1
|
Yadav R, Sharma A, Das B, Majumder C, Das A, Sen S, Kundu S. Air and Water Stable Bicyclic (Alkyl)(Amino)Carbene Stabilized Phosphenium Cation: Reactivity and Selective Fluoride Ion Affinity. Chemistry 2024; 30:e202401730. [PMID: 39145545 DOI: 10.1002/chem.202401730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
The synthesis and reactivity of an air and water stable Bicyclic (alkyl)(amino)carbene (BICAAC) stabilized phosphenium cation (1) is reported. Air and water stable phosphenium cation are rare in the literature. Compound 1 is obtained by reaction of BICAAC with Ph2PCl in THF followed by anion exchange with LiOTf. The reduction and oxidation of 1 yielded corresponding α-radical phosphine species (2) and BICAAC stabilized phosphenium oxide (3) respectively. All compounds are well characterized by single crystal X-ray diffraction studies. The Lewis acidity of compounds 1 and 3 are determined by conducting fluoride ion affinity experiments using UV-Vis spectrophotometry and multinuclei NMR spectroscopy. Compounds 1 and 3 exhibited selective binding to fluoride anion but did not interact with other halides (Cl- and Br-). Quantum chemical calculations were performed to understand the structure and nature of bonding interactions in these compounds, as well as to comprehend the specific bonding affinity to fluoride over other halide ions.
Collapse
Affiliation(s)
- Ritu Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Ankita Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Bindusagar Das
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Chinmoy Majumder
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Ayantika Das
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Saumik Sen
- Condensed Matter Theory Group, Laboratory for Theoretical and Computational Physics, Center forScientific Computing, Theory, and Data, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
- Swiss Institute of Bioinformatics (SIB), SIB), 1015 Lausanne, Switzerland
| | - Subrata Kundu
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
2
|
Hannibal VD, Greb L. Tetra-Amido Macrocyclic Ligand (TAML) at Silicon(IV): A Structurally Constrained, Water-Soluble Silicon Lewis Superacid. J Am Chem Soc 2024; 146:25727-25737. [PMID: 39223943 DOI: 10.1021/jacs.4c08015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Tetracoordinate silicon species are typically tetrahedral, weak Lewis acids, and often sensitive to moisture. In this study, we present a tetra-amido macrocyclic ligand (TAML)-substituted Si(IV), isolated as its bis(pyridine) adduct. Due to structural constraint toward anti van't-Hof/Le Bel geometry, this compound exhibits Lewis superacidity and effectively catalyzes the hydroboration of pyridine. Kinetic and computational analyses of the catalytic cycle reveal that TAML-Si(IV) acts as a hydride transfer agent, and the hydrido silicate key intermediate is isolated. Notably, the Lewis acid is highly soluble (5 g/L) and long-term stable in water. Unlike previously described silicon-H2O adducts, the bound water becomes substantially acidified, reaching the Bro̷nsted superacidity range. A comparison of water affinity versus pKa lowering confirms our previous theory of the strength and the effect of Lewis acids. Overall, the compound's unlimited water compatibility and its mechanistically understood catalytic efficiency mark significant progress in applying structural constraint strategies for p-block element-based catalysis, while the acidification touches critical aspects of zeolite and silica surface chemistry.
Collapse
Affiliation(s)
- Valentin D Hannibal
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 275, Heidelberg 69120, Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 275, Heidelberg 69120, Germany
| |
Collapse
|
3
|
Bawari D, Toami D, Jaiswal K, Dobrovetsky R. Hydrogen splitting at a single phosphorus centre and its use for hydrogenation. Nat Chem 2024; 16:1261-1266. [PMID: 38937592 DOI: 10.1038/s41557-024-01569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/30/2024] [Indexed: 06/29/2024]
Abstract
Catalytic processes are largely dominated by transition-metal complexes. Main-group compounds that can mimic the behaviour of the transition-metal complexes are of great interest due to their potential to substitute or complement transition metals in catalysis. While a few main-group molecular centres were shown to activate dihydrogen via the oxidative addition process, catalytic hydrogenation using these species has remained challenging. Here we report the synthesis, isolation and full characterization of the geometrically constrained phosphenium cation with the 2,6-bis(o-carborano)pyridine pincer-type ligand. Notably, this cation can activate the H-H bond by oxidative addition to a single PIII cationic centre, producing a dihydrophosphonium cation. This phosphenium cation is also capable of catalysing hydrogenation reactions of C=C double bonds and fused aromatic systems, making it a main-group compound that can both activate H2 at a single molecular main-group centre and be used for catalytic hydrogenation. This finding shows the potential of main-group compounds, in particular phosphorus-based compounds, to serve as metallomimetic hydrogenation catalysts.
Collapse
Affiliation(s)
- Deependra Bawari
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Donia Toami
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kuldeep Jaiswal
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Roman Dobrovetsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Bonfante S, Lorber C, Lynam JM, Simonneau A, Slattery JM. Metallomimetic C-F Activation Catalysis by Simple Phosphines. J Am Chem Soc 2024; 146:2005-2014. [PMID: 38207215 PMCID: PMC10811696 DOI: 10.1021/jacs.3c10614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
Delivering metallomimetic reactivity from simple p-block compounds is highly desirable in the search to replace expensive, scarce precious metals by cheap and abundant elements in catalysis. This contribution demonstrates that metallomimetic catalysis, involving facile redox cycling between the P(III) and P(V) oxidation states, is possible using only simple, cheap, and readily available trialkylphosphines without the need to enforce unusual geometries at phosphorus or use external oxidizing/reducing agents. Hydrodefluorination and aminodefluorination of a range of fluoroarenes was realized with good to very good yields under mild conditions. Experimental and computational mechanistic studies show that the phosphines undergo oxidative addition of the fluoroaromatic substrate via a Meisenheimer-like transition state to form a fluorophosphorane. This undergoes a pseudotransmetalation step with a silane, via initial fluoride transfer from P to Si, to give experimentally observed phosphonium ions. Hydride transfer from a hydridosilicate counterion then leads to a hydridophosphorane, which undergoes reductive elimination of the product to reform the phosphine catalyst. This behavior is analogous to many classical transition-metal-catalyzed reactions and so is a rare example of both functional and mechanistically metallomimetic behavior in catalysis by a main-group element system. Crucially, the reagents used are cheap, readily available commercially, and easy to handle, making these reactions a realistic prospect in a wide range of academic and industrial settings.
