1
|
Egun IL, Akinwolemiwa B, Yin B, Tian H, He H, Fow KL, Zhang H, Chen GZ, Hu D. Conversion of high moisture biomass to hierarchical porous carbon via molten base carbonisation and activation for electrochemical double layer capacitor. BIORESOURCE TECHNOLOGY 2024; 409:131251. [PMID: 39127362 DOI: 10.1016/j.biortech.2024.131251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Biomass-derived carbon for supercapacitors faces the challenge of achieving hierarchical porous carbon with graphitic structure and specific heteroatoms through a single-stage thermal process that minimises resource input. Herein, molten base carbonisation and activation is proposed. The process utilises the inherent moisture of Moso bamboo shoots, coupled with a low amount of KOH, to form potassium organic salts before drying. The resultant potassium salts promote in-situ activation during single-stage heating process, yielding hierarchical porous, large specific surface area, and partially graphitised carbon with heteroatoms (N, O). As an electrode material, this carbon exhibits a specific capacitance of 327F g-1 in 6 M KOH and 182F g-1 in 1 M TEABF4/AN, demonstrating excellent cycling stability over 10,000 cycles at 2 A/g. Overall, this study presents a straightforward process that avoids pre-drying of biomass, minimises base consumption, and employs single-stage heating to fabricate electrode carbon suitable for supercapacitors.
Collapse
Affiliation(s)
- Ishioma Laurene Egun
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering University of Nottingham Ningbo China, Ningbo 315100, PR China; Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, PR China.
| | - Bamidele Akinwolemiwa
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering University of Nottingham Ningbo China, Ningbo 315100, PR China.
| | - Bo Yin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| | - Hai Tian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| | - Haiyong He
- Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, 341000, PR China; Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| | - Kam Loon Fow
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering University of Nottingham Ningbo China, Ningbo 315100, PR China.
| | - Honglei Zhang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering University of Nottingham Ningbo China, Ningbo 315100, PR China.
| | - George Z Chen
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Di Hu
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering University of Nottingham Ningbo China, Ningbo 315100, PR China.
| |
Collapse
|
2
|
Nigam R, Kar KK. Effect of Mixed Morphology (Simple Cubic, Face-Centered Cubic, and Body-Centered Cubic)-Based Electrodes on the Electric Double Layer Capacitance of Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14266-14280. [PMID: 38941262 DOI: 10.1021/acs.langmuir.4c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Supercapacitors store energy due to the formation of an electric double layer (EDL) at the interface of the electrodes and electrolyte. The present article deals with the finite element study of equilibrium electric double layer capacitance (EDLC) in the mixed morphology electrodes comprising all three fundamental crystal structures, simple cubic (SC), body-centered cubic (BCC), and face-centered cubic morphologies (FCC). Mesoporous-activated carbon forms the electrode in the supercapacitor with (C2H5)4NBF4/propylene carbonate organic electrolyte. Electrochemical interference is clearly demonstrated in the supercapacitors with the formation of the potential bands, as in the case of interference theory due to the increasing packing factor. The effects of electrode thickness varying from a wide range of 50 nm to 0.04 mm on specific EDLC have been discussed in detail. The interfacial geometry of the unit cell in contact with the electrolyte is the most important parameter determining the properties of the EDL. The critical thickness of the electrodes is 1.71 μm in all the morphologies. Polarization increases the interfacial potential and leads to EDL formation. The Stern layer specific capacitance is 167.6 μF cm-2 in all the morphologies. The maximum capacitance is in the decreasing order of interfacial geometry, as FCC > BCC > SC, dependent on the packing factor. The minimum transmittance in all the morphologies is 98.35%, with the constant figure of merit at higher electrode thickness having applications in the chip interconnects. The transient analysis shows that the interfacial current decreases with increasing polarization in the EDL. The capacitance also decreases with the increase of the scan rate.
