1
|
Santra S, Molla MR. Small molecule-based core and shell cross-linked nanoassemblies: from self-assembly and programmed disassembly to biological applications. Chem Commun (Camb) 2024; 60:12101-12117. [PMID: 39301871 DOI: 10.1039/d4cc03515a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Supramolecular assemblies of stimuli-responsive amphiphilic molecules have been of utmost interest in targeted drug delivery applications, owing to their capability of sequestering drug molecules in one set of conditions and releasing them in another. To minimize undesired disassembly and stabilize noncovalently encapsulated drug molecules, the strategy of core or shell cross-linking has become a fascinating approach to constructing cross-linked polymeric or small molecule-based nanoassemblies. In this article, we discuss the design and synthetic strategies for cross-linked nanoassemblies from small molecule-based amphiphiles, with robust stability and enhanced drug encapsulation capability. We highlight their potential biomedical applications, particularly in drug or gene delivery, and cell imaging. This feature article offers a comprehensive overview of the recent developments in the application of small molecule-based covalently cross-linked nanocarriers for materials and biomedical applications, which may inspire the use of these materials as a potential drug delivery system for future chemotherapeutic applications.
Collapse
Affiliation(s)
- Subrata Santra
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| | - Mijanur Rahaman Molla
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| |
Collapse
|
2
|
Tanaka N, Suyama K, Tomohara K, Nose T. Exploring LCST- and UCST-like Behavior of Branched Molecules Bearing Repeat Units of Elastin-like Peptides as Side Components. Biomacromolecules 2024. [PMID: 39383337 DOI: 10.1021/acs.biomac.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Elastin-like peptides (ELPs) exhibit lower critical solution temperature (LCST)-type behavior, being soluble at low temperatures and insoluble at high temperatures. While the properties of linear, long-chain ELPs are well-studied, short-chain ELPs, especially those with branched architectures, have been less explored. Herein, to obtain further insights into multimeric short ELPs, we investigated the temperature-responsive properties of branched molecules composed of a repeating pentapeptide unit of short ELPs, Phe-Pro-Gly-Val-Gly, as side components and oligo(Glu) as a backbone structure. In turbidimetry experiments, the branched ELPs showed LCST-like behavior similar to conventional ELPs and upper critical solution temperature (UCST)-like behavior, which are rarely observed in ELPs. In addition, the morphological aspects and mechanisms underlying the temperature-responsiveness were investigated. We observed that spherical aggregates formed, and the branched ELPs underwent structural changes through the self-assembly process. This study demonstrates the unique temperature-responsiveness of branched short ELPs, providing new insights into the future development and use of ELPs with tailored properties.
Collapse
Affiliation(s)
- Naoki Tanaka
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Keitaro Suyama
- Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Keisuke Tomohara
- Faculty and Graduate School of Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan
| | - Takeru Nose
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
- Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Desai N, Pande S, Vora L, Kommineni N. Correction to "Nanofibrous Microspheres: A Biomimetic Platform for Bone Tissue Regeneration". ACS APPLIED BIO MATERIALS 2024; 7:6325-6331. [PMID: 39162584 PMCID: PMC11409221 DOI: 10.1021/acsabm.4c01057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
|
4
|
Jia S, Yang B, Du J, Xie Y, Yu L, Zhang Y, Tao T, Tang W, Gong J. Uncovering the Recent Progress of CNC-Derived Chirality Nanomaterials: Structure and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401664. [PMID: 38651220 DOI: 10.1002/smll.202401664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Cellulose nanocrystal (CNC), as a renewable resource, with excellent mechanical performance, low thermal expansion coefficient, and unique optical performance, is becoming a novel candidate for the development of smart material. Herein, the recent progress of CNC-based chirality nanomaterials is uncovered, mainly covering structure regulations and function design. Undergoing a simple evaporation process, the cellulose nanorods can spontaneously assemble into chiral nematic films, accompanied by a vivid structural color. Various film structure-controlling strategies, including assembly means, physical modulation, additive engineering, surface modification, geometric structure regulation, and external field optimization, are summarized in this work. The intrinsic correlation between structure and performance is emphasized. Next, the applications of CNC-based nanomaterials is systematically reviewed. Layer-by-layer stacking structure and unique optical activity endow the nanomaterials with wide applications in the mineralization, bone regeneration, and synthesis of mesoporous materials. Besides, the vivid structural color broadens the functions in anti-counterfeiting engineering, synthesis of the shape-memory and self-healing materials. Finally, the challenges for the CNC-based nanomaterials are proposed.
Collapse
Affiliation(s)
- Shengzhe Jia
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Bingbing Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jing Du
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Yujiang Xie
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Liuyang Yu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tiantian Tao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Weiwei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
5
|
Zou C, Cai K, Yin R, Ma R, Wang F, Xiao Z, Wang Y, Xie Y, Wang H. Cellulose nanocrystal thermal smart molecular brushes with upper critical aggregation temperature. Int J Biol Macromol 2024; 274:132942. [PMID: 38848841 DOI: 10.1016/j.ijbiomac.2024.132942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Grafting thermo-responsive polymers onto cellulose nanocrystals (CNCs) and achieving critical temperature regulation has drawn significant research interest. The thermal transition behavior of CNCs can be controlled by adjusting the polymer molecular brushes on the CNCs surface. We synthesized poly((2-dimethylamino) ethyl methacrylate) (PDMAEMA) grafted CNCs via surface-initiated reversible addition-fragmentation chain transfer, followed by modifying PDMAEMA brushes into poly-3-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate (PDMAPS) brushes via quaternization. The critical temperature was regulated by modifying and grafting of poly (ethylene glycol) methacrylate. Found the thermal stimulus-responsive type and transition point of CNCs can be controlled by adjusting the surface molecular brushes. Ultraviolet-visible spectroscopy and dynamic light scattering analyses indicated that CNC-PDMAEMA aggregated above 70 °C, whereas CNC-PDMAPS aggregated below 31 °C. The thermo-responsive materials based on CNCs exhibited a conversion from a lower critical aggregation temperature to an upper critical aggregation temperature (UCAT) type. CNC-PDMAPS-mPEG was obtained by modifying and grafting for UCAT to be regulated to approximately 37 °C, which is close to the human body temperature. CNC-PDMAPS and CNC-PDMAPS-mPEG exhibited only microscopic alterations and could encapsulate and release substances. Therefore, they demonstrate considerable potential for biomedical applications.
Collapse
Affiliation(s)
- Chuwen Zou
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Kangyu Cai
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Ran Yin
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Ronghua Ma
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Fuji Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Zefang Xiao
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Yonggui Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Yanjun Xie
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Haigang Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China.
| |
Collapse
|
6
|
Yang X, Liu W, Han P, You Y, Lv J, Zhang X, Qin Z, Yin X. Antimicrobial ion-imprinted chitosan-derived hydrogel with quaternary ammonium and thermoresponsive components for UO 22+ adsorption. Int J Biol Macromol 2024; 275:133532. [PMID: 38945327 DOI: 10.1016/j.ijbiomac.2024.133532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Uranium recovery from wastewater or seawater is important for both pollution control and uranium supply. Due to the complexity of the water body, it requires that the adsorbent should not only be highly efficient for selective adsorption but also have good antimicrobial properties. In this study, an antimicrobial thermosensitive hydrogel (UITAC) for uranium adsorption was prepared by one-step ion-imprinted polymerization using chitosan as a substrate and allyl trimethylammonium chloride as the antimicrobial modifier. UITAC showed excellent antibacterial rate against Escherichia coli and Staphylococcus aureus, being 98.8 % and 89.1 %, respectively. Endothermic and exothermic peaks respectively showed up at 36.3-38.5 °C and 30.5-34.1 °C in the DSC curves. UITAC quickly achieved its adsorption equilibrium in 30.0 min at 50 °C, pH 5.0 in the 0.8 mg/mL UO22+ solution, with an adsorption capacity of 81.2 mg/g. The adsorption capacity could remain at 80 % after 5 cycles of repeated use. UITAC showed better adsorption selectivity to UO22+ than vanadium and other metal ions, with selectivity coefficients α(UO22+/Mn+) being 1.4-10.3. The pseudo-second-order kinetics and Langmuir adsorption model had a better fit for UO22+ adsorption by UITAC. The adsorption was a spontaneous process. The Gibbs Free Energy change, enthalpy change, and entropy change at 323.2 K were - 16.0 kJ/mol, 64.3 kJ/mol, and 248.4 J/mol·K, respectively. UITAC showed high potential in practical application environment.
Collapse
Affiliation(s)
- Xubing Yang
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, 58th Renmin Road, Haikou, Hainan, PR China
| | - Wei Liu
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, 58th Renmin Road, Haikou, Hainan, PR China
| | - Pengfei Han
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, 58th Renmin Road, Haikou, Hainan, PR China
| | - Yin You
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, 58th Renmin Road, Haikou, Hainan, PR China
| | - Ju Lv
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, 58th Renmin Road, Haikou, Hainan, PR China
| | - Xinyue Zhang
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, 58th Renmin Road, Haikou, Hainan, PR China.
| | - Ziyu Qin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, 58th Renmin Road, Haikou, Hainan, PR China
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, 58th Renmin Road, Haikou, Hainan, PR China.
| |
Collapse
|
7
|
Yarali E, Mirzaali MJ, Ghalayaniesfahani A, Accardo A, Diaz-Payno PJ, Zadpoor AA. 4D Printing for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402301. [PMID: 38580291 DOI: 10.1002/adma.202402301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 04/07/2024]
Abstract
4D (bio-)printing endows 3D printed (bio-)materials with multiple functionalities and dynamic properties. 4D printed materials have been recently used in biomedical engineering for the design and fabrication of biomedical devices, such as stents, occluders, microneedles, smart 3D-cell engineered microenvironments, drug delivery systems, wound closures, and implantable medical devices. However, the success of 4D printing relies on the rational design of 4D printed objects, the selection of smart materials, and the availability of appropriate types of external (multi-)stimuli. Here, this work first highlights the different types of smart materials, external stimuli, and design strategies used in 4D (bio-)printing. Then, it presents a critical review of the biomedical applications of 4D printing and discusses the future directions of biomedical research in this exciting area, including in vivo tissue regeneration studies, the implementation of multiple materials with reversible shape memory behaviors, the creation of fast shape-transformation responses, the ability to operate at the microscale, untethered activation and control, and the application of (machine learning-based) modeling approaches to predict the structure-property and design-shape transformation relationships of 4D (bio)printed constructs.
