1
|
Bahadoran Z, Mirmiran P, Hosseinpanah F, Kashfi K, Ghasemi A. Nitric oxide-based treatments improve wound healing associated with diabetes mellitus. Med Gas Res 2025; 15:23-35. [PMID: 39436167 PMCID: PMC11515056 DOI: 10.4103/mgr.medgasres-d-24-00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 06/27/2024] [Indexed: 10/23/2024] Open
Abstract
Non-healing wounds are long-term complications of diabetes mellitus (DM) that increase mortality risk and amputation-related disability and decrease the quality of life. Nitric oxide (NO·)-based treatments (i.e., use of both systemic and topical NO· donors, NO· precursors, and NO· inducers) have received more attention as complementary approaches in treatments of DM wounds. Here, we aimed to highlight the potential benefits of NO·-based treatments on DM wounds through a literature review of experimental and clinical evidence. Various topical NO·-based treatments have been used. In rodents, topical NO·-based therapy facilitates wound healing, manifested as an increased healing rate and a decreased half-closure time. The wound healing effect of NO·-based treatments is attributed to increasing local blood flow, angiogenesis induction, collagen synthesis and deposition, re-epithelization, anti-inflammatory and anti-oxidative properties, and potent broad-spectrum antibacterial effects. The existing literature lacks human clinical evidence on the safety and efficacy of NO·-based treatments for DM wounds. Translating experimental favors of NO·-based treatments of DM wounds into human clinical practice needs conducting clinical trials with well-predefined effect sizes, i.e., wound reduction area, rate of wound healing, and hospital length of stay.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhad Hosseinpanah
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
da Silva J, de Almeida EA, Karoleski GE, Koloshe E, Peron AP, Job AE, Leimann FV, Shirai MA, da Silva Gonzalez R. Synthesis of a Bioactive Nitric Oxide-Releasing Polymer from S-Nitrosated Starch. ACS OMEGA 2024; 9:41268-41278. [PMID: 39398142 PMCID: PMC11465258 DOI: 10.1021/acsomega.4c03255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
The incorporation of nitric oxide (NO) into polymeric matrices minimizes degradation and facilitates controlled release. This optimization increases the field of application of NO, in dressings, food protective films, and implant devices, among others. This work presents an economical and easy way to manufacture bioactive nitric oxide-releasing polymer (BioNOR-P) and evaluates its bactericidal and antioxidant activity (AA), mechanical behavior, cytotoxicity, and genotoxicity, seeking future use in different applications. The BioNOR-P film was obtained by a casting method, forming a homogeneous, transparent film with good mechanical properties. The release of NO in an aqueous medium showed the film's ability to release NO slowly, at a rate of 0.58 nmol/g-1 min-1. Furthermore, the noncytotoxicity and antioxidant activity observed by NO release from BioNOR-P, as well as the ability to inhibit bacterial growth, may aid in the development of a NO-released polymer with different areas of application.
Collapse
Affiliation(s)
- Jéssica
Fernanda da Silva
- Food
Engineering Course, Federal Technological
University of Paraná (UTFPR), Campo Mourão Campus, Campo Mourão 87301-899, Paraná, Brazil
| | - Edson Araujo de Almeida
- Post-graduation
Program of Chemistry, State University of
Maringá (UEM), Maringá 87020-900, Paraná, Brazil
| | - Geovana Ellen Karoleski
- Chemical
Engineering Course, Federal Technological
University of Paraná, Campo
Mourão 87301-899, Paraná, Brazil
| | - Everton Koloshe
- Chemical
Course, Federal Technological University
of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Ana Paula Peron
- Department
of Biodiversity and Nature Conservation, Federal Technological University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Aldo Eloizo Job
- Department
of Physics, State University Paulista “Julio
de Mesquita Filho”, Campus, Presidente Prudente 19060-900, São Paulo, Brazil
| | - Fernanda Vitória Leimann
- Postgraduate
Program in Food Technology, Federal Technological
University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Marianne Ayumi Shirai
- Postgraduate
Program in Food Technology, Federal Technological
University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Regiane da Silva Gonzalez
- Postgraduate
Program in Food Technology, Federal Technological
University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
- Department
of Chemistry, Federal Technological University
of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| |
Collapse
|
3
|
Chen X, Qian W, Zhang Y, Zhao P, Lin X, Yang S, Zhuge Q, Ni H. Ginsenoside CK cooperates with bone mesenchymal stem cells to enhance angiogenesis post-stroke via GLUT1 and HIF-1α/VEGF pathway. Phytother Res 2024. [PMID: 38990183 DOI: 10.1002/ptr.8235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 07/12/2024]
Abstract
The transplantation of bone marrow mesenchymal stem cells (MSCs) in stroke is hindered by the restricted rates of survival and differentiation. Ginsenoside compound K (CK), is reported to have a neuroprotective effect and regulate energy metabolism. We applied CK to investigate if CK could promote the survival of MSCs and differentiation into brain microvascular endothelial-like cells (BMECs), thereby alleviating stroke symptoms. Therefore, transwell and middle cerebral artery occlusion (MCAO) models were used to mimic oxygen and glucose deprivation (OGD) in vitro and in vivo, respectively. Our results demonstrated that CK had a good affinity for GLUT1, which increased the expression of GLUT1 and the production of ATP, facilitated the proliferation and migration of MSCs, and activated the HIF-1α/VEGF signaling pathway to promote MSC differentiation. Moreover, CK cooperated with MSCs to protect BMECs, promote angiogenesis and vascular density, enhance neuronal and astrocytic proliferation, thereby reducing infarct volume and consequently improving neurobehavioral outcomes. These results suggest that the synergistic effects of CK and MSCs could potentially be a promising strategy for stroke.
Collapse
Affiliation(s)
- Xijun Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenqi Qian
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peiqi Zhao
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangxiang Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Su Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoqi Ni
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Elbeheiry HM, Schulz M. Enhancing Control Over Nitric Oxide Photorelease via a Molecular Keypad Lock. Chemistry 2024; 30:e202400709. [PMID: 38700927 DOI: 10.1002/chem.202400709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 05/23/2024]
Abstract
Based on Boolean logic, molecular keypad locks secure molecular information, typically with an optical output. Here we investigate a rare example of a molecular keypad lock with a chemical output. To this end, the light-activated release of biologically important nitric oxide from a ruthenium complex is studied, using proton concentration and photon flux as inputs. In a pH-dependent equilibrium, a nitritoruthenium(II) complex is turned into a nitrosylruthenium(II) complex, which releases nitric oxide under irradiation with visible light. The precise prediction of the output nitric oxide concentration as function of the pH and photon flux is achieved with an artificial intelligence approach, namely the adaptive neuro-fuzzy inference system. In this manner an exceptionally high level of control over the output concentration is obtained. Moreover, the provided concept to lock a chemical output as well as the output prediction may be applied to other (photo)release schemes.