Collapse
Affiliation(s)
- Sara Bonfante
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
- LCC−CNRS, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne,
BP44099, Toulouse Cedex 4 F-31077, France
| | - Christian Lorber
- LCC−CNRS, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne,
BP44099, Toulouse Cedex 4 F-31077, France
| | - Jason M. Lynam
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Antoine Simonneau
- LCC−CNRS, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne,
BP44099, Toulouse Cedex 4 F-31077, France
| | - John M. Slattery
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| |
Collapse
|
5
|
Hannah TJ, Chitnis SS. Ligand-enforced geometric constraints and associated reactivity in p-block compounds. Chem Soc Rev 2024; 53:764-792. [PMID: 38099873 DOI: 10.1039/d3cs00765k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The geometry at an element centre can generally be predicted based on the number of electron pairs around it using valence shell electron pair repulsion (VSEPR) theory. Strategies to distort p-block compounds away from these predicted geometries have gained considerable interest due to the unique structural outcomes, spectroscopic properties or reactivity patterns engendered by such distortion. This review presents an up-to-date group-wise summary of this exciting and rapidly growing field with a focus on understanding how the ligand employed unlocks structural features, which in turn influences the associated reactivity. Relevant geometrically constrained compounds from groups 13-16 are discussed, along with selected stoichiometric and catalytic reactions. Several areas for advancement in this field are also discussed. Collectively, this review advances the notion of geometric tuning as an important lever, alongside electronic and steric tuning, in controlling bonding and reactivity at p-block centres.
Collapse
Affiliation(s)
- Tyler J Hannah
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS, B3H 4R2, Canada.
| | - Saurabh S Chitnis
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
6
|
Beims N, Greven T, Schmidtmann M, van der Vlugt JI. Geometrically Deformed and Conformationally Rigid Phosphorus Trisamides Featuring an Unsymmetrical Backbone. Chemistry 2023; 29:e202302463. [PMID: 37873907 DOI: 10.1002/chem.202302463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/13/2023] [Indexed: 10/25/2023]
Abstract
Nonclassical P(III) centers have attracted much attention in recent years. Incorporating a P(III) center in a rigid bicyclic platform offers a particularly attractive way to invoke significant geometric distortion of the phosphorus atom that may in turn induce unusual reactivity. Although still relatively scarcely explored, phosphorus centers enforced in a non-C3 symmetry have gained significant traction lately. However, the current scaffolds are based on a relatively limited set of design principles and ligand platforms associated therewith. This work is focussed on the synthesis as well as versatile oxidation, addition and coordination chemistry of a geometrically distorted P(III) species featuring a synthetically modular, nonsymmetric trisamine platform derived from 2-(methylamino)-N-(2-(methylamino)phenyl)benzenesulfonamide.
Collapse
Affiliation(s)
- Niklas Beims
- Bioinspired Coordination Chemistry and Homogeneous Catalysis Group, Institute of Chemistry, School of Mathematics and Sciences, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| | - Tobias Greven
- Bioinspired Coordination Chemistry and Homogeneous Catalysis Group, Institute of Chemistry, School of Mathematics and Sciences, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| | - Marc Schmidtmann
- Bioinspired Coordination Chemistry and Homogeneous Catalysis Group, Institute of Chemistry, School of Mathematics and Sciences, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| | - Jarl Ivar van der Vlugt
- Bioinspired Coordination Chemistry and Homogeneous Catalysis Group, Institute of Chemistry, School of Mathematics and Sciences, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| |
Collapse
|
7
|
Roth D, Radosevich AT, Greb L. Reversible Oxidative Addition of Nonactivated C-H Bonds to Structurally Constrained Phosphenium Ions. J Am Chem Soc 2023; 145:24184-24190. [PMID: 37877607 PMCID: PMC10842376 DOI: 10.1021/jacs.3c08456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
A series of structurally constrained phosphenium ions based on pyridinylmethylamidophenolate scaffolds are shown to undergo P(III)/P(V) oxidative addition with C-H bonds of alkynes, alkenes, and arenes. Nonactivated substrates such as benzene, toluene, and deactivated chlorobenzene are phosphorylated in quantitative yields. Computational and spectroscopic studies suggest a low-barrier isomerization from a bent to a T-shaped isomer that initiates a phosphorus-ligand-cooperative pathway and subsequent ring-chain tautomerism. Remarkably, C-H bond activations occur reversibly, allowing for reductive elimination back to P(III) at elevated temperatures or the exchange with other substrates.
Collapse
Affiliation(s)
- Daniel Roth
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander T. Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg
| |
Collapse
|
8
|
King AJ, Abbenseth J, Goicoechea JM. Reactivity of a Strictly T-Shaped Phosphine Ligated by an Acridane Derived NNN Pincer Ligand. Chemistry 2023; 29:e202300818. [PMID: 37042718 PMCID: PMC10947599 DOI: 10.1002/chem.202300818] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/13/2023]
Abstract
The steric tuning of a tridentate acridane-derived NNN pincer ligand allows for the isolation of a strictly T-shaped phosphine that exhibits ambiphilic reactivity. Well-defined phosphorus-centered reactivity towards nucleophiles and electrophiles is reported, contrasting with prior reports on this class of compounds. Reactions towards oxidants are also described. The latter result in the two-electron oxidation of the phosphorus atom from +III to +V and are accompanied by a strong geometric distortion of the NNN pincer ligand. By contrast, cooperative activation of E-H (HCl, HBcat, HOMe) bonds proceeds with retention of the phosphorus redox state. When using H2 O as a substrate, the reaction results in the full disassembly of H2 O to its constituent atoms, highlighting the potential of this platform for small molecule activation reactions.