Collapse
Affiliation(s)
- Ebrahim Yarali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Ava Ghalayaniesfahani
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Chemistry, Materials and Chemical Engineering, Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Pedro J Diaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| |
Collapse
|
8
|
Yang K, Wu Z, Zhang K, Weir MD, Xu HHK, Cheng L, Huang X, Zhou W. Unlocking the potential of stimuli-responsive biomaterials for bone regeneration. Front Pharmacol 2024; 15:1437457. [PMID: 39144636 PMCID: PMC11322102 DOI: 10.3389/fphar.2024.1437457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Bone defects caused by tumors, osteoarthritis, and osteoporosis attract great attention. Because of outstanding biocompatibility, osteogenesis promotion, and less secondary infection incidence ratio, stimuli-responsive biomaterials are increasingly used to manage this issue. These biomaterials respond to certain stimuli, changing their mechanical properties, shape, or drug release rate accordingly. Thereafter, the activated materials exert instructive or triggering effects on cells and tissues, match the properties of the original bone tissues, establish tight connection with ambient hard tissue, and provide suitable mechanical strength. In this review, basic definitions of different categories of stimuli-responsive biomaterials are presented. Moreover, possible mechanisms, advanced studies, and pros and cons of each classification are discussed and analyzed. This review aims to provide an outlook on the future developments in stimuli-responsive biomaterials.
Collapse
Affiliation(s)
- Ke Yang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhuoshu Wu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Keke Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Michael D. Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Hockin H. K. Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Wen Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Rando G, Scalone E, Sfameni S, Plutino MR. Functional Bio-Based Polymeric Hydrogels for Wastewater Treatment: From Remediation to Sensing Applications. Gels 2024; 10:498. [PMID: 39195027 DOI: 10.3390/gels10080498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
In recent years, many researchers have focused on designing hydrogels with specific functional groups that exhibit high affinity for various contaminants, such as heavy metals, organic pollutants, pathogens, or nutrients, or environmental parameters. Novel approaches, including cross-linking strategies and the use of nanomaterials, have been employed to enhance the structural integrity and performance of the desired hydrogels. The evolution of these hydrogels is further highlighted, with an emphasis on fine-tuning features, including water absorption capacity, environmental pollutant/factor sensing and selectivity, and recyclability. Furthermore, this review investigates the emerging topic of stimuli-responsive smart hydrogels, underscoring their potential in both sorption and detection of water pollutants. By critically assessing a wide range of studies, this review not only synthesizes existing knowledge, but also identifies advantages and limitations, and describes future research directions in the field of chemically engineered hydrogels for water purification and monitoring with a low environmental impact as an important resource for chemists and multidisciplinary researchers, leading to improvements in sustainable water management technology.
Collapse
Affiliation(s)
- Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Elisabetta Scalone
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| |
Collapse
|
10
|
Ko CH, Wastian P, Schanzenbach D, Müller-Buschbaum P, Laschewsky A, Papadakis CM. Dynamic Behavior of Poly( N-isopropylmethacrylamide) in Neat Water and in Water/Methanol Mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15150-15160. [PMID: 38980191 PMCID: PMC11270994 DOI: 10.1021/acs.langmuir.4c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
We investigate the collective dynamics of thermoresponsive polymer poly(N-isopropylmethacrylamide) (PNIPMAM) in aqueous solution and in water/methanol mixtures in the one-phase region. In neat water, the polymer concentration c is varied in a wide range around the overlap concentration c*, that is estimated at 23 g L-1. Using dynamic light scattering (DLS), two decays ("modes") are consistently observed in the intensity autocorrelation functions for c = 2-150 g L-1 with relaxation rates which are proportional to the square of the momentum transfer. Below c*, these are attributed to the diffusion of single chains and to clusters from PNIPMAM that are formed due to hydrophobic interactions. Above c*, they are assigned to the diffusion of the chain segments between overlap points and to long-range concentration fluctuations. From the temperature-dependent behavior of the overall scattering intensities and the dynamic correlation lengths of the fast mode, the critical temperatures and the scaling exponents are determined. The latter are significantly lower than the static values predicted by mean-field theory, which may be related to the presence of the large-scale inhomogeneities. The effect of the cosolvent methanol on the dynamics is investigated for polymer solutions having c = 30 g L-1 and methanol volume fractions in the solvent mixtures of up to 60 vol %. The phase diagram was established by differential scanning calorimetry. The slow mode detected by DLS becomes significantly weaker as methanol is added, i.e., the solutions become more homogeneous. Beyond the minimum of the coexistence line, which is located at 40-50 vol % of methanol, the dynamics is qualitatively different from the one at lower methanol contents. Thus, going from the water-rich to the methanol-rich side of the miscibility gap, the change of interaction of the PNIPMAM chains with the two solvents has a severe effect on the collective dynamics.
Collapse
Affiliation(s)
- Chia-Hsin Ko
- TUM
School of Natural Sciences, Physics Department, Soft Matter Physics
Group, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
| | - Patrick Wastian
- TUM
School of Natural Sciences, Physics Department, Soft Matter Physics
Group, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
| | - Dirk Schanzenbach
- Institut
für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
| | - Peter Müller-Buschbaum
- TUM
School of Natural Sciences, Physics Department, Chair for Functional
Materials, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
| | - André Laschewsky
- Institut
für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
- Fraunhofer-Institut
für Angewandte Polymerforschung, Geiselbergstraße 69, 14476 Potsdam-Golm, Germany
| | - Christine M. Papadakis
- TUM
School of Natural Sciences, Physics Department, Soft Matter Physics
Group, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
| |
Collapse
|
11
|
Conte R, Valentino A, Romano S, Margarucci S, Petillo O, Calarco A. Stimuli-Responsive Nanocomposite Hydrogels for Oral Diseases. Gels 2024; 10:478. [PMID: 39057501 PMCID: PMC11275451 DOI: 10.3390/gels10070478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Oral diseases encompassing conditions such as oral cancer, periodontitis, and endodontic infections pose significant challenges due to the oral cavity's susceptibility to pathogenic bacteria and infectious agents. Saliva, a key component of the oral environment, can compromise drug efficacy during oral disease treatment by diluting drug formulations and reducing drug-site interactions. Thus, it is imperative to develop effective drug delivery methods. Stimuli-responsive nanocomposite hydrogels offer a promising solution by adapting to changes in environmental conditions during disease states, thereby enabling targeted drug delivery. These smart drug delivery systems have the potential to enhance drug efficacy, minimize adverse reactions, reduce administration frequency, and improve patient compliance, thus facilitating a faster recovery. This review explores various types of stimuli-responsive nanocomposite hydrogels tailored for smart drug delivery, with a specific focus on their applications in managing oral diseases.
Collapse
Affiliation(s)
- Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Anna Valentino
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Silvia Romano
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
| | - Sabrina Margarucci
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
| | - Orsolina Petillo
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| |
Collapse
|
12
|
Dhamankar S, Webb MA. Asymmetry in Polymer-Solvent Interactions Yields Complex Thermoresponsive Behavior. ACS Macro Lett 2024; 13:818-825. [PMID: 38874369 DOI: 10.1021/acsmacrolett.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
We introduce a lattice framework that incorporates elements of Flory-Huggins solution theory and the q-state Potts model to study the phase behavior of polymer solutions and single-chain conformational characteristics. Without empirically introducing temperature-dependent interaction parameters, standard Flory-Huggins theory describes systems that are either homogeneous across temperatures or exhibit upper critical solution temperatures. The proposed Flory-Huggins-Potts framework extends these capabilities by predicting lower critical solution temperatures, miscibility loops, and hourglass-shaped spinodal curves. We particularly show that including orientation-dependent interactions, specifically between monomer segments and solvent particles, is alone sufficient to observe such phase behavior. Signatures of emergent phase behavior are found in single-chain Monte Carlo simulations, which display heating- and cooling-induced coil-globule transitions linked to energy fluctuations. The framework also capably describes a range of experimental systems. Importantly, and by contrast to many prior theoretical approaches, the framework does not employ any temperature- or composition-dependent parameters. This work provides new insights regarding the microscopic physics that underpin complex thermoresponsive behavior in polymers.
Collapse
Affiliation(s)
- Satyen Dhamankar
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Michael A Webb
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
13
|
Desai N, Pande S, Vora LK, Kommineni N. Nanofibrous Microspheres: A Biomimetic Platform for Bone Tissue Regeneration. ACS APPLIED BIO MATERIALS 2024; 7:4270-4292. [PMID: 38950103 PMCID: PMC11253102 DOI: 10.1021/acsabm.4c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Bone, a fundamental constituent of the human body, is a vital scaffold for support, protection, and locomotion, underscoring its pivotal role in maintaining skeletal integrity and overall functionality. However, factors such as trauma, disease, or aging can compromise bone structure, necessitating effective strategies for regeneration. Traditional approaches often lack biomimetic environments conducive to efficient tissue repair. Nanofibrous microspheres (NFMS) present a promising biomimetic platform for bone regeneration by mimicking the native extracellular matrix architecture. Through optimized fabrication techniques and the incorporation of active biomolecular components, NFMS can precisely replicate the nanostructure and biochemical cues essential for osteogenesis promotion. Furthermore, NFMS exhibit versatile properties, including tunable morphology, mechanical strength, and controlled release kinetics, augmenting their suitability for tailored bone tissue engineering applications. NFMS enhance cell recruitment, attachment, and proliferation, while promoting osteogenic differentiation and mineralization, thereby accelerating bone healing. This review highlights the pivotal role of NFMS in bone tissue engineering, elucidating their design principles and key attributes. By examining recent preclinical applications, we assess their current clinical status and discuss critical considerations for potential clinical translation. This review offers crucial insights for researchers at the intersection of biomaterials and tissue engineering, highlighting developments in this expanding field.
