1
|
Parlier ÉMS, Al Amir K, Métro TX, Granjon P, Laurencin D, Leroy C. Listening to the Formation of Polymorphs in a Ball Mill. Anal Chem 2025. [PMID: 39869023 DOI: 10.1021/acs.analchem.4c05608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
In this contribution, we apply our newly developed ball-milling operando platform, which combines Raman spectroscopy and thermal (IR) imaging, as well as acoustic and high-speed optical video recordings, to the synthesis and transformation of citric acid-isonicotinamide (1:2) cocrystal polymorphs in transparent PMMA jars. Particularly, we demonstrate how Raman, temperature, acoustic, and video data are complementary and enable detection and connection of chemical and physical events happening during ball-milling in a time-resolved manner. Importantly, we show that the formation of the three cocrystal polymorphs can be detected through acoustic analyses solely. Even more impressively, the meticulous analyses of the sound data allowed subtle polymorphic transitions to be perceived in operando mode when the Raman spectroscopy was not conclusive enough. Such changes in sound signatures are greatly linked to the beads' motions in the milling jar. A new data analysis methodology of acoustic recordings is proposed through a combination of energetic and statistical approaches that simplifies the data analyses for potential users. The interpretation of the detected sound signals was further validated thanks to the high-speed videos recorded in synchronization with all other operando techniques. Finally, we broaden this acoustic methodology to opaque stainless-steel jars, showing the relevance of the acoustic analysis method for following polymorphic transformations of cocrystals, as well as pure substances, in any type of milling jar.
Collapse
Affiliation(s)
| | - Kinann Al Amir
- GIPSA-Lab, Univ. Grenoble Alpes, CNRS, Grenoble INP, 38000 Grenoble, France
| | | | - Pierre Granjon
- GIPSA-Lab, Univ. Grenoble Alpes, CNRS, Grenoble INP, 38000 Grenoble, France
| | | | - César Leroy
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| |
Collapse
|
2
|
Gieling J, Wéry G, Lopes C, de Meester J, Brandel C, Cartigny Y, Leyssens T, Baier DM. Mechanochemical Deracemization: A Sustainable Approach to Enantiopurity. Chemistry 2025:e202404120. [PMID: 39749642 DOI: 10.1002/chem.202404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/04/2025]
Abstract
We introduce mechanochemical deracemization (MCDR) as a novel strategy for obtaining enantiopure compounds. This study demonstrates the successful transposition of six archetypical deracemization reactions from a solvent-based to a solvent-minimized ball milling environment. The scope includes a ketone, isoindolinones, imines, an ester, and an inorganic compound, all of which deracemized successfully. Key parameters such as milling material, ball number and size, the use of a bulk material and liquid-assisted grinding (LAG) were systematically investigated, revealing their crucial role. Quantitative enantiomeric excesses (ee) were achieved, while reaction times were reduced by up to 97 % and solvent consumption by as much as 100 %. This work establishes MCDR as a versatile, sustainable pathway to enantiopure compounds. By highlighting the generalizability of this approach and its huge potential for minimizing waste, this study provides the foundation for future advancements in mechanochemical deracemization.
Collapse
Affiliation(s)
- Job Gieling
- Department of Molecular Chemistry, Materials and Catalysis, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.06, 1348, Louvain-La-Neuve, Belgium
| | - Guillaume Wéry
- Department of Molecular Chemistry, Materials and Catalysis, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.06, 1348, Louvain-La-Neuve, Belgium
| | - Chrystal Lopes
- Laboratoire SMS, UR 3233, University of Rouen Normandy, F-76000, Rouen, France
| | - Joséphine de Meester
- Department of Molecular Chemistry, Materials and Catalysis, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.06, 1348, Louvain-La-Neuve, Belgium
| | - Clément Brandel
- Laboratoire SMS, UR 3233, University of Rouen Normandy, F-76000, Rouen, France
| | - Yohann Cartigny
- Laboratoire SMS, UR 3233, University of Rouen Normandy, F-76000, Rouen, France
| | - Tom Leyssens
- Department of Molecular Chemistry, Materials and Catalysis, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.06, 1348, Louvain-La-Neuve, Belgium
| | - Daniel M Baier
- Department of Molecular Chemistry, Materials and Catalysis, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.06, 1348, Louvain-La-Neuve, Belgium
| |
Collapse
|
3
|
Kadri L, Casali L, Emmerling F, Tajber L. Mechanochemical comparison of ball milling processes for levofloxacin amorphous polymeric systems. Int J Pharm 2024; 665:124652. [PMID: 39214432 DOI: 10.1016/j.ijpharm.2024.124652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to investigate the amorphization capabilities of levofloxacin hemihydrate (LVXh), a fluoroquinolone drug, using a polymer excipient, Eudragit® L100 (EL100). Ball milling (BMing) was chosen as the manufacturing process and multiple mill types were utilized for comparison purposes. The product outcomes of each mill were analyzed in detail. The solid-state of the samples produced was comprehensively characterized by Powder X-ray Diffraction (PXRD), In-situ PXRD, Differential Scanning Calorimetry (DSC), Solid-State Fourier Transform Infrared Spectroscopy (FT-IR), and Dynamic Vapor Sorption (DVS). The crystallographic planes of LVXh were investigated by in-situ PXRD to disclose the presence or absence of weak crystallographic plane(s). The mechanism of LVXh:EL100 system formation was discovered as a two-step process, first involving amorphization of LVXh followed by an interaction with EL100, rather than as an instantaneous process. DVS studies of LVXh:EL100 samples showed different stability properties depending on the mill used and % LVXh present. Overall, a more sustainable approach for achieving full amorphization of the fluoroquinolone drug, LVXh, was accomplished, and advancements to the fast-growing world of pharmaceutical mechano- and tribo-chemistry were made.
Collapse
Affiliation(s)
- Lena Kadri
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, College Green, Dublin 2, Ireland; The Science Foundation Ireland Research Centre for Pharmaceuticals (SSPC), Ireland
| | - Lucia Casali
- Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Franziska Emmerling
- Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany; Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Lidia Tajber
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, College Green, Dublin 2, Ireland; The Science Foundation Ireland Research Centre for Pharmaceuticals (SSPC), Ireland.
| |
Collapse
|
4
|
Ogbomo E, Bhuiyan FH, Latorre CA, Martini A, Ewen JP. Effects of surface chemistry on the mechanochemical decomposition of tricresyl phosphate. Phys Chem Chem Phys 2023; 26:278-292. [PMID: 38059507 DOI: 10.1039/d3cp05320b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The growth of protective tribofilms from lubricant antiwear additives on rubbing surfaces is initiated by mechanochemically promoted dissociation reactions. These processes are not well understood at the molecular scale for many important additives, such as tricresyl phosphate (TCP). One aspect that needs further clarification is the extent to which the surface properties affect the mechanochemical decomposition. Here, we use nonequilibrium molecular dynamics (NEMD) simulations with a reactive force field (ReaxFF) to study the decomposition of TCP molecules confined and pressurised between sliding ferrous surfaces at a range of temperatures. We compare the decomposition of TCP on native iron, iron carbide, and iron oxide surfaces. We show that the decomposition rate of TCP molecules on all the surfaces increases exponentially with temperature and shear stress, implying that this is a stress-augmented thermally activated (SATA) process. The presence of base oil molecules in the NEMD simulations decreases the shear stress, which in turn reduces the rate constant for TCP decomposition. The decomposition is much faster on iron surfaces than iron carbide, and particularly iron oxide. The activation energy, activation volume, and pre-exponential factor from the Bell model are similar on iron and iron carbide surfaces, but significantly differ for iron oxide surfaces. These findings provide new insights into the mechanochemical decomposition of TCP and have important implications for the design of novel lubricant additives for use in high-temperature and high-pressure environments.