Collapse
Affiliation(s)
- Hani M Elbeheiry
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Department of Chemistry, Faculty of Science, Damietta University, 34517, New Damietta, Egypt
| | - Martin Schulz
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Department Functional Interfaces, Leibniz-Institute of Photonic Technologies, Albert-Einstein-Straße 9, 07745, Jena, Germany
| |
Collapse
|
5
|
Sheng J, Luo S, Zheng B, He K, Hu J. Codelivery of Gaseous Signaling Molecules for Biomedical Applications. Chempluschem 2024; 89:e202400080. [PMID: 38514396 DOI: 10.1002/cplu.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Gaseous signaling molecules (GSMs) including nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) have presented excellent therapeutic efficacy such as anti-inflammatory, anti-microbial and anti-cancer effects and multiple biomedical applications in recent years. As the three most vital signaling molecules in human physiology, these three GSMs show so intertwined and orchestrated interactions that the synergy of multiple gases may demonstrate a more complex therapeutic potential than single gas delivery. Consequently, researchers have been devoted to developing codelivery systems of GSMs by synthesizing a single molecule as a dual donor to maximize the gaseous therapeutic efficacy. In this minireview, we summarize the recent developments of molecules or materials enabling codelivery of GSMs for biomedical applications. It appears that compared with the abundant cases of codelivery of NO and H2S, research on codelivery of CO and the other two GSMs separately remains to be explored.
Collapse
Affiliation(s)
- Jiahui Sheng
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Siyuan Luo
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Bin Zheng
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui, 230061, China
| | - Kewu He
- Imaging Center of the Third Affiliated Hospital of Anhui Medical University, Hefei, 230031, Anhui, China
| | - Jinming Hu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|
6
|
Mas-Roselló J, Tenor H, Szabo T, Naef R, Sieber S, Gademann K. Bifunctional Sildenafil Diazeniumdiolates Acting as Phosphodiesterase 5 Inhibitors and Nitric Oxide Donors- Towards Wound Healing. Chembiochem 2024; 25:e202300801. [PMID: 38430555 DOI: 10.1002/cbic.202300801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/04/2024]
Abstract
Inefficient wound healing poses a global health challenge with a lack of efficient treatments. Wound healing issues often correlate with low endogenous nitric oxide (NO) levels. While exogenous delivery with NO-releasing compounds represents a promising therapeutic strategy, controlling the release of the highly reactive NO remains challenging. Phosphodiesterase 5 (PDE5) inhibitors, like sildenafil, have also been shown to promote wound healing. This study explores hybrid compounds, combining NO-releasing diazeniumdiolates with a sildenafil-derived PDE5 inhibitor. One compound demonstrated a favorable NO-release profile, triggered by an esterase (prodrug), and displayed in vitro nanomolar inhibition potency against PDE5 and thrombin-induced platelet aggregation. Both factors are known to promote blood flow and oxygenation. Thus, our findings unveil promising prospects for effective wound healing treatments.
Collapse
Affiliation(s)
- Josep Mas-Roselló
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Hermann Tenor
- Topadur Pharma AG, Grabenstrasse 11A, 8952, Schlieren, Switzerland
| | - Timea Szabo
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Reto Naef
- Topadur Pharma AG, Grabenstrasse 11A, 8952, Schlieren, Switzerland
| | - Simon Sieber
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| |
Collapse
|
7
|
Gupta PS, Wasnik K, Patra S, Pareek D, Singh G, Yadav DD, Maity S, Paik P. Nitric oxide releasing novel amino acid-derived polymeric nanotherapeutic with anti-inflammatory properties for rapid wound tissue regeneration. NANOSCALE 2024; 16:1770-1791. [PMID: 38170815 DOI: 10.1039/d3nr03923d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Endogenous gasotransmitter nitric oxide (NO) is a central signalling molecule that modulates wound healing by maintaining homeostasis, collagen formation, wound contraction, anti-microbial action and accelerating tissue regeneration. The optimum delivery of NO using nanoparticles (NPs) is clinically challenging; hence, it is drawing significant attention in wound healing. Herein, a novel polymeric nanoplatform loaded with sodium nitroprusside (SP) NPs was prepared and used for wound healing to obtain the sustained release of NO in therapeutic quantities. SP NPs-induced excellent proliferation (∼300%) of mouse fibroblast (L929) cells was observed. With an increase in the SP NPs dose at 200 μg mL-1 concentration, a 200% upsurge in proliferation was observed along with enhanced migration, and only 17.09 h were required to fill the 50% gap compared to 37.85 h required by the control group. Further, SP NPs showed an insignificant impact on the coagulation cascade, revealing safe wound-healing treatment when tested in isolated rat RBCs. Additionally, SP NPs exhibited excellent angiogenic activity at a 10 μg mL-1 dose. Moreover, the formulated SP nanoformulation is non-irritant, non-toxic, and does not produce any skin sensitivity reaction on the rat's skin. Further, an in vivo wound healing study revealed that within 11 days of treatment with SP nanoformulation, 99.2 ± 1.0% of the wound was closed, while in the control group, only 45.5 ± 3.8% was repaired. These results indicate that owing to sustained NO release, the SP NP and SP nanoformulations are paramount with enormous clinical potential for the regeneration of wound tissues.
Collapse
Affiliation(s)
- Prem Shankar Gupta
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Sukanya Patra
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Divya Pareek
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Gurmeet Singh
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Desh Deepak Yadav
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Somedutta Maity
- School of Engineering Science and Technology, University of Hydrabad, Hydrabad, India
| | - Pradip Paik
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| |
Collapse
|
8
|
Marini E, Sodano F, Rolando B, Chegaev K, Maresca DC, Ianaro A, Ercolano G, Lazzarato L. New lipophilic organic nitrates: candidates for chronic skin disease therapy. Biol Chem 2023; 404:601-606. [PMID: 36867068 DOI: 10.1515/hsz-2022-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023]
Abstract
Organic nitrates are widely used, but their chronic efficacy is blunted due to the development of tolerance. The properties of new tolerance free organic nitrates were studied. Their lipophilicity profile and passive diffusion across polydimethylsiloxane membrane and pig ear-skin, and their efficacy in tissue regeneration using HaCaT keratinocytes were evaluated. The permeation results show that these nitrates have a suitable profile for NO topical administration on the skin. Furthermore, the derivatives with higher NO release exerted a pro-healing effect on HaCaT cells. This new class of organic nitrates might be a promising strategy for the chronic treatment of skin pathologies.
Collapse
Affiliation(s)
- Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, I-10125 Turin, Italy
| | - Federica Sodano
- Department of Pharmacy, University of Naples «Federico II», I-80131 Naples, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Turin, I-10125 Turin, Italy
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Turin, I-10125 Turin, Italy
| | | | - Angela Ianaro
- Department of Pharmacy, University of Naples «Federico II», I-80131 Naples, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, University of Naples «Federico II», I-80131 Naples, Italy
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Turin, I-10125 Turin, Italy
| |
Collapse
|
9
|
Zhang W, Chen B, Lin R, Dai H, Zhang Y, Qunlong M, Huang Y. Liquid nitric oxide donor for adjuvant therapy of acute ischemic stroke via nasal administration. Nitric Oxide 2023; 134-135:72-78. [PMID: 37062466 DOI: 10.1016/j.niox.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
OBJECTIVES The aim of this study was to synthesize and characterize a novel NO donor, PEI-PO-NONOate, using propylene oxide and to investigate its biosafety and therapeutic efficacy via nasal administration in vitro and vivo. EXPERIMENTAL PROCEDURES The PEI-PO-NONOate was synthesized based on polyethylenimine (PEI) with different molecular weights and characterized using Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), and ultraviolet (UV) spectroscopy. Cytotoxicity assays were performed on mouse fibroblast cells L929 and human nasal mucosa epithelial cells (HNEpC), and a rat middle cerebral artery occlusion (MCAO) model was established to evaluate the therapeutic efficacy of PEI-PO-NONOate via nasal administration. RESULTS The PEI-PO-NONOate was found to be stable under dark, dry, and airproof conditions, and its release was accelerated in an aqueous phase or acidic environment, while it was slowed down in a polyethylene glycol (PEG) mixture system. The NO donor released approximately 0.4, 0.5, and 0.6 μmol of gaseous NO from 1.0 mg of the polymer based on PEI600, PEI1800, and PEI10K, respectively. Cytotoxicity assays showed that the PEI-PO-NONOates had a cryoprotective effect as compared with PEI and PEI-PO. Furthermore, nasal administration of PEI-PO-NONOates resulted in a significant reduction in overall necrotic ratio as compared with the control group (16.4% versus 24.6%, p < 0.05). CONCLUSION The findings of this study suggest that PEI-PO-NONOates may have potential as an adjuvant therapy for acute ischemic stroke when administered via the nasal route.