Collapse
Affiliation(s)
- Aaron J. King
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Josh Abbenseth
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Jose M. Goicoechea
- Department of ChemistryIndiana University800 E. Kirkland Ave.Bloomington, In47401USA
| |
Collapse
|
9
|
Hannah TJ, McCarvell WM, Kirsch T, Bedard J, Hynes T, Mayho J, Bamford KL, Vos CW, Kozak CM, George T, Masuda JD, Chitnis SS. Planar bismuth triamides: a tunable platform for main group Lewis acidity and polymerization catalysis. Chem Sci 2023; 14:4549-4563. [PMID: 37152250 PMCID: PMC10155930 DOI: 10.1039/d3sc00917c] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/14/2023] [Indexed: 05/09/2023] Open
Abstract
Geometric deformation in main group compounds can be used to elicit unique properties including strong Lewis acidity. Here we report on a family of planar bismuth(iii) complexes (cf. typically pyramidal structure for such compounds), which show a geometric Lewis acidity that can be further tuned by varying the steric and electronic features of the triamide ligand employed. The structural dynamism of the planar bismuth complexes was probed in both the solid and solution phase, revealing at least three distinct modes of intermolecular association. A modified Gutmann-Beckett method was used to assess their electrophilicity by employing trimethylphosphine sulfide in addition to triethylphosphine oxide as probes, providing insights into the preference for binding hard or soft substrates. Experimental binding studies were complemented by a computational assessment of the affinities and dissection of the latter into their intrinsic bond strength and deformation energy components. The results show comparable Lewis acidity to triarylboranes, with the added ability to bind two bases simultaneously, and reduced discrimination against soft substrates. We also study the catalytic efficacy of these complexes in the ring opening polymerization of cyclic esters ε-caprolactone and rac-lactide. The polymers obtained show excellent dispersity values and high molecular weights with low catalyst loadings used. The complexes retain their performance under industrially relevant conditions, suggesting they may be useful as less toxic alternatives to tin catalysts in the production of medical grade materials. Collectively, these results establish planar bismuth complexes as not only a novel neutral platform for main group Lewis acidity, but also a potentially valuable one for catalysis.
Collapse
Affiliation(s)
- Tyler J Hannah
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| | - W Michael McCarvell
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| | - Tamina Kirsch
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| | - Joseph Bedard
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| | - Toren Hynes
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| | - Jacqueline Mayho
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| | - Karlee L Bamford
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| | - Cyler W Vos
- Department of Chemistry, Memorial University of Newfoundland St. John's NL A1B 3X7 Canada
| | - Christopher M Kozak
- Department of Chemistry, Memorial University of Newfoundland St. John's NL A1B 3X7 Canada
| | - Tanner George
- Department of Chemistry, Saint Mary's University 923 Robie St. Halifax NS B3H 3C3 Canada
| | - Jason D Masuda
- Department of Chemistry, Saint Mary's University 923 Robie St. Halifax NS B3H 3C3 Canada
| | - S S Chitnis
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| |
Collapse
|
10
|
Tipker RM, Muldoon JA, Jo J, Connors CS, Varga BR, Hughes RP, Glueck DS. Protonation of P-Stereogenic Phosphiranes: Phospholane Formation via Ring Opening and C-H Activation. ACS OMEGA 2023; 8:12565-12572. [PMID: 37033828 PMCID: PMC10077540 DOI: 10.1021/acsomega.3c00885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Protonation of cyclopropanes and aziridines is well-studied, but reactions of phosphiranes with acids are rare and have not been reported to result in ring opening. Treatment of syn-Mes*PCH2CHR (Mes* = 2,4,6-(t-Bu)3C6H2, R = Me or Ph, syn-1-2) or anti-Mes*PCH2CHPh (anti-2) with triflic acid resulted in regiospecific anti-Markovnikov C-protonation with ring opening and cyclophosphination of a Mes* ortho-t-Bu group to yield the phospholanium cations [PH(CH2CH2R)(4,6-(t-Bu)2-2-CMe2CH2C6H2)][OTf] (R = Me or Ph, 3-4), which were deprotonated with NEt3 to give phospholanes 5-6. Enantioenriched or racemic syn-1 both gave racemic 3. The byproduct [Mes*PH(CH2CH2Me)(OH)][OTf] (7) was formed from syn-1 and HOTf in the presence of water. Density functional theory calculations suggested that P-protonation followed by ring opening and hydride migration to C yields the phosphenium ion, [Mes*P(CH2CH2Me)][OTf], which undergoes C-H oxidative addition of an o-t-Bu methyl group. This work established a new reactivity pattern for phosphiranes.
Collapse
|
11
|
Janssen M, Mebs S, Beckmann J. Kinetically Stabilized Diarylpnictogenium Ions. Chempluschem 2023; 88:e202200429. [PMID: 36670087 DOI: 10.1002/cplu.202200429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The newly prepared and fully characterized stibenium and bismuthenium ions [Rind MesE]+ (E=Sb, Bi; Rind =dispiro[fluorene-9,3'-(1',1',7',7'-tetramethyl-s-hydrindacen-4'-yl)-5',9''-fluorene) were rigorously compared to the previously communicated phosphenium and arsenium ions (E=P, As) as well as the bis(m-terphenyl) pnictogenium ions [(2,6-Mes2 C6 H3 )2 E]+ (E=Sb, Bi). It is demonstrated that the choice of the aryl substituents dramatically effects the molecular structures (e. g. the primary E-C bond lengths) and the electronic structures (e. g. the energy of the LUMOs).
Collapse
Affiliation(s)
- Marvin Janssen
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359, Bremen, Germany
| | - Stefan Mebs
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Jens Beckmann
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359, Bremen, Germany
| |
Collapse
|
12
|
Chulsky K, Malahov I, Bawari D, Dobrovetsky R. Metallomimetic Chemistry of a Cationic, Geometrically Constrained Phosphine in the Catalytic Hydrodefluorination and Amination of Ar-F Bonds. J Am Chem Soc 2023; 145:3786-3794. [PMID: 36738474 PMCID: PMC9936586 DOI: 10.1021/jacs.2c13318] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The synthesis, isolation, and reactivity of a cationic, geometrically constrained σ3-P compound in the hexaphenyl-carbodiphosphoranyl-based pincer-type ligand (1+) are reported. 1+ reacts with electron-poor fluoroarenes via an oxidative addition-type reaction of the C-F bond to the PIII-center, yielding new fluorophosphorane-type species (PV). This reactivity of 1+ was used in the catalytic hydrodefluorination of Ar-F bonds with PhSiH3, and in a catalytic C-N bond-forming cross-coupling reactions between fluoroarenes and aminosilanes. Importantly, 1+ in these catalytic reactions closely mimics the mode of action of the transition metal-based catalysts.