Collapse
Affiliation(s)
- Nimeet Desai
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Kandi 502285, India
| | - Shreya Pande
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Kandi 502285, India
| | - Lalitkumar K. Vora
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Nagavendra Kommineni
- Center
for Biomedical Research, Population Council, New York, New York 10065, United States
| |
Collapse
|
14
|
Chen H, Xu J, Sun J, Jiang Y, Zheng W, Hu W, Qian H. Recent advances on thermosensitive hydrogels-mediated precision therapy. Asian J Pharm Sci 2024; 19:100911. [PMID: 38948400 PMCID: PMC11214189 DOI: 10.1016/j.ajps.2024.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/20/2024] [Accepted: 02/03/2024] [Indexed: 07/02/2024] Open
Abstract
Precision therapy has become the preferred choice attributed to the optimal drug concentration in target sites, increased therapeutic efficacy, and reduced adverse effects. Over the past few years, sprayable or injectable thermosensitive hydrogels have exhibited high therapeutic potential. These can be applied as cell-growing scaffolds or drug-releasing reservoirs by simply mixing in a free-flowing sol phase at room temperature. Inspired by their unique properties, thermosensitive hydrogels have been widely applied as drug delivery and treatment platforms for precision medicine. In this review, the state-of-the-art developments in thermosensitive hydrogels for precision therapy are investigated, which covers from the thermo-gelling mechanisms and main components to biomedical applications, including wound healing, anti-tumor activity, osteogenesis, and periodontal, sinonasal and ophthalmic diseases. The most promising applications and trends of thermosensitive hydrogels for precision therapy are also discussed in light of their unique features.
Collapse
Affiliation(s)
- Hao Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Jiangmei Xu
- Department of Dermatology and Rheumatology Immunology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jiangwei Sun
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, China
| | - Yongxin Jiang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, China
| | - Wang Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
15
|
Cheng S, Wang KH, Zhou L, Sun ZJ, Zhang L. Tailoring Biomaterials Ameliorate Inflammatory Bone Loss. Adv Healthc Mater 2024; 13:e2304021. [PMID: 38288569 DOI: 10.1002/adhm.202304021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/08/2024] [Indexed: 05/08/2024]
Abstract
Inflammatory diseases, such as rheumatoid arthritis, periodontitis, chronic obstructive pulmonary disease, and celiac disease, disrupt the delicate balance between bone resorption and formation, leading to inflammatory bone loss. Conventional approaches to tackle this issue encompass pharmaceutical interventions and surgical procedures. Nevertheless, pharmaceutical interventions exhibit limited efficacy, while surgical treatments impose trauma and significant financial burden upon patients. Biomaterials show outstanding spatiotemporal controllability, possess a remarkable specific surface area, and demonstrate exceptional reactivity. In the present era, the advancement of emerging biomaterials has bestowed upon more efficacious solutions for combatting the detrimental consequences of inflammatory bone loss. In this review, the advances of biomaterials for ameliorating inflammatory bone loss are listed. Additionally, the advantages and disadvantages of various biomaterials-mediated strategies are summarized. Finally, the challenges and perspectives of biomaterials are analyzed. This review aims to provide new possibilities for developing more advanced biomaterials toward inflammatory bone loss.
Collapse
Affiliation(s)
- Shi Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Kong-Huai Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| |
Collapse
|
16
|
Pan X, Huang W, Nie G, Wang C, Wang H. Ultrasound-Sensitive Intelligent Nanosystems: A Promising Strategy for the Treatment of Neurological Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303180. [PMID: 37871967 DOI: 10.1002/adma.202303180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/26/2023] [Indexed: 10/25/2023]
Abstract
Neurological diseases are a major global health challenge, affecting hundreds of millions of people worldwide. Ultrasound therapy plays an irreplaceable role in the treatment of neurological diseases due to its noninvasive, highly focused, and strong tissue penetration capabilities. However, the complexity of brain and nervous system and the safety risks associated with prolonged exposure to ultrasound therapy severely limit the applicability of ultrasound therapy. Ultrasound-sensitive intelligent nanosystems (USINs) are a novel therapeutic strategy for neurological diseases that bring greater spatiotemporal controllability and improve safety to overcome these challenges. This review provides a detailed overview of therapeutic strategies and clinical advances of ultrasound in neurological diseases, focusing on the potential of USINs-based ultrasound in the treatment of neurological diseases. Based on the physical and chemical effects induced by ultrasound, rational design of USINs is a prerequisite for improving the efficacy of ultrasound therapy. Recent developments of ultrasound-sensitive nanocarriers and nanoagents are systemically reviewed. Finally, the challenges and developing prospects of USINs are discussed in depth, with a view to providing useful insights and guidance for efficient ultrasound treatment of neurological diseases.
Collapse
Affiliation(s)
- Xueting Pan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Wenping Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Rajbanshi A, Hilton E, Dreiss CA, Murnane D, Cook MT. Stimuli-Responsive Polymers for Engineered Emulsions. Macromol Rapid Commun 2024; 45:e2300723. [PMID: 38395416 DOI: 10.1002/marc.202300723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Emulsions are complex. Dispersing two immiscible phases, thus expanding an interface, requires effort to achieve and the resultant dispersion is thermodynamically unstable, driving the system toward coalescence. Furthermore, physical instabilities, including creaming, arise due to presence of dispersed droplets of different densities to a continuous phase. Emulsions allow the formulation of oils, can act as vehicles to solubilize both hydrophilic and lipophilic molecules, and can be tailored to desirable rheological profiles, including "gel-like" behavior and shear thinning. The usefulness of emulsions can be further expanded by imparting stimuli-responsive or "smart" behaviors by inclusion of a stimuli-responsive emulsifier, polymer or surfactant. This enables manipulation like gelation, breaking, or aggregation, by external triggers such as pH, temperature, or salt concentration changes. This platform generates functional materials for pharmaceuticals, cosmetics, oil recovery, and colloid engineering, combining both smart behaviors and intrinsic benefit of emulsions. However, with increased functionality comes greater complexity. This review focuses on the use of stimuli-responsive polymers for the generation of smart emulsions, motivated by the great adaptability of polymers for this application and their efficacy as steric stabilizers. Stimuli-responsive emulsions are described according to the trigger used to provide the reader with an overview of progress in this field.
Collapse
Affiliation(s)
- Abhishek Rajbanshi
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Eleanor Hilton
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Darragh Murnane
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Michael T Cook
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| |
Collapse
|
18
|
Guo W, Liu H, Zhang J, Zhang J, Wang F, Zhang P, Yang Y. Preparation and characterization of a novel composite acellular matrix/hyaluronic acid thermosensitive hydrogel for interstitial cystitis/bladder pain syndrome. J Biomed Mater Res A 2024; 112:449-462. [PMID: 37975156 DOI: 10.1002/jbm.a.37643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Bladder mucosa damage that causes harm to the interstitium is a recognized pathogenesis of interstitial cystitis/bladder pain syndrome (IC/BPS). The intravesical instillation of drugs is an important second-line therapy, but it is often necessary to use drugs repeatedly in the clinic because of their short residence time in the bladder cavity, which alters the therapeutic effect. To overcome this drawback, this study developed a novel composite acellular matrix/hyaluronic acid (HA) thermosensitive hydrogel (HA-Gel) using rabbit small intestinal submucosa extracellular matrix (ECM) as the thermosensitive material and HA as the drug component and examined its composition, microstructure, thermodynamic properties, temperature sensitivity, rheological properties, biocompatibility, drug release, hydrogel residue, and bacteriostatic properties. The study showed HA-Gel was liquid at temperatures of 15-37.5°C and solid at 37.5-50°C, its swelling rate decreased with increasing temperature, and its lower critical solution temperature occurred at approximately 37.5°C. This property made the hydrogel liquid at room temperature convenient for intravesical perfusion and turned into a solid about 1 min after entering the body and rising to body temperature to increase its residence time. Subsequent experiments also proved that the gel residue time of HA-Gel in vivo and the drug release time of HA in vivo could reach more than 5 days, which was significantly higher than that of HA alone, and it had good biocompatibility and antibacterial properties. Therefore, this hydrogel possesses the proper characteristics to possibly make it an ideal dosage form for IC/BPS intravesical instillation therapy.
Collapse
Affiliation(s)
- Wei Guo
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Haichao Liu
- Department of Urology, Hebei Yanda Hospital, West of SiPuLan Road, Langfang, China
| | - Jiaxing Zhang
- Department of Urology, Hebei Yanda Hospital, West of SiPuLan Road, Langfang, China
| | - Jianzhong Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Fei Wang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Peng Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Yunbo Yang
- Department of Urology, Hebei Yanda Hospital, West of SiPuLan Road, Langfang, China
| |
Collapse
|
19
|
Srivastava N, Roy Choudhury A. Thermo-reversible self-assembled novel gellan gum hydrogels containing amino acid biogelators with antibacterial activity. Carbohydr Polym 2024; 324:121462. [PMID: 37985076 DOI: 10.1016/j.carbpol.2023.121462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 11/22/2023]
Abstract
In recent years, hydrogels derived from natural polymers have gained considerable attention. However, lack of mechanical strength and poor stability has become major lacuna of such systems. Scientists have attempted to resolve this problem by introducing chemical cross-linkers or synthetic modifications of natural polymers. In contrast, biological cross-linkers may be more beneficial due to their cytocompatibility and non-immunogenicity. As a biogelator, amino acids (AA) may be lucrative, yet they remain untapped till date. Present study, for the first time, reports exploitation of ʟ-Lysine, ʟ-Arginine, ʟ-Aspartic acid, and ʟ-Glutamic acid as biogelator to fabricate novel gellan gum (GG) hydrogels through green chemistry. Furthermore, as a first instance, molecular docking was applied to gain insight into the interaction between GG and AA. As predicted through docking, physical cross-linking of these hydrogels accounted for their thermo-reversibility. Moreover, to assess the suitability of prepared hydrogel for its intended use, systematic characterization studies were performed via FTIR, Raman spectroscopy, XRD, FE-SEM, and TGA. Additionally, rheological behavior of hydrogels was investigated using variety of parameters. Interestingly, GG-AA hydrogels exhibited around 99 % antibacterial activity against multidrug-resistant bacteria. According to the findings of this study, these novel hydrogels may have immense potential in the food and biomedical sectors.