Collapse
Affiliation(s)
- Weihang Zhang
- School of Chemical Engineering and Fine Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Bin Chen
- Department of Interventional Radiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Run Lin
- Department of Interventional Radiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haitao Dai
- Department of Interventional Radiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Zhang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Mao Qunlong
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Yonghui Huang
- Department of Interventional Radiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Navale GR, Singh S, Ghosh K. NO donors as the wonder molecules with therapeutic potential: Recent trends and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
11
|
Zhang M, Fan Z, Zhang J, Yang Y, Huang C, Zhang W, Ding D, Liu G, Cheng N. Multifunctional chitosan/alginate hydrogel incorporated with bioactive glass nanocomposites enabling photothermal and nitric oxide release activities for bacteria-infected wound healing. Int J Biol Macromol 2023; 232:123445. [PMID: 36709818 DOI: 10.1016/j.ijbiomac.2023.123445] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
It is highly desirable to develop novel multifunctional wound dressing materials capable of delivering active molecules capable of resolving bacterial infections and replenishment of appropriate growth factors for bacteria-infected wound healing. Polysaccharides have numerous biomedical benefits and have been widely used to construct biomaterial scaffolds. Herein, multifunctional chitosan/alginate hydrogel decorated with β-cyclodextrin (β-CD) modified polydopamine (PDA)-bioactive glass (BG) nanoparticles (NPs) integrating photothermal performance and nitric-oxide release activities for the treatment of bacterially infected wounds is presented. As the NO precursor N,N'-di-sec-butyl-N,N'-dinitroso-1,4-phenylenediamine (BNN6) encapsulated into the hydrophobic cavity of β-CD on the PDA-coated BG NPs, the resultant NO@CD-PDA/BG NPs, are imparted with the feature of NIR triggered NO release and desired PTT/NO synergetic antibacterial effects. Furthermore, the release of NO, Ca, and Si ions from the NO@CD-PDA/BG NPs, has the benefit of regulating inflammation, promoting fibroblast proliferation, and stimulating angiogenesis. Besides, the chitosan/alginate hydrogel scaffolds provided a suitable microenvironment to accelerate wound healing. By applying the multifunctional chitosan/alginate nanocomposite hydrogel to S. aureus-infected full-thickness skin defect mouse model, the authors demonstrated that chitosan/alginate nanocomposite hydrogel has multiple functions in preventing bacterial infections, accelerating angiogenesis and wound regeneration, indicating promising application in wound healing.
Collapse
Affiliation(s)
- Man Zhang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Zunqing Fan
- Department of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, PR China; Shandong Provincial Hospital for Skin Diseases, Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, PR China
| | - Jie Zhang
- Shandong Boyuan Pharmaceutical & Chemical Co., Ltd., North of XinSha Road, West of Dajiu Road, Houzhen Industrial Zone, Shouguang City, Shandong 262725, PR China
| | - Yilei Yang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Changbao Huang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Dejun Ding
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China.
| | - Guoyan Liu
- Shandong Provincial Hospital for Skin Diseases, Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, PR China.
| | - Ni Cheng
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China.
| |
Collapse
|
12
|
Luo Z, Ng G, Zhou Y, Boyer C, Chandrawati R. Polymeric Amines Induce Nitric Oxide Release from S-Nitrosothiols. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2200502. [PMID: 35789202 DOI: 10.1002/smll.202200502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Catalytic generation of nitric oxide (NO) from NO donors by nanomaterials has enabled prolonged NO delivery for various biomedical applications, but this approach requires laborious synthesis routes. In this study, a new class of materials, that is, polymeric amines including polyethyleneimine (PEI), poly-L-lysine, and poly(allylamine hydrochloride), is discovered to induce NO generation from S-nitrosothiols (RSNOs) at physiological conditions. Controlled NO generation can be readily achieved by tuning the concentration of the NO donors (RSNOs) and polymers, and the type and molecular weight of the polymers. Importantly, the mechanism of NO generation by these polymers is deciphered to be attributed to the nucleophilic reaction between primary amines on polymers and the SNO groups of RSNOs. The NO-releasing feature of the polymers can be integrated into a suite of materials, for example, simply by embedding PEI into poly(vinyl alcohol) (PVA) hydrogels. The functionality of the PVA/PEI hydrogels is demonstrated for Pseudomonas aeruginosa biofilm prevention with a ≈4 log reduction within 6 h. As NO has potential therapeutic implications in various diseases, the identification of polymeric amines to induce NO release will open new opportunities in NO-generating biomaterials for antibacterial, antiviral, anticancer, antithrombotic, and wound healing applications.
Collapse
Affiliation(s)
- Zijie Luo
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Gervase Ng
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
- Cluster for Advanced Macromolecular Design (CAMD), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
- Cluster for Advanced Macromolecular Design (CAMD), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| |
Collapse
|
13
|
Saffari Z, Sepahi M, Ahangari-Cohan R, Khoobi M, Hamidi-Fard M, Ghavidel A, Aghasadeghi MR, Norouzian D. A quartz crystal microbalance biosensor based on polyethylenimine-modified gold electrode to detect hepatitis B biomarker. Anal Biochem 2023; 661:114981. [PMID: 36400147 DOI: 10.1016/j.ab.2022.114981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
Abstract
Biomarkers-based QCM-biosensors are suitable tools for the label-free detection of infectious diseases. In the current study, a QCM-biosensor was developed for the detection of HBsAg. Briefly, anti-HBsAg antibodies were covalently bound to the primary amines after PEI and thiolated-PEI surface modifications of gold-electrode. After RSM optimization, the statistical analysis revealed no significant difference between the immobilization yields of modified layers. Therefore, the PEI-modified QCM-biosensor was selected for further analysis. The PEI-surface was evaluated by FESEM, AFM, ATR-FTIR, and CA measurement. The surface hydrophilicity and its roughness were increased after PEI-coating. Also, FTIR confirmed the PEI-layering on the gold-surface. RSM optimization increased the antibody immobilization yield up to 80%. The QCM-biosensor showed noteworthy results with a wide dynamic range of 1-1 × 103 ng/mL, LOD of 3.14 ng/mL, LOQ of 9.52 ng/mL, and detection capability in human-sera, which were comparable with the ELISA. The mean accuracy of the QCM-biosensor was obtained at 91% when measured by the spike recovery test using human-sera. The biosensor was completely regenerated using 50 mM NaOH and 1% SDS. The benefits provided by the developed biosensor such as broad dynamic range, sensitivity, selectivity, stability, regenerate ability, and low cost suggest its potential application for the non-invasive and timely monitoring of HBV-biomarker.