Collapse
Affiliation(s)
- Ravi Nigam
- Advanced Nanoengineering Materials Laboratory, Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Kamal K Kar
- Advanced Nanoengineering Materials Laboratory, Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
3
|
Shrestha D. Structural and electrochemical evaluation of renewable carbons and their composites on different carbonization temperatures for supercapacitor applications. Heliyon 2024; 10:e25628. [PMID: 38370182 PMCID: PMC10869866 DOI: 10.1016/j.heliyon.2024.e25628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
This study explored the impact of carbonization temperature (400-700 °C) on the structural and electrochemical performances of H3PO4-activated carbons (ACs) for supercapacitor applications. Advanced characterization techniques, including XRD, Raman, SEM, TEM, FTIR, and BET analysis revealed the structural properties of the ACs. Electrochemical performance was evaluated through cyclic voltammetry (CV), galvanostatic charge discharge (GCD), and electrochemical impedance spectroscopy (EIS) tests. The AC carbonized at 400 °C (AC-400 °C) exhibited outstanding performance with a surface area of 1432.4 m2 g-1 and its electrode delivered a specific capacitance of 183.4 Fg-1 in 6 M KOH electrolyte. It demonstrated remarkable cycle stability (94.3 % retention) at 3 Ag-1 and an energy density (ED) of 4.2 Whkg-1 at a power density (PD) of 137 Wkg-1. Combining AC-400 °C with MnO2 in a 1:1 ratio (AC:MnO2-400 °C) further boosted the electrochemical performance. This composite electrode delivered a significantly higher specific capacitance of 491.3 Fg-1, outstanding cyclic stability of 99.6 % retention at 3 Ag-1, and an exceptional ED of 25.3 Whkg-1 at a PD of 187.3 Wkg-1, surpassing that of AC-400 °C by more than six-fold. This remarkable enhancement highlighted the immense potential of AC-MnO2 composites for high-performance supercapacitors. This study identified 400 °C as the optimal carbonization temperature for maximizing the electrochemical performance of AC electrodes. More importantly, it demonstrated the significant potential of AC:MnO2-400 °C composites for applications in high-performance supercapacitors.
Collapse
Affiliation(s)
- Dibyashree Shrestha
- Department of Chemistry, Patan Multiple Campus, Institute of Science and Technology, Tribhuvan University, Nepal
| |
Collapse
|
4
|
Käärik M, Arulepp M, Perkson A, Leis J. Effect of Pore Size Distribution on Energy Storage of Nanoporous Carbon Materials in Neat and Dilute Ionic Liquid Electrolytes. Molecules 2023; 28:7191. [PMID: 37894670 PMCID: PMC10609406 DOI: 10.3390/molecules28207191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
This study investigates three carbide-derived carbon (CDC) materials (TiC, NbC, and Mo2C) characterized by uni-, bi-, and tri-modal pore sizes, respectively, for energy storage in both neat and acetonitrile-diluted 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. A distribution of micro- and mesopores was studied through low-temperature N2 and CO2 adsorption. To elucidate the relationships between porosity and the electrochemical properties of carbon materials, cyclic voltammetry, galvanostatic cycling, and electrochemical impedance spectroscopy measurements were conducted using three-electrode test cells. The ultramicroporous TiC-derived carbon is characterized by a high packing density of 0.85 g cm-3, resulting in superior cathodic and anodic capacitances for both neat ionic liquid (IL) and a 1.9 M IL/acetonitrile electrolyte (93.6 and 75.8 F cm-3, respectively, in the dilute IL). However, the bi-modal pore-sized microporous NbC-derived carbon, with slightly lower cathodic and anodic capacitances (i.e., 85.0 and 73.7 F cm-3 in the dilute IL, respectively), has a lower pore resistance, making it more suitable for real-world applications. A symmetric two-electrode capacitor incorporating microporous CDC-NbC electrodes revealed an acceptable cycle life. After 10,000 cycles, the cell retained approximately 75% of its original capacitance, while the equivalent series resistance (ESR) only increased by 13%.