Collapse
Affiliation(s)
- Egheosa Ogbomo
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK.
- Institute of Molecular Science and Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK
- The Thomas Young Centre, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK
| | - Fakhrul H Bhuiyan
- Department of Mechanical Engineering, University of California-Merced, 5200 N. Lake Road, Merced 95343, CA, USA
| | - Carlos Ayestarán Latorre
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK.
- Institute of Molecular Science and Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK
- The Thomas Young Centre, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK
| | - Ashlie Martini
- Department of Mechanical Engineering, University of California-Merced, 5200 N. Lake Road, Merced 95343, CA, USA
| | - James P Ewen
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK.
- Institute of Molecular Science and Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK
- The Thomas Young Centre, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK
| |
Collapse
|
5
|
Félix G, Fabregue N, Leroy C, Métro TX, Chen CH, Laurencin D. Induction-heated ball-milling: a promising asset for mechanochemical reactions. Phys Chem Chem Phys 2023; 25:23435-23447. [PMID: 37655593 PMCID: PMC10499007 DOI: 10.1039/d3cp02540c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/11/2023] [Indexed: 09/02/2023]
Abstract
While ball-milling is becoming one of the common tools used by synthetic chemists, an increasing number of studies highlight that it is possible to further expand the nature and number of products which can be synthesized, by heating the reaction media during mechanochemical reactions. Hence, developing set-ups enabling heating and milling to be combined is an important target, which has been looked into in both academic and industrial laboratories. Here, we report a new approach for heating up reaction media during ball-milling reactions, using induction heating (referred to as i-BM). Our set-up is attractive not only because it enables a very fast heating of the milling medium (reaching ≈80 °C in just 15 s), and that it is directly adaptable to commercially-available milling equipment, but also because it enables heating either the walls of the milling jars or the beads themselves, depending on the choice of the materials which compose them. Importantly, the possibility to heat a milling medium "from the inside" (when using for example a PMMA jar and stainless steel beads) is a unique feature compared to previously proposed systems. Through numerical simulations, we then show that it is possible to finely tune the properties of this heating system (e.g. heating rate and maximum temperature reached), by playing with the characteristics of the milling system and/or the induction heating conditions used. Lastly, examples of applications of i-BM are given, showing how it can be used to help elucidate reaction mechanisms in ball-milling, to synthesize new molecules, and to control the physical nature of milling media.
Collapse
Affiliation(s)
- Gautier Félix
- ICGM, CNRS, Université de Montpellier, ENSCM, Montpellier, France.
| | - Nicolas Fabregue
- ICGM, CNRS, Université de Montpellier, ENSCM, Montpellier, France.
| | - César Leroy
- ICGM, CNRS, Université de Montpellier, ENSCM, Montpellier, France.
| | | | - Chia-Hsin Chen
- ICGM, CNRS, Université de Montpellier, ENSCM, Montpellier, France.
| | | |
Collapse
|
6
|
Scheurrell K, B Martins IC, Murray C, Emmerling F. Exploring the role of solvent polarity in mechanochemical Knoevenagel condensation: in situ investigation and isolation of reaction intermediates. Phys Chem Chem Phys 2023; 25:23637-23644. [PMID: 37650575 DOI: 10.1039/d3cp02883f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Mechanochemistry has proven to be a highly effective method for the synthesis of organic compounds. We studied the kinetics of the catalyst-free Knoevenagel reaction between 4-nitrobenzaldehyde and malononitrile, activated and driven by ball milling. The reaction was investigated in the absence of solvents (neat grinding) and in the presence of solvents with different polarities (liquid-assisted grinding). The reaction was monitored using time-resolved in situ Raman spectroscopy and powder X-ray diffraction (PXRD). Our results indicate a direct relationship between solvent polarity and reaction kinetics, with higher solvent polarity leading to faster product (2-(4-nitrobenzylidone)malononitrile) formation. For the first time, we were able to isolate and determine the structure of an intermediate 2-(hydroxy(4-nitrophenyl)methyl)malononitrile based on PXRD data.
Collapse
Affiliation(s)
- Kerstin Scheurrell
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany.
| | - Inês C B Martins
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany.
| | - Claire Murray
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany.
| | - Franziska Emmerling
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany.
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
7
|
Boldyreva E. Spiers Memorial Lecture: Mechanochemistry, tribochemistry, mechanical alloying - retrospect, achievements and challenges. Faraday Discuss 2023; 241:9-62. [PMID: 36519434 DOI: 10.1039/d2fd00149g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The paper presents a view on the achievements, challenges and prospects of mechanochemistry. The extensive reference list can serve as a good entry point to a plethora of mechanochemical literature.
Collapse
Affiliation(s)
- Elena Boldyreva
- Boreskov Institute of Catalysis SB RAS & Novosibirsk State University, Novosibirsk, Russian Federation.
| |
Collapse
|
8
|
Vugrin L, Carta M, Lukin S, Meštrović E, Delogu F, Halasz I. Mechanochemical reaction kinetics scales linearly with impact energy. Faraday Discuss 2023; 241:217-229. [PMID: 36149388 DOI: 10.1039/d2fd00083k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inelastic collisions of the milling media in ball milling provide energy to the reaction mixture required for chemical transformations. However, movement of the milling media also results in physical mixing of reactants, which may enable a chemical reaction too. Separating the two contributions is challenging and gaining a direct insight into the purely mechanochemically driven reactivity is accordingly hindered. Here, we have applied in situ reaction monitoring by Raman spectroscopy to a suitable, purely mechanically activated, chemical reaction and combined kinetic analysis with numerical simulations to access experimentally unattainable milling parameters. The breadth of milling conditions allows us to establish a linear relationship between the reaction rate and the energy dose received by the sample. Consequently, different kinetic profiles in time scale to the same profile when plotted against the energy dose, which increases with the ball mass, the average ball velocity and the frequency of impacts, but decreases with the hardness of the milling media due to more elastic collisions. The fundamental relationship between kinetics and energy input provides the basis for planning and optimisation of mechanochemical reactions and is essential for transferability of mechanochemical reactions across different milling platforms.