Collapse
|
13
|
Volodarsky S, Bawari D, Dobrovetsky R. Dual Reactivity of a Geometrically Constrained Phosphenium Cation. Angew Chem Int Ed Engl 2022; 61:e202208401. [PMID: 35830679 PMCID: PMC9541694 DOI: 10.1002/anie.202208401] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 01/08/2023]
Abstract
A geometrically constrained phosphenium cation in bis(pyrrolyl)pyridine based NNN pincer type ligand (1+ ) was synthesized, isolated and its preliminary reactivity was studied with small molecules. 1+ reacts with MeOH and Et2 NH, activating the O-H and N-H bonds via a P-center/ligand assisted path. The reaction of 1+ with one equiv. of H3 NBH3 leads to its dehydrogenation producing 5. Interestingly, reaction of 1+ with an excess H3 NBH3 leads to phosphinidene (PI ) species coordinating to two BH3 molecules (6). In contrast, [1+ ][OTf] reacts with Et3 SiH by hydride abstraction yielding 1-H and Et3 SiOTf, while [1+ ][B(C6 F5 )4 ] reacts with Et3 SiH via an oxidative addition type reaction of Si-H bond to P-center, affording a new PV compound (8). However, 8 is not stable over time and degrades to a complex mixture of compounds in matter of minutes. Despite this, the ability of [1+ ][B(C6 F5 )4 ] to activate Si-H bond could still be tested in catalytic hydrosilylation of benzaldehyde, where 1+ closely mimics transition metal behaviour.
Collapse
Affiliation(s)
- Solomon Volodarsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv University DepartmentTel Aviv69978Israel
| | - Deependra Bawari
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv University DepartmentTel Aviv69978Israel
| | - Roman Dobrovetsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv University DepartmentTel Aviv69978Israel
| |
Collapse
|
14
|
Hynes T, Masuda JD, Chitnis SS. Mesomeric Tuning at Planar Bi centres: Unexpected Dimerization and Benzyl C‐H Activation in [CN2]Bi Complexes. Chempluschem 2022; 87:e202200244. [DOI: 10.1002/cplu.202200244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Saurabh S. Chitnis
- Dalhousie University Department of Chemistry Chemistry Building, 6274 Coburg Road B3H 4R2 Halifax CANADA
| |
Collapse
|
15
|
Wang Y, Tran PM, Lahm ME, Xie Y, Wei P, Adams ER, Glushka JN, Ren Z, Popik VV, Schaefer HF, Robinson GH. Activation of Ammonia by a Carbene-Stabilized Dithiolene Zwitterion. J Am Chem Soc 2022; 144:16325-16331. [PMID: 36037279 DOI: 10.1021/jacs.2c07920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A carbene-stabilized dithiolene zwitterion (3) activates ammonia, affording 4• and 5, through both single-electron transfer (SET) and hydrogen atom transfer (HAT). Reaction products were characterized spectroscopically and by single-crystal X-ray diffraction. The mechanism of the formation of 4• and 5 was probed by experimental and computational methods. This discovery is the first example of metal-free ammonia activation via HAT.
Collapse
Affiliation(s)
- Yuzhong Wang
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Phuong M Tran
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Mitchell E Lahm
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Yaoming Xie
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Pingrong Wei
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Earle R Adams
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - John N Glushka
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Zichun Ren
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Vladimir V Popik
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Henry F Schaefer
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Gregory H Robinson
- Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556, United States
| |
Collapse
|
16
|
Dankert F, Siewert J, Gupta P, Weigend F, Hering‐Junghans C. Metal-Free N-H Bond Activation by Phospha-Wittig Reagents. Angew Chem Int Ed Engl 2022; 61:e202207064. [PMID: 35594171 PMCID: PMC9400956 DOI: 10.1002/anie.202207064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 01/07/2023]
Abstract
N-containing molecules are mostly derived from ammonia (NH3 ). Ammonia activation has been demonstrated for single transition metal centers as well as for low-valent main group species. Phosphinidenes, mono-valent phosphorus species, can be stabilized by phosphines, giving so-called phosphanylidenephosphoranes of the type RP(PR'3 ). We demonstrate the facile, metal-free NH3 activation using ArP(PMe3 ), affording for the first time isolable secondary aminophosphines ArP(H)NH2 . DFT studies reveal that two molecules of NH3 act in concert to facilitate an NH3 for PMe3 exchange. Furthermore, H2 NR and HNR2 activation is demonstrated.
Collapse
Affiliation(s)
- Fabian Dankert
- Leibniz-Institut für Katalyse e.V. (LIKAT)Albert-Einstein-Straße 3a18059RostockGermany
| | - Jan‐Erik Siewert
- Leibniz-Institut für Katalyse e.V. (LIKAT)Albert-Einstein-Straße 3a18059RostockGermany
| | - Priyanka Gupta
- Leibniz-Institut für Katalyse e.V. (LIKAT)Albert-Einstein-Straße 3a18059RostockGermany
| | - Florian Weigend
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein Straße 435032MarburgGermany
| | | |
Collapse
|
17
|
Volodarsky S, Bawari D, Dobrovetsky R. Dual Reactivity of a Geometrically Constrained Phosphenium Cation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Roman Dobrovetsky
- Tel Aviv University School of Chemistry Tel Aviv University, Shenkar Chemistry building, room 105 69978 Tel Aviv ISRAEL
| |
Collapse
|
18
|
Volodarsky S, Malahov I, Bawari D, Diab M, Malik N, Tumanskii B, Dobrovetsky R. Geometrically constrained square pyramidal phosphoranide. Chem Sci 2022; 13:5957-5963. [PMID: 35685804 PMCID: PMC9132080 DOI: 10.1039/d2sc01060g] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/27/2022] [Indexed: 02/03/2023] Open
Abstract
Geometrical constriction of main group elements leading to a change in the reactivity of these main group centers has recently become an important tool in main group chemistry. A lot of focus on using this modern method is dedicated to group 15 elements and especially to phosphorus. In this work, we present the synthesis, isolation and preliminary reactivity study of the geometrically constrained, square pyramidal (SP) phosphoranide anion (1-). Unlike, trigonal bipyramidal (TBP) phosphoranides that were shown to react as nucleophiles while their redox chemistry was not reported, 1- reacts both as a nucleophile and reductant. The chemical oxidation of 1- leads to a P-P dimer (1-1) that is formed via the dimerization of unstable SP phosphoranyl radical (1˙), an unprecedented decay pathway for phosphoranyl radicals. Reaction of 1- with benzophenone leads via a single electron transfer (SET) to 1-OK and corresponding tetraphenyl epoxide (4).