Collapse
Affiliation(s)
- Maike Käärik
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Mati Arulepp
- Skeleton Technologies, Sepise 7, 11415 Tallinn, Estonia
| | - Anti Perkson
- Skeleton Technologies, Sepise 7, 11415 Tallinn, Estonia
| | - Jaan Leis
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
- Skeleton Technologies, Sepise 7, 11415 Tallinn, Estonia
| |
Collapse
|
5
|
Benwannamas N, Sangtawesin T, Yilmaz M, Kanjana K. Gamma-induced interconnected networks in microporous activated carbons from palm petiole under NaNO 3 oxidizing environment towards high-performance electric double layer capacitors (EDLCs). Sci Rep 2023; 13:12887. [PMID: 37558768 PMCID: PMC10412596 DOI: 10.1038/s41598-023-40176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
Activated carbons (ACs) were developed from palm petiole via a new eco-friendly method composed of highly diluted H2SO4 hydrothermal carbonization and low-concentration KOH-activating pyrolysis followed by gamma-induced surface modification under NaNO3 oxidizing environment. The prepared graphitic carbons were subsequently used as an active material for supercapacitor electrodes. The physiochemical properties of the ACs were characterized using field emission scanning electron microscope-energy dispersive X-ray spectroscopy, N2 adsorption/desorption isotherms with Brunauer-Emmett-Teller surface area analysis, Fourier transform infrared spectroscopy, X-ray diffraction and Raman spectroscopy. The electrochemical performance of the fabricated electrodes was investigated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. Even treated with extremely low H2SO4 concentration and small KOH:hydrochar ratio, the maximum SBET of 1365 m2 g-1 for an AC was obtained after gamma irradiation. This was attributed to radiation-induced interconnected network formation generating micropores within the material structure. The supercapacitor electrodes exhibited electric double-layer capacitance giving the highest specific capacitance of 309 F g-1 as well as excellent cycle stability within 10,000 cycles. The promising results strongly ensure high possibility of the eco-friendly method application in supercapacitor material production.
Collapse
Affiliation(s)
- Nurulsafeelanaria Benwannamas
- Department of Chemistry, School of Science, Walailak University, Tha Sala, Nakhon Si Thammarat, 80160, Thailand
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Tha Sala, Nakhon Si Thammarat, 80160, Thailand
| | - Tanagorn Sangtawesin
- Thailand Institute of Nuclear Technology, Ongkharak, Nakhon Nayok, 26120, Thailand
| | - Murat Yilmaz
- Department of Chemistry and Chemical Processing Technologies, Bahçe Vocational School, Osmaniye Korkut Ata University, 80000, Osmaniye, Turkey
| | - Kotchaphan Kanjana
- Department of Chemistry, School of Science, Walailak University, Tha Sala, Nakhon Si Thammarat, 80160, Thailand.
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Tha Sala, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
6
|
Ekereke EE, Ikechukwu OC, Louis H, Gber TE, Charlie DE, Ikeuba AI, Adeyinka AS. Quantum capacitances of alkaline-earth metals: Be, Ca, and Mg integrated on Al12N12 and Al12P12 nanostructured—insight from DFT approach. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Brandão ATSC, Costa R, State S, Potorac P, Dias C, Vázquez JA, Valcarcel J, Silva AF, Enachescu M, Pereira CM. Chitins from Seafood Waste as Sustainable Porous Carbon Precursors for the Development of Eco-Friendly Supercapacitors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2332. [PMID: 36984217 PMCID: PMC10057302 DOI: 10.3390/ma16062332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Carbon materials derived from marine waste have been drawing attention for supercapacitor applications. In this work, chitins from squid and prawn marine wastes were used as carbon precursors for further application as electrodes for energy storage devices. Chitins were obtained through a deproteinization method based on enzymatic hydrolysis as an alternative to chemical hydrolysis as commonly presented in the literature. The obtained porous carbons were characterized using a BET surface area analyzer to determine the specific surface area and pore size, as well as scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), Raman spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), to characterize their morphology, composition, and structure. The electrochemical characterization was performed using a glassy carbon (GC) electrode modified with marine waste-based porous carbons as the working electrode through cyclic voltammetry and galvanostatic charge/discharge using ethaline, a choline chloride-based deep eutectic solvent (DES), as an eco-friendly and sustainable electrolyte. Squid and prawn chitin-based carbons presented a surface area of 149.3 m2 g-1 and 85.0 m2 g-1, pore volume of 0.053 cm3 g-1 and 0.029 cm3 g-1, and an associated specific capacitance of 20 and 15 F g-1 at 1 A g-1, respectively. Preliminary studies were performed to understand the effect of -OH groups on the chitin-based carbon surface with DES as an electrolyte, as well as the effect of aqueous electrolytes (1 mol L-1 sulphuric acid (H2SO4) and 1 mol L-1 potassium hydroxide (KOH)) on the capacitance and retention of the half-cell set up. It is provided, for the first time, the use of chitin-based carbon materials obtained through a one-step carbonization process combined with an eco-friendly DES electrolyte for potential application in energy storage devices.