Collapse
Affiliation(s)
- Leonarda Vugrin
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia.
| | - Maria Carta
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, CSGI Cagliari research unit, via Marengo 2, 09123 Cagliari, Italy.
| | - Stipe Lukin
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia.
| | - Ernest Meštrović
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Francesco Delogu
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, CSGI Cagliari research unit, via Marengo 2, 09123 Cagliari, Italy.
| | - Ivan Halasz
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia.
| |
Collapse
|
9
|
Casti F, Mocci R, Porcheddu A. From amines to (form)amides: a simple and successful mechanochemical approach. Beilstein J Org Chem 2022; 18:1210-1216. [PMID: 36158174 PMCID: PMC9490066 DOI: 10.3762/bjoc.18.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/01/2022] [Indexed: 01/01/2023] Open
Abstract
Two easily accessible routes for preparing an array of formylated and acetylated amines under mechanochemical conditions are presented. The two methodologies exhibit complementary features as they enable the derivatization of aliphatic and aromatic amines.
Collapse
Affiliation(s)
- Federico Casti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy
| | - Rita Mocci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy
| |
Collapse
|
10
|
Michalchuk AAL, Emmerling F. Time-Resolved In Situ Monitoring of Mechanochemical Reactions. Angew Chem Int Ed Engl 2022; 61:e202117270. [PMID: 35128778 PMCID: PMC9400867 DOI: 10.1002/anie.202117270] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 12/31/2022]
Abstract
Mechanochemical transformations offer environmentally benign synthesis routes, whilst enhancing both the speed and selectivity of reactions. In this regard, mechanochemistry promises to transform the way in which chemistry is done in both academia and industry but is greatly hindered by a current lack of mechanistic understanding. The continued development and use of time-resolved in situ (TRIS) approaches to monitor mechanochemical reactions provides a new dimension to elucidate these fascinating transformations. We here discuss recent trends in method development that have pushed the boundaries of mechanochemical research. New features of mechanochemical reactions obtained by TRIS techniques are subsequently discussed, which sheds light on how different TRIS approaches have been used. Emphasis is placed on the strength of combining complementary techniques. Finally, we outline our views on the potential of TRIS methods in mechanochemical research, towards establishing a new, environmentally benign paradigm in the chemical sciences.
Collapse
Affiliation(s)
- Adam A. L. Michalchuk
- BAM Federal Institute for Materials Research and TestingRichard-Willstätter-Strasse1112489BerlinGermany
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and TestingRichard-Willstätter-Strasse1112489BerlinGermany
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| |
Collapse
|
11
|
Lukin S, Germann LS, Friščić T, Halasz I. Toward Mechanistic Understanding of Mechanochemical Reactions Using Real-Time In Situ Monitoring. Acc Chem Res 2022; 55:1262-1277. [PMID: 35446551 DOI: 10.1021/acs.accounts.2c00062] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The past two decades have witnessed a rapid emergence of interest in mechanochemistry-chemical and materials reactivity achieved or sustained by the action of mechanical force-which has led to application of mechanochemistry to almost all areas of modern chemical and materials synthesis: from organic, inorganic, and organometallic chemistry to enzymatic reactions, formation of metal-organic frameworks, hybrid perovskites, and nanoparticle-based materials. The recent success of mechanochemistry by ball milling has also raised questions about the underlying mechanisms and has led to the realization that the rational development and effective harnessing of mechanochemical reactivity for cleaner and more efficient chemical manufacturing will critically depend on establishing a mechanistic understanding of these reactions. Despite their long history, the development of such a knowledge framework for mechanochemical reactions is still incomplete. This is in part due to the, until recently, unsurmountable challenge of directly observing transformations taking place in a rapidly oscillating or rotating milling vessel, with the sample being under the continuous impact of milling media. A transformative change in mechanistic studies of milling reactions was recently introduced through the first two methodologies for real-time in situ monitoring based on synchrotron powder X-ray diffraction and Raman spectroscopy. Introduced in 2013 and 2014, the two new techniques have inspired a period of tremendous method development, resulting also in new techniques for mechanistic mechanochemical studies that are based on temperature and/or pressure monitoring, extended X-ray fine structure (EXAFS), and, latest, nuclear magnetic resonance (NMR) spectroscopy. The new technologies available for real-time monitoring have now inspired the development of experimental strategies and advanced data analysis approaches for the identification and quantification of short-lived reaction intermediates, the development of new mechanistic models, as well as the emergence of more complex monitoring methodologies based on two or three simultaneous monitoring approaches. The use of these new opportunities has, in less than a decade, enabled the first real-time observations of mechanochemical reaction kinetics and the first studies of how the presence of additives, or other means of modifying the mechanochemical reaction, influence reaction rates and pathways. These studies have revealed multistep reaction mechanisms, enabled the identification of autocatalysis, as well as identified molecules and materials that have previously not been known or have even been considered not possible to synthesize through conventional approaches. Mechanistic studies through in situ powder X-ray diffraction (PXRD) and Raman spectroscopy have highlighted the formation of supramolecular complexes (for example, cocrystals) as critical intermediates in organic and metal-organic synthesis and have also been combined with isotope labeling strategies to provide a deeper insight into mechanochemical reaction mechanisms and atomic and molecular dynamics under milling conditions. This Account provides an overview of this exciting, rapidly evolving field by presenting the development and concepts behind the new methodologies for real-time in situ monitoring of mechanochemical reactions, outlining key advances in mechanistic understanding of mechanochemistry, and presenting selected studies important for pushing forward the boundaries of measurement techniques, data analysis, and mapping of reaction mechanisms.
Collapse
Affiliation(s)
- Stipe Lukin
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Luzia S. Germann
- Department of Chemistry, McGill University, 801 Sherbrooke St. W. H3A 0B8 Montreal, Canada
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke St. W. H3A 0B8 Montreal, Canada
| | - Ivan Halasz
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Michalchuk AAL, Emmerling F. Zeitaufgelöste In‐Situ‐Untersuchungen von mechanochemischen Reaktionen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adam A. L. Michalchuk
- BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Straße 11 12489 Berlin Deutschland
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Straße 11 12489 Berlin Deutschland
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
13
|
Libanov VV, Kapustina AA, Shapkin NP. Study of the Interaction of Polyphenylsilsequioxane with Boronic Acid under Conditions of Mechanochemical Activation. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Cherif M, Zhang G, Gao Y, Sun S, Vidal F. Towards Predicting the Sequential Appearance of Zeolitic Imidazolate Frameworks Synthesized by Mechanochemistry. Molecules 2022; 27:1946. [PMID: 35335309 PMCID: PMC8954221 DOI: 10.3390/molecules27061946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/10/2022] Open
Abstract
We use computational materials methods to study the sequential appearance of zinc-based zeolitic imidazolate frameworks (ZIFs) generated in the mechanochemical conversion process. We consider nine ZIF topologies, namely RHO, ANA, QTZ, SOD, KAT, DIA, NEB, CAG and GIS, combined with the two ligands 2-methylimidazolate and 2-ethylimidazolate. Of the 18 combinations obtained, only six (three for each ligand) were actually observed during the mechanosynthesis process. Energy and porosity calculations based on density functional theory, in combination with the Ostwald rule of stages, were found to be insufficient to distinguish the experimentally observed ZIFs. We then show, using classical molecular dynamics, that only ZIFs withstanding quasi-hydrostatic pressure P ≥ 0.3 GPa without being destroyed were observed in the laboratory. This finding, along with the requirement that successive ZIFs be generated with decreasing porosity and/or energy, provides heuristic rules for predicting the sequences of mechanically generated ZIFs for the two ligands considered.