Collapse
Affiliation(s)
- Zahra Saffari
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Mina Sepahi
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari-Cohan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Khoobi
- Departments of Radio Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Medical Biomaterials Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Ghavidel
- Physics Department, Sharif University of Technology, Tehran, Iran
| | - Mohammad Reza Aghasadeghi
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran; Viral Vaccine Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Dariush Norouzian
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
14
|
Seabra AB, Pieretti JC, de Melo Santana B, Horue M, Tortella GR, Castro GR. Pharmacological applications of nitric oxide-releasing biomaterials in human skin. Int J Pharm 2022; 630:122465. [PMID: 36476664 DOI: 10.1016/j.ijpharm.2022.122465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is an important endogenous molecule that plays several roles in biological systems. NO is synthesized in human skin by three isoforms of nitric oxide synthase (NOS) and, depending on the produced NO concentration, it can actuate in wound healing, dermal vasodilation, or skin defense against different pathogens, for example. Besides being endogenously produced, NO-based pharmacological formulations have been developed for dermatological applications targeting diverse pathologies such as bacterial infection, wound healing, leishmaniasis, and even esthetic issues such as acne and skin aging. Recent strategies focus mainly on developing smart NO-releasing nanomaterials/biomaterials, as they enable a sustained and targeted NO release, promoting an improved therapeutic effect. This review aims to overview and discuss the main mechanisms of NO in human skin, the recent progress in the field of dermatological formulations containing NO, and their application in several skin diseases, highlighting promising advances and future perspectives in the field.
Collapse
Affiliation(s)
- Amedea B Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| | - Joana C Pieretti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Bianca de Melo Santana
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Manuel Horue
- Laboratorio de Nanobiomateriales, CINDEFI - Facultad de Ciencias Exactas, Universidad Nacional de La Plata- CONICET (CCT La Plata), Argentina
| | - Gonzalo R Tortella
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile; Centro de Excelencia en Investigación Biotecnologica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Guillermo R Castro
- Nanobiotechnology Area, Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG) - CONICET. Maipú 1065, S2000 Rosario, Santa Fe, Argentina; Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
15
|
Enhancement of Nitric Oxide Bioavailability by Modulation of Cutaneous Nitric Oxide Stores. Biomedicines 2022; 10:biomedicines10092124. [PMID: 36140225 PMCID: PMC9496039 DOI: 10.3390/biomedicines10092124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
The generation of nitric oxide (NO) in the skin plays a critical role in wound healing and the response to several stimuli, such as UV exposure, heat, infection, and inflammation. Furthermore, in the human body, NO is involved in vascular homeostasis and the regulation of blood pressure. Physiologically, a family of enzymes termed nitric oxide synthases (NOS) generates NO. In addition, there are many methods of non-enzymatic/NOS-independent NO generation, e.g., the reduction of NO derivates (NODs) such as nitrite, nitrate, and nitrosylated proteins under certain conditions. The skin is the largest and heaviest human organ and contains a comparatively high concentration of these NODs; therefore, it represents a promising target for many therapeutic strategies for NO-dependent pathological conditions. In this review, we give an overview of how the cutaneous NOD stores can be targeted and modulated, leading to a further accumulation of NO-related compounds and/or the local and systemic release of bioactive NO, and eventually, NO-related physiological effects with a potential therapeutical use for diseases such as hypertension, disturbed microcirculation, impaired wound healing, and skin infections.
Collapse
|
16
|
Won JE, Kim WJ, Ryu JJ, Shim JS. Guided Bone Regeneration with a Nitric-Oxide Releasing Polymer Inducing Angiogenesis and Osteogenesis in Critical-Sized Bone Defects. Macromol Biosci 2022; 22:e2200162. [PMID: 35895972 DOI: 10.1002/mabi.202200162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/09/2022] [Indexed: 11/07/2022]
Abstract
Synthetic scaffolds, as bone grafts, provide a favorable environment for the repair and growth of new bone tissue at defect sites. However, the lack of angio- and osteo-induction limits the usefulness of artificial scaffolds for bone regeneration. Nitric oxide (NO) performs essential roles in healing processes, such as regulating inflammation and addressing incomplete revascularization. In this study, we developed a polymer capable of controlled NO release to promote the osteogenic capacity in artificial scaffolds. The biological efficiency of the NO compound was assessed by its effect on pre-osteoblasts and macrophages in vitro and the extent of vascularization and bone formation in the calvaria defect model in vivo. The compound did not inhibit cell adhesion or proliferation. NO treatment significantly increased both alkaline phosphatase activity and mineralization in pre-osteoblasts. Macrophages treated with NO secreted high levels of anti-inflammatory factors and adopted the pro-regenerative M2 phenotype. In the critical-sized defect model, the collagen scaffold containing the NO compound enhanced neovascularization and bone formation. The developed NO-releasing system promoted osteogenesis and regeneration of damaged bone tissue. As the multiple functions of NO involve macrophage modulation and angiogenesis, such release systems may be valuable for guiding bone regeneration in critical-sized defects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jong-Eun Won
- Institute for Clinical Dental Research, Department of Dentistry, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang-si, 37673, Republic of Korea
| | - Jae Jun Ryu
- Department of Dentistry, Korea University Anam Hospital, Seoul, 02841, Republic of Korea
| | - Ji Suk Shim
- Institute for Clinical Dental Research, Department of Dentistry, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
| |
Collapse
|
17
|
Ahmed R, Augustine R, Chaudhry M, Akhtar UA, Zahid AA, Tariq M, Falahati M, Ahmad IS, Hasan A. Nitric oxide-releasing biomaterials for promoting wound healing in impaired diabetic wounds: State of the art and recent trends. Pharmacotherapy 2022; 149:112707. [PMID: 35303565 DOI: 10.1016/j.biopha.2022.112707] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
Impaired diabetic wounds are serious pathophysiological complications associated with persistent microbial infections including failure in the closure of wounds, and the cause of a high frequency of lower limb amputations. The healing of diabetic wounds is attenuated due to the lack of secretion of growth factors, prolonged inflammation, and/or inhibition of angiogenic activity. Diabetic wound healing can be enhanced by supplying nitric oxide (NO) endogenously or exogenously. NO produced inside the cells by endothelial nitric oxide synthase (eNOS) naturally aids wound healing through its beneficial vasculogenic effects. However, during hyperglycemia, the activity of eNOS is affected, and thus there becomes an utmost need for the topical supply of NO from exogenous sources. Thus, NO-donors that can release NO are loaded into wound healing patches or wound coverage matrices to treat diabetic wounds. The burst release of NO from its donors is prevented by encapsulating them in polymeric hydrogels or nanoparticles for supplying NO for an extended duration of time to the diabetic wounds. In this article, we review the etiology of diabetic wounds, wound healing strategies, and the role of NO in the wound healing process. We further discuss the challenges faced in translating NO-donors as a clinically viable nanomedicine strategy for the treatment of diabetic wounds with a focus on the use of biomaterials for the encapsulation and in vivo controlled delivery of NO-donors.