Collapse
Affiliation(s)
- Nandita Srivastava
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector-39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector-39A, Chandigarh 160036, India.
| |
Collapse
|
20
|
Papadakis CM, Niebuur BJ, Schulte A. Thermoresponsive Polymers under Pressure with a Focus on Poly( N-isopropylacrylamide) (PNIPAM). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1-20. [PMID: 38149782 DOI: 10.1021/acs.langmuir.3c02398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Pressure is a key variable in the phase behavior of responsive polymers, both for applications and from a fundamental point of view. In this feature article, we review recent developments, particularly applications of neutron techniques such as small-angle neutron scattering (SANS) and quasi-elastic neutron scattering (QENS), across the temperature-pressure phase diagram. These are complemented by kinetic SANS experiments following pressure jumps. In the prototype system poly(N-isopropylacrylamide) (PNIPAM), QENS revealed the pressure-dependent characteristics of hydration water around the lower critical solution temperature transition. The size, water content, and inner structure of the mesoglobules formed in the two-phase region depend strongly on pressure, as shown by SANS. Beside these changes at the phase transition, the mesoglobule formation at low pressure is determined by kinetic factors, namely the formation of a polymer-rich, rigid shell, which hampers further growth by coalescence. At high pressure, in contrast, the growth proceeds by diffusion-limited coalescence without any kinetic hindrance. The disintegration of the mesoglobules evolves either via chain release from their surface or via swelling, depending on the osmotic pressure of the water. Moreover, we report on the profound influence of pressure on the cononsolvency effect. In the temperature-pressure frame, the one-phase region is hugely expanded upon the addition of the cosolvent methanol. SANS experiments unveil the enthalpic and entropic contributions to the effective Flory-Huggins interaction parameter between the segments and the solvent mixture. QENS experiments demonstrate an increase in polymer associated water with pressure, whereas methanol is released. Correspondingly, the solvent phase becomes enriched in methanol, providing a mechanism for the breakdown of cononsolvency at a high pressure. Finally, we outline future opportunities for high-pressure studies of thermoresponsive polymers, with a focus on neutron methods.
Collapse
Affiliation(s)
- Christine M Papadakis
- TUM School of Natural Sciences, Physics Department, Soft Matter Physics Group, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Bart-Jan Niebuur
- TUM School of Natural Sciences, Physics Department, Soft Matter Physics Group, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Alfons Schulte
- Department of Physics and College of Optics and Photonics, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816-2385, United States
| |
Collapse
|
21
|
Sivokhin A, Orekhov D, Kazantsev O, Otopkova K, Sivokhina O, Chuzhaykin I, Ovchinnikov A, Zamyshlyayeva O, Pavlova I, Ozhogina O, Chubenko M. Amide-Containing Bottlebrushes via Continuous-Flow Photoiniferter Reversible Addition-Fragmentation Chain Transfer Polymerization: Micellization Behavior. Polymers (Basel) 2023; 16:134. [PMID: 38201799 PMCID: PMC10780833 DOI: 10.3390/polym16010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Herein, a series of ternary amphiphilic amide-containing bottlebrushes were synthesized by photoiniferter (PI-RAFT) polymerization of macromonomers in continuous-flow mode using trithiocarbonate as a chain transfer agent. Visible light-mediated polymerization of macromonomers under mild conditions enabled the preparation of thermoresponsive copolymers with low dispersity and high yields in a very short time, which is not typical for the classical reversible addition-fragmentation chain transfer process. Methoxy oligo(ethylene glycol) methacrylate and alkoxy(C12-C14) oligo(ethylene glycol) methacrylate were used as the basic monomers providing amphiphilic and thermoresponsive properties. The study investigated how modifying comonomers, acrylamide (AAm), methacrylamide (MAAm), and N-methylacrylamide (-MeAAm) affect the features of bottlebrush micelle formation, their critical micelle concentration, and loading capacity for pyrene, a hydrophobic drug model. The results showed that the process is scalable and can produce tens of grams of pure copolymer per day. The unmodified copolymer formed unimolecular micelles at temperatures below the LCST in aqueous solutions, as revealed by DLS and SLS data. The incorporation of AAm, MAAm, and N-MeAAm units resulted in an increase in micelle aggregation numbers. The resulting bottlebrushes formed uni- or bimolecular micelles at extremely low concentrations. These micelles possess a high capacity for loading pyrene, making them a promising choice for targeted drug delivery.
Collapse
Affiliation(s)
- Alexey Sivokhin
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Dmitry Orekhov
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Oleg Kazantsev
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Ksenia Otopkova
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Olga Sivokhina
- V.A. Kargin Research Institute of Chemistry and Technology of Polymers with Pilot Plant, 606000 Dzerzhinsk, Nizhegorodskaya obl., Russia
| | - Ilya Chuzhaykin
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Alexey Ovchinnikov
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Olga Zamyshlyayeva
- Department of High Molecular Compounds and Colloidal Chemistry, Faculty of Chemistry, Lobachevsky State University, Gagarina pr. 23, 603950 Nizhny Novgorod, Russia
| | - Irina Pavlova
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Olga Ozhogina
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Maria Chubenko
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| |
Collapse
|
22
|
Liu J, Du C, Huang W, Lei Y. Injectable smart stimuli-responsive hydrogels: pioneering advancements in biomedical applications. Biomater Sci 2023; 12:8-56. [PMID: 37969066 DOI: 10.1039/d3bm01352a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Hydrogels have established their significance as prominent biomaterials within the realm of biomedical research. However, injectable hydrogels have garnered greater attention compared with their conventional counterparts due to their excellent minimally invasive nature and adaptive behavior post-injection. With the rapid advancement of emerging chemistry and deepened understanding of biological processes, contemporary injectable hydrogels have been endowed with an "intelligent" capacity to respond to various endogenous/exogenous stimuli (such as temperature, pH, light and magnetic field). This innovation has spearheaded revolutionary transformations across fields such as tissue engineering repair, controlled drug delivery, disease-responsive therapies, and beyond. In this review, we comprehensively expound upon the raw materials (including natural and synthetic materials) and injectable principles of these advanced hydrogels, concurrently providing a detailed discussion of the prevalent strategies for conferring stimulus responsiveness. Finally, we elucidate the latest applications of these injectable "smart" stimuli-responsive hydrogels in the biomedical domain, offering insights into their prospects.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
23
|
Han Y, Guo Y, Nakajima T, Gong JP. Thermoresponsive Lamellar Hydrogels with Tunable Turbidity, Structural Color, and Anisotropic Swelling. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38029328 DOI: 10.1021/acsami.3c14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
We report a thermoresponsive anisotropic photonic hydrogel: poly(dodecyl glyceryl itaconate)/polyacrylamide-poly(N-isopropylacrylamide) hydrogel (PDGI/PAAm-PNIPAM hydrogel). Hydrogels with uniaxially aligned lamellar bilayers possess bright structural color and swelling anisotropy, while PNIPAM-based hydrogels exhibit distinct thermoresponsive properties around a lower critical solution temperature (LCST). Hybridization of thermoresponsive PNIPAM with the lamellar hydrogel can give the anisotropic photonic hydrogel various fascinating thermoresponsive properties, such as structural color/turbid transition, thermoresponsive structural color, and anisotropic deswelling/reswelling behavior by temperature stimuli. The temperature-induced changes in turbidity, structural color, and anisotropic swelling of the gel around the LCST can be tuned by controlling the incorporated PNIPAM density. PNIPAM can be regioselectively incorporated into the specific region of the lamellar hydrogels by photomasking during UV polymerization. The PDGI/PAAm-PNIPAM hydrogel can find diverse promising applications such as smart windows and smart displays.
Collapse
Affiliation(s)
- Yang Han
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Yunzhou Guo
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Tasuku Nakajima
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
24
|
Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, Tong R, Miao YB, Cai L. Smart nanoparticles for cancer therapy. Signal Transduct Target Ther 2023; 8:418. [PMID: 37919282 PMCID: PMC10622502 DOI: 10.1038/s41392-023-01642-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 11/04/2023] Open
Abstract
Smart nanoparticles, which can respond to biological cues or be guided by them, are emerging as a promising drug delivery platform for precise cancer treatment. The field of oncology, nanotechnology, and biomedicine has witnessed rapid progress, leading to innovative developments in smart nanoparticles for safer and more effective cancer therapy. In this review, we will highlight recent advancements in smart nanoparticles, including polymeric nanoparticles, dendrimers, micelles, liposomes, protein nanoparticles, cell membrane nanoparticles, mesoporous silica nanoparticles, gold nanoparticles, iron oxide nanoparticles, quantum dots, carbon nanotubes, black phosphorus, MOF nanoparticles, and others. We will focus on their classification, structures, synthesis, and intelligent features. These smart nanoparticles possess the ability to respond to various external and internal stimuli, such as enzymes, pH, temperature, optics, and magnetism, making them intelligent systems. Additionally, this review will explore the latest studies on tumor targeting by functionalizing the surfaces of smart nanoparticles with tumor-specific ligands like antibodies, peptides, transferrin, and folic acid. We will also summarize different types of drug delivery options, including small molecules, peptides, proteins, nucleic acids, and even living cells, for their potential use in cancer therapy. While the potential of smart nanoparticles is promising, we will also acknowledge the challenges and clinical prospects associated with their use. Finally, we will propose a blueprint that involves the use of artificial intelligence-powered nanoparticles in cancer treatment applications. By harnessing the potential of smart nanoparticles, this review aims to usher in a new era of precise and personalized cancer therapy, providing patients with individualized treatment options.