Collapse
Affiliation(s)
| | | | | | | | - François Vidal
- Centre Énergie, Matériaux, Télécommunications, Institut National de la Recherche Scientifique, 1650 Bd. Lionel-Boulet, Varennes, QC J3X 1P7, Canada; (M.C.); (G.Z.); (Y.G.); (S.S.)
| |
Collapse
|
15
|
Tóthová E, Düvel A, Witte R, Brand RA, Sarkar A, Kruk R, Senna M, Da Silva KL, Menzel D, Girman V, Hegedüs M, Baláž M, Makreski P, Kubuki S, Kaňuchová M, Valíček J, Hahn H, Šepelák V. A Unique Mechanochemical Redox Reaction Yielding Nanostructured Double Perovskite Sr 2FeMoO 6 With an Extraordinarily High Degree of Anti-Site Disorder. Front Chem 2022; 10:846910. [PMID: 35372274 PMCID: PMC8967169 DOI: 10.3389/fchem.2022.846910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Strontium ferromolybdate, Sr2FeMoO6, is an important member of the family of double perovskites with the possible technological applications in the field of spintronics and solid oxide fuel cells. Its preparation via a multi-step ceramic route or various wet chemistry-based routes is notoriously difficult. The present work demonstrates that Sr2FeMoO6 can be mechanosynthesized at ambient temperature in air directly from its precursors (SrO, α-Fe, MoO3) in the form of nanostructured powders, without the need for solvents and/or calcination under controlled oxygen fugacity. The mechanically induced evolution of the Sr2FeMoO6 phase and the far-from-equilibrium structural state of the reaction product are systematically monitored with XRD and a variety of spectroscopic techniques including Raman spectroscopy, 57Fe Mössbauer spectroscopy, and X-ray photoelectron spectroscopy. The unique extensive oxidation of iron species (Fe0 → Fe3+) with simultaneous reduction of Mo cations (Mo6+ → Mo5+), occuring during the mechanosynthesis of Sr2FeMoO6, is attributed to the mechanically triggered formation of tiny metallic iron nanoparticles in superparamagnetic state with a large reaction surface and a high oxidation affinity, whose steady presence in the reaction mixture of the milled educts initiates/promotes the swift redox reaction. High-resolution transmission electron microscopy observations reveal that the mechanosynthesized Sr2FeMoO6, even after its moderate thermal treatment at 923 K for 30 min in air, exhibits the nanostructured nature with the average particle size of 21(4) nm. At the short-range scale, the nanostructure of the as-prepared Sr2FeMoO6 is characterized by both, the strongly distorted geometry of the constituent FeO6 octahedra and the extraordinarily high degree of anti-site disorder. The degree of anti-site disorder ASD = 0.5, derived independently from the present experimental XRD, Mössbauer, and SQUID magnetization data, corresponds to the completely random distribution of Fe3+ and Mo5+ cations over the sites of octahedral coordination provided by the double perovskite structure. Moreover, the fully anti-site disordered Sr2FeMoO6 nanoparticles exhibit superparamagnetism with the blocking temperature T B = 240 K and the deteriorated effective magnetic moment μ = 0.055 μ B per formula unit.
Collapse
Affiliation(s)
- Erika Tóthová
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Institute of Geotechnics, Slovak Academy of Sciences, Košice, Slovakia
| | - André Düvel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Ralf Witte
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Richard A. Brand
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Abhishek Sarkar
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Robert Kruk
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Mamoru Senna
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Klebson Lucenildo Da Silva
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Department of Physics, State University of Maringá, Maringá, Brazil
| | - Dirk Menzel
- Institute of Condensed Matter Physics, Braunschweig University of Technology, Braunschweig, Germany
| | - Vladimír Girman
- Institute of Physics, Faculty of Science, P. J. Šafárik University, Košice, Slovakia
| | | | - Matej Baláž
- Institute of Geotechnics, Slovak Academy of Sciences, Košice, Slovakia
| | - Petre Makreski
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Shiro Kubuki
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Mária Kaňuchová
- Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University of Košice, Košice, Slovakia
| | - Jan Valíček
- Faculty of Technology, College of Technology and Business in České Budějovice, České Budějovice, Czechia
- Faculty of Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Horst Hahn
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Vladimír Šepelák
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Faculty of Technology, College of Technology and Business in České Budějovice, České Budějovice, Czechia
| |
Collapse
|
16
|
Bento O, Luttringer F, El Dine TM, Pétry N, Bantreil X, Lamaty F. Sustainable Mechanosynthesis of Biologically Active Molecules. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ophélie Bento
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | | | | | - Nicolas Pétry
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | - Xavier Bantreil
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | - Frédéric Lamaty
- IBMM: Institut des Biomolecules Max Mousseron Chemistry 1919 Rte de Mende 34293 Montpellier FRANCE
| |
Collapse
|
17
|
Hwang S, Grätz S, Borchardt L. A guide to direct mechanocatalysis. Chem Commun (Camb) 2022; 58:1661-1671. [PMID: 35023515 PMCID: PMC8812528 DOI: 10.1039/d1cc05697b] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022]
Abstract
Direct mechanocatalysis (DM) describes solvent-free catalytic reactions that are initiated by mechanical forces in mechanochemical reactors such as ball mills. The distinctive feature of DM is that the milling materials, e.g. the milling balls themselves are the catalyst of the reaction. In this article we follow the historical evolution of this novel concept and give a guide to this emerging, powerful synthesis tool. Within this perspective we seek to highlight the impact of the relevant milling parameters, the nature of the catalyst and potential additives, the scope of reactions that are currently accessible by this method, and the thus far raised hypotheses on the underlying mechanisms of direct mechanochemical transformations.