Collapse
Affiliation(s)
- Solomon Volodarsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University Department Tel Aviv 69978 Israel
| | - Irina Malahov
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University Department Tel Aviv 69978 Israel
| | - Deependra Bawari
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University Department Tel Aviv 69978 Israel
| | - Mohand Diab
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University Department Tel Aviv 69978 Israel
| | - Naveen Malik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Boris Tumanskii
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University Department Tel Aviv 69978 Israel
| | - Roman Dobrovetsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University Department Tel Aviv 69978 Israel
| |
Collapse
|
19
|
Sigmund LM, Ehlert C, Gryn'ova G, Greb L. Stereoinversion of tetrahedral p-block element hydrides. J Chem Phys 2022; 156:194113. [PMID: 35597652 DOI: 10.1063/5.0090267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The potential energy surfaces of 15 tetrahedral p-block element hydrides were screened on the multireference level. It was addressed whether stereoinversion competes against other reactions, such as reductive H2-elimination or hydride loss, and if so, along which pathway the stereomutation occurs. Importantly, stereoinversion transition structures for the ammonium cation (C4v) and the tetrahydridoborate anion (Cs) were identified for the first time. Revisiting methane's Cs symmetric inversion transition structure with the mHEAT+ protocol revealed an activation enthalpy for stereoinversion, in contrast to all earlier studies, which is 5 kJ mol-1 below the C-H bond dissociation enthalpy. Square planar structures were identified lowest in energy only for the inversion of AlH4 -, but a novel stepwise Cs-inversion was discovered for SiH4 or PH4 +. Overall, the present contribution delineates essentials of the potential energy surfaces of p-block element hydrides, while structure-energy relations offer design principles for the synthetically emerging field of structurally constrained compounds.
Collapse
Affiliation(s)
- Lukas M Sigmund
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Christopher Ehlert
- Heidelberg Institute for Theoretical Studies (HITS gGmbH), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany and Interdisciplinary Center for Scientific Computing (IWR), Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Ganna Gryn'ova
- Heidelberg Institute for Theoretical Studies (HITS gGmbH), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany and Interdisciplinary Center for Scientific Computing (IWR), Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Lutz Greb
- Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195 Berlin, Germany
| |
Collapse
|
20
|
Dankert F, Siewert JE, Gupta P, Weigend F, Hering-Junghans C. Metal‐free N‐H Bond Activation by Phospha‐Wittig Reagents. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fabian Dankert
- Leibniz-Institut fur Katalyse eV Catalysis with Bioresources GERMANY
| | - Jan-Erik Siewert
- Leibniz-Institut fur Katalyse eV Catalysis with Bioresources GERMANY
| | - Priyanka Gupta
- Leibniz-Institut fur Katalyse eV Modern Concepts in Molecular Catalysis GERMANY
| | - Florian Weigend
- Philipps-Universitat Marburg Fachbereich Chemie Fachbereich Chemie GERMANY
| | - Christian Hering-Junghans
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV Catalysis with Bioresources Albert-Einstein-Straße 29a 18059 Rostock GERMANY
| |
Collapse
|
21
|
Bawari D, Volodarsky S, Ginzburg Y, Jaiswal K, Joshi P, Dobrovetsky R. Intramolecular C–N bond activation by a geometrically constrained P III-centre. Chem Commun (Camb) 2022; 58:12176-12179. [DOI: 10.1039/d2cc04359a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
First examples of the insertion of a geometrically constrained PIII ambiphilic center into C–N bonds.
Collapse
Affiliation(s)
- Deependra Bawari
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Solomon Volodarsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yael Ginzburg
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Kuldeep Jaiswal
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Pooja Joshi
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roman Dobrovetsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
22
|
Bawari D, Volodarsky S, Ginzburg Y, Jaiswal K, Joshi P, Dobrovetsky R. Phosphorus mediated imidazolinium to oxazolium ring rearrangement. Dalton Trans 2021; 50:16478-16482. [PMID: 34730572 DOI: 10.1039/d1dt03363h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An unexpected rearrangement occurred when an imidazolinium based OCO pincer-type ligand (1) reacted with PCl3 producing a chlorophosphine with a pendant oxazolium "arm" (3). The mechanism of this rearrangement was studied both experimentally and by density functional theory (DFT) computations. The deprotonation of 3 led to further unexpected results.
Collapse
Affiliation(s)
- Deependra Bawari
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Solomon Volodarsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Yael Ginzburg
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Kuldeep Jaiswal
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Pooja Joshi
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Roman Dobrovetsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
23
|
Abbenseth J, Townrow OPE, Goicoechea JM. Thermoneutral N−H Bond Activation of Ammonia by a Geometrically Constrained Phosphine. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Josh Abbenseth
- Department of Chemistry University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Oliver P. E. Townrow
- Department of Chemistry University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Jose M. Goicoechea
- Department of Chemistry University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| |
Collapse
|
24
|
Abbenseth J, Townrow OPE, Goicoechea JM. Thermoneutral N-H Bond Activation of Ammonia by a Geometrically Constrained Phosphine. Angew Chem Int Ed Engl 2021; 60:23625-23629. [PMID: 34478227 PMCID: PMC8596738 DOI: 10.1002/anie.202111017] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 01/07/2023]
Abstract
A geometrically constrained phosphine bearing a tridentate NNS pincer ligand is reported. The effect of the geometric constraint on the electronic structure was probed by theoretical calculations and derivatization reactions. Reactions with N-H bonds result in formation of cooperative addition products. The thermochemistry of these transformations is strongly dependent on the substrate, with ammonia activation being thermoneutral. This represents the first example of a molecular compound that reversibly activates ammonia via N-H bond scission in solution upon mild heating.
