1
|
El-Sewify IM, Shenashen MA, El-Agamy RF, Emran MY, Selim MS, Khairy M, Shahat A, Selim MM, Elmarakbi A, Ebara M, El-Safty SA. Fluorescent sensor/tracker for biocompatible and real-time monitoring of ultra-trace arsenic toxicants in living cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135429. [PMID: 39128154 DOI: 10.1016/j.jhazmat.2024.135429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Real-time monitoring and tracking of extreme toxins that penetrate into living cells by using biocompatible, low-cost visual detection via fluorescent monitors are vitally essential to reduce health hazards. Herein, we report a simple engineering design of biocompatible and fluorescent sensors/trackers for real-time monitoring and ultra-trace tracking (up to ppb) of extremely toxic substances (such as arsenic species) in living cells. The biocompatible As(V) sensor (BAS) design is fabricated via successful dressing/decoration process of 2-hydroxy 5-methyl isophthalaldehyde fluorescent receptor into hierarchical organic-inorganic carriers that have micro-hollow geodes, swirled caves and nest-shaped cages, and uniform cubic structures. The BAS monitors show evidence for the selective trapping/detecting/tracking of As(V) species in biological cells (i.e., HeLa cells) despite the coexistence of highly competitive and interfered species. Our simple batch-contact sensing assays shows real-space evidence of the continuous monitoring of As(V) species in HeLa cells with ultra-sensitive detection (i.e., with a low detection limit of 0.149 ppb) and rapid recognition (i.e., in the order of seconds). Significantly, the BAS monitors did not affect the cell population and achieved low cytotoxicity and high cell viability during the monitoring/tracking process inside HeLa cells. The high biocompatibility of BAS remarkably allows precise quantification and real-time monitoring/tracking of toxicant targets in living cells.
Collapse
Affiliation(s)
- Islam M El-Sewify
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan; Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Cairo, Abbassia, Egypt
| | - Mohamed A Shenashen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan; Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI)The institution will open in a new tab, Nasr City, Cairo 11727, Egypt
| | - Rasha F El-Agamy
- College of Computer Science and Engineering, Taibah University, Yanbu 966144 Saudi Arabia
| | - Mohammed Y Emran
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan
| | - Mohamed S Selim
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI)The institution will open in a new tab, Nasr City, Cairo 11727, Egypt
| | - Mohamed Khairy
- Chemistry Department, Faculty of Science, Sohag University, 82524, Egypt
| | - Ahmed Shahat
- Chemistry Department, Faculty of Science, Suez University, B.O.Box: 43221 Suez, Egypt
| | - Mahmoud M Selim
- Al-Aflaj College of Science and Human Studies, Prince Sattam Bin Abdulaziz University, Al-Aflaj 710, 11912, Saudi Arabia
| | - Ahmed Elmarakbi
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan
| | - Sherif A El-Safty
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan.
| |
Collapse
|
2
|
Emran MY, Kotb A, Ganganboina AB, Okamoto A, Abolibda TZ, Alzahrani HAH, Gomha SM, Ma C, Zhou M, Shenashen MA. Tailored portable electrochemical sensor for dopamine detection in human fluids using heteroatom-doped three-dimensional g-C 3N 4 hornet nest structure. Anal Chim Acta 2024; 1320:342985. [PMID: 39142767 DOI: 10.1016/j.aca.2024.342985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND There is widespread interest in the design of portable electrochemical sensors for the selective monitoring of biomolecules. Dopamine (DA) is one of the neurotransmitter molecules that play a key role in the monitoring of some neuronal disorders such as Alzheimer's and Parkinson's diseases. Facile synthesis of the highly active surface interface to design a portable electrochemical sensor for the sensitive and selective monitoring of biomolecules (i.e., DA) in its resources such as human fluids is highly required. RESULTS The designed sensor is based on a three-dimensional phosphorous and sulfur resembling a g-C3N4 hornet's nest (3D-PS-doped CNHN). The morphological structure of 3D-PS-doped CNHN features multi-open gates and numerous vacant voids, presenting a novel design reminiscent of a hornet's nest. The outer surface exhibits a heterogeneous structure with a wave orientation and rough surface texture. Each gate structure takes on a hexagonal shape with a wall size of approximately 100 nm. These structural characteristics, including high surface area and hierarchical design, facilitate the diffusion of electrolytes and enhance the binding and high loading of DA molecules on both inner and outer surfaces. The multifunctional nature of g-C3N4, incorporating phosphorous and sulfur atoms, contributes to a versatile surface that improves DA binding. Additionally, the phosphate and sulfate groups' functionalities enhance sensing properties, thereby outlining selectivity. The resulting portable 3D-PS-doped CNHN sensor demonstrates high sensitivity with a low limit of detection (7.8 nM) and a broad linear range spanning from 10 to 500 nM. SIGNIFICANCE The portable DA sensor based on the 3D-PS-doped CNHN/SPCE exhibits excellent recovery of DA molecules in human fluids, such as human serum and urine samples, demonstrating high stability and good reproducibility. The designed portable DA sensor could find utility in the detection of DA in clinical samples, showcasing its potential for practical applications in medical settings.
Collapse
Affiliation(s)
- Mohammed Y Emran
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, 305-0044, Ibaraki, Japan.
| | - Ahmed Kotb
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Akhilesh Babu Ganganboina
- International Center for Young Scientists ICYS-NAMIKI, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Akihiro Okamoto
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, 305-0044, Ibaraki, Japan
| | - Tariq Z Abolibda
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Hassan A H Alzahrani
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, P.O. Box 355, Jeddah, Saudi Arabia
| | - Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Chongbo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Mohamed A Shenashen
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia.
| |
Collapse
|
3
|
El-Sewify IM, Shenashen MA, El-Agamy RF, Selim MS, Alqahtani NF, Elmarakbi A, Ebara M, Selim MM, Khalil MMH, El-Safty SA. Ultrasensitive Visual Tracking of Toxic Cyanide Ions in Biological Samples Using Biocompatible Metal-Organic Frameworks Architectures. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133271. [PMID: 38141313 DOI: 10.1016/j.jhazmat.2023.133271] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
The extraordinary accumulation of cyanide ions within biological cells is a severe health risk. Detecting and tracking toxic cyanide ions within these cells by simple and ultrasensitive methodologies are of immense curiosity. Here, continuous tracking of ultimate levels of CN--ions in HeLa cells was reported employing biocompatible branching molecular architectures (BMAs). These BMAs were engineered by decorating colorant-laden dendritic branch within and around the molecular building hollows of the geode-shelled nanorods of organic-inorganic Al-frameworks. Batch-contact methods were utilized to assess the potential of hollow-nest architecture for inhibition/evaluation of toxicant CN--ions within HeLa cells. The nanorod BMAs revealed significant potential capabilities in monitoring and tracking of CN- ions (88 parts per trillion) in biological trials within seconds. These results demonstrated sufficient evidence for the compatibility of BMAs during HeLa cell exposure. Under specific conditions, the BMAs were utilized for in-vitro fluorescence tracking/sensing of CN- in HeLa cells. The cliff swallow nest with massive mouths may have the potential to reduce the health hazards associated with toxicant exposure in biological cells.
Collapse
Affiliation(s)
- Islam M El-Sewify
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan; Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Cairo, Abbassia, Egypt
| | - Mohamed A Shenashen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan; Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727 Cairo, Egypt
| | - Rasha F El-Agamy
- College of Computer Science and Engineering, Taibah University, Yanbu 966144 Saudi Arabia
| | - Mohammed S Selim
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727 Cairo, Egypt
| | - Norah F Alqahtani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Ahmed Elmarakbi
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan
| | - Mahmoud M Selim
- Al-Aflaj College of Science and Human Studies, Prince Sattam Bin Abdulaziz University, Al-Aflaj 710-11912, Saudi Arabia
| | - Mostafa M H Khalil
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Cairo, Abbassia, Egypt
| | - Sherif A El-Safty
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan.