Collapse
Affiliation(s)
- Suhmi Hwang
- Professur für Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Sven Grätz
- Professur für Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Lars Borchardt
- Professur für Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| |
Collapse
|
18
|
Adassooriya NM, Mahanta SP, Thakuria R. Mechanochemistry as an Emerging Tool for Preparation of Sustained Release Urea Cocrystals as a Nitrogen Source. CrystEngComm 2022. [DOI: 10.1039/d1ce01713f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As the global community facing serious challenges such as increasing population and shrinking cultivation land that will raise an issue regarding sufficient food demand; a 70–100% expansion in global food...
Collapse
|
19
|
Losev EA, Arkhipov S, Kolybalov D, Mineev A, Ogienko AG, Boldyreva E, Boldyrev V. Substituting steel for a polymer in a jar for ball milling does matter. CrystEngComm 2022. [DOI: 10.1039/d1ce01703a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Usually, in situ diffraction studies of mechanochemical transformations use plastic milling jars in place of steel. This is done to reduce the absorbtion of radiation by the walls. Using as...
Collapse
|
20
|
Tsuzuki T. Mechanochemical synthesis of metal oxide nanoparticles. Commun Chem 2021; 4:143. [PMID: 36697599 PMCID: PMC9814100 DOI: 10.1038/s42004-021-00582-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/22/2021] [Indexed: 01/28/2023] Open
Abstract
In the last decades, mechanochemical processing has emerged as a sustainable method for the large-scale production of a variety of nanomaterials. In particular, mechanochemical synthesis can afford well-dispersed metal-oxide nanoparticles, which are used in wide-ranging applications including energy storage and conversion, environmental monitoring, or biomedical uses. This article reviews recent progress in the mechanochemical synthesis of metal-oxide nanoparticles, explores reaction mechanisms, and contrasts the influence of chosen process parameters on the properties of end products. The role of choice of reaction pathway, as well as advantages and limitations compared to other synthesis methods are discussed. A prospect for future development of this synthetic method is proposed.
Collapse
Affiliation(s)
- Takuya Tsuzuki
- grid.1001.00000 0001 2180 7477School of Engineering, Australian National University, Canberra, ACT 2601 Australia
| |
Collapse
|
21
|
Lukin S, Užarević K, Halasz I. Raman spectroscopy for real-time and in situ monitoring of mechanochemical milling reactions. Nat Protoc 2021; 16:3492-3521. [PMID: 34089023 DOI: 10.1038/s41596-021-00545-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/25/2021] [Indexed: 11/10/2022]
Abstract
Solid-state milling has emerged as an alternative, sustainable approach for preparing virtually all classes of compounds and materials. In situ reaction monitoring is essential to understanding the kinetics and mechanisms of these reactions, but it has proved difficult to use standard analytical techniques to analyze the contents of the closed, rapidly moving reaction chamber (jar). Monitoring by Raman spectroscopy is an attractive choice, because it allows uninterrupted data collection from the outside of a translucent milling jar. It complements the already established in situ monitoring based on powder X-ray diffraction, which has limited accessibility to the wider research community, because it requires a synchrotron X-ray source. The Raman spectroscopy monitoring setup used in this protocol consists of an affordable, small portable spectrometer, a laser source and a Raman probe. Translucent reaction jars, most commonly made from a plastic material, enable interaction of the laser beam with the solid sample residing inside the closed reaction jar and collection of Raman-scattered photons while the ball mill is in operation. Acquired Raman spectra are analyzed using commercial or open-source software for data analysis (e.g., MATLAB, Octave, Python, R). Plotting the Raman spectra versus time enables qualitative analysis of reaction paths. This is demonstrated for an example reaction: the formation in the solid state of a cocrystal between nicotinamide and salicylic acid. A more rigorous data analysis can be achieved using multivariate analysis.
Collapse
|
22
|
Michalchuk AAL, Boldyreva EV, Belenguer AM, Emmerling F, Boldyrev VV. Tribochemistry, Mechanical Alloying, Mechanochemistry: What is in a Name? Front Chem 2021; 9:685789. [PMID: 34164379 PMCID: PMC8216082 DOI: 10.3389/fchem.2021.685789] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/03/2021] [Indexed: 02/05/2023] Open
Abstract
Over the decades, the application of mechanical force to influence chemical reactions has been called by various names: mechanochemistry, tribochemistry, mechanical alloying, to name but a few. The evolution of these terms has largely mirrored the understanding of the field. But what is meant by these terms, why have they evolved, and does it really matter how a process is called? Which parameters should be defined to describe unambiguously the experimental conditions such that others can reproduce the results, or to allow a meaningful comparison between processes explored under different conditions? Can the information on the process be encoded in a clear, concise, and self-explanatory way? We address these questions in this Opinion contribution, which we hope will spark timely and constructive discussion across the international mechanochemical community.
Collapse
Affiliation(s)
| | - Elena V. Boldyreva
- Novosibirsk State University, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia
| | - Ana M. Belenguer
- Yusef Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Vladimir V. Boldyrev
- Novosibirsk State University, Novosibirsk, Russia
- Voevodski Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk, Russia
| |
Collapse
|
23
|
Solares-Briones M, Coyote-Dotor G, Páez-Franco JC, Zermeño-Ortega MR, de la O Contreras CM, Canseco-González D, Avila-Sorrosa A, Morales-Morales D, Germán-Acacio JM. Mechanochemistry: A Green Approach in the Preparation of Pharmaceutical Cocrystals. Pharmaceutics 2021; 13:790. [PMID: 34070646 PMCID: PMC8228148 DOI: 10.3390/pharmaceutics13060790] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Mechanochemistry is considered an alternative attractive greener approach to prepare diverse molecular compounds and has become an important synthetic tool in different fields (e.g., physics, chemistry, and material science) since is considered an ecofriendly procedure that can be carried out under solvent free conditions or in the presence of minimal quantities of solvent (catalytic amounts). Being able to substitute, in many cases, classical solution reactions often requiring significant amounts of solvents. These sustainable methods have had an enormous impact on a great variety of chemistry fields, including catalysis, organic synthesis, metal complexes formation, preparation of multicomponent pharmaceutical solid forms, etc. In this sense, we are interested in highlighting the advantages of mechanochemical methods on the obtaining of pharmaceutical cocrystals. Hence, in this review, we describe and discuss the relevance of mechanochemical procedures in the formation of multicomponent solid forms focusing on pharmaceutical cocrystals. Additionally, at the end of this paper, we collect a chronological survey of the most representative scientific papers reporting the mechanochemical synthesis of cocrystals.