Collapse
Affiliation(s)
- Josh Abbenseth
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOX1 3TAOxfordUK
| | | | - Jose M. Goicoechea
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOX1 3TAOxfordUK
| |
Collapse
|
25
|
Zhang T, Lee VY, Morisako S, Aoyagi S, Sasamori T. Ferrocene‐Based Phosphenium Ion with Intramolecular Phosphine Coordination. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tianqing Zhang
- Graduate School of Science Nagoya City University Nagoya Aichi 467-8501 Japan
| | - Vladimir Ya. Lee
- Division of Chemistry Faculty of Pure and Applied Sciences University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Shogo Morisako
- Division of Chemistry Faculty of Pure and Applied Sciences University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
- Tsukuba Research Center for Energy Materials Sciences (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Shinobu Aoyagi
- Graduate School of Science Nagoya City University Nagoya Aichi 467-8501 Japan
| | - Takahiro Sasamori
- Division of Chemistry Faculty of Pure and Applied Sciences University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
- Tsukuba Research Center for Energy Materials Sciences (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| |
Collapse
|
26
|
Feld J, Wilson DWN, Goicoechea JM. Contrasting E-H Bond Activation Pathways of a Phosphanyl-Phosphagallene. Angew Chem Int Ed Engl 2021; 60:22057-22061. [PMID: 34383991 PMCID: PMC8518045 DOI: 10.1002/anie.202109334] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 11/16/2022]
Abstract
The reactivity of the phosphanyl-phosphagallene, [H2 C{N(Dipp)}]2 PP=Ga(Nacnac) (Nacnac=HC[C(Me)N(Dipp)]2 ; Dipp=2,6-i Pr2 C6 H3 ) towards a series of reagents possessing E-H bonds (primary amines, ammonia, water, phenylacetylene, phenylphosphine, and phenylsilane) is reported. Two contrasting reaction pathways are observed, determined by the polarity of the E-H bonds of the substrates. In the case of protic reagents (δ- E-Hδ+ ), a frustrated Lewis pair type of mechanism is operational at room temperature, in which the gallium metal centre acts as a Lewis acid and the pendant phosphanyl moiety deprotonates the substrates. Interestingly, at elevated temperatures both NH2 i Pr and ammonia can react via a second, higher energy, pathway resulting in the hydroamination of the Ga=P bond. By contrast, with hydridic reagents (δ+ E-Hδ- ), such as phenylsilane, hydroelementation of the Ga=P bond is exclusively observed, in line with the polarisation of the Si-H and Ga=P bonds.
Collapse
Affiliation(s)
- Joey Feld
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield Rd.OxfordOX1 3TAUK
| | - Daniel W. N. Wilson
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield Rd.OxfordOX1 3TAUK
| | - Jose M. Goicoechea
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield Rd.OxfordOX1 3TAUK
| |
Collapse
|
27
|
Feld J, Wilson DWN, Goicoechea JM. Contrasting E−H Bond Activation Pathways of a Phosphanyl‐Phosphagallene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Joey Feld
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Rd. Oxford OX1 3TA UK
| | - Daniel W. N. Wilson
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Rd. Oxford OX1 3TA UK
| | - Jose M. Goicoechea
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Rd. Oxford OX1 3TA UK
| |
Collapse
|
28
|
Ebner F, Greb L. An isolable, crystalline complex of square-planar silicon(IV). Chem 2021; 7:2151-2159. [PMID: 34435162 PMCID: PMC8367297 DOI: 10.1016/j.chempr.2021.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022]
Abstract
The structure and reactivity of silicon(IV), the second most abundant element in our Earth's crust, is determined by its invariant tetrahedral coordination geometry. Silicon(IV) with a square-planar configuration (ptSi IV ) represents a transition state. Quantum theory supported the feasibility of stabilizing ptSi IV by structural constraint, but its isolation has not been achieved yet. Here, we present the synthesis and full characterization of the first square-planar coordinated silicon(IV). The planarity provokes an extremely low-lying unoccupied molecular orbital that induces unusual silicon redox chemistry and CH-agostic interactions. The small separation of the frontier molecular orbitals enables visible-light ligand-element charge transfer and bond-activation reactivity. Previously, such characteristics have been reserved for d-block metals or low-valent p-block elements. Planarization transfers them, for the first time, to a p-block element in the normal valence state.
Collapse
Affiliation(s)
- Fabian Ebner
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 275, 69120 Heidelberg, Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 275, 69120 Heidelberg, Germany
| |
Collapse
|
29
|
Wang P, Zhu Q, Wang Y, Zeng G, Zhu J, Zhu C. Carbon-halogen bond activation by a structurally constrained phosphorus(III) platform. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Ebner F, Mainik P, Greb L. Calix[4]pyrrolato Aluminates: The Effect of Ligand Modification on the Reactivity of Square-Planar Aluminum Anions. Chemistry 2021; 27:5120-5124. [PMID: 33481319 PMCID: PMC8048585 DOI: 10.1002/chem.202005493] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 01/09/2023]
Abstract
Structural constraint represents an attractive tool to modify p-block element properties without the need for unusual oxidation or valence states. The recently reported methyl-calix[4]pyrrolato aluminate established the effect of forcing a tetrahedral aluminum anion into a square-planar coordination mode. However, the generality of this structural motif and any consequence of ligand modification remained open. Herein, a systematic ligand screening was launched, and the class of square-planar aluminum anions was extended by two derivatives that differ in the meso-substitution at the calix[4]pyrrolato ligand. Strikingly, this modification provoked opposing trends in the preference for a Lewis acidic binding mode with σ-donors versus the aluminum-ligand cooperative binding mode with carbonyls. Insights into the origin of these counterintuitive experimental observations were provided by computation and bond analysis. Importantly, this rationale might allow to exploit mode-selective binding for catalytic rate control.