| |
Collapse
|
4
|
Erfan NA, Mahmoud MS, Kim HY, Barakat NAM. Synergistic doping with Ag, CdO, and ZnO to overcome electron-hole recombination in TiO 2 photocatalysis for effective water photo splitting reaction. Front Chem 2023; 11:1301172. [PMID: 38025057 PMCID: PMC10661415 DOI: 10.3389/fchem.2023.1301172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
This manuscript is dedicated to a comprehensive exploration of the multifaceted challenge of fast electron-hole recombination in titanium dioxide photocatalysis, with a primary focus on its critical role in advancing the field of water photo splitting. To address this challenge, three prominent approaches-Schottky barriers, Z-scheme systems, and type II heterojunctions-were rigorously investigated for their potential to ameliorate TiO2's photocatalytic performance toward water photo splitting. Three distinct dopants-silver, cadmium oxide, and zinc oxide-were strategically employed. This research also delved into the dynamic interplay between these dopants, analyzing the synergetic effects that arise from binary and tertiary doping configurations. The results concluded that incorporation of Ag, CdO, and ZnO dopants effectively countered the fast electron-hole recombination problem in TiO2 NPs. Ag emerged as a critical contributor at higher temperatures, significantly enhancing photocatalytic performance. The photocatalytic system exhibited a departure from Arrhenius behavior, with an optimal temperature of 40°C. Binary doping systems, particularly those combining CdO and ZnO, demonstrated exceptional photocatalytic activity at lower temperatures. However, the ternary doping configuration involving Ag, CdO, and ZnO proved to be the most promising, surpassing many functional materials. In sum, this study offers valuable insights into how Schottky barriers, Z-scheme systems, and type II heterojunctions, in conjunction with specific dopants, can overcome the electron-hole recombination challenge in TiO2-based photocatalysis. The results underscore the potential of the proposed ternary doping system to revolutionize photocatalytic water splitting for efficient green hydrogen production, significantly advancing the field's understanding and potential for sustainable energy applications.
Collapse
Affiliation(s)
- Nehal A. Erfan
- Chemical Engineering Department, Minia University, El-Minia, Egypt
| | - Mohamed S. Mahmoud
- Chemical Engineering Department, Minia University, El-Minia, Egypt
- Department of Engineering, University of Technology and Applied Sciences, Suhar, Oman
| | - Hak Yong Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju, Republic of Korea
| | | |
Collapse
|
5
|
Chakroborty S, Pal K, Nath N, Singh V, Barik A, Soren S, Panda P, Asthana N, Kyzas GZ. Sustainable synthesis of multifunctional nanomaterials from rice wastes: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95039-95053. [PMID: 37580476 PMCID: PMC10482793 DOI: 10.1007/s11356-023-29235-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023]
Abstract
More than 60% of India's population relies on agriculture as their primary source of income, making it the nation's most important economic sector. Rice husk (often abbreviated as RH) is one of the most typical by-products of agricultural production. Every five tonnes of rice that is harvested results in the production of one tonne of husk. The concept of recycling and reusing waste from agricultural production has received interest from a variety of environmental and industrial perspectives. A wide variety of nanomaterials, including nano-zeolite, nanocarbon, and nano-silica, have been discovered in agro-waste. From rice cultivation to the finished product, there was a by-product consisting of husk that comprised 20% of the overall weight, or RH. The percentage of silica in RH ash ranges from 60 to 40%, with the remaining percentage consisting of various minerals. As a direct consequence of this, several distinct approaches to generating and extracting nanomaterial from rice husk have been developed. Because it contains a significant amount of cellulose and lignin, RH is an excellent and economical source of carbon precursor. The goal of this chapter is to produce carbon-based nanomaterials from RH.
Collapse
Affiliation(s)
- Subhendu Chakroborty
- Department of Basic Sciences, IITM, IES University, Madhya Pradesh, Bhopal, 462044, India
| | - Kaushik Pal
- Department of Physics, University Centre for Research and Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Nibedita Nath
- Department of Chemistry, D.S. Degree College, Laida, Sambalpur, Odisha, India, 768214
| | - Varun Singh
- Department of Chemistry, University Institute of Science (UIS), Chandigarh University, Mohali, Punjab, 140413, India
| | - Arundhati Barik
- CIPET: Institute of Petrochemicals Technology [IPT], Bhubaneswar, Odisha, India
| | - Siba Soren
- Department of Chemistry, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Pravati Panda
- Department of Basic Sciences, RIE, Bhubaneswar, India
| | | | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala, Greece.
| |
Collapse
|
6
|
Masood T, Asad M, Riaz S, Akhtar N, Hayat A, Shenashen MA, Rahman MM. Non-enzymatic electrochemical sensing of dopamine from COVID-19 quarantine person. MATERIALS CHEMISTRY AND PHYSICS 2022; 289:126451. [PMID: 35765364 PMCID: PMC9222292 DOI: 10.1016/j.matchemphys.2022.126451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 05/24/2023]
Abstract
The worldwide outbreak of COVID-19 pandemic, is not only a great threat to the victim life but it is leaving invisible devastating negative affect on mental health of quarantined individual because of isolation, depression, bereavement, and loss of income. Therefore, the precise monitoring catecholamine neurotransmitters specifically of dopamine (DA) is of great importance to assess the mental health. Thus, herein we have synthesized Co-based zeolitic imidazolate framework (ZIF-67) through solvothermal method for precise monitoring of DA. To facilitate the fast transportation of ions, highly conductive polymer, poly(3,4-ethylenedioxythiophene; PEDOT) has been integrated on the surface of ZIF-67 which not only provides the smooth pathway for ions/electrons transportation but also saves the electrode from pulverization. The fabricated ZIF-67/PEDOT electrode shows a significant sensing performance towards DA detection in terms of short diffusion pathways by expositing more active sites, over good linear range (15-240 μM) and a low detection limit of (0.04 μM) even in the coexistence of the potentially interfering molecules. The developed ZIF-67/PEDOT sensor was successfully employed for sensitive and selective monitoring of DA from COVID-19 quarantined person blood, thus suggesting reliability of the developed electrode.
Collapse
Affiliation(s)
- Tayyaba Masood
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Muhammad Asad
- Department of Materials Science and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, 230026, Anhui, China
| | - Sara Riaz
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Naeem Akhtar
- Interdisciplinary Research Centre in Biomedical Materials Department, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials Department, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Mohamed A Shenashen
- Department of Petrochemical, Egyptian Petroleum Research Institute (EPRI), Cairo, 11727, Egypt
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia
| |
Collapse
|
7
|
Shakeel F, Fazal MW, Zulfiqar A, Zafar F, Akhtar N, Ahmed A, Ahmad HB, Ahmed S, Syed A, Bahkali AH, Abdullah M, Shafiq Z. Melamine-derived N-rich C-entrapped Au nanoparticles for sensitive and selective monitoring of dopamine in blood samples. RSC Adv 2022; 12:26390-26399. [PMID: 36275100 PMCID: PMC9477018 DOI: 10.1039/d2ra02754b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Several neurological disorders, including Parkinson's disease, schizophrenia, human immunodeficiency virus infection, and restless leg syndrome, majorly result from disruption in the dopamine (DA) level. Thus, useful information about the treatment and prevention of various genetic majorly mental health problems can be obtained through precise and real-time monitoring of DA. Herein, we report the fabrication of novel N-rich carbon-coated Au nanoparticles (NC@Au-NPs) by deriving from melamine-crosslinked citrate-stabilized Au NPs. NC@Au-NPs offer fast electro-oxidation efficacy towards DA, because of strong electrostatic attraction between negatively charged NC@Au-NPs and positively charged DA. The catalytic efficacy and shelf life of the designed system were further boosted by applying a mixture of polydopamine (PDA) and benzimidazolium-1-acetate ionic liquid (IL) as a sandwich between the working electrode surface (graphitic pencil electrode: GPE) and the designed nanohybrid NC@Au-NPs as a redox mediator. The results indicate that the designed novel NC@Au/PDA-IL/GPE exhibits excellent sensitivity, selectivity, and reproducibility over a wide linear range (50-1000 nm) and a low detection limit of 0.002 μM ± 0.001 as well. The developed sensor was successfully applied to monitor DA in the blood of COVID-19 quarantined patients and pharmaceutical samples with high accuracy, thus suggesting a powerful tool for the diagnosis of mental problems.