Collapse
Affiliation(s)
- Rashid Ahmed
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar; Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, Mirpur 10250, AJK, Pakistan; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA
| | - Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Maryam Chaudhry
- Department of Continuing Education, University of Oxford, OX1 2JD Oxford, United Kingdom
| | - Usman A Akhtar
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Alap Ali Zahid
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Muhammad Tariq
- Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, Mirpur 10250, AJK, Pakistan
| | - Mojtaba Falahati
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, 3015GE Rotterdam, The Netherlands
| | - Irfan S Ahmad
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA; Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana Champaign, IL, USA
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
18
|
Li M, Qiu W, Wang Q, Li N, Liu L, Wang X, Yu J, Li X, Li F, Wu D. Nitric Oxide-Releasing Tryptophan-Based Poly(ester urea)s Electrospun Composite Nanofiber Mats with Antibacterial and Antibiofilm Activities for Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15911-15926. [PMID: 35373564 DOI: 10.1021/acsami.1c24131] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial biofilms on wounds can lead to ongoing inflammation and delayed reepithelialization, which brings a heavy burden to the medical systems. Nitric oxide based treatment has attracted attention because it is a promising strategy to eliminate biofilms and heal infected wounds. Herein, a series of tryptophan-based poly(ester urea)s with good biodegradation and biocompatibility were developed for the preparation of composite mats by electrospinning. Furthermore, the mats were grafted with a nitric oxide donor (nitrosoglutathione, GSNO) to provide one type of NO loading cargo. The mats were found to have a prolonged NO release profile for 408 h with a maximum release of 1.0 μmol/L, which had a significant effect on killing bacteria and destructing biofilms. The designed mats were demonstrated to promote the growth of cells, regulate inflammatory factors, and significantly improve collagen deposition in the wound, eventually accelerating wound-size reduction. Thus, the studies presented herein provide insights into the production of NO-releasing wound dressings and support the application of full-thickness wound healing.
Collapse
Affiliation(s)
- Mengna Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Weiwang Qiu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Qian Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Na Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Lu Liu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xueli Wang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Faxue Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Dequn Wu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
19
|
Caballano-Infantes E, Cahuana GM, Bedoya FJ, Salguero-Aranda C, Tejedo JR. The Role of Nitric Oxide in Stem Cell Biology. Antioxidants (Basel) 2022; 11:497. [PMID: 35326146 PMCID: PMC8944807 DOI: 10.3390/antiox11030497] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a gaseous biomolecule endogenously synthesized with an essential role in embryonic development and several physiological functions, such as regulating mitochondrial respiration and modulation of the immune response. The dual role of NO in embryonic stem cells (ESCs) has been previously reported, preserving pluripotency and cell survival or inducing differentiation with a dose-dependent pattern. In this line, high doses of NO have been used in vitro cultures to induce focused differentiation toward different cell lineages being a key molecule in the regenerative medicine field. Moreover, optimal conditions to promote pluripotency in vitro are essential for their use in advanced therapies. In this sense, the molecular mechanisms underlying stemness regulation by NO have been studied intensively over the current years. Recently, we have reported the role of low NO as a hypoxia-like inducer in pluripotent stem cells (PSCs), which supports using this molecule to maintain pluripotency under normoxic conditions. In this review, we stress the role of NO levels on stem cells (SCs) fate as a new approach for potential cell therapy strategies. Furthermore, we highlight the recent uses of NO in regenerative medicine due to their properties regulating SCs biology.
Collapse
Affiliation(s)
- Estefanía Caballano-Infantes
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (G.M.C.); (F.J.B.)
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain
| | - Gladys Margot Cahuana
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (G.M.C.); (F.J.B.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Javier Bedoya
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (G.M.C.); (F.J.B.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Salguero-Aranda
- Department of Pathology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, CSIC-University of Seville, 41013 Seville, Spain;
- Spanish Biomedical Research Network Centre in Oncology-CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41004 Seville, Spain
| | - Juan R. Tejedo
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (G.M.C.); (F.J.B.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
20
|
Dou J, Yang R, Jin X, Li P, Han X, Wang L, Chi B, Shen J, Yuan J. Nitric oxide-releasing polyurethane/ S-nitrosated keratin mats for accelerating wound healing. Regen Biomater 2022; 9:rbac006. [PMID: 35592138 PMCID: PMC9113238 DOI: 10.1093/rb/rbac006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 10/07/2023] Open
Abstract
Nitric oxide (NO) plays an important role in wound healing, due to its ability to contract wound surfaces, dilate blood vessels, participate in inflammation as well as promote collagen synthesis, angiogenesis and fibroblast proliferation. Herein, keratin was first nitrosated to afford S-nitrosated keratin (KSNO). As a NO donor, KSNO was then co-electrospun with polyurethane (PU). These as-spun PU/KSNO biocomposite mats could release NO sustainably for 72 h, matching the renewal time of the wound dressing. Moreover, these mats exhibited excellent cytocompatibility with good cell adhesion and cell migration. Further, the biocomposite mats exhibited antibacterial properties without inducing severe inflammatory responses. The wound repair in vivo demonstrated that these mats accelerated wound healing by promoting tissue formation, collagen deposition, cell migration, re-epithelialization and angiogenesis. Overall, PU/KSNO mats may be promising candidates for wound dressing.
Collapse
Affiliation(s)
- Jie Dou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Xingxing Jin
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Pengfei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Xiao Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| |
Collapse
|
21
|
Nascimento NN, Vieira AC, Tardioli PW, Bergamasco R, Vieira AMS. Valorization of soybean oil residue through advanced technology of graphene oxide modified membranes for tocopherol recovery. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nicole Novelli Nascimento
- Postgraduate Program in Food Science, Centre of Agrarian Sciences State University of Maringá, Av. Colombo, 5790 Maringá PR Brazil
| | - Ana Carolina Vieira
- Postgraduate Program in Chemical Engineering, Department of Chemical Engineering Federal University of São Carlos São Carlos SP Brazil
| | - Paulo Waldir Tardioli
- Postgraduate Program in Chemical Engineering, Department of Chemical Engineering Federal University of São Carlos São Carlos SP Brazil
| | - Rosângela Bergamasco
- Department of Chemical Engineering State University of Maringá Maringá PR Brazil
| | | |
Collapse
|
22
|
Chen J, Sharifi R, Ryu CM. Turning a bacterial gaseous virulence trigger off. TRENDS IN PLANT SCIENCE 2022; 27:4-6. [PMID: 34772613 DOI: 10.1016/j.tplants.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Recently, Sieber et al. discovered the new diazeniumdiolate volatile signaling molecule, leudiazen. They confirmed that inactivation of leudiazen by KMnO4 can reduce the production of mangotoxin. This alleviates the pathogenicity of Pseudomonas syringae pv. syringae on mango trees, providing a new strategy for plant protection, compatible with organic farming.
Collapse
Affiliation(s)
- Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Rouhallah Sharifi
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran.