Collapse
Affiliation(s)
- Ana T. S. C. Brandão
- Instituto de Ciências Moleculares IMS-CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Renata Costa
- Instituto de Ciências Moleculares IMS-CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Sabrina State
- Center for Surface Science and Nanotechnology, University Polytechnica of Bucharest, Splaiul Independentei, 313, 060042 Bucharest, Romania
| | - Pavel Potorac
- Center for Surface Science and Nanotechnology, University Polytechnica of Bucharest, Splaiul Independentei, 313, 060042 Bucharest, Romania
| | - Catarina Dias
- Instituto de Ciências Moleculares IMS-CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - José A. Vázquez
- Grupo de Reciclado y Valorización de Residuos (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), 36208 Vigo, Spain
| | - Jesus Valcarcel
- Grupo de Reciclado y Valorización de Residuos (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), 36208 Vigo, Spain
| | - A. Fernando Silva
- Instituto de Ciências Moleculares IMS-CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Marius Enachescu
- Center for Surface Science and Nanotechnology, University Polytechnica of Bucharest, Splaiul Independentei, 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050094 Bucharest, Romania
| | - Carlos M. Pereira
- Instituto de Ciências Moleculares IMS-CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
8
|
Gabitto JF, Tsouris C. A review of transport models in charged porous electrodes. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2022.1051594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
There is increased interest in many different processes based upon interactions between a charged solid surface and a liquid electrolyte. Energy storage in capacitive porous materials, ionic membranes, capacitive deionization (CDI) for water desalination, capacitive energy generation, removal of heavy ions from wastewater streams, and geophysical applications are some examples of these processes. Process development is driven by the production of porous materials with increasing surface area. Understanding of the physical phenomena occurring at the charged solid-electrolyte interface will significantly improve the design and development of more effective applied processes. The goal of this work is to critically review the current knowledge in the field. The focus is on concepts behind different models. We start by briefly presenting the classical electrical double layer (EDL) models in flat surfaces. Then, we discuss models for porous materials containing macro-, meso-, and micro-pores. Some of the current models for systems comprising two different pore sizes are also included. Finally, we discuss the concepts behind the most common models used for ionic transport and Faradaic processes in porous media. The latter models are used for simulation of electrosorption processes in porous media.
Collapse
|
9
|
Biomass valorisation of marula nutshell waste into nitrogen doped activated carbon for use in high performance supercapacitors. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Role of anion size in the electrochemical performance of a Poly(thionine) redox conductive polymer using electrochemical impedance spectroscopy. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Ferry MA, Maruyama J, Asoh TA, Uyama H. Porosity-Induced Improvement in KOH Activation of Chitin Nanofiber-Based Porous Carbon Leading to Ultrahigh Specific Capacitance. CHEMSUSCHEM 2022; 15:e202200932. [PMID: 35723611 DOI: 10.1002/cssc.202200932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The applicability of chitin-based carbon as a supercapacitor electrode material was investigated by adjusting its pore structure through polystyrene latex templating, without significant N doping. 2,2,6,6-tetramethylpiperidinyloxy (TEMPO)-oxidized chitin nanofibers were mixed with polystyrene latex, hydrothermally treated at 220 °C, carbonized, and activated using KOH at 800 °C, yielding activated hierarchical porous carbon. The variation of both polystyrene latex amount and carbonization temperature resulted in changes in the surface area and pore structure, which dictated the degree of pore uniformity and activation efficiency. The pore structure affected activation by allowing the selective removal of amorphous carbon, exposing the basal plane carbon, resulting in higher specific capacitance. By making activated hierarchical porous carbon more conducive to activation, specific capacitance of 567 F g-1 at 0.5 A g-1 was achieved, with no loss in performance after 10000 charge-discharge cycles.