Collapse
Affiliation(s)
- Faria Shakeel
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Muhammad Waseem Fazal
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus Lahore 54000 Pakistan
| | - Anam Zulfiqar
- Department of Biochemistry, Bahauddin Zakariya University 60800 Multan Pakistan
| | - Farhan Zafar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus Lahore 54000 Pakistan
| | - Naeem Akhtar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus Lahore 54000 Pakistan
| | - Arsalan Ahmed
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus Lahore 54000 Pakistan
| | | | - Safeer Ahmed
- Department of Chemistry, Quaid-i-Azam University 45320 Islamabad Pakistan
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University P. O. 2455 Riyadh 11451 Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University P. O. 2455 Riyadh 11451 Saudi Arabia
| | - Muhammad Abdullah
- Department of Chemistry, University of Massachusetts Amherst 710 North Pleasant Street, Amherst Massachusetts 01003 USA
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
- Department of Pharmaceutical & Medicinal Chemistry An der Immenburg 4 D-53121 Bonn Germany
| |
Collapse
|
8
|
Abdelwahab A, Naggar A, Abdelmotaleb M, Abdel-Hakim M. A sensor for selective dopamine determination based on overoxidized poly‐1,5‐diaminonaphthalene on graphene nanosheets. ELECTROANAL 2022. [DOI: 10.1002/elan.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Emran MY, Shenashen MA, Eid AI, Selim MM, El-Safty SA. Portable sensitive and selective biosensing assay of dopamine in live cells using dual phosphorus and nitrogen doped carbon urchin-like structure. CHEMICAL ENGINEERING JOURNAL 2022; 430:132818. [DOI: 10.1016/j.cej.2021.132818] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
10
|
|
11
|
Shenashen MA, Emran MY, El Sabagh A, Selim MM, Elmarakbi A, El-Safty SA. Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. PROGRESS IN MATERIALS SCIENCE 2022; 124:100866. [DOI: 10.1016/j.pmatsci.2021.100866] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
12
|
Emran MY, Shenashen MA, Elmarakbi A, Selim MM, El-Safty SA. Hierarchical engineering of Mn 2O 3/carbon nanostructured electrodes for sensitive screening of acetylcholine in biological samples. NEW J CHEM 2022; 46:15557-15566. [DOI: 10.1039/d2nj02390c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Enzymeless electrochemical sensors have received considerable interest for the direct, sensitive, and selective monitoring of biomolecules in a complex biological environment.
Collapse
Affiliation(s)
- Mohammed Y. Emran
- National Institute for Materials Science (NIMS), Research Center for Functional Materials, 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS), Research Center for Functional Materials, 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
- Department of Petrochemical, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt
| | - Ahmed Elmarakbi
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Mahmoud M. Selim
- Al-Aflaj College of Science and Human Studies, Prince Sattam Bin Abdulaziz University, Al-Aflaj, 710-11912, Saudi Arabia
| | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS), Research Center for Functional Materials, 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
| |
Collapse
|
13
|
Reddy N, Dicce A, ma Y, Chen L, Chai K, Fang J. Crystalline H-Aggregate Nanoparticles for Detecting Dopamine Release from M17 Human Neuroblastoma Cells. J Mater Chem B 2022; 10:8024-8032. [DOI: 10.1039/d2tb01450e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dopamine (DA) is an important neurotransmitter, which is essential for transmitting signals in neuronal communications. The deficiency of DA release from neurons is implicated in neurological disorders. Therefore, there has...
Collapse
|
14
|
Emran MY, El‐Safty SA, Elmarakbi A, Reda A, El Sabagh A, Shenashen MA. Chipset Nanosensor Based on N‐Doped Carbon Nanobuds for Selective Screening of Epinephrine in Human Samples. ADVANCED MATERIALS INTERFACES 2022; 9. [DOI: 10.1002/admi.202101473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 09/01/2023]
Abstract
AbstractChipset nanosensor design and fabrication are important for healthcare research and development. Herein, a functionalized chipset nanosensor is designed to monitor neurotransmitters (i.e., epinephrine (EP)) in human fluids. An interdigitated electrode array (IDA) is functionalized by N‐doped carbon nanobud (N‐CNB) and N‐doped carbon nanostructure (N‐CNS). The surface morphology of N‐CNB shows the formation of nanotubular‐like branches on sheets and micrometer‐size tubes. The N‐CNS design consists of the formation of aggregated sheets and particles in nanometer size. The irregular shape formation provides surface heterogeneity and numerous free spaces between the stacked nanostructures. N‐atoms ascertain highly active N‐CNS with multifunctional active centers, electron‐rich charged surface, and short distance pathway. The N‐CNB/IDA exhibits the best performance for EP signaling with high sensitivity and selectivity. The N‐CNB/IDA sensing performance for EP detection indicates the successful design of a highly selective and sensitive assay with low detection limit of 0.011 × 10−6 m and a broad linear range of 0.5 × 10−6 to 3 × 10−6 m. The N‐CNB/IDA exhibits a high degree of accuracy and reproducibility with RSD of 2.7% and 3.9%, respectively. Therefore, the chipset nanosensor of N‐CNB/IDA can be used for on‐site monitoring of EP in human serum samples and further used in daily monitoring of neuronal disorders.
Collapse
Affiliation(s)
- Mohammed Y. Emran
- National Institute for Materials Science (NIMS) Research Center for Functional Materials 1‐2‐1 Sengen Tsukuba‐shi Ibaraki‐ken 305‐0047 Japan
| | - Sherif A. El‐Safty
- National Institute for Materials Science (NIMS) Research Center for Functional Materials 1‐2‐1 Sengen Tsukuba‐shi Ibaraki‐ken 305‐0047 Japan
| | - Ahmed Elmarakbi
- Faculty of Engineering and Environment Northumbria University Newcastle upon Tyne NE1 8ST UK
| | - Abduallah Reda
- National Institute for Materials Science (NIMS) Research Center for Functional Materials 1‐2‐1 Sengen Tsukuba‐shi Ibaraki‐ken 305‐0047 Japan
| | - Ayman El Sabagh
- Department of Field Crops Faculty of Agriculture Siirt University Siirt 56100 Turkey
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS) Research Center for Functional Materials 1‐2‐1 Sengen Tsukuba‐shi Ibaraki‐ken 305‐0047 Japan
- Department of Petrochemical Egyptian Petroleum Research Institute (EPRI) Nasr City Cairo 11727 Egypt
| |
Collapse
|
15
|
van Staden JF, Stefan-van Staden RI. Characterization of Low-Cost, Robust, Graphene-Based Amperometric Dot Microsensors for the Determination of Dopamine. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1904409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jacobus Frederick van Staden
- Process Analytical Technology Laboratory (PATLAB), National Institute of Research for Electrochemistry and Condensed Matter, Bucharest, Romania
| | - Raluca-Ioana Stefan-van Staden
- Process Analytical Technology Laboratory (PATLAB), National Institute of Research for Electrochemistry and Condensed Matter, Bucharest, Romania
| |
Collapse
|
16
|
Enzymeless copper microspheres@carbon sensor design for sensitive and selective acetylcholine screening in human serum. Colloids Surf B Biointerfaces 2021; 210:112228. [PMID: 34839049 DOI: 10.1016/j.colsurfb.2021.112228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 12/21/2022]
Abstract
Follow up of neuronal disorders, such as Alzheimer's and Parkinson's diseases using simple, sensitive, and selective assays is urgently needed in clinical and research investigation. Here, we designed a sensitive and selective enzymeless electrochemical acetylcholine sensor that can be used in human fluid samples. The designed electrode consisted of a micro spherical construction of Cu-metal decorated by a thin layer of carbon (CuMS@C). A simple and one-pot synthesis approach was used for Cu-metal controller formation with a spherical like structures. The spherical like structure was formed with rough outer surface texture, circular build up, homogeneous formation, micrometric spheres size (0.5 -1 µm), and internal hollow structure. The formation of a thin layer of carbon materials on the surface of CuMS sustained the catalytic activity of Cu atoms and enriched negatively charge of the surface. CuMS@C acted as a highly active mediator surface that consisted of Cu metal as a highly active catalyst and carbons as protecting, charge transport, and attractive surface. Therefore, the CuMS@C surface morphology and composition played a key role in various aspects such as facilitated ACh diffusion/loading, increased the interface surface area, and enhanced the catalytic activity. The CuMS@C acted as an electroactive catalyst for ACh electrooxidation and current production, due to the losing of two electrons. The fabricated CuMS@C could be a highly sensitive and selective enzymeless sensor for detecting ACh with a detection limit of 0.1 µM and a wide linear range of 0.01 - 0.8 mM. The designed ACh sensor assay based on CuMS@C exhibited fast sensing property as well as sensitivity, selectivity, stability, and reusability for detecting ACh in human serum samples. This work presents the design of a highly active electrode surface for direct detection of ACh and further clinical investigation of ACh levels.