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea.
| |
Collapse
|
23
|
Yong HW, Kakkar A. The unexplored potential of gas‐responsive polymers in drug delivery: progress, challenges and outlook. POLYM INT 2021. [DOI: 10.1002/pi.6320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hui Wen Yong
- Department of Chemistry McGill University Montréal QC Canada
| | - Ashok Kakkar
- Department of Chemistry McGill University Montréal QC Canada
| |
Collapse
|
24
|
Zhao Y, Ouyang X, Peng Y, Peng S. Stimuli Responsive Nitric Oxide-Based Nanomedicine for Synergistic Therapy. Pharmaceutics 2021; 13:1917. [PMID: 34834332 PMCID: PMC8622285 DOI: 10.3390/pharmaceutics13111917] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022] Open
Abstract
Gas therapy has received widespread attention from the medical community as an emerging and promising therapeutic approach to cancer treatment. Among all gas molecules, nitric oxide (NO) was the first one to be applied in the biomedical field for its intriguing properties and unique anti-tumor mechanisms which have become a research hotspot in recent years. Despite the great progress of NO in cancer therapy, the non-specific distribution of NO in vivo and its side effects on normal tissue at high concentrations have impaired its clinical application. Therefore, it is important to develop facile NO-based nanomedicines to achieve the on-demand release of NO in tumor tissue while avoiding the leakage of NO in normal tissue, which could enhance therapeutic efficacy and reduce side effects at the same time. In recent years, numerous studies have reported the design and development of NO-based nanomedicines which were triggered by exogenous stimulus (light, ultrasound, X-ray) or tumor endogenous signals (glutathione, weak acid, glucose). In this review, we summarized the design principles and release behaviors of NO-based nanomedicines upon various stimuli and their applications in synergistic cancer therapy. We also discuss the anti-tumor mechanisms of NO-based nanomedicines in vivo for enhanced cancer therapy. Moreover, we discuss the existing challenges and further perspectives in this field in the aim of furthering its development.
Collapse
Affiliation(s)
- Yijun Zhao
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China; (Y.Z.); (X.O.)
| | - Xumei Ouyang
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China; (Y.Z.); (X.O.)
| | - Yongjun Peng
- The Department of Medical Imaging, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China; (Y.Z.); (X.O.)
| |
Collapse
|
25
|
Shao H, Yin D, Li D, Ma Q, Yu W, Dong X. Simultaneous Visual Detection and Removal of Cu 2+ with Electrospun Self-Supporting Flexible Amidated Polyacrylonitrile/Branched Polyethyleneimine Nanofiber Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49288-49300. [PMID: 34632771 DOI: 10.1021/acsami.1c13722] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sensitive detection and effective removal of copper ions (Cu2+) from water are still arduous tasks required to protect public health and environmental safety because of the serious impacts of Cu2+ on humans and other organisms. Herein, we report the design and fabrication of self-supporting flexible amidated polyacrylonitrile/branched polyethyleneimine nanofiber membranes (abbreviated as aPAN/BPEI NMs) via facile electrospinning and a subsequent hydrothermal method, which are used not only as strips for the visual detection of Cu2+ but also as effective adsorbents for the removal of Cu2+ from water. Because aPAN/BPEI NMs are self-supporting, they can be easily removed from the solution to reduce secondary pollution to the environment. Based on the high Cu2+ binding capacity of BPEI, Cu2+ ions are adsorbed on the aPAN/BPEI NMs, which leads to the appearance of new absorbance bands at 280 and 636 nm and a color change from yellow to blue. aPAN/BPEI NMs are utilized for the visual detection of Cu2+ with a linear range of 50-700 μM and limits of detection of 11.5 and 4.8 μM (absorption peaks at 280 and 636 nm). More importantly, aPAN/BPEI NMs exhibit excellent selectivity and certain recovery with a simple treatment. Furthermore, by utilizing the adsorption characteristics of Cu2+ in aqueous media, it can be effectively removed by aPAN/BPEI NMs with a remarkable adsorption capacity of 209.53 mg·g-1. Additionally, the removal of Cu2+ by aPAN/BPEI NMs does not exhibit interference by other foreign ions. The adsorption process conforms well to the pseudo-second order (PSO) kinetic model and Jovanovich model, proving that adsorption occurs via chemical and monolayer adsorption mechanisms. Accordingly, this work will provide theoretical and technical support for the design and fabrication of novel heavy metal ion detection-removal integrated materials exhibiting high sensitivity and strong adsorption.
Collapse
Affiliation(s)
- Hong Shao
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Duanduan Yin
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Dan Li
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Qianli Ma
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Wensheng Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Xiangting Dong
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, P. R. China
| |
Collapse
|
26
|
Paul S, Pan S, Mukherjee A, De P. Nitric Oxide Releasing Delivery Platforms: Design, Detection, Biomedical Applications, and Future Possibilities. Mol Pharm 2021; 18:3181-3205. [PMID: 34433264 DOI: 10.1021/acs.molpharmaceut.1c00486] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gasotransmitters belong to the subfamily of endogenous gaseous signaling molecules, which find a wide range of biomedical applications. Among the various gasotransmitters, nitric oxide (NO) has an enormous effect on the cardiovascular system. Apart from this, NO showed a pivotal role in neurological, respiratory, and immunological systems. Moreover, the paradoxical concentration-dependent activities make this gaseous signaling molecule more interesting. The gaseous NO has negligible stability in physiological conditions (37 °C, pH 7.4), which restricts their potential therapeutic applications. To overcome this issue, various NO delivering carriers were reported so far. Unfortunately, most of these NO donors have low stability, short half-life, or low NO payload. Herein, we review the synthesis of NO delivering motifs, development of macromolecular NO donors, their advantages/disadvantages, and biological applications. Various NO detection analytical techniques are discussed briefly, and finally, a viewpoint about the design of polymeric NO donors with improved physicochemical characteristics is predicted.
Collapse
|
27
|
Xu Z, Liang B, Tian J, Wu J. Anti-inflammation biomaterial platforms for chronic wound healing. Biomater Sci 2021; 9:4388-4409. [PMID: 34013915 DOI: 10.1039/d1bm00637a] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nowadays, there has been an increase in the number of people with chronic wounds, which has resulted in serious health problems worldwide. The rate-limiting stage of chronic wound healing has been found to be the inflammation stage, and strategies for shortening the prolonged inflammatory response have proven to be effective for increasing the healing rate. Recently, various anti-inflammatory strategies (such as anti-inflammatory drugs, antioxidant, NO regulation, antibacterial, immune regulation and angiogenesis) have attracted attention as potential therapeutic pathways. Moreover, various biomaterial platforms based on anti-inflammation therapy strategies have also emerged in the spotlight as potential therapies to accelerate the repair of chronic wounds. In this review, we systematically investigated the advances of various biomaterial platforms based on anti-inflammation strategies for chronic wound healing, to provide valuable guidance for future breakthroughs in chronic wound treatment.
Collapse
Affiliation(s)
- Zejun Xu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China.
| | - Biao Liang
- Center of Digestive Endoscopy, Guangdong Second Provincial general Hospital, No. 466, Xingang Middle Road, Guangzhou 510317, Haizhu District, China.
| | - Junzhang Tian
- Center of Digestive Endoscopy, Guangdong Second Provincial general Hospital, No. 466, Xingang Middle Road, Guangzhou 510317, Haizhu District, China.