Collapse
Affiliation(s)
- Leming Sun
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hongmei Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yanqi Ye
- Sorrento Therapeutics Inc., 4955 Directors Place, San Diego, CA, 92121, USA
| | - Yang Lei
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rehmat Islam
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Sumin Tan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Lulu Cai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
25
|
Mercante LA, Teodoro KBR, dos Santos DM, dos Santos FV, Ballesteros CAS, Ju T, Williams GR, Correa DS. Recent Progress in Stimuli-Responsive Antimicrobial Electrospun Nanofibers. Polymers (Basel) 2023; 15:4299. [PMID: 37959981 PMCID: PMC10647808 DOI: 10.3390/polym15214299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Electrospun nanofibrous membranes have garnered significant attention in antimicrobial applications, owing to their intricate three-dimensional network that confers an interconnected porous structure, high specific surface area, and tunable physicochemical properties, as well as their notable capacity for loading and sustained release of antimicrobial agents. Tailoring polymer or hybrid-based nanofibrous membranes with stimuli-responsive characteristics further enhances their versatility, enabling them to exhibit broad-spectrum or specific activity against diverse microorganisms. In this review, we elucidate the pivotal advancements achieved in the realm of stimuli-responsive antimicrobial electrospun nanofibers operating by light, temperature, pH, humidity, and electric field, among others. We provide a concise introduction to the strategies employed to design smart electrospun nanofibers with antimicrobial properties. The core section of our review spotlights recent progress in electrospun nanofiber-based systems triggered by single- and multi-stimuli. Within each stimulus category, we explore recent examples of nanofibers based on different polymers and antimicrobial agents. Finally, we delve into the constraints and future directions of stimuli-responsive nanofibrous materials, paving the way for their wider application spectrum and catalyzing progress toward industrial utilization.
Collapse
Affiliation(s)
- Luiza A. Mercante
- Institute of Chemistry, Federal University of Bahia (UFBA), Salvador 40170-280, BA, Brazil
| | - Kelcilene B. R. Teodoro
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
| | - Danilo M. dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
| | - Francisco V. dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos 13563-120, SP, Brazil
| | - Camilo A. S. Ballesteros
- Bachelor in Natural Sciences and Environmental Education, Pedagogical and Technological University of Colombia (UPTC), Tunja 150003, Colombia;
| | - Tian Ju
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (T.J.); (G.R.W.)
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (T.J.); (G.R.W.)
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos 13563-120, SP, Brazil
| |
Collapse
|
26
|
Hao S, Wang M, Yin Z, Jing Y, Bai L, Su J. Microenvironment-targeted strategy steers advanced bone regeneration. Mater Today Bio 2023; 22:100741. [PMID: 37576867 PMCID: PMC10413201 DOI: 10.1016/j.mtbio.2023.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Treatment of large bone defects represents a great challenge in orthopedic and craniomaxillofacial surgery. Traditional strategies in bone tissue engineering have focused primarily on mimicking the extracellular matrix (ECM) of bone in terms of structure and composition. However, the synergistic effects of other cues from the microenvironment during bone regeneration are often neglected. The bone microenvironment is a sophisticated system that includes physiological (e.g., neighboring cells such as macrophages), chemical (e.g., oxygen, pH), and physical factors (e.g., mechanics, acoustics) that dynamically interact with each other. Microenvironment-targeted strategies are increasingly recognized as crucial for successful bone regeneration and offer promising solutions for advancing bone tissue engineering. This review provides a comprehensive overview of current microenvironment-targeted strategies and challenges for bone regeneration and further outlines prospective directions of the approaches in construction of bone organoids.
Collapse
Affiliation(s)
- Shuyue Hao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Mingkai Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 201941, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200444, China
| |
Collapse
|
27
|
Luo K, Wang L, Wang MX, Du R, Tang L, Yang KK, Wang YZ. 4D Printing of Biocompatible Scaffolds via In Situ Photo-crosslinking from Shape Memory Copolyesters. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44373-44383. [PMID: 37669475 DOI: 10.1021/acsami.3c10747] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The complexity of surgical treatments for large-area soft tissue injuries makes placing large implants into injury sites challenging. Aliphatic polyesters are often used for scaffold preparation in tissue engineering owing to their excellent biodegradability and biocompatibility. Scaffolds with shape-memory effect (SME) can also avoid large-volume trauma during the implantation. However, the complexity and diversity of diseases require more adaptable and precise processing methods. Four-dimensional (4D) printing, a booming smart material additive manufacturing technology, provides a new opportunity for developing shape memory scaffolds. With the aim of personalized or patient-adaptable soft tissues such as blood vessels, we developed a feasible strategy for fabricating scaffolds with fine architectures using 4D printing crosslinkable shape memory linear copolyesters using fused deposition modeling (FDM). To overcome the weak bonding strength of each printed layer during FDM, a catalyst-free photo-crosslinkable functional group derived from biocompatible cinnamic acid was embedded into the linear copolyesters as in situ crosslinking points during FDM printing. Under ultraviolet-assisted irradiation, the resulting 4D scaffold models demonstrated excellent SME, desirable mechanical performance, and good stability in a water environment owing to the chemical bonding between each layer. Moreover, the excellent biocompatibility of the scaffold was evaluated in vitro and in vivo. The developed composite scaffolds could be used for minimally invasive soft tissue repair.
Collapse
Affiliation(s)
- Kun Luo
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Li Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
- Department of Biomedical Engineering, School of Big Health and Intelligent Engineering, Chengdu 610500, China
| | - Man-Xi Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Rui Du
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Li Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ke-Ke Yang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
28
|
Amirthalingam S, Rajendran AK, Moon YG, Hwang NS. Stimuli-responsive dynamic hydrogels: design, properties and tissue engineering applications. MATERIALS HORIZONS 2023; 10:3325-3350. [PMID: 37387121 DOI: 10.1039/d3mh00399j] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The field of tissue engineering and regenerative medicine has been evolving at a rapid pace with numerous novel and interesting biomaterials being reported. Hydrogels have come a long way in this regard and have been proven to be an excellent choice for tissue regeneration. This could be due to their innate properties such as water retention, and ability to carry and deliver a multitude of therapeutic and regenerative elements to aid in better outcomes. Over the past few decades, hydrogels have been developed into an active and attractive system that can respond to various stimuli, thereby presenting a wider control over the delivery of the therapeutic agents to the intended site in a spatiotemporal manner. Researchers have developed hydrogels that respond dynamically to a multitude of external as well as internal stimuli such as mechanics, thermal energy, light, electric field, ultrasonics, tissue pH, and enzyme levels, to name a few. This review gives a brief overview of the recent developments in such hydrogel systems which respond dynamically to various stimuli, some of the interesting fabrication strategies, and their application in cardiac, bone, and neural tissue engineering.
Collapse
Affiliation(s)
- Sivashanmugam Amirthalingam
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Gi Moon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
29
|
Khachornsakkul K, Del-Rio-Ruiz R, Zeng W, Sonkusale S. Highly Sensitive Photothermal Microfluidic Thread-Based Duplex Immunosensor for Point-of-Care Monitoring. Anal Chem 2023; 95:12802-12810. [PMID: 37578458 DOI: 10.1021/acs.analchem.3c01778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Herein, we successfully developed a thread-based analytical device (μTAD) for simultaneous immunosensing of two biomolecules with attomolar sensitivity by using a photothermal effect. A photothermal effect exploits a strong light-to-heat energy conversion of plasmonic metallic nanoparticles at localized surface plasmon resonance. The key innovation is to utilize the cotton thread to realize this sensor and the use of chitosan modification for enhancing the microfluidic properties, for improving the efficiency of photothermal conversion, and for sensor stability. The developed μTAD sensor consists of (i) a sample zone, (ii) a conjugation zone coated with gold nanoparticles bound with an antibody (AuNPs-Ab2), and (iii) a test zone immobilized with a capture antibody (anti-Ab1). The prepared μTAD is assembled in a custom three-dimensional (3D) printed device which holds the laser for illumination and the thermometer for readout. The 3D-printed supportive device enhances signal response by focusing light and localizing the heat generated. For proof of concept, simultaneous sensing of two key stress and inflammation biomarkers, namely, cortisol and interleukin-6 (IL-6), are monitored using this technique. Under optimization, this device exhibited a detection linear range of 2.0-14.0 ag/mL (R2 = 0.9988) and 30.0-360.0 fg/mL (R2 = 0.9942) with a detection limit (LOD) of 1.40 ag/mL (∼3.86 amol/L) and 20.0 fg/mL (∼950.0 amol/L) for cortisol and IL-6, respectively. Furthermore, the analysis of both biomolecules in human samples indicated recoveries in the range of 98.8%-102.88% with the highest relative standard deviation being 3.49%, offering great accuracy and precision. These results are the highest reported sensitivity for these analytes using an immunoassay method. Our PT-μTAD strategy is therefore a promising approach for detecting biomolecules in resource-limited point-of-care settings.
Collapse
Affiliation(s)
- Kawin Khachornsakkul
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| | - Ruben Del-Rio-Ruiz
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| | - Wenxin Zeng
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| | - Sameer Sonkusale
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
30
|
Ghandforoushan P, Alehosseini M, Golafshan N, Castilho M, Dolatshahi-Pirouz A, Hanaee J, Davaran S, Orive G. Injectable hydrogels for cartilage and bone tissue regeneration: A review. Int J Biol Macromol 2023; 246:125674. [PMID: 37406921 DOI: 10.1016/j.ijbiomac.2023.125674] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Annually, millions of patients suffer from irreversible injury owing to the loss or failure of an organ or tissue caused by accident, aging, or disease. The combination of injectable hydrogels and the science of stem cells have emerged to address this persistent issue in society by generating minimally invasive treatments to augment tissue function. Hydrogels are composed of a cross-linked network of polymers that exhibit a high-water retention capacity, thereby mimicking the wet environment of native cells. Due to their inherent mechanical softness, hydrogels can be used as needle-injectable stem cell carrier materials to mend tissue defects. Hydrogels are made of different natural or synthetic polymers, displaying a broad portfolio of eligible properties, which include biocompatibility, low cytotoxicity, shear-thinning properties as well as tunable biological and physicochemical properties. Presently, novel ongoing developments and native-like hydrogels are increasingly being used broadly to improve the quality of life of those with disabling tissue-related diseases. The present review outlines various future and in-vitro applications of injectable hydrogel-based biomaterials, focusing on the newest ongoing developments of in-situ forming injectable hydrogels for bone and cartilage tissue engineering purposes.