Collapse
|
17
|
Davaslıoğlu İÇ, Volkan Özdokur K, Koçak S, Çırak Ç, Çağlar B, Çırak BB, Nil Ertaş F. WO3 decorated TiO2 nanotube array electrode: Preparation, characterization and superior photoelectrochemical performance for rhodamine B dye degradation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Munawar A, Zafar F, Majeed S, Irfan M, Ullah Khan H, Yasmin G, Akhtar N. Bioinspired N-C coated ZnO based electrochemiluminescence sensor for dopamine screening from neuroblastoma patient. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Emran MY, Shenashen MA, El-Safty SA, Selim MM. Design of porous S-doped carbon nanostructured electrode sensor for sensitive and selective detection of guanine from DNA samples. MICROPOROUS AND MESOPOROUS MATERIALS 2021; 320:111097. [DOI: 10.1016/j.micromeso.2021.111097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
20
|
Reda A, El-Safty SA, Selim MM, Shenashen MA. Optical glucose biosensor built-in disposable strips and wearable electronic devices. Biosens Bioelectron 2021; 185:113237. [PMID: 33932881 DOI: 10.1016/j.bios.2021.113237] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/25/2021] [Accepted: 04/06/2021] [Indexed: 01/19/2023]
Abstract
On-demand screening, real-time monitoring and rapid diagnosis of ubiquitous diseases, such as diabetes, at early stages are indispensable in personalised treatment. Emerging impacts of nano/microscale materials on optical and portable biosensor strips and devices have become increasingly important in the remarkable development of sensitive visualisation (i.e. visible inspection by the human eye) assays, low-cost analyses and personalised home testing of patients with diabetes. With the increasing public attention regarding the self-monitoring of diabetes, the development of visual readout, easy-to-use and wearable biosensors has gained considerable interest. Our comprehensive review bridges the practical assessment gap between optical bio-visualisation assays, disposable test strips, sensor array designs and full integration into flexible skin-based or contact lens devices with the on-site wireless signal transmission of glucose detection in physiological fluids. To date, the fully modulated integration of nano/microscale optical biosensors into wearable electronic devices, such as smartphones, is critical to prolong periods of indoor and outdoor clinical diagnostics. Focus should be given to the improvements of invasive, wireless and portable sensing technologies to improve the applicability and reliability of screen display, continuous monitoring, dynamic data visualisation, online acquisition and self and in-home healthcare management of patients with diabetes.
Collapse
Affiliation(s)
- Abdullah Reda
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan
| | - Sherif A El-Safty
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan.
| | - Mahmoud M Selim
- Prince Sattam Bin Abdulaziz University, P. O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Mohamed A Shenashen
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan
| |
Collapse
|
21
|
Emran MY, Shenashen MA, El-Safty SA, Reda A, Selim MM. Microporous P-doped carbon spheres sensory electrode for voltammetry and amperometry adrenaline screening in human fluids. Mikrochim Acta 2021; 188:138. [PMID: 33772377 DOI: 10.1007/s00604-021-04782-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022]
Abstract
An electrochemical sensor-based phosphorus-doped microporous carbon spheroidal structures (P-MCSs) has been designed for selective adrenaline (ADR) signaling in human blood serum. The P-MCS electrode sensor is built with heterogeneous surface alignments including multiple porous sizes with open holes and meso-/macro-grooves, rough surface curvatures, and integral morphology with interconnected and conjugated microspheres. In addition, the P atom-doped graphitic carbon forms highly active centers, increases charge mobility on the electrode surface, creates abundant active centers with facile functionalization, and induces binding to ADR molecules. The designed P-MCS electrode exhibits ultrasensitive monitoring of ADR with a low detection limit of 0.002 μM and high sensitivity of 4330 μA μM-1 cm-2. In addition, two electrochemical techniques, namely, square wave voltammetry (SWV) and chronoamperometry (CA), were used; these techniques achieve high stability, fast response, and a wide linear range from 0.01 to 6 μM. The sensing assays based on P-MCSs provide evidence of the formation of active interfacial surface-to-ADR binding sites, high electron diffusion, and heavy target loads along with/without a plane of spheroids. Thus, P-MCSs can be used for the routine monitoring of ADR in human blood serum, providing a fast response, and requiring highly economical materials at extremely low concentrations. Electrode surface modulation based on P-doped carbon spheres (P-MCS) exhibits high electrochemical activity with fast charge transport, multi-diffusible active centers, high loading of ADR, and facile molecular/electron diffusion at its surface. The P-MCS sensitively and selectively detects the ADR in human fluids and can be used for clinical investigation of some neuronal diseases such as Alzheimer diseases.
Collapse
Affiliation(s)
- Mohammed Y Emran
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken, 305-0047, Japan.,Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Mohamed A Shenashen
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken, 305-0047, Japan
| | - Sherif A El-Safty
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken, 305-0047, Japan.
| | - Abdullah Reda
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken, 305-0047, Japan
| | - Mahmoud M Selim
- Al-Aflaj College of Science and Human Studies, Prince Sattam Bin Abdulaziz University, Al-Aflaj, 710-11912, Saudi Arabia
| |
Collapse
|
22
|
Emran MY, El-Safty SA, Selim MM, Reda A, Morita H, Shenashen MA. Electrochemical sensors-based phosphorus-doped carbon for determination of adenine DNA-nucleobases in living cells. CARBON 2021; 173:1093-1104. [DOI: 10.1016/j.carbon.2020.10.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
23
|
Kamyabi MA, Alipour Z, Moharramnezhad M. An enzyme-free electrochemiluminescence insulin probe based on the regular attachment of ZnO nanoparticles on a 3-D nickel foam and H 2O 2 as an efficient co-reactant. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1003-1012. [PMID: 33533767 DOI: 10.1039/d0ay02071k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, a highly sensitive, fast, and enzyme-free electrochemiluminescence (ECL) probe based on the decoration of zinc oxide nanoparticles on nickel foam is proposed for insulin determination. A silica film was employed as a size adjusting agent for the modification of the nickel foam surface with ZnO nanoparticles (ZnO NPs). The ECL of the ZnO NP/Ni foam was investigated in a natural medium in the presence of hydrogen peroxide (H2O2) as an efficient co-reactant. With increasing insulin concentration, a remarkable improvement in ECL signal was observed, which proved the enhancing effect of insulin on the ECL emission. The characterization of the ZnO-NP/Ni-foam electrode was performed via electrochemical impedance spectroscopy, Brunauer-Emmett-Teller (BET) surface area measurement, X-ray diffraction, field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray analysis techniques. The fabricated electrode was applied for the trace analysis of insulin using the ultrasensitive ECL method in a phosphate buffer solution. Under the optimal conditions, the results showed excellent performance during insulin determination with a wide linear range of 3.57 × 10-15 M to 2.94 × 10-9 M, a low detection limit of 1.00 × 10-16 M, and a relative standard deviation of 1.03%. The proposed ECL sensor with excellent reproducibility, long-term stability, and high selectivity was used for insulin determination in real serum samples with acceptable outcomes.
Collapse
Affiliation(s)
- Mohammad Ali Kamyabi
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Postal Code 45371-38791, Zanjan, Iran.
| | | | | |
Collapse
|
24
|
Emran MY, El-Safty SA, Selim MM, Shenashen MA. Selective monitoring of ultra-trace guanine and adenine from hydrolyzed DNA using boron-doped carbon electrode surfaces. SENSORS AND ACTUATORS B: CHEMICAL 2021; 329:129192. [DOI: 10.1016/j.snb.2020.129192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
25
|
Emran MY, Talat E, El-Safty SA, Shenashen MA, Saad EM. Influence of hollow sphere surface heterogeneity and geometry of N-doped carbon on sensitive monitoring of acetaminophen in human fluids and pharmaceutical products. NEW J CHEM 2021; 45:5452-5462. [DOI: 10.1039/d0nj05442a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A sensitive and selective acetaminophen sensor assay was designed based on N-HCCS. The surface morphology, and composition of open hollow conjugated spheres of N-HCCS resulted in facile AC diffusion/loading and electrocatalytic oxidation.