Collapse
Affiliation(s)
- Mizraín Solares-Briones
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - Guadalupe Coyote-Dotor
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - José C. Páez-Franco
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - Miriam R. Zermeño-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, C.P. 31125, Mexico; (M.R.Z.-O.); (C.M.d.l.OC.)
| | - Carmen Myriam de la O Contreras
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, C.P. 31125, Mexico; (M.R.Z.-O.); (C.M.d.l.OC.)
| | - Daniel Canseco-González
- CONACYT-Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma de Chapingo, Texcoco de Mora, C.P. 56230, Mexico;
| | - Alcives Avila-Sorrosa
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Química Orgánica, Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Ciudad de México, C.P. 11340, Mexico;
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, Mexico
| | - Juan M. Germán-Acacio
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| |
Collapse
|
24
|
Wilke M, Gawryluk DJ, Casati N. Metastability and Seeding Effects in the Mechanochemical Hybrid Lead(II) Iodide Formation. Chemistry 2021; 27:5944-5955. [PMID: 33319376 DOI: 10.1002/chem.202004431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/09/2020] [Indexed: 11/06/2022]
Abstract
The mechanism for the mechanochemical synthesis of (C(NH2 )3 )3 PbI5 3 and (C(NH2 )3 )4 PbI6 4 and their conversion into each other is presented. We investigated the synthesis of 3 at different frequencies and energies using in situ powder X-ray diffraction. By splitting the reaction into single parts we could prove that the formation of 3 is simply dependent on the energy and mixing speed. The nucleation of 4 instead is slightly negative dependent on the energy but dependent on the mixing speed, while its growth is mostly independent of any influence. We were able to influence the reaction pathways by seeding the mixture with a small amount of powdery 4. The formation of 4 is very likely an auto-catalytic process. 3 instead is metastable. It can be stabilized by energy, which beside mechanochemistry can also be achieved by temperature. The results showcases the complex nature of mechanochemical reactions.
Collapse
Affiliation(s)
- Manuel Wilke
- Laboratory for Synchrotron Radiation-Condensed Matter, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Dariusz Jakub Gawryluk
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Nicola Casati
- Laboratory for Synchrotron Radiation-Condensed Matter, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| |
Collapse
|
25
|
Lapshin OV, Boldyreva EV, Boldyrev VV. Role of Mixing and Milling in Mechanochemical Synthesis (Review). RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621030116] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
26
|
Design of horizontal ball mills for improving the rate of mechanochemical degradation of DDTs. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.11.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
O’Neill RT, Boulatov R. The many flavours of mechanochemistry and its plausible conceptual underpinnings. Nat Rev Chem 2021; 5:148-167. [PMID: 37117533 DOI: 10.1038/s41570-020-00249-y] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Mechanochemistry describes diverse phenomena in which mechanical load affects chemical reactivity. The fuzziness of this definition means that it includes processes as seemingly disparate as motor protein function, organic synthesis in a ball mill, reactions at a propagating crack, chemical actuation, and polymer fragmentation in fast solvent flows and in mastication. In chemistry, the rate of a reaction in a flask does not depend on how fast the flask moves in space. In mechanochemistry, the rate at which a material is deformed affects which and how many bonds break. In other words, in some manifestations of mechanochemistry, macroscopic motion powers otherwise endergonic reactions. In others, spontaneous chemical reactions drive mechanical motion. Neither requires thermal or electrostatic gradients. Distinct manifestations of mechanochemistry are conventionally treated as being conceptually independent, which slows the field in its transformation from being a collection of observations to a rigorous discipline. In this Review, we highlight observations suggesting that the unifying feature of mechanochemical phenomena may be the coupling between inertial motion at the microscale to macroscale and changes in chemical bonding enabled by transient build-up and relaxation of strains, from macroscopic to molecular. This dynamic coupling across multiple length scales and timescales also greatly complicates the conceptual understanding of mechanochemistry.
Collapse
|
28
|
Schöbel JH, Liang W, Wöll D, Bolm C. Mechanochemical Synthesis of 1,2,6-Thiadiazine 1-Oxides from Sulfonimidamides and the Fluorescence Properties of the Products. J Org Chem 2020; 85:15760-15766. [PMID: 33225705 DOI: 10.1021/acs.joc.0c02599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A solvent-free mechanochemical synthesis for 1,2,6-thiadiazine 1-oxides starting from NH-sulfonimidamides and propargyl ketones has been developed. Lewis acids affect these one-pot aza-Michael-addition/cyclization/dehydration reaction sequences. The photophysical properties of the resulting heterocyclic sulfonimidamide derivatives were characterized.
Collapse
Affiliation(s)
- Jan-Hendrik Schöbel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Wenjing Liang
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52074 Aachen, Germany
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
29
|
Mechanochemical and Size Reduction Machines for Biorefining. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25225345. [PMID: 33207746 PMCID: PMC7696896 DOI: 10.3390/molecules25225345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023]
Abstract
In recent years, we have witnessed an increasing interest in the application of mechanochemical methods for processing materials in biomass refining techniques. Grinding and mechanical pretreatment are very popular methods utilized to enhance the reactivity of polymers and plant raw materials; however, the choice of devices and their modes of action is often performed through trial and error. An inadequate choice of equipment often results in inefficient grinding, low reactivity of the product, excess energy expenditure, and significant wear of the equipment. In the present review, modern equipment employing various types of mechanical impacts, which show the highest promise for mechanochemical pretreatment of plant raw materials, is examined and compared—disc mills, attritors and bead mills, ball mills, planetary mills, vibration and vibrocentrifugal mills, roller and centrifugal roller mills, extruders, hammer mills, knife mills, pin mills, disintegrators, and jet mills. The properly chosen type of mechanochemical activation (and equipment) allows an energetically and economically sound enhancement of the reactivity of solid-phase polymers by increasing the effective surface area accessible to reagents, reducing the amount of crystalline regions and the diffusion coefficient, disordering the supramolecular structure of the material, and mechanochemically reacting with the target substances.