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China.
| |
Collapse
|
28
|
Wu M, Lu Z, Wu K, Nam C, Zhang L, Guo J. Recent advances in the development of nitric oxide-releasing biomaterials and their application potentials in chronic wound healing. J Mater Chem B 2021; 9:7063-7075. [PMID: 34109343 DOI: 10.1039/d1tb00847a] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chronic wounds, such as pressure ulcers, vascular ulcers and diabetic foot ulcers (DFUs), often stay in a state of pathological inflammation and suffer from persistent infection, excess inflammation, and hypoxia, thus they are difficult to be healed. Nitric oxide (NO) plays a critical role in the regulation of various wound healing processes, including inflammatory response, cell proliferation, collagen formation, antimicrobial action and angiogenesis. The important role of NO in wound healing attracts intensive research focus on NO-based wound healing therapy. However, the application of NO gas therapy needs to resolve the intrinsic shortcomings of gas therapy, such as short storage and release times as well as temporal and spatial uncontrollability of the release mode. So far, various types of NO donors, including organic nitrates (RONO2), nitrites (RONO), S-nitrosothiols (RSNOs), nitrosamines, N-diazeniumdiolates (NONOates), and metal-NO complexes, have been developed to solidify gaseous NO and they were further encapsulated in or conjugated onto a variety of biomaterial vectors to develop NO delivery systems. NO synthetic enzyme mimics to catalyze the production and release of NO from l-arginine have also been developed. This paper reviews recent advances of NO donors, biomaterial vectors, thus-formed NO delivery systems, as well as recently emerged NO synthetic enzyme mimics. Furthermore, this review also summarizes the functions of NO releasing biomaterials that would benefit chronic wound healing, including antibacterial properties and the promotion of angiogenesis, as well as the convenient combination of light/thermal induced NO release with light/thermal therapies, and the prospects for future developing trends in this area.
Collapse
Affiliation(s)
- Min Wu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
| | - Zhihui Lu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
| | - Keke Wu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
| | - Changwoo Nam
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| | - Lin Zhang
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
| | - Jinshan Guo
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
| |
Collapse
|
29
|
Gutierrez Cisneros C, Bloemen V, Mignon A. Synthetic, Natural, and Semisynthetic Polymer Carriers for Controlled Nitric Oxide Release in Dermal Applications: A Review. Polymers (Basel) 2021; 13:760. [PMID: 33671032 PMCID: PMC7957520 DOI: 10.3390/polym13050760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO•) is a free radical gas, produced in the human body to regulate physiological processes, such as inflammatory and immune responses. It is required for skin health; therefore, a lack of NO• is known to cause or worsen skin conditions related to three biomedical applications- infection treatment, injury healing, and blood circulation. Therefore, research on its topical release has been increasing for the last two decades. The storage and delivery of nitric oxide in physiological conditions to compensate for its deficiency is achieved through pharmacological compounds called NO-donors. These are further incorporated into scaffolds to enhance therapeutic treatment. A wide range of polymeric scaffolds has been developed and tested for this purpose. Hence, this review aims to give a detailed overview of the natural, synthetic, and semisynthetic polymeric matrices that have been evaluated for antimicrobial, wound healing, and circulatory dermal applications. These matrices have already set a solid foundation in nitric oxide release and their future perspective is headed toward an enhanced controlled release by novel functionalized semisynthetic polymer carriers and co-delivery synergetic platforms. Finally, further clinical tests on patients with the targeted condition will hopefully enable the eventual commercialization of these systems.
Collapse
Affiliation(s)
- Carolina Gutierrez Cisneros
- Surface and Interface Engineered Materials, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; (C.G.C.); (V.B.)
| | - Veerle Bloemen
- Surface and Interface Engineered Materials, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; (C.G.C.); (V.B.)
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Arn Mignon
- Surface and Interface Engineered Materials, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; (C.G.C.); (V.B.)
| |
Collapse
|
30
|
Jin G, Gao Z, Liu Y, Zhao J, Ou H, Xu F, Ding D. Polymeric Nitric Oxide Delivery Nanoplatforms for Treating Cancer, Cardiovascular Diseases, and Infection. Adv Healthc Mater 2021; 10:e2001550. [PMID: 33314793 DOI: 10.1002/adhm.202001550] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/05/2020] [Indexed: 02/06/2023]
Abstract
The shortened Abstract is as follows: Therapeutic gas nitric oxide (NO) has demonstrated the unique advances in biomedical applications due to its prominent role in regulating physiological/pathophysiological activities in terms of vasodilation, angiogenesis, chemosensitizing effect, and bactericidal effect. However, it is challenging to deliver NO, due to its short half-life (<5 s) and short diffusion distances (20-160 µm). To address these, various polymeric NO delivery nanoplatforms (PNODNPs) have been developed for cancer therapy, antimicrobial and cardiovascular therapeutics, because of the important advantages of polymeric delivery nanoplatforms in terms of controlled release of therapeutics and the extremely versatile nature. This reviews highlights the recent significant advances made in PNODNPs for NO storing and targeting delivery. The ideal and unique criteria that are required for PNODNPs for treating cancer, cardiovascular diseases and infection, respectively, are summarized. Hopefully, effective storage and targeted delivery of NO in a controlled manner using PNODNPs could pave the way for NO-sensitized synergistic therapy in clinical practice for treating the leading death-causing diseases.
Collapse
Affiliation(s)
- Guorui Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 China
| | - Zhiyuan Gao
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Yangjing Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 China
| | - Jing Zhao
- Shaanxi Key Lab Degradable Biomedical Materials School of Chemical Engineering Northwest University 229 North Taibai North Road Xi'an 710069 China
| | - Hanlin Ou
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| |
Collapse
|
31
|
Chitosan and gelatin biopolymer supplemented with mesenchymal stem cells (Velgraft®) enhanced wound healing in goats (Capra hircus): Involvement of VEGF, TGF and CD31. J Tissue Viability 2020; 30:59-66. [PMID: 33386237 DOI: 10.1016/j.jtv.2020.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/18/2020] [Accepted: 12/16/2020] [Indexed: 11/20/2022]
Abstract
AIM Cell-based therapy has emerged as promising strategy for chronic and impaired wounds treatment. Current research is focused on developing biomaterial systems that act as a niche for mesenchymal stem cells (MSCs) to promote wound healing through paracrine molecular cascading. This study was aimed to evaluate the wound healing potential of Velgraft, a ready-to-use biodegradable artificial skin substitute, on excision wound in goats. MATERIALS AND METHODS Twelve male goats were randomized divided in to three groups of four animals each. After infliction of surgical wound, Velgraft and Soframycin were applied on wounds of the animals of Groups II and III while Group I (sham operated) served as control. Wound diameters were measured at pre-defined time-points for determination of progressive wound healing up to 28 days. Skin sections were stained using Hematoxylin and eosin (H&E) for examining the histoarchitectural changes, Masson trichome staining for ascertaining collagen synthesis and immunohistochemistry for expression of CD31, VEGF and TGF-β1 proteins to determine post-treatment angiogenesis in the inflicted wounds. RESULTS Velgraft application appreciably enhanced wound closure by day 21 which was confirmed through restoration of the normal skin architecture as evident based on histopathological examination and characterized by complete regeneration of epidermal layers, collagen fibers, blood capillaries and hair follicular formation. Stimulation of angiogenesis markers was also observed at different time-points post-Velgraft application; which is suggestive of the improved angiogenesis and vasculogenesis. CONCLUSION Velgraft facilitates wound healing by augmenting early wound closure, enhancing collagen synthesis and deposition, trichosis development and promoting revascularization and epidermal layers restoration.