Collapse
Affiliation(s)
- Mark Adam Ferry
- Division of Applied Chemistry, Osaka University Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun Maruyama
- Research Division of Environmental Technology, Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka, 536-8553, Japan
| | - Taka-Aki Asoh
- Division of Applied Chemistry, Osaka University Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Uyama
- Division of Applied Chemistry, Osaka University Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
12
|
Thumkaew Y, Praneerad J, Manyam J, Chanthad C, Liang X, Song S, Youngvises N, Paoprasert P. High‐Performance Supercapacitors Fabricated from Sugarcane Waste‐derived Activated Carbon Electrodes and Carbon Dot‐added Molasses as Electrolytes. ChemistrySelect 2022. [DOI: 10.1002/slct.202202051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yanisa Thumkaew
- Department of Chemistry Faculty of Science and Technology Thammasat University Pathumthani 12120 Thailand
| | - Janjira Praneerad
- National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand
| | - Jedsada Manyam
- National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand
| | - Chalathorn Chanthad
- National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand
| | - Xiao Liang
- College of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 P. R. China
| | - Shufeng Song
- College of Aerospace Engineering Chongqing University Chongqing 400044 China
| | - Napaporn Youngvises
- Department of Chemistry Faculty of Science and Technology Thammasat University Pathumthani 12120 Thailand
| | - Peerasak Paoprasert
- Department of Chemistry Faculty of Science and Technology Thammasat University Pathumthani 12120 Thailand
| |
Collapse
|
13
|
|
14
|
Wickramaarachchi K, Minakshi M, Aravindh SA, Dabare R, Gao X, Jiang ZT, Wong KW. Repurposing N-Doped Grape Marc for the Fabrication of Supercapacitors with Theoretical and Machine Learning Models. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1847. [PMID: 35683703 PMCID: PMC9182344 DOI: 10.3390/nano12111847] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 01/25/2023]
Abstract
Porous carbon derived from grape marc (GM) was synthesized via carbonization and chemical activation processes. Extrinsic nitrogen (N)-dopant in GM, activated by KOH, could render its potential use in supercapacitors effective. The effects of chemical activators such as potassium hydroxide (KOH) and zinc chloride (ZnCl2) were studied to compare their activating power toward the development of pore-forming mechanisms in a carbon electrode, making them beneficial for energy storage. GM carbon impregnated with KOH for activation (KAC), along with urea as the N-dopant (KACurea), exhibited better morphology, hierarchical pore structure, and larger surface area (1356 m2 g-1) than the GM carbon activated by ZnCl2 (ZnAC). Moreover, density functional theory (DFT) investigations showed that the presence of N-dopant on a graphite surface enhances the chemisorption of O adsorbates due to the enhanced charge-transfer mechanism. KACurea was tested in three aqueous electrolytes with different ions (LiOH, NaOH, and NaClO4), which delivered higher specific capacitance, with the NaOH electrolyte exhibiting 139 F g-1 at a 2 mA current rate. The NaOH with the alkaline cation Na+ offered the best capacitance among the electrolytes studied. A multilayer perceptron (MLP) model was employed to describe the effects of synthesis conditions and physicochemical and electrochemical parameters to predict the capacitance and power outputs. The proposed MLP showed higher accuracy, with an R2 of 0.98 for capacitance prediction.