Collapse
|
30
|
Germann LS, Arhangelskis M, Etter M, Dinnebier RE, Friščić T. Challenging the Ostwald rule of stages in mechanochemical cocrystallisation. Chem Sci 2020; 11:10092-10100. [PMID: 34094270 PMCID: PMC8162427 DOI: 10.1039/d0sc03629c] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mechanochemistry provides an efficient, but still poorly understood route to synthesize and screen for polymorphs of organic solids. We present a hitherto unexplored effect of the milling assembly on the polymorphic outcome of mechanochemical cocrystallisation, tentatively related to the efficiency of mechanical energy transfer to the milled sample. Previous work on mechanochemical cocrystallisation has established that introducing liquid or polymer additives to milling systems can be used to direct polymorphic behavior, leading to extensive studies how the amount and nature of grinding additive affect reaction outcome and polymorphism. Here, focusing on a model pharmaceutical cocrystal of nicotinamide and adipic acid, we demonstrate that changes to the choice of milling media (i.e. number and material of milling balls) and/or the choice of milling assembly (i.e. jar material) can be used to direct polymorphism of mechanochemical cocrystallisation, enabling the selective synthesis, and even reversible and repeatable interconversion of cocrystal polymorphs. While real-time mechanistic studies of mechanochemical transformations of metal–organic materials have previously suggested that reactions follow a path described by Ostwald's rule of stages, i.e. from metastable to increasingly more stable product structures, the herein presented systematic study presents an exception to that rule, revealing that modification of energy input in the mechanochemical system, combined with a small energy difference between polymorphs, permits the selective synthesis of either the more stable room temperature form, or the new metastable high-temperature form, of the target cocrystal. The choice of milling assembly (jar and ball material, number and size of balls) can be used to direct polymorphism in mechanochemical cocrystallisation, enabling the selective synthesis, and even reversible interconversion of cocrystal polymorphs.![]()
Collapse
Affiliation(s)
- Luzia S Germann
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany.,Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Mihails Arhangelskis
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada .,Faculty of Chemistry, University of Warsaw 1 Pasteura Street 02-109 Warsaw Poland
| | - Martin Etter
- Deutsches Elektronen Synchrotron (DESY) Notkestraße 85 22607 Hamburg Germany
| | - Robert E Dinnebier
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
| | - Tomislav Friščić
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| |
Collapse
|
31
|
Porcheddu A, Colacino E, De Luca L, Delogu F. Metal-Mediated and Metal-Catalyzed Reactions Under Mechanochemical Conditions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00142] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 bivio per Sestu, 09042 Monserrato, Cagliari, Italy
- Consorzio C.I.N.M.P.I.S., 70125 Bari, Italy
| | | | - Lidia De Luca
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
32
|
Chen CH, Gaillard E, Mentink-Vigier F, Chen K, Gan Z, Gaveau P, Rebière B, Berthelot R, Florian P, Bonhomme C, Smith ME, Métro TX, Alonso B, Laurencin D. Direct 17O Isotopic Labeling of Oxides Using Mechanochemistry. Inorg Chem 2020; 59:13050-13066. [PMID: 32167301 PMCID: PMC7487002 DOI: 10.1021/acs.inorgchem.0c00208] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
While 17O NMR is increasingly being used for elucidating
the structure and reactivity of complex molecular and materials systems,
much effort is still required for it to become a routine analytical
technique. One of the main difficulties for its development comes
from the very low natural abundance of 17O (0.04%), which
implies that isotopic labeling is generally needed prior to NMR analyses.
However, 17O-enrichment protocols are often unattractive
in terms of cost, safety, and/or practicality, even for compounds
as simple as metal oxides. Here, we demonstrate how mechanochemistry
can be used in a highly efficient way for the direct 17O isotopic labeling of a variety of s-, p-, and d-block oxides, which
are of major interest for the preparation of functional ceramics and
glasses: Li2O, CaO, Al2O3, SiO2, TiO2, and ZrO2. For each oxide, the
enrichment step was performed under ambient conditions in less than
1 h and at low cost, which makes these synthetic approaches highly
appealing in comparison to the existing literature. Using high-resolution
solid-state 17O NMR and dynamic nuclear polarization, atomic-level
insight into the enrichment process is achieved, especially for titania
and alumina. Indeed, it was possible to demonstrate that enriched
oxygen sites are present not only at the surface but also within the
oxide particles. Moreover, information on the actual reactions occurring
during the milling step could be obtained by 17O NMR, in
terms of both their kinetics and the nature of the reactive species.
Finally, it was demonstrated how high-resolution 17O NMR
can be used for studying the reactivity at the interfaces between
different oxide particles during ball-milling, especially in cases
when X-ray diffraction techniques are uninformative. More generally,
such investigations will be useful not only for producing 17O-enriched precursors efficiently but also for understanding better
mechanisms of mechanochemical processes themselves. The direct 17O enrichment of s-, p-, and d-block
metal oxides is achieved with high efficiency using mechanochemistry.
Atomic-level insight into the enrichment process is obtained using
high-resolution solid-state 17O NMR and dynamic nuclear
polarization analyses, which demonstrate that enriched oxygen sites
are present both at the surface and within the oxide particles. Moreover,
it is demonstrated how these labeling schemes allow the study of unique
aspects of mechanochemical reactions between oxides by 17O NMR.
Collapse
Affiliation(s)
- Chia-Hsin Chen
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | | | - Frédéric Mentink-Vigier
- National High Magnetic Field Laboratory (NHMFL), Florida State University, Tallahassee, Florida 32306, United States
| | - Kuizhi Chen
- National High Magnetic Field Laboratory (NHMFL), Florida State University, Tallahassee, Florida 32306, United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory (NHMFL), Florida State University, Tallahassee, Florida 32306, United States
| | - Philippe Gaveau
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | | | | | - Pierre Florian
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation (CEMHTI), UPR 3079, CNRS, Université d'Orléans, 45071 Orléans, France
| | - Christian Bonhomme
- Laboratoire de Chimie de la Matière Condensée de Paris, UMR 7574, CNRS, Sorbonne Université, Paris 75005, France
| | - Mark E Smith
- Vice-Chancellor's Office, Highfield Campus, University of Southampton, University Road, Southampton SO17 1BJ, U.K.,Department of Chemistry, Lancaster University, Bailrigg, Lancaster LA1 4YB, U.K
| | | | - Bruno Alonso
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | | |
Collapse
|
33
|
Julien PA, Germann LS, Titi HM, Etter M, Dinnebier RE, Sharma L, Baltrusaitis J, Friščić T. In situ monitoring of mechanochemical synthesis of calcium urea phosphate fertilizer cocrystal reveals highly effective water-based autocatalysis. Chem Sci 2020; 11:2350-2355. [PMID: 34084395 PMCID: PMC8157455 DOI: 10.1039/c9sc06224f] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Using the mechanosynthesis of the calcium urea phosphate fertilizer cocrystal as a model, we provide a quantitative investigation of chemical autocatalysis in a mechanochemical reaction. The application of in situ Raman spectroscopy and synchrotron X-ray powder diffraction to monitor the reaction of urea phosphate and either calcium hydroxide or carbonate enabled the first quantitative and in situ study of a mechanochemical system in which one of the products of a chemical reaction (water) mediates the rate of transformation and underpins positive feedback kinetics. The herein observed autocatalysis by water generated in the reaction enables reaction acceleration at amounts that are up to 3 orders of magnitude smaller than in a typical liquid-assisted mechanochemical reaction. Using the mechanosynthesis of the fertilizer cocrystal calcium urea phosphate as a model, we provide a quantitative investigation of chemical autocatalysis in a mechanochemical reaction.![]()
Collapse
Affiliation(s)
- Patrick A Julien
- Department of Chemistry, McGill University Montreal QC H3A 0B8 Canada
| | - Luzia S Germann
- Max Planck Institute for Solid State Research Heisenbergstraße 1 70569 Stuttgart Germany
| | - Hatem M Titi
- Department of Chemistry, McGill University Montreal QC H3A 0B8 Canada
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY) Notkestraße 85 22607 Hamburg Germany
| | - Robert E Dinnebier
- Max Planck Institute for Solid State Research Heisenbergstraße 1 70569 Stuttgart Germany
| | - Lohit Sharma
- Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall 111 Research Drive Bethlehem Pennsylvania 18015 USA
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall 111 Research Drive Bethlehem Pennsylvania 18015 USA
| | - Tomislav Friščić
- Department of Chemistry, McGill University Montreal QC H3A 0B8 Canada
| |
Collapse
|
34
|
Chen K, Liang F, Lu X, Xue D. Toward materials-by-design: achieving functional materials with physical and chemical effects. NANOTECHNOLOGY 2020; 31:024002. [PMID: 31557733 DOI: 10.1088/1361-6528/ab4833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advances in renewable and sustainable energy technologies critically depend on our ability to rationally design and process target materials with optimized performances. Advanced material design and discovery are ideally involved in material prediction, synthesis and characterization. Control of material crystallization enables the rational design and discovery of novel functional inorganic materials in multi-scale. Material processing can be adjusted by various physical fields and chemical effects at different energy states. Material microstructure, architecture and functionality can thus be modified by multiple design methodologies. In this review, we show typical examples using physical and chemical methods to shape inorganic functional materials and evaluate their specific applications in Na-air batteries, Li-ion batteries and supercapacitors. Furthermore, this review also provides insight into the understanding of synthesis-structure relationship of inorganic functional materials.
