-yl)pyridine complexes of group 14 elements. Dalton Trans 2019; 48:7835-7843. [DOI: 10.1039/c9dt00995g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Variants of the 2,6-bis(benzimidazol-2-yl)pyridine ligand are used to synthesize novel group 14 complexes of germanium and tin. The salts are characterized by X-ray crystallography, NMR, UV-vis, and the Lewis acidity of some examples are probed.
Collapse
Affiliation(s)
- Ala'aeddeen Swidan
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | | | - Justin F. Binder
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | - Riccardo Suter
- Department of Chemistry
- University of Victoria
- Victoria
- Canada
| | - Neil Burford
- Department of Chemistry
- University of Victoria
- Victoria
- Canada
| | - Charles L. B. Macdonald
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
- Department of Chemistry
| |
Collapse
|
32
|
Wu X, Liu Z, Murphy TS, Sun XZ, Hanson-Heine MWD, Towrie M, Harvey JN, George MW. The effect of coordination of alkanes, Xe and CO 2 (η 1-OCO) on changes in spin state and reactivity in organometallic chemistry: a combined experimental and theoretical study of the photochemistry of CpMn(CO) 3. Faraday Discuss 2019; 220:86-104. [PMID: 31608916 DOI: 10.1039/c9fd00067d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined experimental and theoretical study is presented of several ligand addition reactions of the triplet fragment 3CpMn(CO)2 formed upon photolysis of CpMn(CO)3. Experimental data are provided for reactions in n-heptane and perfluoromethylcyclohexane (PFMCH), as well as in PFMCH doped with C2H6, Xe and CO2. In PFMCH we find that the conversion of 3CpMn(CO)2 to 1CpMn(CO)2(PFMCH) is much slower (τ = 18 (±3) ns) than the corresponding reactions in conventional alkanes (τ = 111 (±10) ps). We measure the effect of the coordination ability by doping PFMCH with alkane, Xe and CO2; these doped ligands form the corresponding singlet adducts with significantly variable formation rates. The reactivity as measured by the addition timescale follows the order 1CpMn(CO)2(C5H10) (τ = 270 (±10) ps) > 1CpMn(CO)2Xe (τ = 3.9 (±0.4) ns) ∼ 1CpMn(CO)2(CO2) (τ = 4.7 (±0.5) ns) > 1CpMn(CO)2(C7F14) (τ = 18 (±3) ns). Electronic structure theory calculations of the singlet and triplet potential energy surfaces and of their intersections, together with non-adiabatic statistical rate theory, reproduce the observed rates semi-quantitatively. It is shown that triplet adducts of the ligand and 3CpMn(CO)2 play a role in the kinetics, and account for the variable timescales observed experimentally.
Collapse
Affiliation(s)
- Xue Wu
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bai X, Wang J, He Y. Iridium‐Catalyzed Propenylation Reactions for the Synthesis of 4‐Pyridone Derivatives. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xue‐dan Bai
- School of Chemical EngineeringNanjing University of Science & Technology Nanjing 210094 People's Republic of China
| | - Jie Wang
- School of Chemical EngineeringNanjing University of Science & Technology Nanjing 210094 People's Republic of China
| | - Ying He
- School of Chemical EngineeringNanjing University of Science & Technology Nanjing 210094 People's Republic of China
| |
Collapse
|
34
|
Sethi NK, Whitwood AC, Bruce DW. Sequential X-ray-Induced Single-Crystal to Single-Crystal Transformation followed by Topotactic Reduction in a Potassium Crown Ether Complex of Tetrachloroaurate(III). Inorg Chem 2018; 57:13524-13532. [PMID: 30288981 DOI: 10.1021/acs.inorgchem.8b02130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During data collection, the unreported potassium crown ether salt [K(18-crown-6][AuCl4] undergoes a sequential X-ray-induced and irreversible single-crystal to single-crystal transformation from P1̅ to C2/ c followed by a topotactic reduction to crystalline [K(18-crown-6][AuCl2] within the same C2/ c space group.