Collapse
Affiliation(s)
- Fabian Ebner
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Philipp Mainik
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lutz Greb
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
31
|
Hwang SJ, Tanushi A, Radosevich AT. Enthalpy-Controlled Insertion of a "Nonspectator" Tricoordinate Phosphorus Ligand into Group 10 Transition Metal-Carbon Bonds. J Am Chem Soc 2020; 142:21285-21291. [PMID: 33306370 PMCID: PMC7806272 DOI: 10.1021/jacs.0c11161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Insertion of a tricoordinate phosphorus ligand into late metal-carbon bonds is reported. Metalation of a P^P-chelating ligand (L1), composed of a nontrigonal phosphorous (i.e., P(III)) triamide moiety, P(N(o-N(Ar)C6H4)2, tethered by a phenylene linker to a -PiPr2 anchor, with group 10 complexes L2M(Me)Cl (M = Ni, Pd) results in insertion of the nontrigonal phosphorus site into the metal-methyl bond. The stable methylmetallophosphorane compounds thus formed are characterized spectroscopically and crystallographically. Metalation of L1 with (cod)PtII(Me)(Cl) does not lead to a metallophosphorane but rather to the standard bisphosphine chelate (κ2-L1)Pt(Me)(Cl). These divergent reactivities within group 10 are rationalized by reference to periodic variation in M-C bond enthalpies.
Collapse
Affiliation(s)
- Seung Jun Hwang
- Department of Chemistry, POSTECH, Pohang 37673, Republic of Korea
| | - Akira Tanushi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
32
|
Kindervater MB, Hynes T, Marczenko KM, Chitnis SS. Squeezing Bi: PNP and P 2N 3 pincer complexes of bismuth. Dalton Trans 2020; 49:16072-16076. [PMID: 32469352 DOI: 10.1039/d0dt01413c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first application of a rigid P2N3 pincer ligand in p-block chemistry by preparing its bismuth complex. We also report the first example of bismuth complexes featuring a flexible PNP pincer ligand, which shows phase-dependent structural dynamics. Highly electrophilic, albeit thermally unstable, Bi(iii) complexes of the PNP ligand were also prepared.
Collapse
Affiliation(s)
- Marcus B Kindervater
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada.
| | | | | | | |
Collapse
|
33
|
Zhu Q, Wang P, Zhu J, Zhu C, Zeng G. Chemoselectivity for B-O and B-H Bond Cleavage by Pincer-Type Phosphorus Compounds: Theoretical and Experimental Studies. Inorg Chem 2020; 59:15636-15645. [PMID: 33078928 DOI: 10.1021/acs.inorgchem.0c01920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Selective cleavage of the B-O bond or B-H bond in HBpin can be achieved by adjusting the pincer ligand of a phosphorus(III) compound guided by a combination of theoretical prediction and experimental verification. Theoretical calculations reveal that a pincer-type phosphorus compound with an [ONO]3- ligand reacts with HBpin, leading to cleavage of the stronger B-O bonds (ΔG°⧧ = 23.2 kcal mol-1) rather than the weaker B-H bond (ΔG°⧧ = 26.4 kcal mol-1). A pincer-type phosphorus compound with a [NNN]3- ligand reacts with HBpin, leading to the weaker B-H bond cleavage (ΔG°⧧ = 16.2 kcal mol-1) rather than cleavage of the stronger B-O bond (ΔG°⧧ = 33.0 kcal mol-1). The theoretical prediction for B-O bond cleavage was verified experimentally, and the final products were characterized by NMR, HRMS, and single-crystal X-ray diffraction. The chemoselectivity of B-O bond cleavage was also observed in the presence of B-C or B-B bonds in borane substrates.
Collapse
Affiliation(s)
- Qin Zhu
- Kuang Yaming Honors School, Institute for Brain Sciences, Nanjing University, Nanjing 210093, People's Republic of China.,State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Penglong Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Guixiang Zeng
- Kuang Yaming Honors School, Institute for Brain Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
34
|
Kundu S. Pincer-Type Ligand-Assisted Catalysis and Small-Molecule Activation by non-VSEPR Main-Group Compounds. Chem Asian J 2020; 15:3209-3224. [PMID: 32794320 DOI: 10.1002/asia.202000800] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/11/2020] [Indexed: 12/21/2022]
Abstract
In 2005, a facile dihydrogen activation was reported by the Power group using an alkyne analog of germanium [ArGe≡GeAr; Ar=2,6-Trip2 -C6 H3 (Trip=2,4,6-i Pr3 -C6 H2 )]. After that, a significant progress has been made in the activation of various small molecules by main-group compounds, and a variety of stoichiometric and catalytic processes have been formulated using the p-block elements. In this regard, compounds containing low-valent main-group elements with a frontier orbitals of relatively small energy gaps or compounds forming frustrated Lewis pair (FLP) became quite successful. In spite of these promising stoichiometric and catalytic transformations, redox-cycling catalysts based on main-group elements remain extremely rare. Recently, it has been observed that pincer type ligands supported geometry constrained main-group compounds are capable of acting as redox catalysts similar to those of the transition metals. In this review, we focus on the synthesis and the structural aspects of the geometry constrained main-group compounds using pincer ligands. Emphasis has been placed on their applications on catalytic activity and small molecules activation.