Collapse
Affiliation(s)
- Kethaki Wickramaarachchi
- College of Science, Health, Engineering & Education, Murdoch University, Perth, WA 6150, Australia; (K.W.); (R.D.); (X.G.); (Z.-T.J.); (K.W.W.)
| | - Manickam Minakshi
- College of Science, Health, Engineering & Education, Murdoch University, Perth, WA 6150, Australia; (K.W.); (R.D.); (X.G.); (Z.-T.J.); (K.W.W.)
| | - S. Assa Aravindh
- Nano and Molecular Systems Research Unit, University of Oulu, Pentti Kaiteran Katu 1, 90570 Oulu, Finland;
| | - Rukshima Dabare
- College of Science, Health, Engineering & Education, Murdoch University, Perth, WA 6150, Australia; (K.W.); (R.D.); (X.G.); (Z.-T.J.); (K.W.W.)
| | - Xiangpeng Gao
- College of Science, Health, Engineering & Education, Murdoch University, Perth, WA 6150, Australia; (K.W.); (R.D.); (X.G.); (Z.-T.J.); (K.W.W.)
| | - Zhong-Tao Jiang
- College of Science, Health, Engineering & Education, Murdoch University, Perth, WA 6150, Australia; (K.W.); (R.D.); (X.G.); (Z.-T.J.); (K.W.W.)
| | - Kok Wai Wong
- College of Science, Health, Engineering & Education, Murdoch University, Perth, WA 6150, Australia; (K.W.); (R.D.); (X.G.); (Z.-T.J.); (K.W.W.)
| |
Collapse
|
15
|
Correlation of EDLC Capacitance with Physical Properties of Polyethylene Terephthalate Added Pitch-Based Activated Carbon. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041454. [PMID: 35209241 PMCID: PMC8875226 DOI: 10.3390/molecules27041454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 11/17/2022]
Abstract
The electric double-layer capacitor (EDLC) has attracted attention by using activated carbon (AC) as an active electrode material with a high power density and high cost-efficiency in industrial applications. The EDLC has been actively developed over the past decade to improve the power density and capacitance. Extensive studies on EDLCs have been conducted to investigate the relation of EDLC capacitance to the physical properties of AC, such as the specific surface area, pore type and size, and electrical conductivity. In this study, EDLC was fabricated with AC, and its capacitance was evaluated with the physical properties of AC. The AC was prepared using petroleum-based pitch synthesized using pyrolysis fuel oil (PFO) with polyethylene terephthalate (PET). The AC based on PFO and PET (PPAC) exhibited high specific surface area and low micropore fraction compared to the PFO-based AC without PET addition (PAC). Furthermore, the reduction of the EDLC capacitance of PPAC was smaller than that of PAC, as the scan rate was increased from 5 to 100 mV s−1. It was determined that the minor reduction of capacitance with an increase in the scan rate resulted from the development of 4 nm-sized mesopores in PPAC. In addition, a comprehensive correlation of EDLC capacitance with various physical properties of ACs, such as specific surface area, pore characteristics, and electrical conductivity, was established. Finally, the optimal properties of AC were thereupon derived to improve the EDLC capacitance.
Collapse
|
16
|
Aziz SB, Dannoun EMA, Abdulwahid RT, Kadir MFZ, Nofal MM, Al-Saeedi SI, Murad AR. The Study of Ion Transport Parameters in MC-Based Electrolyte Membranes Using EIS and Their Applications for EDLC Devices. MEMBRANES 2022; 12:membranes12020139. [PMID: 35207061 PMCID: PMC8877585 DOI: 10.3390/membranes12020139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
A solution cast technique was utilized to create a plasticized biopolymer-based electrolyte system. The system was prepared from methylcellulose (MC) polymer as the hosting material and potassium iodide (KI) salt as the ionic source. The electrolyte produced with sufficient conductivity was evaluated in an electrochemical double-layer capacitor (EDLC). Electrolyte systems’ electrical, structural, and electrochemical properties have been examined using various electrochemical and FTIR spectroscopic techniques. From the electrochemical impedance spectroscopy (EIS), a maximum ionic conductivity of 5.14 × 10−4 S cm−1 for the system with 50% plasticizer was recorded. From the EEC modeling, the ion transport parameters were evaluated. The extent of interaction between the components of the prepared electrolyte was investigated using Fourier transformed infrared spectroscopy (FTIR). For the electrolyte system (MC-KI-glycerol), the tion and electrochemical windows were 0.964 and 2.2 V, respectively. Another electrochemical property of electrolytes is transference number measurement (TNM), in which the ion predominantly responsibility was examined in an attempt to track the transport mechanism. The non-Faradaic nature of charge storing was proved from the absence of a redox peak in the cyclic voltammetry profile (CV). Several decisive parameters have been specified, such as specific capacitance (Cs), coulombic efficiency (η), energy density (Ed), and power density (Pd) at the first cycle, which were 68 F g−1, 67%, 7.88 Wh kg−1, and 1360 Wh kg−1, respectively. Ultimately, during the 400th cycle, the series resistance ESR varied from 70 to 310 ohms.