Collapse
Affiliation(s)
- Navpreet K Sethi
- Department of Chemistry , University of York , Heslington , York YO10 5DD , United Kingdom
| | - Adrian C Whitwood
- Department of Chemistry , University of York , Heslington , York YO10 5DD , United Kingdom
| | - Duncan W Bruce
- Department of Chemistry , University of York , Heslington , York YO10 5DD , United Kingdom
| |
Collapse
|
35
|
Martínez-Martínez AJ, Tegner BE, McKay AI, Bukvic AJ, Rees NH, Tizzard GJ, Coles SJ, Warren MR, Macgregor SA, Weller AS. Modulation of σ-Alkane Interactions in [Rh(L 2)(alkane)] + Solid-State Molecular Organometallic (SMOM) Systems by Variation of the Chelating Phosphine and Alkane: Access to η 2,η 2-σ-Alkane Rh(I), η 1-σ-Alkane Rh(III) Complexes, and Alkane Encapsulation. J Am Chem Soc 2018; 140:14958-14970. [PMID: 30351014 DOI: 10.1021/jacs.8b09364] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solid/gas single-crystal to single-crystal (SC-SC) hydrogenation of appropriate diene precursors forms the corresponding σ-alkane complexes [Rh(Cy2P(CH2) nPCy2)(L)][BArF4] ( n = 3, 4) and [ RhH(Cy2P(CH2)2( CH)(CH2)2PCy2)(L)][BArF4] ( n = 5, L = norbornane, NBA; cyclooctane, COA). Their structures, as determined by single-crystal X-ray diffraction, have cations exhibiting Rh···H-C σ-interactions which are modulated by both the chelating ligand and the identity of the alkane, while all sit in an octahedral anion microenvironment. These range from chelating η2,η2 Rh···H-C (e.g., [Rh(Cy2P(CH2) nPCy2)(η2η2-NBA)][BArF4], n = 3 and 4), through to more weakly bound η1 Rh···H-C in which C-H activation of the chelate backbone has also occurred (e.g., [ RhH(Cy2P(CH2)2( CH)(CH2)2PCy2)(η1-COA)][BArF4]) and ultimately to systems where the alkane is not ligated with the metal center, but sits encapsulated in the supporting anion microenvironment, [Rh(Cy2P(CH2)3PCy2)][COA⊂BArF4], in which the metal center instead forms two intramolecular agostic η1 Rh···H-C interactions with the phosphine cyclohexyl groups. CH2Cl2 adducts formed by displacement of the η1-alkanes in solution ( n = 5; L = NBA, COA), [ RhH(Cy2P(CH2)2( CH)(CH2)2PCy2)(κ1-ClCH2Cl)][BArF4], are characterized crystallographically. Analyses via periodic DFT, QTAIM, NBO, and NCI calculations, alongside variable temperature solid-state NMR spectroscopy, provide snapshots marking the onset of Rh···alkane interactions along a C-H activation trajectory. These are negligible in [Rh(Cy2P(CH2)3PCy2)][COA⊂BArF4]; in [ RhH(Cy2P(CH2)2( CH)(CH2)2PCy2)(η1-COA)][BArF4], σC-H → Rh σ-donation is supported by Rh → σ*C-H "pregostic" donation, and in [Rh(Cy2P(CH2) nPCy2)(η2η2-NBA)][BArF4] ( n = 2-4), σ-donation dominates, supported by classical Rh(dπ) → σ*C-H π-back-donation. Dispersive interactions with the [BArF4]- anions and Cy substituents further stabilize the alkanes within the binding pocket.