Collapse
Affiliation(s)
- Subrata Kundu
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
35
|
Sigmund LM, Greb L. Reversible OH-bond activation and amphoterism by metal-ligand cooperativity of calix[4]pyrrolato aluminate. Chem Sci 2020; 11:9611-9616. [PMID: 34094227 PMCID: PMC8161688 DOI: 10.1039/d0sc03602a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most p-block metal amides irreversibly react with metal alkoxides when subjected to alcohols, making reversible transformations with OH-substrates a challenging task. Herein, we describe how the combination of a Lewis acidic square-planar-coordinated aluminum(iii) center with metal–ligand cooperativity leverages unconventional reactivity toward protic substrates. Calix[4]pyrrolato aluminate performs OH-bond activation of primary, secondary, and tertiary aliphatic and aromatic alcohols, which can be fully reversed under reduced pressure. The products exhibit a new form of metal–ligand cooperative amphoterism and undergo counterintuitive substitution reactions of a polar covalent Al–O bond by a dative Al–N bond. A comprehensive mechanistic picture of all processes is buttressed by isolation of intermediates, spectroscopy, and computation. This study delineates how structural constraints can invert thermodynamics for seemingly simple addition reactions and invert common trends in bond energies. The combination of structural constraint and metal–ligand cooperativity in calix[4]pyrrolato aluminate inverts common trends of bond energies and enables reversible OH-bond activation.![]()
Collapse
Affiliation(s)
- Lukas M Sigmund
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut Im Neuenheimer Feld 275 69126 Heidelberg Germany
| | - Lutz Greb
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut Im Neuenheimer Feld 275 69126 Heidelberg Germany
| |
Collapse
|
36
|
Abbenseth J, Goicoechea JM. Recent developments in the chemistry of non-trigonal pnictogen pincer compounds: from bonding to catalysis. Chem Sci 2020; 11:9728-9740. [PMID: 34094237 PMCID: PMC8162179 DOI: 10.1039/d0sc03819a] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023] Open
Abstract
The combination of well-established meridionally coordinating, tridentate pincer ligands with group 15 elements affords geometrically constrained non-trigonal pnictogen pincer compounds. These species show remarkable activity in challenging element-hydrogen bond scission reactions, such as the activation of ammonia. The electronic structures of these compounds and the implications they have on their electrochemical properties and transition metal coordination are described. Furthermore, stoichiometric and catalytic bond forming reactions involving B-H, N-H and O-H bonds as well as carbon nucleophiles are presented.
Collapse
Affiliation(s)
- Josh Abbenseth
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Jose M Goicoechea
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
37
|
Marczenko KM, Jee S, Chitnis SS. High Lewis Acidity at Planar, Trivalent, and Neutral Bismuth Centers. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00378] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katherine M. Marczenko
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Samantha Jee
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Saurabh S. Chitnis
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
38
|
Marczenko KM, Zurakowski JA, Kindervater MB, Jee S, Hynes T, Roberts N, Park S, Werner‐Zwanziger U, Lumsden M, Langelaan DN, Chitnis SS. Periodicity in Structure, Bonding, and Reactivity for p‐Block Complexes of a Geometry Constraining Triamide Ligand. Chemistry 2019; 25:16414-16424. [DOI: 10.1002/chem.201904361] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Indexed: 11/06/2022]
Affiliation(s)
| | - Joseph A. Zurakowski
- Department of ChemistryDalhousie University 6274 Coburg Road Halifax Nova Scotia Canada
| | - Marcus B. Kindervater
- Department of ChemistryDalhousie University 6274 Coburg Road Halifax Nova Scotia Canada
| | - Samantha Jee
- Department of ChemistryDalhousie University 6274 Coburg Road Halifax Nova Scotia Canada
| | - Toren Hynes
- Department of ChemistryDalhousie University 6274 Coburg Road Halifax Nova Scotia Canada
| | - Nicholas Roberts
- Department of ChemistryDalhousie University 6274 Coburg Road Halifax Nova Scotia Canada
| | - Seoyeon Park
- Department of ChemistryDalhousie University 6274 Coburg Road Halifax Nova Scotia Canada
| | | | - Michael Lumsden
- Department of ChemistryDalhousie University 6274 Coburg Road Halifax Nova Scotia Canada
| | - David N. Langelaan
- Department of ChemistryDalhousie University 6274 Coburg Road Halifax Nova Scotia Canada
| | - Saurabh S. Chitnis
- Department of ChemistryDalhousie University 6274 Coburg Road Halifax Nova Scotia Canada
| |
Collapse
|
39
|
Olaru M, Duvinage D, Lork E, Mebs S, Beckmann J. Transient Phosphenium and Arsenium Ions versus Stable Stibenium and Bismuthenium Ions. Chemistry 2019; 25:14758-14761. [PMID: 31404472 PMCID: PMC6900177 DOI: 10.1002/chem.201902520] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Indexed: 11/19/2022]
Abstract
Fluoride abstraction from bis-m-terphenylelement fluorides (2,6-Mes2 C6 H3 )2 EF (E=P, As) generated the highly reactive phosphenium ion [(2,6-Mes2 C6 H3 )2 P]+ and the arsenium ion [(2,6-Mes2 C6 H3 )2 As]+ , which immediately underwent intramolecular electrophilic substitution and formation of an 1,2,4-trimethyl-6-mesityl-5-m-terphenyl-benzo[b]phospholium ion and an 1,2,4-trimethyl-6-mesityl-5-m-terphenyl-benzo[b]arsolium ion, respectively. The formation of the latter involved a methyl group migration from the ortho-position of a flanking mesityl group to the meta-position. This reactivity of [(2,6-Mes2 C6 H3 )2 E]+ (E=P, As) is in sharp contrast to the related stibenium ion [(2,6-Mes2 C6 H3 )2 Sb]+ and bismuthenium ion [(2,6-Mes2 C6 H3 )2 Bi]+ , which have been recently isolated and fully characterized (Angew. Chem. Int. Ed. 2018, 57, 10080-10084). On the basis of DFT calculations, a mechanism for the rearrangement of the phosphenium and arsenium ions into the phospholium and arsolium ions is proposed, which is not feasible for the stibenium and bismuthenium ions.
Collapse
Affiliation(s)
- Marian Olaru
- Institut für Anorganische Chemie und KristallographieUniversität BremenLeobener Straße 728359BremenGermany
| | - Daniel Duvinage
- Institut für Anorganische Chemie und KristallographieUniversität BremenLeobener Straße 728359BremenGermany
| | - Enno Lork
- Institut für Anorganische Chemie und KristallographieUniversität BremenLeobener Straße 728359BremenGermany
| | - Stefan Mebs
- Institut für ExperimentalphysikFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Jens Beckmann
- Institut für Anorganische Chemie und KristallographieUniversität BremenLeobener Straße 728359BremenGermany
| |
Collapse
|
40
|
Ebner F, Greb L. Calix[4]pyrrole Hydridosilicate: The Elusive Planar Tetracoordinate Silicon Imparts Striking Stability to Its Anionic Silicon Hydride. J Am Chem Soc 2018; 140:17409-17412. [DOI: 10.1021/jacs.8b11137] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Fabian Ebner
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 275, 69120 Heidelberg, Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 275, 69120 Heidelberg, Germany
| |
Collapse
|