Collapse
Affiliation(s)
- Mohammed Y. Emran
- National Institute for Materials Science (NIMS)
- Ibaraki-ken
- Japan
- Department of Chemistry
- Faculty of Science
| | - Eslam Talat
- Department of Chemistry
- Faculty of Science
- Suez University
- Suez
- Egypt
| | | | | | - Eman M. Saad
- Department of Chemistry
- Faculty of Science
- Suez University
- Suez
- Egypt
| |
Collapse
|
26
|
Ali SH, Emran MY, Gomaa H. Rice Husk-Derived Nanomaterials for Potential Applications. WASTE RECYCLING TECHNOLOGIES FOR NANOMATERIALS MANUFACTURING 2021:541-588. [DOI: 10.1007/978-3-030-68031-2_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
27
|
Abdel‐Rahim RD, Emran MY, Nagiub AM, Farghaly OA, Taher MA. Silver nanowire size‐dependent effect on the catalytic activity and potential sensing of H
2
O
2. ELECTROCHEMICAL SCIENCE ADVANCES 2020. [DOI: 10.1002/elsa.202000031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | - Mohammed Y. Emran
- Chemistry Department Faculty of Science, Al‐Azhar University Assiut Asyut Egypt
| | - Adham M. Nagiub
- Chemistry Department Faculty of Science, Al‐Azhar University Assiut Asyut Egypt
| | - Osman A. Farghaly
- Chemistry Department Faculty of Science, Al‐Azhar University Assiut Asyut Egypt
| | - Mahmoud A. Taher
- Chemistry Department Faculty of Science, Al‐Azhar University Assiut Asyut Egypt
| |
Collapse
|
28
|
Emran MY, Shenashen MA, El-Safty SA, Selim MM, Minowa T, Elmarakbi A. Three-Dimensional Circular Surface Curvature of a Spherule-Based Electrode for Selective Signaling and Dynamic Mobility of Norepinephrine in Living Cells. ACS APPLIED BIO MATERIALS 2020; 3:8496-8506. [DOI: 10.1021/acsabm.0c00882] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mohammed Y. Emran
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
| | - Mohamed A. Shenashen
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
| | - Sherif A. El-Safty
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
| | - Mahmoud M. Selim
- Department of Mathematics, Al-Aflaj College of Science and Human Studies, Prince Sattam Bin Abdulaziz University, Al-Aflaj 710-11912, Saudi Arabia
| | - Takashi Minowa
- Nanotechnology Innovation Station, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Ahmed Elmarakbi
- Department of Mechanical & Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| |
Collapse
|
29
|
Poolakkandy RR, Menamparambath MM. Transition metal oxide based non‐enzymatic electrochemical sensors: An arising approach for the meticulous detection of neurotransmitter biomarkers. ELECTROCHEMICAL SCIENCE ADVANCES 2020. [DOI: 10.1002/elsa.202000024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
30
|
Non-metal sensory electrode design and protocol of DNA-nucleobases in living cells exposed to oxidative stresses. Anal Chim Acta 2020; 1142:143-156. [PMID: 33280692 DOI: 10.1016/j.aca.2020.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 01/26/2023]
Abstract
Sensory protocols for evaluation of DNA distortion due to exposure to various harmful chemicals and environments in living cells are needed for research and clinical investigations. Here, a design of non-metal sensory (NMS) electrode was built by using boron-doped carbon spherules for detection of DNA nucleobases, namely, guanine (Gu), adenine (Ad), and thymine (Th) in living cells. The key-electrode based nanoscale NMS structures lead to voids with a facile diffusion, and strong binding events of the DNA nucleobases. Furthermore, the NMS geometric structures would significantly create electrode surfaces with numerous centrally active sites, curvature topographies, and anisotropic spherules. The NMS shows potential as sensitive protocol for DNA-nucleobases in living cells exposed to oxidative stresses. In one-step signaling assay, NMS shows high signaling transduction of Gu-, Ad-, and Th-DNA nucleobases targets with ultra-sensitive and low detection limits of 3.0, 0.36, and 0.34 nM, respectively, and a wide linear range of up to 1 μM. The NMS design and protocol show evidence of the role of surface construction features and B-atoms incorporated into the graphitic carbon network for creating abundant active sites with facile electron diffusion and heavily target loads along with within-/out-plane circular spheres. Indeed NMS, with spherule-rich interstitial surfaces can be used for sensitive and selective evaluation of damaged-DNA to various dysfunctional metabolism in the human body.
Collapse
|
31
|
Chen TW, Tamilalagan E, Al Farraj DA, Chen SM, Muthumariappan A, Maheshwaran S, Elshikh MS. Improving sensitivity of antimicrobial drug nitrofurazone detection in food and biological samples based on nanostructured anatase-titania sheathed reduced graphene oxide. NANOTECHNOLOGY 2020; 31:445502. [PMID: 32796153 DOI: 10.1088/1361-6528/aba784] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we have prepared anatase titanium (IV) oxide warped reduced graphene oxide nanocomposites (TiO2-rGO NC) using ultrasonic methodology. The morphology of the TiO2-rGO NC was studied using FESEM and TEM. In addition, XRD, Raman, thermogravimetric analysis (TGA) and XPS are used to analyze the crystallinity and chemical composition of the TiO2-rGO NC. We have also investigated the electrochemical behavior of the as-prepared NCs with electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and different pulse voltammetry techniques (DPV). The TiO2-rGO NC modified electrode shows the lower charge transfer resistance (R ct ) of 62.87 Ω. Next, the glassy carbon electrode (GCE) was modified with sonochemically prepared TiO2-rGO NC and used to determine the electrocatalytic reduction of nitrofurazone (NTF). Thus, the proposed sensor established the wider covering range (WCR) of 0.01 to 380 µM and an excellent detection limit of 2.28 nM. Finally, the TiO2-rGO NC/GCE was applied to determine the NTF in real samples, including crayfish and human blood serum samples, which acquired good found and recovery values.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan. Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan. Department of Materials, Imperial College London, London SW72AZ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
32
|
Hayat K, Munawar A, Zulfiqar A, Akhtar MH, Ahmad HB, Shafiq Z, Akram M, Saleemi AS, Akhtar N. CuO Hollow Cubic Caves Wrapped with Biogenic N-Rich Graphitic C for Simultaneous Monitoring of Uric Acid and Xanthine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47320-47329. [PMID: 33023289 DOI: 10.1021/acsami.0c15243] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we synthesized hollow cubic caves of CuO (HC) and wrapped it with N-rich graphitic C (NC), derived from a novel biogenic mixture composed of dopamine (DA) and purine. The synthesized NC wrapped HC (NC@HC) sensor shows enhanced electrocatalytic efficacy compared to unwrapped CuO with shapes including HC, sponge (SP), cabbage (CB), and solid icy cubes (SC). The shape and composition of synthesized materials were confirmed through field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS), whereas interfacial surface energy was calculated through contact angle measurement. The designed NC@HC sensor shows a remarkable response toward the simultaneous detection of uric acid (UA) and xanthine (Xn) with detection limits of 0.017 ± 0.001 (S/N of 3) and 0.004 ± 0.001 μM (S/N of 3), respectively. In addition, this platform was successfully applied to monitor UA from the gout patient serum. To the best of our knowledge, this is the first report on using such novel NC@HC materials for the simultaneous monitoring of UA and Xn.