Collapse
Affiliation(s)
- Parisa Ghandforoushan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran; Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Alehosseini
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nasim Golafshan
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | - Jalal Hanaee
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; University of the Basque Country, Spain.
| |
Collapse
|
31
|
Szczuka J, Sandomierski M, Voelkel A, Grochalski K, Buchwald T. Surface Modification of Ti6Al4V ELI Titanium Alloy by Poly(ethylene-alt-maleic anhydride) and Risedronate Sodium. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5404. [PMID: 37570108 PMCID: PMC10419809 DOI: 10.3390/ma16155404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 08/13/2023]
Abstract
With the simultaneous increase in the number of endoprostheses being performed, advances in the field of biomaterials are becoming apparent-whereby the materials and technologies used to construct implants clearly improve the implants' quality and, ultimately, the life of the patient after surgery. The aim of this study was to modify the titanium alloy Ti6Al4V ELI used in the construction of hip joint endoprostheses. This is why the continuous development of biomaterials is so important. This paper presents the results of research for a new application of polymer poly(ethylene-alt-maleic anhydride) as a drug release layer, placed on the surface of a titanium alloy. The obtained layers were analyzed using Raman spectroscopy (spectra and maps), Fourier transform infrared spectroscopy (spectra and maps), contact angle measurements as well as scanning electron microscopy and energy dispersive spectroscopy imaging and topography analysis. The results confirmed that the polymer layer obtained on the plate surface after the alkali heat treatment process is much better-it binds much more polymer and thus the applied drug. In addition, a longer and more gradual release of the drug was observed for the alkali heat treatment modification than for H2O2 solution.
Collapse
Affiliation(s)
- Joanna Szczuka
- Institute of Materials Research and Quantum Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Mariusz Sandomierski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland; (M.S.); (A.V.)
| | - Adam Voelkel
- Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland; (M.S.); (A.V.)
| | - Karol Grochalski
- Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Tomasz Buchwald
- Institute of Materials Research and Quantum Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| |
Collapse
|
32
|
Huang T, Su Z, Hou K, Zeng J, Zhou H, Zhang L, Nunes SP. Advanced stimuli-responsive membranes for smart separation. Chem Soc Rev 2023. [PMID: 37184537 DOI: 10.1039/d2cs00911k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Membranes have been extensively studied and applied in various fields owing to their high energy efficiency and small environmental impact. Further conferring membranes with stimuli responsiveness can allow them to dynamically tune their pore structure and/or surface properties for efficient separation performance. This review summarizes and discusses important developments and achievements in stimuli-responsive membranes. The most commonly utilized stimuli, including light, pH, temperature, ions, and electric and magnetic fields, are discussed in detail. Special attention is given to stimuli-responsive control of membrane pore structure (pore size and porosity/connectivity) and surface properties (wettability, surface topology, and surface charge), from the perspective of determining the appropriate membrane properties and microstructures. This review also focuses on strategies to prepare stimuli-responsive membranes, including blending, casting, polymerization, self-assembly, and electrospinning. Smart applications for separations are also reviewed as well as a discussion of remaining challenges and future prospects in this exciting field. This review offers critical insights for the membrane and broader materials science communities regarding the on-demand and dynamic control of membrane structures and properties. We hope that this review will inspire the design of novel stimuli-responsive membranes to promote sustainable development and make progress toward commercialization.
Collapse
Affiliation(s)
- Tiefan Huang
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Zhixin Su
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Kun Hou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Jianxian Zeng
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Hu Zhou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Academy of Ecological Civilization, Zhejiang University, Hangzhou, 310058, China
| | - Suzana P Nunes
- King Abdullah University of Science and Technology (KAUST), Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
33
|
Xu R, Wu G, Jiang M, Cao S, Panahi-Sarmad M, Kamkar M, Xiao X. Multi-Stimuli Dually-Responsive Intelligent Woven Structures with Local Programmability for Biomimetic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207900. [PMID: 36802163 DOI: 10.1002/smll.202207900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Indexed: 05/18/2023]
Abstract
This work focuses on multi-stimuli-responsive materials with distinctive abilities, that is, color-changing and shape-memory. Using metallic composite yarns and polymeric/thermochromic microcapsule composite fibers, processed via a melt-spinning technique, an electrothermally multi-responsive fabric is woven. The resulting smart-fabric transfers from a predefined structure to an original shape while changing color upon heating or applying an electric field, making it appealing for advanced applications. The shape-memory and color-changing features of the fabric can be controlled by rationally controlling the micro-scale design of the individual fibers in the structure. Thus, the fibers' microstructural features are optimized to achieve excellent color-changing behavior along with shape fixity and recovery ratios of 99.95% and 79.2%, respectively. More importantly, the fabric's dual-response by electric field can be achieved by a low voltage of 5 V, which is smaller than the previously reported values. Above and beyond, the fabric is able to be meticulously activated by selectively applying a controlled voltage to any part of the fabric. The precise local responsiveness can be bestowed upon the fabric by readily controlling its macro-scale design. A biomimetic dragonfly with the shape-memory and color-changing dual-response ability is successfully fabricated, broadening the design and fabrication horizon of groundbreaking smart materials with multiple functions.
Collapse
Affiliation(s)
- Runxin Xu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Guanzheng Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, P. R. China
| | - Mengmeng Jiang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Shaojie Cao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Mahyar Panahi-Sarmad
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Milad Kamkar
- Multiscale Materials Design Laboratory, Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Xueliang Xiao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
34
|
AL-Rajabi MM, Teow YH. Temperature-Responsive Hydrogel for Silver Sulfadiazine Drug Delivery: Optimized Design and In Vitro/In Vivo Evaluation. Gels 2023; 9:329. [PMID: 37102941 PMCID: PMC10137830 DOI: 10.3390/gels9040329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
Response surface methodology (RSM) was applied to optimise a temperature-responsive hydrogel formulation synthesised via the direct incorporation of biocellulose, which was extracted from oil palm empty fruit bunches (OPEFB) using the PF127 method. The optimised temperature-responsive hydrogel formulation was found to contain 3.000 w/v% biocellulose percentage and 19.047 w/v% PF127 percentage. The optimised temperature-responsive hydrogel provided excellent LCST near to the human body surface temperature, with high mechanical strength, drug release duration, and inhibition zone diameter against Staphylococcus aureus. Moreover, in vitro cytotoxicity testing against human epidermal keratinocyte (HaCaT) cells was conducted to evaluate the toxicity of the optimised formula. It was found that silver sulfadiazine (SSD)-loaded temperature-responsive hydrogel can be used as a safe replacement for the commercial SSD cream with no toxic effect on HaCaT cells. Last, but not least, in vivo (animal) dermal testing-both dermal sensitization and animal irritation-were conducted to evaluate the safety and biocompatibility of the optimised formula. No sensitization effects were detected on the skin applied with SSD-loaded temperature-responsive hydrogel indicating no irritant response for topical application. Therefore, the temperature-responsive hydrogel produced from OPEFB is ready for the next stage of commercialisation.
Collapse
Affiliation(s)
- Maha Mohammad AL-Rajabi
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Yeit Haan Teow
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
35
|
Wang X, Qin Q, Lu Y, Mi Y, Meng J, Zhao Z, Wu H, Cao X, Wang N. Smart Triboelectric Nanogenerators Based on Stimulus-Response Materials: From Intelligent Applications to Self-Powered Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1316. [PMID: 37110900 PMCID: PMC10141953 DOI: 10.3390/nano13081316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Smart responsive materials can react to external stimuli via a reversible mechanism and can be directly combined with a triboelectric nanogenerator (TENG) to deliver various intelligent applications, such as sensors, actuators, robots, artificial muscles, and controlled drug delivery. Not only that, mechanical energy in the reversible response of innovative materials can be scavenged and transformed into decipherable electrical signals. Because of the high dependence of amplitude and frequency on environmental stimuli, self-powered intelligent systems may be thus built and present an immediate response to stress, electrical current, temperature, magnetic field, or even chemical compounds. This review summarizes the recent research progress of smart TENGs based on stimulus-response materials. After briefly introducing the working principle of TENG, we discuss the implementation of smart materials in TENGs with a classification of several sub-groups: shape-memory alloy, piezoelectric materials, magneto-rheological, and electro-rheological materials. While we focus on their design strategy and function collaboration, applications in robots, clinical treatment, and sensors are described in detail to show the versatility and promising future of smart TNEGs. In the end, challenges and outlooks in this field are highlighted, with an aim to promote the integration of varied advanced intelligent technologies into compact, diverse functional packages in a self-powered mode.