Collapse
Affiliation(s)
| | - Bengt E Tegner
- Institute of Chemical Sciences , Heriot-Watt University , Edinburgh EH14 4AS , United Kingdom
| | - Alasdair I McKay
- Chemistry Research Laboratories , University of Oxford , Oxford OX1 3TA , United Kingdom
| | - Alexander J Bukvic
- Chemistry Research Laboratories , University of Oxford , Oxford OX1 3TA , United Kingdom
| | - Nicholas H Rees
- Chemistry Research Laboratories , University of Oxford , Oxford OX1 3TA , United Kingdom
| | - Graham J Tizzard
- UK National Crystallography Service, Chemistry, Faculty of Natural and Environmental Sciences , University of Southampton , Southampton SO17 1BJ , United Kingdom
| | - Simon J Coles
- UK National Crystallography Service, Chemistry, Faculty of Natural and Environmental Sciences , University of Southampton , Southampton SO17 1BJ , United Kingdom
| | - Mark R Warren
- Harwell Science and Innovation Campus, Diamond Light Source Ltd. , Didcot OX11 0DE , United Kingdom
| | - Stuart A Macgregor
- Institute of Chemical Sciences , Heriot-Watt University , Edinburgh EH14 4AS , United Kingdom
| | - Andrew S Weller
- Chemistry Research Laboratories , University of Oxford , Oxford OX1 3TA , United Kingdom
| |
Collapse
|
36
|
Bai W, Zhang JX, Fan T, Tse SKS, Shou W, Sung HHY, Williams ID, Lin Z, Jia G. Syntheses and Structures of Ruthenium Complexes Containing a Ru-H-Tl Three-Center-Two-Electron Bond. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Bai
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong
| | - Jing-Xuan Zhang
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong
| | - Ting Fan
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong
| | - Sunny Kai San Tse
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong
| | - Wangge Shou
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong
| | - Herman H. Y. Sung
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong
| | - Ian D. Williams
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong
| | - Zhenyang Lin
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong
| | - Guochen Jia
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong
| |
Collapse
|
37
|
Bai W, Zhang JX, Fan T, Tse SKS, Shou W, Sung HHY, Williams ID, Lin Z, Jia G. Syntheses and Structures of Ruthenium Complexes Containing a Ru-H-Tl Three-Center-Two-Electron Bond. Angew Chem Int Ed Engl 2018; 57:12874-12879. [DOI: 10.1002/anie.201807174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/28/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Wei Bai
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong
| | - Jing-Xuan Zhang
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong
| | - Ting Fan
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong
| | - Sunny Kai San Tse
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong
| | - Wangge Shou
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong
| | - Herman H. Y. Sung
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong
| | - Ian D. Williams
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong
| | - Zhenyang Lin
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong
| | - Guochen Jia
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong
| |
Collapse
|
38
|
Bezzubov SI, Kalle P, Bilyalova AA, Tatarin SV, Dolzhenko VD. Overcoming the Inertness of Iridium(III) in a Facile Single-Crystal to Single-Crystal Reaction of Iodine Vapor with a Cyclometalated Chloride Monomer. Chemistry 2018; 24:12779-12783. [DOI: 10.1002/chem.201801963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Stanislav I. Bezzubov
- Kurnakov Institute of General and Inorganic Chemistry; Russian Academy of Sciences; Leninskiy pr. 31 Moscow 119991 Russia
| | - Paulina Kalle
- Kurnakov Institute of General and Inorganic Chemistry; Russian Academy of Sciences; Leninskiy pr. 31 Moscow 119991 Russia
| | - Alfiya A. Bilyalova
- Department of Chemistry; Lomonosov Moscow State University; Lenin's hills 1/3 Moscow 119991 Russia
| | - Sergei V. Tatarin
- Department of Chemistry; Lomonosov Moscow State University; Lenin's hills 1/3 Moscow 119991 Russia
| | - Vladimir D. Dolzhenko
- Department of Chemistry; Lomonosov Moscow State University; Lenin's hills 1/3 Moscow 119991 Russia
| |
Collapse
|
39
|
McKay AI, Martínez-Martínez AJ, Griffiths HJ, Rees NH, Waters JB, Weller AS, Krämer T, Macgregor SA. Controlling Structure and Reactivity in Cationic Solid-State Molecular Organometallic Systems Using Anion Templating. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alasdair I. McKay
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | | | - Hannah J. Griffiths
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Nicholas H. Rees
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jordan B. Waters
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Andrew S. Weller
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Tobias Krämer
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Stuart A. Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
40
|
Grigoropoulos A, McKay AI, Katsoulidis AP, Davies RP, Haynes A, Brammer L, Xiao J, Weller AS, Rosseinsky MJ. Encapsulation of Crabtree's Catalyst in Sulfonated MIL-101(Cr): Enhancement of Stability and Selectivity between Competing Reaction Pathways by the MOF Chemical Microenvironment. Angew Chem Int Ed Engl 2018; 57:4532-4537. [PMID: 29377466 PMCID: PMC5947555 DOI: 10.1002/anie.201710091] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Indexed: 12/13/2022]
Abstract
Crabtree's catalyst was encapsulated inside the pores of the sulfonated MIL-101(Cr) metal-organic framework (MOF) by cation exchange. This hybrid catalyst is active for the heterogeneous hydrogenation of non-functionalized alkenes either in solution or in the gas phase. Moreover, encapsulation inside a well-defined hydrophilic microenvironment enhances catalyst stability and selectivity to hydrogenation over isomerization for substrates bearing ligating functionalities. Accordingly, the encapsulated catalyst significantly outperforms its homogeneous counterpart in the hydrogenation of olefinic alcohols in terms of overall conversion and selectivity, with the chemical microenvironment of the MOF host favouring one out of two competing reaction pathways.