Collapse
Affiliation(s)
- Khizer Hayat
- Institute of Chemical Sciences, Bahauddin Zakariya University (BZU), Multan 60800, Pakistan
| | - Aqsa Munawar
- Institute of Chemical Sciences, Bahauddin Zakariya University (BZU), Multan 60800, Pakistan
| | - Anam Zulfiqar
- Department of Biochemistry, Bahauddin Zakariya University, (BZU), Multan 60800, Pakistan
| | - Mahmood Hassan Akhtar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Hafiz Badaruddin Ahmad
- Institute of Chemical Sciences, Bahauddin Zakariya University (BZU), Multan 60800, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University (BZU), Multan 60800, Pakistan
| | - Muhammad Akram
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Awais Siddique Saleemi
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060 Guangdong, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Naeem Akhtar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
33
|
Abdelwahab AA, Naggar AH, Abdelmotaleb M, Emran MY. Ruthenium Nanoparticles Uniformly‐designed Chemically Treated Graphene Oxide Nanosheets for Simultaneous Voltammetric Determination of Dopamine and Acetaminophen. ELECTROANAL 2020; 32:2156-2165. [DOI: 10.1002/elan.202060126] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Adel A. Abdelwahab
- Department of Chemistry Faculty of Science and Arts Jouf University Al Qurayyat 75911 Saudi Arabia
- Department of Chemistry Faculty of Science Al-Azhar University Assiut 71524 Egypt
| | - Ahmed H. Naggar
- Department of Chemistry Faculty of Science and Arts Jouf University Al Qurayyat 75911 Saudi Arabia
- Department of Chemistry Faculty of Science Al-Azhar University Assiut 71524 Egypt
| | - Mohamed Abdelmotaleb
- Department of Chemistry Faculty of Science Al-Azhar University Assiut 71524 Egypt
| | - Mohammed Y. Emran
- Department of Chemistry Faculty of Science Al-Azhar University Assiut 71524 Egypt
| |
Collapse
|
34
|
Kamyabi MA, Alipour Z, Moharramnezhad M. Amplified cathodic electrochemiluminescence of luminol based on zinc oxide nanoparticle modified Ni-foam electrode for ultrasensitive detection of amoxicillin. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04820-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Khalifa H, El-Safty SA, Reda A, Eid A, Elmarakbi A, Shenashen MA. Mesoscopic open-eye core-shell spheroid carved anode/cathode electrodes for fully reversible and dynamic lithium-ion battery models. NANOSCALE ADVANCES 2020; 2:3525-3541. [PMID: 36134271 PMCID: PMC9418016 DOI: 10.1039/d0na00203h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/19/2020] [Indexed: 06/16/2023]
Abstract
We report on the key influence of mesoscopic super-open-eye core-shell spheroids of TiO2- and LiFePO4-wrapped nanocarbon carved anode/cathode electrodes with uniform interior accommodation/storage pockets for the creation of fully reversible and dynamic Li-ion power battery (LIB) models. The mesoscopic core-shell anode/cathode electrodes provide potential half- and full-cell LIB-CR2032 configuration designs, and large-scale pouch models. In these variable mesoscopic LIB models, the broad-free-access and large-open-eye like gate-in-transport surfaces featured electrodes are key factors of built-in LIBs with excellent charge/discharge capacity, energy density performances, and outstanding cycling stability. Mesoscopic open-eye spheroid full-LIB-CR2032 configuration models retain 77.8% of the 1st cycle discharge specific capacity of 168.68 mA h g-1 after multiple cycling (i.e., 1st to 2000th cycles), efficient coulombic performance of approximately 99.6% at 0.1C, and high specific energy density battery of approximately 165.66 W h kg-1 at 0.1C. Furthermore, we have built a dynamic, super-open-mesoeye pouch LIB model using dense packing sets that are technically significant to meet the tradeoff requirements and long-term driving range of electric vehicles (EVs). The full-pouch package LIB models retain a powerful gate-in-transport system for heavy loaded electron/Li+ ion storage, diffusion, and truck movement through open-ended out/in and then up/downward eye circular/curvy folds, thereby leading to substantial durability, and remarkable electrochemical performances even after long-life charge/discharge cycling.
Collapse
Affiliation(s)
- H Khalifa
- National Institute for Materials Science (NIMS) Sengen 1-2-1 Tsukuba Ibaraki 305-0047 Japan https://www.samurai.nims.go.jp/profiles/sherif_elsafty
| | - S A El-Safty
- National Institute for Materials Science (NIMS) Sengen 1-2-1 Tsukuba Ibaraki 305-0047 Japan https://www.samurai.nims.go.jp/profiles/sherif_elsafty
| | - A Reda
- National Institute for Materials Science (NIMS) Sengen 1-2-1 Tsukuba Ibaraki 305-0047 Japan https://www.samurai.nims.go.jp/profiles/sherif_elsafty
| | - A Eid
- National Institute for Materials Science (NIMS) Sengen 1-2-1 Tsukuba Ibaraki 305-0047 Japan https://www.samurai.nims.go.jp/profiles/sherif_elsafty
| | - A Elmarakbi
- Department of Mechanical & Construction Engineering, Faculty of Engineering and Environment, Northumbria University Newcastle upon Tyne NE1 8ST UK
| | - M A Shenashen
- National Institute for Materials Science (NIMS) Sengen 1-2-1 Tsukuba Ibaraki 305-0047 Japan https://www.samurai.nims.go.jp/profiles/sherif_elsafty
| |
Collapse
|
36
|
Hayat K, Hassan Akhtar M, Siddique Saleemi A, Badaruddin Ahmad H, Akhtar N. H
2
O
2
Screening from Saliva of Gum Diseased‐patient through CN‐dot Wrapped Cu
2
O Nano‐frogspawns Ionic Liquid Nanocomposite. ELECTROANAL 2020. [DOI: 10.1002/elan.202000047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Khizar Hayat
- Institute of Chemical SciencesBahauddin Zakariya University Multan Pakistan
| | - Mahmood Hassan Akhtar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM)COMSATS University Islamabad, Lahore Campus 1 1.5 KM Defence Road Off Raiwand Rd, Lda Avenue Phase 1 Lda Avenue Lahore Punjab 54000
| | | | | | - Naeem Akhtar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM)COMSATS University Islamabad, Lahore Campus 1 1.5 KM Defence Road Off Raiwand Rd, Lda Avenue Phase 1 Lda Avenue Lahore Punjab 54000
| |
Collapse
|
37
|
Influence of Saline Buffers over the Stability of High-Annealed Gold Nanoparticles Formed on Coverslips for Biological and Chemosensing Applications. BIOENGINEERING (BASEL, SWITZERLAND) 2020; 7:bioengineering7030068. [PMID: 32635222 PMCID: PMC7552610 DOI: 10.3390/bioengineering7030068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022]
Abstract
Herein, coverslips were used as solid supports for the synthesis of gold nanoparticles (AuNPs) in three steps: (i) detergent cleaning, (ii) evaporation of 4 nm gold film and (iii) exposure at high annealing temperature (550 °C) for 3 h. Such active gold nanostructured supports were investigated for their stability performances in aqueous saline buffers for new assessments of chemical sensing. Two model buffers, namely saline-sodium phosphate-EDTA buffer (SSPE) and phosphate buffer saline (PBS), that are often used in the construction of (bio)sensors, are selected for the optical and microscopic investigations of their influence over the stability of annealed AuNPs on coverslips when using a dropping procedure under dry and wet media working conditions. A study over five weeks monitoring the evolution of the localized surface plasmon resonance (LSPR) chemosensing of 1,2-bis-(4-pyridyl)-ethene (BPE) is discussed. It is concluded that the optimal sensing configuration is based on annealed AuNPs exposed to saline buffers under wet media conditions (overnight at 4 °C) and functionalized with BPE concentrations (10-3-10-11 M) with the highest LSPR spectra after two weeks.
Collapse
|
38
|
Wu S, He Y, Wang C, Zhu C, Shi J, Chen Z, Wan Y, Hao F, Xiong W, Liu P, Luo H. Selective Cl-Decoration on Nanocrystal Facets of Hematite for High-Efficiency Catalytic Oxidation of Cyclohexane: Identification of the Newly Formed Cl-O as Active Sites. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26733-26745. [PMID: 32410441 DOI: 10.1021/acsami.0c06870] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the structure-reactivity relationship at the atomic scale is of great theoretical importance for rational design of highly active catalysts, which has long been a central concern in catalysis communities and interface science. Herein, we developed a high-efficiency catalyst for catalytic oxidation of C6H12 by poststructural decoration on well-defined single-crystal facets of hematite. Especially for Cl-decorated {012} facets, the conversion and KA oil selectivity are improved about 3.4 times and 2 times, respectively. A better catalytic performance of the newly formed active site is derived from the charge difference between Cl and the neighboring outmost O atoms, which is affected by the geometric and electronic structures of the original catalyst surface. Based on the experimental results and the theoretical analysis, we concluded that the contribution of various O terminations to Cl-decoration follows the order O(I) > O(III) > O(II). Cl-decorated {001} facets show the highest intrinsic activity, whereas Cl-decorated {012} facets show the best catalytic performance because of their more active sites for Cl-decoration.
Collapse
Affiliation(s)
- Shengtao Wu
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
- National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Xiangtan 411105, China
| | - Yurong He
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Conghui Wang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Chuanming Zhu
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Jing Shi
- Analytical Instrumentation Center, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China
| | - Zhaoying Chen
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yue Wan
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Fang Hao
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
- National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Xiangtan 411105, China
| | - Wei Xiong
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
- National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Xiangtan 411105, China
| | - Pingle Liu
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
- National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Xiangtan 411105, China
| | - Hean Luo
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
- National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Xiangtan 411105, China
| |
Collapse
|
39
|
Khalifa H, El-Safty SA, Reda A, Shenashen MA, Eid AI. Anisotropic alignments of hierarchical Li 2SiO 3/TiO 2 @nano-C anode//LiMnPO 4@nano-C cathode architectures for full-cell lithium-ion battery. Natl Sci Rev 2020; 7:863-880. [PMID: 34692109 PMCID: PMC8289010 DOI: 10.1093/nsr/nwaa017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/06/2019] [Accepted: 02/10/2020] [Indexed: 11/13/2022] Open
Abstract
We report on low-cost fabrication and high-energy density of full-cell lithium-ion battery (LIB) models. Super-hierarchical electrode architectures of Li2SiO3/TiO2@nano-carbon anode (LSO.TO@nano-C) and high-voltage olivine LiMnPO4@nano-carbon cathode (LMPO@nano-C) are designed for half- and full-system LIB-CR2032 coin cell models. On the basis of primary architecture-power-driven LIB geometrics, the structure keys including three-dimensional (3D) modeling superhierarchy, multiscale micro/nano architectures and anisotropic surface heterogeneity affect the buildup design of anode/cathode LIB electrodes. Such hierarchical electrode surface topologies enable continuous in-/out-flow rates and fast transport pathways of Li+-ions during charge/discharge cycles. The stacked layer configurations of pouch LIB-types lead to excellent charge/discharge rate, and energy density of 237.6 Wh kg-1. As the most promising LIB-configurations, the high specific energy density of hierarchical pouch battery systems may improve energy storage for long-driving range of electric vehicles. Indeed, the anisotropic alignments of hierarchical electrode architectures in the large-scale LIBs provide proof of excellent capacity storage and outstanding durability and cyclability. The full-system LIB-CR2032 coin cell models maintain high specific capacity of ∼89.8% within a long-term life period of 2000 cycles, and average Coulombic efficiency of 99.8% at 1C rate for future configuration of LIB manufacturing and commercialization challenges.