Collapse
|
32
|
Li B, Ming Y, Liu Y, Xing H, Fu R, Li Z, Ni R, Li L, Duan D, Xu J, Li C, Xiang M, Song H, Chen J. Recent Developments in Pharmacological Effect, Mechanism and Application Prospect of Diazeniumdiolates. Front Pharmacol 2020; 11:923. [PMID: 32655397 PMCID: PMC7324472 DOI: 10.3389/fphar.2020.00923] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Nitric oxide (NO) is a simple structured and unstable free radical molecule, which participates in the regulation of many pathophysiological processes. It functions both as a second messenger and as an endogenous neurotransmitter. Diazeniumdiolates (NONOates) are a series of compounds containing the functional parent nuclear structure of [N(O)NO]-, which are the most widely studied NO donors. NONOates are unstable and easy to release NO in physiological conditions. The biomedical applications and drug development of NO donor have attracted the scientists' attention in recent years. In this review, recent advances in NONOates research are highlighted in terms of chemical structures, molecular characteristics, pharmacological effects, and biomedical application prospects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jianhong Chen
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
33
|
Ding Z, He K, Duan Y, Shen Z, Cheng J, Zhang G, Hu J. Photo-degradable micelles for co-delivery of nitric oxide and doxorubicin. J Mater Chem B 2020; 8:7009-7017. [DOI: 10.1039/d0tb00817f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photo-degradable triblock copolymers enable the co-delivery of nitric oxide and doxorubicin exerting an improved therapeutic effect.
Collapse
Affiliation(s)
- Zhanling Ding
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Kewu He
- Imaging Center of the Third Affiliated Hospital of Anhui Medical University
- Hefei 230031
- China
| | - Yutian Duan
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Zhiqiang Shen
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Jian Cheng
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| |
Collapse
|
34
|
Rong F, Tang Y, Wang T, Feng T, Song J, Li P, Huang W. Nitric Oxide-Releasing Polymeric Materials for Antimicrobial Applications: A Review. Antioxidants (Basel) 2019; 8:E556. [PMID: 31731704 PMCID: PMC6912614 DOI: 10.3390/antiox8110556] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Polymeric materials releasing nitric oxide have attracted significant attention for therapeutic use in recent years. As one of the gaseous signaling agents in eukaryotic cells, endogenously generated nitric oxide (NO) is also capable of regulating the behavior of bacteria as well as biofilm formation in many metabolic pathways. To overcome the drawbacks caused by the radical nature of NO, synthetic or natural polymers bearing NO releasing moiety have been prepared as nano-sized materials, coatings, and hydrogels. To successfully design these materials, the amount of NO released within a certain duration, the targeted pathogens and the trigger mechanisms upon external stimulation with light, temperature, and chemicals should be taken into consideration. Meanwhile, NO donors like S-nitrosothiols (RSNOs) and N-diazeniumdiolates (NONOates) have been widely utilized for developing antimicrobial polymeric agents through polymer-NO donor conjugation or physical encapsulation. In addition, antimicrobial materials with visible light responsive NO donor are also reported as strong and physiological friendly tools for rapid bacterial clearance. This review highlights approaches to delivery NO from different types of polymeric materials for combating diseases caused by pathogenic bacteria, which hopefully can inspire researchers facing common challenges in the coming 'post-antibiotic' era.
Collapse
Affiliation(s)
- Fan Rong
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Yizhang Tang
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Tengjiao Wang
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Tao Feng
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Jiang Song
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
- School of Electronics & Information, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Peng Li
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Wei Huang
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| |
Collapse
|
35
|
Villafaña-López L, Reyes-Valadez DM, González-Vargas OA, Suárez-Toriello VA, Jaime-Ferrer JS. Custom-Made Ion Exchange Membranes at Laboratory Scale for Reverse Electrodialysis. MEMBRANES 2019; 9:E145. [PMID: 31689967 PMCID: PMC6918471 DOI: 10.3390/membranes9110145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 11/30/2022]
Abstract
Salinity gradient power is a renewable, non-intermittent, and neutral carbon energy source. Reverse electrodialysis is one of the most efficient and mature techniques that can harvest this energy from natural estuaries produced by the mixture of seawater and river water. For this, the development of cheap and suitable ion-exchange membranes is crucial for a harvest profitability energy from salinity gradients. In this work, both anion-exchange membrane and cation-exchange membrane based on poly(epichlorohydrin) and polyvinyl chloride, respectively, were synthesized at a laboratory scale (255 c m 2) by way of a solvent evaporation technique. Anion-exchange membrane was surface modified with poly(ethylenimine) and glutaraldehyde, while cellulose acetate was used for the cation exchange membrane structural modification. Modified cation-exchange membrane showed an increase in surface hydrophilicity, ion transportation and permselectivity. Structural modification on the cation-exchange membrane was evidenced by scanning electron microscopy. For the modified anion exchange membrane, a decrease in swelling degree and an increase in both the ion exchange capacity and the fixed charge density suggests an improved performance over the unmodified membrane. Finally, the results obtained in both modified membranes suggest that an enhanced performance in blue energy generation can be expected from these membranes using the reverse electrodialysis technique.
Collapse
Affiliation(s)
- Liliana Villafaña-López
- CIATEC A.C., Centro de Innovación Aplicada en Tecnologías Competitivas, Omega 201, Col. Industrial Delta, León, Guanajuato 37545, Mexico.
| | - Daniel M Reyes-Valadez
- CIATEC A.C., Centro de Innovación Aplicada en Tecnologías Competitivas, Omega 201, Col. Industrial Delta, León, Guanajuato 37545, Mexico.
| | - Oscar A González-Vargas
- Departamento de Ingeniería en Control y Automatización, Escuela Superior de Ingeniería Mecánica y Eléctrica-Zacatenco, Instituto Politécnico Nacional, UPALM, Av. Politécnico S/N, Col. Zacatenco, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico.
| | - Victor A Suárez-Toriello
- CONACYT-CIATEC A.C., Centro de Innovación Aplicada en Tecnologías Competitivas, Omega 201, Col. Industrial Delta, León, Guanajuato 37545, Mexico.
| | - Jesús S Jaime-Ferrer
- CIATEC A.C., Centro de Innovación Aplicada en Tecnologías Competitivas, Omega 201, Col. Industrial Delta, León, Guanajuato 37545, Mexico.
| |
Collapse
|
36
|
Shen Z, He K, Ding Z, Zhang M, Yu Y, Hu J. Visible-Light-Triggered Self-Reporting Release of Nitric Oxide (NO) for Bacterial Biofilm Dispersal. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01252] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhiqiang Shen
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Kewu He
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Zhanling Ding
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Mengdan Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
37
|
Cheng J, He K, Shen Z, Zhang G, Yu Y, Hu J. Nitric Oxide (NO)-Releasing Macromolecules: Rational Design and Biomedical Applications. Front Chem 2019; 7:530. [PMID: 31403044 PMCID: PMC6676249 DOI: 10.3389/fchem.2019.00530] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/11/2019] [Indexed: 01/19/2023] Open
Abstract
Nitric oxide (NO) has been recognized as a ubiquitous gaseous transmitter and the therapeutic potential has nowadays received increasing interest. However, NO cannot be easily directly administered due to its high reactivity in air and high concentration-dependent physiological roles. As such, a plethora of NO donors have been developed that can reversibly store and release NO under specific conditions. To enhance the stability and modulate the NO release profiles, small molecule-based NO donors were covalently linked to polymeric scaffolds, rendering them with multifunctional integration, prolonged release durations, and optimized therapeutic outcomes. In this minireview, we highlight the recent achievements of NO-releasing macromolecules in terms of chemical design and biomedical applications. We hope that more efforts could be devoted to this emerging yet promising field.
Collapse
Affiliation(s)
- Jian Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Kewu He
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhiqiang Shen
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| |
Collapse
|