Collapse
Affiliation(s)
- Xueqing Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Qinghao Qin
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yin Lu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yajun Mi
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiajing Meng
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Zequan Zhao
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Han Wu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xia Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China;
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China;
| |
Collapse
|
36
|
Gan S, Wu Y, Zhang X, Zheng Z, Zhang M, Long L, Liao J, Chen W. Recent Advances in Hydrogel-Based Phototherapy for Tumor Treatment. Gels 2023; 9:gels9040286. [PMID: 37102898 PMCID: PMC10137920 DOI: 10.3390/gels9040286] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Phototherapeutic agent-based phototherapies activated by light have proven to be safe modalities for the treatment of various malignant tumor indications. The two main modalities of phototherapies include photothermal therapy, which causes localized thermal damage to target lesions, and photodynamic therapy, which causes localized chemical damage by generated reactive oxygen species (ROS). Conventional phototherapies suffer a major shortcoming in their clinical application due to their phototoxicity, which primarily arises from the uncontrolled distribution of phototherapeutic agents in vivo. For successful antitumor phototherapy, it is essential to ensure the generation of heat or ROS specifically occurs at the tumor site. To minimize the reverse side effects of phototherapy while improving its therapeutic performance, extensive research has focused on developing hydrogel-based phototherapy for tumor treatment. The utilization of hydrogels as drug carriers allows for the sustained delivery of phototherapeutic agents to tumor sites, thereby limiting their adverse effects. Herein, we summarize the recent advancements in the design of hydrogels for antitumor phototherapy, offer a comprehensive overview of the latest advances in hydrogel-based phototherapy and its combination with other therapeutic modalities for tumor treatment, and discuss the current clinical status of hydrogel-based antitumor phototherapy.
Collapse
Affiliation(s)
- Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Long
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
37
|
Henschel C, Schanzenbach D, Laschewsky A, Ko CH, Papadakis CM, Müller-Buschbaum P. Thermoresponsive and co-nonsolvency behavior of poly(N-vinyl isobutyramide) and poly(N-isopropyl methacrylamide) as poly(N-isopropyl acrylamide) analogs in aqueous media. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Abstract
Sets of the nonionic polymers poly(N-vinyl isobutyramide) (pNVIBAm) and poly(N-isopropyl methacrylamide) (pNIPMAm) are synthesized by radical polymerization covering the molar mass range from about 20,000 to 150,000 kg mol−1, and their thermoresponsive and solvent-responsive behaviors in aqueous solution are studied. Both polymers feature a lower critical solution temperature (LCST) apparently of the rare so-called type II, as characteristic for their well-studied analogue poly(N-isopropyl acrylamide) (pNIPAm). Moreover, in analogy to pNIPAm, both polymers exhibit co-nonsolvency behavior in mixtures of water with several co-solvents, including short-chain alcohols as well as a range of polar aprotic solvents. While the cloud points of the aqueous solutions are a few degrees higher than those for pNIPAm and increase in the order pNIPAm < pNVIBAm < pNIPMAm, the co-nonsolvency behavior becomes less pronounced in the order pNIPAm > pNVIBAm > pNIPMAm. Exceptionally, pNIPMAm does not show co-nonsolvency in mixtures of water and N,N-dimethylformamide.
Graphical Abstract
Collapse
|
38
|
Amgoth C, Patra S, Wasnik K, Maity P, Paik P. Controlled synthesis of thermosensitive tunable porous film of (
pNIPAM
)‐
b
‐(
PCL
) copolymer for sustain drug delivery. J Appl Polym Sci 2023. [DOI: 10.1002/app.53854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Chander Amgoth
- School of Engineering Sciences and Technology University of Hyderabad Hyderabad Telangana India
| | - Sukanya Patra
- School of Biomedical Engineering Indian Institute of Technology (BHU) Varanasi Uttar Pradesh India
| | - Kirti Wasnik
- School of Biomedical Engineering Indian Institute of Technology (BHU) Varanasi Uttar Pradesh India
| | - Pradip Maity
- CSIR‐National Chemical Laboratory Pune Maharashtra India
| | - Pradip Paik
- School of Biomedical Engineering Indian Institute of Technology (BHU) Varanasi Uttar Pradesh India
| |
Collapse
|
39
|
Regulated extravascular microenvironment via reversible thermosensitive hydrogel for inhibiting calcium influx and vasospasm. Bioact Mater 2023; 21:422-435. [PMID: 36185746 PMCID: PMC9483581 DOI: 10.1016/j.bioactmat.2022.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/18/2022] [Accepted: 08/13/2022] [Indexed: 11/22/2022] Open
Abstract
Arterial vasospasm after microsurgery can cause severe obstruction of blood flow manifested as low tissue temperature, leading to tissue necrosis. The timely discovery and synchronized treatment become pivotal. In this study, a reversible, intelligent, responsive thermosensitive hydrogel system is constructed employing both the gel–sol transition and the sol–gel transition. The “reversible thermosensitive (RTS)” hydrogel loaded with verapamil hydrochloride is designed to dynamically and continuously regulate the extravascular microenvironment by inhibiting extracellular calcium influx. After accurate implantation and following in situ gelation, the RTS hydrogel reverses to the sol state causing massive drug release to inhibit vasospasm when the tissue temperature drops to the predetermined transition temperature. Subsequent restoration of the blood supply alleviates further tissue injury. Before the temperature drops, the RTS hydrogel maintains the gel state as a sustained-release reservoir to prevent vasospasm. The inhibition of calcium influx and vasospasm in vitro and in vivo is demonstrated using vascular smooth muscle cells, mice mesenteric arterial rings, and vascular ultrasonic Doppler detection. Subsequent animal experiments demonstrate that RTS hydrogel can promote tissue survival and alleviate tissue injury responding to temperature change. Therefore, this RTS hydrogel holds therapeutic potential for diseases requiring timely detection of temperature change. Proposing a new strategy for the discovery and treatment for diseases requiring timely detection of temperature change. Applying both the gel–sol transition and the sol–gel transition of PEG/PLGA triblock polymers. Realizing the dynamical and continuous regulation of the extravascular microenvironment.
Collapse
|
40
|
Guo J, Yao H, Li X, Chang L, Wang Z, Zhu W, Su Y, Qin L, Xu J. Advanced Hydrogel systems for mandibular reconstruction. Bioact Mater 2023; 21:175-193. [PMID: 36093328 PMCID: PMC9413641 DOI: 10.1016/j.bioactmat.2022.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/16/2022] [Accepted: 08/02/2022] [Indexed: 12/23/2022] Open
Abstract
Mandibular defect becomes a prevalent maxillofacial disease resulting in mandibular dysfunctions and huge psychological burdens to the patients. Considering the routine presence of oral contaminations and aesthetic restoration of facial structures, the current clinical treatments are however limited, incapable to reconstruct the structural integrity and regeneration, spurring the need for cost-effective mandibular tissue engineering. Hydrogel systems possess great merit for mandibular reconstruction with precise involvement of cells and bioactive factors. In this review, current clinical treatments and distinct mode(s) of mandible formation and pathological resorption are summarized, followed by a review of hydrogel-related mandibular tissue engineering, and an update on the advanced fabrication of hydrogels with improved mechanical property, antibacterial ability, injectable form, and 3D bioprinted hydrogel constructs. The exploration of advanced hydrogel systems will lay down a solid foundation for a bright future with more biocompatible, effective, and personalized treatment in mandibular reconstruction.
Collapse
Affiliation(s)
- Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zixuan Wang
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Wangyong Zhu
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yuxiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. Director of Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
41
|
Zbonikowski R, Mente P, Bończak B, Paczesny J. Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:855. [PMID: 36903733 PMCID: PMC10005801 DOI: 10.3390/nano13050855] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional and pseudo-2D systems come in various forms. Membranes separating protocells from the environment were necessary for life to occur. Later, compartmentalization allowed for the development of more complex cellular structures. Nowadays, 2D materials (e.g., graphene, molybdenum disulfide) are revolutionizing the smart materials industry. Surface engineering allows for novel functionalities, as only a limited number of bulk materials have the desired surface properties. This is realized via physical treatment (e.g., plasma treatment, rubbing), chemical modifications, thin film deposition (using both chemical and physical methods), doping and formulation of composites, or coating. However, artificial systems are usually static. Nature creates dynamic and responsive structures, which facilitates the formation of complex systems. The challenge of nanotechnology, physical chemistry, and materials science is to develop artificial adaptive systems. Dynamic 2D and pseudo-2D designs are needed for future developments of life-like materials and networked chemical systems in which the sequences of the stimuli would control the consecutive stages of the given process. This is crucial to achieving versatility, improved performance, energy efficiency, and sustainability. Here, we review the advancements in studies on adaptive, responsive, dynamic, and out-of-equilibrium 2D and pseudo-2D systems composed of molecules, polymers, and nano/microparticles.
Collapse
Affiliation(s)
| | | | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
42
|
Ow V, Chang JJ, Chooi WH, Boo YJ, Tan RPT, Wong JHM, Parikh BH, Su X, Ng SY, Loh XJ, Xue K. Orthogonally crosslinked alginate conjugate thermogels with potential for cell encapsulation. Carbohydr Polym 2023; 302:120308. [PMID: 36604036 DOI: 10.1016/j.carbpol.2022.120308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022]
Abstract
Hydrogels with more than one mode of crosslinking have gained interest due to improved control over hydrogel properties such as mechanical strength using multiple stimuli. In this work, sodium alginate was covalently conjugated onto thermoresponsive polyurethanes to prepare hybrid polymers (EPC-Alg) that are responsive to both temperature and Ca2+, forming orthogonally crosslinked hydrogels which are non-toxic to cells. Notably, the crosslinks are fully reversible, allowing for gel strength to be modulated via selective removal of either stimulus, or complete deconstruction of the hydrogel network by removing both stimuli. Higher alginate fractions increased the hydrophilicity and Ca2+ response of the EPC-Alg hydrogel, enabling tunable modulation of the thermal stability, stiffness and gelation temperatures. The EPC-Alg hydrogel could sustain protein release for a month and encapsulate neural spheroids with high cell viability after 7-day culture, demonstrating feasibility towards 3D cell encapsulation in cell-based biomedical applications such as cell encapsulation and cell therapy.