Collapse
Affiliation(s)
- Hesham Khalifa
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0047, Japan
| | - Sherif A El-Safty
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0047, Japan
| | - Abdullah Reda
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0047, Japan
| | - Mohamed A Shenashen
- Department of Petrochemical, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | - Alaa I Eid
- Composite Lab, Advanced Materials Division, Central Metallurgical R&D Institute, Helwan 11421, Egypt
| |
Collapse
|
40
|
Shahdost-Fard F, Roushani M. Architecting of a biodevice based on a screen-printed carbon electrode modified with the NiONP nanolayer and aptamer in BCM-7 detection. Colloids Surf B Biointerfaces 2020; 190:110932. [PMID: 32163843 DOI: 10.1016/j.colsurfb.2020.110932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 01/11/2023]
Abstract
In this study, an ultrasensitive and robust biodevice implemented on a screen-printed carbon electrode (SPCE) surface is introduced. The β-casomorphin-7 (BCM-7) peptide as an early warning sign of autism disorder is distinguished in this system. The SPCE surface was directly electrodeposited with a nanolayer of the nickel oxide nanoparticles (NiONP). In next step, an Apt sequence as a capture of the BCM-7 was strongly attached on this surface. The embedded sensing interface offered some admirable characterizes to detect the BCM-7. The obtained DPV signals were reversely proportional to the concentrations of the BCM-7 through a stable binding reaction in two working linear ranges from 0.5 × 10-9-1.5 μmol l-. Also, an unrivaled limit of detection (LOD) value of 166.6 aM was achieved that is so superior by other reported methods in the BCM-7 sensing. This hand-held biodevice was satisfactorily tested for the BCM-7 detection in human urine and blood sample with an average recovery rate of ∼101.87 %. More importantly, this strategy is free from labeling steps, complex sample processing and interference from common biomolecules in blood or urine. Due to the inherent advantages of the SPCE and the NiONP, utilizing this facile sensing interface may be an ideal choice in constructing of the ultrasensitive biodevice with low cost for distinguishing of the autism disorder.
Collapse
Affiliation(s)
- Faezeh Shahdost-Fard
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, P. O. BOX. 69315-516, Iran
| | - Mahmoud Roushani
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, P. O. BOX. 69315-516, Iran.
| |
Collapse
|
41
|
Cacciotti I, Pallotto F, Scognamiglio V, Moscone D, Arduini F. Reusable optical multi-plate sensing system for pesticide detection by using electrospun membranes as smart support for acetylcholinesterase immobilisation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110744. [PMID: 32279763 DOI: 10.1016/j.msec.2020.110744] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 01/03/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Herein we report a multiplated and biopolymeric-based optical bioassay for organophosphate detection based on the use of acetylcholinesterase (AChE) as biocomponent and biopolymeric electrospun fibrous mats as eco-designed supports for AChE immobilisation. The principle of the detection relays on the decrease of enzymatic activity due to the capability of the organophosphorus pesticides to irreversibly inhibit AChE, which is optically detected using Ellman colorimetric method. The proposed bioassay consists in a novel, cost-effective, and multiplex-based 96-well system, in combination with customised biopolymeric membranes modified with AChE, with the aim to deliver a sustainable analytical tool. Indeed, the designed set-up should provide and guarantee several advantages, including: i) the re-use of plastic multi-plate with the only replacement of polymer dishes in the case of inhibition absence; ii) the exploiting of the properties of the immobilised enzyme, i.e. multiple analysis using the same amount of enzyme, reducing the AChE amount for analysis. In detail, three different biopolymers (i.e. polylactic acid (PLA), polycaprolactone (PCL), and poly-hydroxybutyrate-co-hydroxyvalerate (PHBV)) were investigated and morphologically characterised, as supports for enzyme immobilisation, to identify the optimal one. Among them, PHBV was selected as the best support to immobilise AChE by cross-linking method. The analytical features of the bioassay were then assessed by measuring standard solutions of paraoxon in a range of concentrations between 10 and 100 ppb, achieving a linear range up to 60 ppb and a detection limit of 10 ppb. Thus, the suitability of this sustainable bioassay to detect organophosphate at ppb level was demonstrated.
Collapse
Affiliation(s)
- Ilaria Cacciotti
- University of Rome "Niccolò Cusano", Department of Engineering, Via Don Carlo Gnocchi 3, 00166 Roma, Italy.
| | - Francesca Pallotto
- Università di Roma Tor Vergata, Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technologies, Via Salaria Km 29.3, 00015, Monterotondo Scalo, Rome, Italy
| | - Danila Moscone
- Università di Roma Tor Vergata, Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Fabiana Arduini
- Università di Roma Tor Vergata, Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133 Rome, Italy; SENSE4MED, s.r.l. via Renato Rascel 30, 00128 Rome, Italy
| |
Collapse
|
42
|
Zhang B, Li B, Wang Z. Creation of Carbazole-Based Fluorescent Porous Polymers for Recognition and Detection of Various Pesticides in Water. ACS Sens 2020; 5:162-170. [PMID: 31927991 DOI: 10.1021/acssensors.9b01954] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of sensitive, fast, and portable methods for detecting the residual toxic pesticides is essentially important because of the increasing concerns for public health and safety. For this purpose, three fluorescent porous organic polymers containing pendant N-benzyl carbazole, N-benzyl dibromo-carbazole, and N-benzyl dimethoxy-carbazole groups were synthesized via a one-step polymerization reaction. The resultant polymers emit bright cyan, blue, and green light under the ultraviolet lamp, respectively, with the Brunauer-Emmett-Teller area up to 858 m2 g-1 and tunable pore sizes in the range of 0.5-36 nm. Six pesticides including trifluralin, isopropalin, glyphosate, fenitrothion, imidacloprid, and cyfluothrin are selected as the analytes to investigate the recognition and detection ability of polymers in terms of the different photo-physical properties of polymers, chemical structure of organic pesticides as well as the pore sizes of polymers, and molecular sizes of pesticides. It is interesting to find that, even though in water medium, the measured fluorescent quenching Stern-Volmer coefficient for trifluralin still reaches 26,040 L mol-1 and is nearly unchanged under both acidic or basic service conditions. Moreover, the test paper prepared from the polymer exhibits a rapid fluorescent response when contacting the aqueous trifluralin dispersion liquid, and the sensitivity remains stable after recycling use for twelve times.