Collapse
Affiliation(s)
- Kunfeng Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | | | | | | |
Collapse
|
35
|
Porcheddu A, Delogu F, De Luca L, Fattuoni C, Colacino E. Metal-free mechanochemical oxidations in Ertalyte ® jars. Beilstein J Org Chem 2019; 15:1786-1794. [PMID: 31435450 PMCID: PMC6664414 DOI: 10.3762/bjoc.15.172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/05/2019] [Indexed: 02/03/2023] Open
Abstract
Aimed at eliminating or at least significantly reducing the use of solvents, sodium hypochlorite pentahydrate crystals (NaOCl·5H2O) in the presence of a catalytic amount of a nitrosyl radical (TEMPO or AZADO) have been successfully used to induce mechanochemical oxidative processes on several structurally different primary and secondary alcohols. The proposed redox process is safe, inexpensive and performing effectively, especially on the macroscale. Herein, an Ertalyte® jar has been successfully used, for the first time, in a mechanochemical process.
Collapse
Affiliation(s)
- Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 bivio per Sestu, 09042 Monserrato (Ca), Italy
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari, Italy
| | - Lidia De Luca
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100-Sassari, Italy
| | - Claudia Fattuoni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 bivio per Sestu, 09042 Monserrato (Ca), Italy
| | - Evelina Colacino
- Université de Montpellier & Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253 CNRS – UM – ENSCM, 8 Rue de l’Ecole Normale, 34296 Montpellier, Cedex 5, France
| |
Collapse
|
36
|
Belenguer AM, Michalchuk AAL, Lampronti GI, Sanders JKM. Understanding the unexpected effect of frequency on the kinetics of a covalent reaction under ball-milling conditions. Beilstein J Org Chem 2019; 15:1226-1235. [PMID: 31293670 PMCID: PMC6604707 DOI: 10.3762/bjoc.15.120] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/15/2019] [Indexed: 12/30/2022] Open
Abstract
We here explore how ball-mill-grinding frequency affects the kinetics of a disulfide exchange reaction. Our kinetic data show that the reaction progress is similar at all the frequencies studied (15-30 Hz), including a significant induction time before the nucleation and growth process starts. This indicates that to start the reaction an initial energy accumulation is necessary. Other than mixing, the energy supplied by the mechanical treatment has two effects: (i) reducing the crystal size and (ii) creating defects in the structure. The crystal-breaking process is likely to be dominant at first becoming less important later in the process when the energy supplied is stored at the molecular level as local crystal defects. This accumulation is taken here to be the rate-determining step. We suggest that the local defects accumulate preferentially at or near the crystal surface. Since the total area increases exponentially when the crystal size is reduced by the crystal-breaking process, this can further explain the exponential dependence of the onset time on the milling frequency.
Collapse
Affiliation(s)
- Ana M Belenguer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Adam A L Michalchuk
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter Str. 11, 12489 Berlin, Germany
| | - Giulio I Lampronti
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Jeremy K M Sanders
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
37
|
Di Nardo T, Moores A. Mechanochemical amorphization of chitin: impact of apparatus material on performance and contamination. Beilstein J Org Chem 2019; 15:1217-1225. [PMID: 31293669 PMCID: PMC6604705 DOI: 10.3762/bjoc.15.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/14/2019] [Indexed: 12/19/2022] Open
Abstract
Herein, we present a study of the impact of the jar and ball medium on the performance in the mechanochemical amorphization of chitin. We measured the crystallinity index of chitin after milling it in a vibration mill in an apparatus made of copper, aluminum, brass, tungsten carbide, zirconia, stainless steel, polytetrafluoroethylene (PTFE), or poly(methyl methacrylate) (PMMA). These materials offer a range of Vickers hardness values and the impact of these parameters is discussed. The role of the size and mass of the balls is also studied in the case of stainless steel. This study also highlights one of the major challenges during milling, which is contamination of the studied samples.
Collapse
Affiliation(s)
- Thomas Di Nardo
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada
| |
Collapse
|
38
|
Grätz S, Zink S, Kraffczyk H, Rose M, Borchardt L. Mechanochemical synthesis of hyper-crosslinked polymers: influences on their pore structure and adsorption behaviour for organic vapors. Beilstein J Org Chem 2019; 15:1154-1161. [PMID: 31164952 PMCID: PMC6541366 DOI: 10.3762/bjoc.15.112] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/16/2019] [Indexed: 01/08/2023] Open
Abstract
This study elucidates a mechanochemical polymerization reaction towards a hyper-crosslinked polymer as an alternative to conventional solvent-based procedures. The swift and solvent-free Friedel-Crafts alkylation reaction yields a porous polymer with surface areas of up to 1720 m2g-1 and pore volumes of up to 1.55 cm3g-1. The application of LAG (liquid-assisted grinding) revealed a profound impact of the liquid´s boiling point on the textural properties of the obtained polymer materials. Finally, the materials are characterized by vapour sorption experiments with benzene and cyclohexane.
Collapse
Affiliation(s)
- Sven Grätz
- Anorganische Chemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Sebastian Zink
- Institute of Inorganic Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Hanna Kraffczyk
- Fachgebiet Technische Chemie II, Technische Universität Darmstadt, Darmstadt, Germany
| | - Marcus Rose
- Fachgebiet Technische Chemie II, Technische Universität Darmstadt, Darmstadt, Germany
| | - Lars Borchardt
- Anorganische Chemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|