Collapse
Affiliation(s)
| | - Alasdair I. McKay
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoriesOxfordOX1 3TAUK
| | | | - Robert P. Davies
- Department of ChemistryImperial College LondonSouth KensingtonLondonSW7 2AZUK
| | - Anthony Haynes
- Department of ChemistryUniversity of SheffieldBrook HillSheffieldS3 7HFUK
| | - Lee Brammer
- Department of ChemistryUniversity of SheffieldBrook HillSheffieldS3 7HFUK
| | - Jianliang Xiao
- Department of ChemistryUniversity of LiverpoolLiverpoolL69 7ZDUK
| | - Andrew S. Weller
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoriesOxfordOX1 3TAUK
| | | |
Collapse
|
41
|
Grigoropoulos A, McKay AI, Katsoulidis AP, Davies RP, Haynes A, Brammer L, Xiao J, Weller AS, Rosseinsky MJ. Encapsulation of Crabtree's Catalyst in Sulfonated MIL‐101(Cr): Enhancement of Stability and Selectivity between Competing Reaction Pathways by the MOF Chemical Microenvironment. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Alasdair I. McKay
- Department of Chemistry University of Oxford Chemistry Research Laboratories Oxford OX1 3TA UK
| | | | - Robert P. Davies
- Department of Chemistry Imperial College London South Kensington London SW7 2AZ UK
| | - Anthony Haynes
- Department of Chemistry University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Lee Brammer
- Department of Chemistry University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Andrew S. Weller
- Department of Chemistry University of Oxford Chemistry Research Laboratories Oxford OX1 3TA UK
| | | |
Collapse
|
42
|
Zhang XF, Yan T, Wang T, Feng J, Wang Q, Wang X, Du L, Zhao QH. Single-crystal-to-single-crystal (SCSC) transformation and dissolution–recrystallization structural transformation (DRST) among three new copper(ii) coordination polymers. CrystEngComm 2018. [DOI: 10.1039/c7ce01919j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new copper(ii) complexes with single-crystal-to-single-crystal (SCSC) transformation and dissolution–recrystallization structural transformation (DRST) have been synthesized and fully characterized.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- School of Chemical Science and Technology Pharmacy
- Yunnan University
- Kunming
- P.R. China
| | - Tong Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- School of Chemical Science and Technology Pharmacy
- Yunnan University
- Kunming
- P.R. China
| | - Tao Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- School of Chemical Science and Technology Pharmacy
- Yunnan University
- Kunming
- P.R. China
| | - Jing Feng
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- School of Chemical Science and Technology Pharmacy
- Yunnan University
- Kunming
- P.R. China
| | - Quan Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- School of Chemical Science and Technology Pharmacy
- Yunnan University
- Kunming
- P.R. China
| | - Xiao Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- School of Chemical Science and Technology Pharmacy
- Yunnan University
- Kunming
- P.R. China
| | - Lin Du
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- School of Chemical Science and Technology Pharmacy
- Yunnan University
- Kunming
- P.R. China
| | - Qi-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- School of Chemical Science and Technology Pharmacy
- Yunnan University
- Kunming
- P.R. China
| |
Collapse
|