Collapse
Affiliation(s)
- Biao Zhang
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Bin Li
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhonggang Wang
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
43
|
El-Safty S, Shenashen M. Nanoscale dynamic chemical, biological sensor material designs for control monitoring and early detection of advanced diseases. Mater Today Bio 2020; 5:100044. [PMID: 32181446 PMCID: PMC7066237 DOI: 10.1016/j.mtbio.2020.100044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022] Open
Abstract
Early detection and easy continuous monitoring of emerging or re-emerging infectious, contagious or other diseases are of particular interest for controlling healthcare advances and developing effective medical treatments to reduce the high global cost burden of diseases in the backdrop of lack of awareness regarding advancing diseases. Under an ever-increasing demand for biosensor design reliability for early stage recognition of infectious agents or contagious diseases and potential proteins, nanoscale manufacturing designs had developed effective nanodynamic sensing assays and compact wearable devices. Dynamic developments of biosensor technology are also vital to detect and monitor advanced diseases, such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), diabetes, cancers, liver diseases, cardiovascular diseases (CVDs), tuberculosis, and central nervous system (CNS) disorders. In particular, nanoscale biosensor designs have indispensable contribution to improvement of health concerns by early detection of disease, monitoring ecological and therapeutic agents, and maintaining high safety level in food and cosmetics. This review reports an overview of biosensor designs and their feasibility for early investigation, detection, and quantitative determination of many advanced diseases. Biosensor strategies are highlighted to demonstrate the influence of nanocompact and lightweight designs on accurate analyses and inexpensive sensing assays. To date, the effective and foremost developments in various nanodynamic designs associated with simple analytical facilities and procedures remain challenging. Given the wide evolution of biosensor market requirements and the growing demand in the creation of early stage and real-time monitoring assays, precise output signals, and easy-to-wear and self-regulating analyses of diseases, innovations in biosensor designs based on novel fabrication of nanostructured platforms with active surface functionalities would produce remarkable biosensor devices. This review offers evidence for researchers and inventors to focus on biosensor challenge and improve fabrication of nanobiosensors to revolutionize consumer and healthcare markets.
Collapse
Affiliation(s)
- S.A. El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan
| | | |
Collapse
|
44
|
Selim MS, El-Safty SA, Shenashen MA, Higazy SA, Elmarakbi A. Progress in biomimetic leverages for marine antifouling using nanocomposite coatings. J Mater Chem B 2020; 8:3701-3732. [DOI: 10.1039/c9tb02119a] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Because of the environmental and economic casualties of biofouling on maritime navigation, modern studies have been devoted toward formulating advanced nanoscale composites in the controlled development of effective marine antifouling self-cleaning surfaces.
Collapse
Affiliation(s)
- Mohamed S. Selim
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
- Petroleum Application Department
- Egyptian Petroleum Research Institute
| | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
- Petroleum Application Department
- Egyptian Petroleum Research Institute
| | - Shimaa A. Higazy
- Petroleum Application Department
- Egyptian Petroleum Research Institute
- Cairo
- Egypt
| | - Ahmed Elmarakbi
- Department of Mechanical & Construction Engineering
- Faculty of Engineering and Environment
- Northumbria University
- Newcastle upon Tyne
- UK
| |
Collapse
|
45
|
Kamyabi MA, Moharramnezhad M. Highly Sensitive Electrochemiluminescent Insecticide Sensor Based on ZnO Nanocrystals Anchored Nickel Foam for Determination of Imidacloprid in Real Samples. ELECTROANAL 2019. [DOI: 10.1002/elan.201900388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mohammad Ali Kamyabi
- Department of Chemistry, College of Science University of Zanjan P.O. BOX 19395-4697 Zanjan Iran
| | - Mohsen Moharramnezhad
- Department of Chemistry, College of Science University of Zanjan P.O. BOX 19395-4697 Zanjan Iran
| |
Collapse
|
46
|
Surya SG, Majhi SM, Agarwal DK, Lahcen AA, Yuvaraja S, Chappanda KN, Salama KN. A label-free aptasensor FET based on Au nanoparticle decorated Co 3O 4 nanorods and a SWCNT layer for detection of cardiac troponin T protein. J Mater Chem B 2019; 8:18-26. [PMID: 31782481 DOI: 10.1039/c9tb01989h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acute myocardial infarction (AMI) is a serious health problem that must be identified in its early stages. Considerable progress has been made in understanding the condition of AMI through ascertaining the role of biomarkers, such as myoglobin, cardiac troponin proteins (T and I), creatine kinase-MB, and fatty acid-binding protein (FABP). A field-effect transistor (FET) is an effective platform; however, innovations are required in all layers of the FET for it to become robust and highly sensitive. For the first time, we made use of the synergistic combination of noble metal nanoparticles (AuNPs) with Co3O4 for the detection of cardiac troponin T (cTnT) in a FET platform. We determined the morphology of Au-decorated Co3O4 NRs and their electronic properties by characterizing the channel layer using electron microscopies and transient measurements. Subsequently, we performed the detection of cardiac troponin T by immobilizing its complementary biotinylated DNA aptamer on the channel surface using a drop-casting method. To understand the changes in drain current caused by this interaction, we probed our SWCNT-Co3O4 NR transistor with limited gate and drain bias (≤1 V), achieving a sensitivity of 0.5 μA μg-1 mL-1 for the Au-decorated NRs. A 250% increase in the sensitivity and a limit of detection (LOD) of 0.1 μg mL-1 were achieved by using this device. Finally, selectivity studies proved that this synergistic combination works well in the FET configuration for the successful detection of cTnT.
Collapse
Affiliation(s)
- Sandeep G Surya
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
| | - Sanjit M Majhi
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
| | - Dilip K Agarwal
- CRNTS, Indian Institute of Technology Bombay, Mumbai - 400076, India
| | - Abdellatif Ait Lahcen
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
| | - Saravanan Yuvaraja
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
| | - Karumbaiah N Chappanda
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Saudi Arabia. and Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Hyderabad 500078, India
| | - Khaled N Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
| |
Collapse
|
47
|
Electrochemical determination of urinary dopamine from neuroblastoma patients based on Cu nanoplates encapsulated by alginate-derived carbon. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Asad M, Zulfiqar A, Raza R, Yang M, Hayat A, Akhtar N. Orange Peel Derived C‐dots Decorated CuO Nanorods for the Selective Monitoring of Dopamine from Deboned Chicken. ELECTROANAL 2019. [DOI: 10.1002/elan.201900468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Muhammad Asad
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University IslamabadLahore campus 1 1.5 KM Defence Road Off Raiwand Rd, Lda Avenue Phase 1 Lda Avenue Lahore, Punjab 54000
- Department of Physics, COMSATS University IslamabadLahore Campus Lahore 54000 Pakistan COMSATS University Islamabad, Lahore campus
| | - Anam Zulfiqar
- Department of BiochemistryBahauddin Zakariya University Multan Pakistan
| | - Rizwan Raza
- Department of Physics, COMSATS University IslamabadLahore Campus Lahore 54000 Pakistan COMSATS University Islamabad, Lahore campus
| | - Minghui Yang
- Solid State Functional Materials Research Laboratory, Ningbo Institute of Materials Technology and Engineering (NIMTE)Chinese Academy of Sciences (CAS) 315201 Ningbo China
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University IslamabadLahore campus 1 1.5 KM Defence Road Off Raiwand Rd, Lda Avenue Phase 1 Lda Avenue Lahore, Punjab 54000
| | - Naeem Akhtar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University IslamabadLahore campus 1 1.5 KM Defence Road Off Raiwand Rd, Lda Avenue Phase 1 Lda Avenue Lahore, Punjab 54000
| |
Collapse
|
49
|
HMT-Controlled Synthesis of Mesoporous NiO Hierarchical Nanostructures and Their Catalytic Role towards the Thermal Decomposition of Ammonium Perchlorate. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work, mesoporous nickel oxide (NiO) hierarchical nanostructures were synthesized by a facile approach by hydrothermal reaction and subsequent calcination. The phase structure, microstructure, element composition, surface area, and pore size distribution of the as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and the Brunauer–Emmett–Teller (BET) technique. The precursor of Ni3(NO3)2(OH)4 nanosheet, Ni3(NO3)2(OH)4 microsphere, and Ni(HCO3)2 sub-microsphere was obtained by hydrothermal reaction at 160 °C for 4 h when the ratio of Ni2+/HMT (hexamethylenetetramine) was 2:1, 1:2, and 1:3, respectively. After calcination at 400 °C for 2 h, the precursors were completely transformed to mesoporous NiO hierarchical nanosheet, microsphere, and sub-microsphere. When evaluated as additives of the thermal decomposition of ammonium perchlorate (AP), these NiO nanostructures significantly reduce the decomposition temperature of AP, showing obvious catalytic activity. In particular, NiO sub-microsphere have the best catalytic role, which can reduce the high temperature decomposition (HTD) and low temperature decomposition (LTD) temperature by 75.2 and 19.1 °C, respectively. The synthetic approach can easily control the morphology and pore structure of the NiO nanostructures by adjusting the ratio of Ni2+/HMT in the reactants and subsequent calcination, which avoids using expensive templates or surfactant and could be intended to prepare other transition metal oxide.
Collapse
|
50
|
Emran MY, El-Safty SA, Shenashen MA, Minowa T. A well-thought-out sensory protocol for screening of oxygen reactive species released from cancer cells. SENSORS AND ACTUATORS B: CHEMICAL 2019; 284:456-467. [DOI: 10.1016/j.snb.2018.12.142] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|