Collapse
Affiliation(s)
- Valerie Ow
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore; Department of Biomedical Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Jun Jie Chang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Wai Hon Chooi
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Yi Jian Boo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Rebekah P T Tan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Joey H M Wong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Bhav Harshad Parikh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Xinyi Su
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 1E Kent Ridge Road, Singapore 119228, Singapore; Singapore Eye Research Institute (SERI), 20 College Rd, Singapore 169856, Singapore
| | - Shi Yan Ng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore; Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117575, Singapore; School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Ave, Singapore 639798, Singapore.
| | - Kun Xue
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore.
| |
Collapse
|
43
|
Responsive Nanostructure for Targeted Drug Delivery. JOURNAL OF NANOTHERANOSTICS 2023. [DOI: 10.3390/jnt4010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Currently, intelligent, responsive biomaterials have been widely explored, considering the fact that responsive biomaterials provide controlled and predictable results in various biomedical systems. Responsive nanostructures undergo reversible or irreversible changes in the presence of a stimulus, and that stimuli can be temperature, a magnetic field, ultrasound, pH, humidity, pressure, light, electric field, etc. Different types of stimuli being used in drug delivery shall be explained here. Recent research progress in the design, development and applications of biomaterials comprising responsive nanostructures is also described here. More emphasis will be given on the various nanostructures explored for the smart stimuli responsive drug delivery at the target site such as wound healing, cancer therapy, inflammation, and pain management in order to achieve the improved efficacy and sustainability with the lowest side effects. However, it is still a big challenge to develop well-defined responsive nanostructures with ordered output; thus, challenges faced during the design and development of these nanostructures shall also be included in this article. Clinical perspectives and applicability of the responsive nanostructures in the targeted drug delivery shall be discussed here.
Collapse
|
44
|
NP Ghoderao P, Lee CW, Byun HS. Phase behavior for the poly(2-ethyl-2-oxazoline) + supercritical DME + alcohol and carbon dioxide + 2-ethyl-2-oxazoline mixtures at high pressure. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
45
|
Tanaka N, Suyama K, Tomohara K, Maeda I, Nose T. Branched short elastin-like peptides with temperature responsiveness obtained by EDTA-mediated multimerization. J Pept Sci 2023; 29:e3449. [PMID: 36038531 DOI: 10.1002/psc.3449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023]
Abstract
Elastin-like peptides (ELPs) exhibit a reversible phase transition, known as coacervation, triggered by temperature changes. This property makes them useful as stimuli-responsive molecular materials for various applications. Among ELPs, short peptide chain lengths have some advantages over long peptide chain lengths because short ELPs can be easily obtained by chemical synthesis, allowing the use of various amino acids, including D-type and unnatural amino acids, at any position in the sequence. Moreover, the incorporated amino acids readily affect the temperature-responsive behavior of ELPs. However, to be utilized in various applications, it is necessary to develop short ELPs and to investigate their temperature-responsive properties. To obtain further insights into the temperature-responsive behavior of the short ELPs, we investigated branched short ELP analogs composed of (FPGVG)n chains (n = 1 or 2, abbreviated as F1 and F2, respectively). We synthesized multimers composed of four F1 chains or two to four F2 chains using ethylenediaminetetraacetic acid (EDTA) as a central component of multimerization. Our results show that the multimers obtained exhibited coacervation in aqueous solutions whereas linear F1 or F2 did not. Furthermore, the structural features of the obtained multimers were the same as those of linear (FPGVG)4 . In this study, we demonstrated that molecules capable of coacervation can be obtained by multimerization of F1 or F2. The temperature-responsive molecules obtained using short ELPs make it possible to use them as easy-to-synthesize peptide tags to confer temperature responsiveness to various molecules, which will aid the development of temperature-responsive biomaterials with a wide variety of functions.
Collapse
Affiliation(s)
- Naoki Tanaka
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Keitaro Suyama
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | | | - Iori Maeda
- Department of Physics and Information Technology, Kyushu Institute of Technology, Iizuka, Japan
| | - Takeru Nose
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka, Japan.,Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
46
|
Reitenbach J, Geiger C, Wang P, Vagias A, Cubitt R, Schanzenbach D, Laschewsky A, Papadakis CM, Müller-Buschbaum P. Effect of Magnesium Salts with Chaotropic Anions on the Swelling Behavior of PNIPMAM Thin Films. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Julija Reitenbach
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Christina Geiger
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Peixi Wang
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Apostolos Vagias
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Robert Cubitt
- Institut Laue-Langevin, 6 rue Jules Horowitz, 38000 Grenoble, France
| | - Dirk Schanzenbach
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - André Laschewsky
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
- Fraunhofer Institut für Angewandte Polymerforschung, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
| | - Christine M. Papadakis
- TUM School of Natural Sciences, Department of Physics, Fachgebiet Physik weicher Materie, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Peter Müller-Buschbaum
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748 Garching, Germany
| |
Collapse
|
47
|
Shen Y, An C, Jiang J, Huang B, Li N, Sun C, Wang C, Zhan S, Li X, Gao F, Zhao X, Cui H, Gooneratne R, Wang Y. Temperature-Dependent Nanogel for Pesticide Smart Delivery with Improved Foliar Dispersion and Bioactivity for Efficient Control of Multiple Pests. ACS NANO 2022; 16:20622-20632. [PMID: 36469037 DOI: 10.1021/acsnano.2c07517] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The use of nanomaterials and nanotechnology to construct a smart pesticide delivery system with target-oriented and controlled-release functions is important to increase the effective utilization rate and minimize environmental residue pollution. A temperature-dependent delivery system can modulate the release of pesticide with temperature to improve the efficacy and precision targeting. A series of poly(N-isopropylacrylamide) (PNIPAM)-based nanogels with high deformability and tunable structure were successfully constructed for smart pesticide delivery and effective pest control. A lambda-cyhalothrin (LC)-loaded Pickering emulsion (LC@TNPE) with a stable gel-like network structure was further formed by the temperature-dependent nanogel to encapsule the pesticide. The foliar wettability, photostability, and controlled-release property of LC@TNPE were effectively enhanced compared to the commercial formulation because of the encapsulation and stabilization of nanogel. The release rate of LC positively correlated with temperature changes and thereby adapted to the trend of pest population increase at higher temperature. The LC@TNPE displayed improved control efficacy on multiple target pests including Plutella xylostella, Aphis gossypii, and Pieris rapae compared with the commercial suspension concentrate and microcapsule suspension, and it showed marked efficacy to control Pieris rapae for an extended duration even at a 40% reduced dosage. Furthermore, the safety was evaluated systematically on cells in vitro and with a nontarget organism. Studies confirmed that the system was relatively safe for HepG2 cells and aquatic organism zebrafish. This research provides an insight into creating an efficient and environmentally friendly pesticide nanoformulation for sustainable agriculture production.
Collapse
Affiliation(s)
- Yue Shen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Changcheng An
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Jiajun Jiang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Bingna Huang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Ningjun Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Chong Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Shenshan Zhan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Xingye Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Fei Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln7647, New Zealand
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing100081, China
| |
Collapse
|
48
|
Gopinath S, Adarsh NN, Nair PR, Mathew S. Carbon nanofiber-reinforced shape memory polyurethanes based on HTPB/PTMG blend as anticorrosive coatings. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2129386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sithara Gopinath
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, India
| | | | - P. Radhakrishnan Nair
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, India
| | - Suresh Mathew
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, India
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, India
| |
Collapse
|
49
|
Audureau N, Coumes F, Guigner JM, Guibert C, Stoffelbach F, Rieger J. Dual Thermo- and pH-Responsive N-Cyanomethylacrylamide-Based Nano-Objects Prepared by RAFT-Mediated Aqueous Polymerization-Induced Self-Assembly. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicolas Audureau
- Sorbonne Université & CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Fanny Coumes
- Sorbonne Université & CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Jean-Michel Guigner
- Sorbonne Université & CNRS, UMR 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)-IRD-MNHN, 75252 Paris Cedex 05, France
| | - Clément Guibert
- Sorbonne Université & CNRS, UMR 7197, Laboratoire de Réactivité de Surface (LRS), 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - François Stoffelbach
- Sorbonne Université & CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Jutta Rieger
- Sorbonne Université & CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
50
|
Miclotte MJ, Varlas S, Reynolds CD, Rashid B, Chapman E, O’Reilly RK. Thermoresponsive Block Copolymer Core-Shell Nanoparticles with Tunable Flow Behavior in Porous Media. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54182-54193. [PMID: 36401811 PMCID: PMC9743085 DOI: 10.1021/acsami.2c15024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
With the purpose of investigating new polymeric materials as potential flow modifiers for their future application in enhanced oil recovery (EOR), a series of amphiphilic poly(di(ethylene glycol) methyl ether methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate) [P(DEGMA-co-OEGMA)]-based core-shell nanoparticles were prepared by aqueous reversible addition-fragmentation chain transfer-mediated polymerization-induced self-assembly. The developed nano-objects were shown to be thermoresponsive, demonstrating a reversible lower-critical solution temperature (LCST)-type phase transition with increasing solution temperature. Characterization of their thermoresponsive nature by variable-temperature UV-vis and dynamic light scattering analyses revealed that these particles reversibly aggregate when heated above their LCST and that the critical transition temperature could be accurately tuned by simply altering the molar ratio of core-forming monomers. Sandpack experiments were conducted to evaluate their pore-blocking performance at low flow rates in a porous medium heated at temperatures above their LCST. This analysis revealed that particles aggregated in the sandpack column and caused pore blockage with a significant reduction in the porous medium permeability. The developed aggregates and the increased pressure generated by the blockage were found to remain stable under the injection of brine and were observed to rapidly dissipate upon reducing the temperature below the LCST of each formulation. Further investigation by double-column sandpack analysis showed that the blockage was able to reform when re-heated and tracked the thermal front. Moreover, the rate of blockage formation was observed to be slower when the LCST of the injected particles was higher. Our investigation is expected to pave the way for the design of "smart" and versatile polymer technologies for EOR applications in future studies.
Collapse
Affiliation(s)
| | - Spyridon Varlas
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Carl D. Reynolds
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Bilal Rashid
- BP
Exploration Operating Company Ltd., Sunbury-on-Thames, Middlesex TW16 7LN, U.K.
| | - Emma Chapman
- BP
Exploration Operating Company Ltd., Sunbury-on-Thames, Middlesex TW16 7LN, U.K.
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|