Collapse
Affiliation(s)
- Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq;
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Kurdistan Regional Government, Sulaimani 46001, Iraq
- Correspondence:
| | - Elham M. A. Dannoun
- Associate Chair of the Department of Mathematics and Science, Woman Campus, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Rebar T. Abdulwahid
- Hameed Majid Advanced Polymeric Materials Research Lab, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq;
- Department of Physics, College of Education, University of Sulaimani, Old Campus, Sulaimani 46001, Iraq
| | - Mohd F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Muaffaq M. Nofal
- Department of Mathematics and Science, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Sameerah I. Al-Saeedi
- Department of Chemistry, College of Science, Princess Nuourah Bint Abdulrahman University, Riyadh 11362, Saudi Arabia;
| | - Ary R. Murad
- Department of Pharmaceutical Chemistry, College of Medical and Applied Sciences, Charmo University, Chamchamal, Sulaimani 46023, Iraq;
| |
Collapse
|
17
|
Song P, Li Y, Bao L, Liang X, Qi M, Li H, Tang Y. An understanding of a 3D hierarchically porous carbon modified electrode based on finite element modeling. NEW J CHEM 2022. [DOI: 10.1039/d2nj01890j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new strategy for the electrochemical evaluation of a 3D hierarchically porous carbon modified electrode is proposed via finite element modeling.
Collapse
Affiliation(s)
- Peng Song
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yan Li
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Linghan Bao
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Xiaohua Liang
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Mengyuan Qi
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Hanbing Li
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yang Tang
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment and Accident Analysis, Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
18
|
Hsu SC, Chiang HH, Huang TY, Chao SH, Wu RT, Lu CZ, Huang JH, Chang-Jian CW, Weng HC, Chen HC. Morphology evolution and electrochemical behavior of NixMn1-x(OH)2 mixed hydroxides as high-performance electrode for supercapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Brandão ATSC, Costa R, Silva AF, Pereira CM. Sustainable Preparation of Nanoporous Carbons via Dry Ball Milling: Electrochemical Studies Using Nanocarbon Composite Electrodes and a Deep Eutectic Solvent as Electrolyte. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3258. [PMID: 34947610 PMCID: PMC8709160 DOI: 10.3390/nano11123258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 01/06/2023]
Abstract
The urgent need to reduce the consumption of fossil fuels drives the demand for renewable energy and has been attracting the interest of the scientific community to develop materials with improved energy storage properties. We propose a sustainable route to produce nanoporous carbon materials with a high-surface area from commercial graphite using a dry ball-milling procedure through a systematic study of the effects of dry ball-milling conditions on the properties of the modified carbons. The microstructure and morphology of the dry ball-milled graphite/carbon composites are characterized by BET (Brunauer-Emmett-Teller) analysis, SEM (scanning electron microscopy), ATR-FTIR (attenuated total reflectance-Fourier transform infrared spectroscopy) and Raman spectroscopy. As both the electrode and electrolyte play a significant role in any electrochemical energy storage device, the gravimetric capacitance was measured for ball-milled material/glassy carbon (GC) composite electrodes in contact with a deep eutectic solvent (DES) containing choline chloride and ethylene glycol as hydrogen bond donor (HBD) in a 1:2 molar ratio. Electrochemical stability was tracked by measuring charge/discharge curves. Carbons with different specific surface areas were tested and the relationship between the calculated capacitance and the surface treatment method was established. A five-fold increase in gravimetric capacitance, 25.27 F·g-1 (G40) against 5.45 F·g-1, was found for commercial graphene in contact with DES. Optimal milling time to achieve a higher surface area was also established.
Collapse
Affiliation(s)
| | | | | | - Carlos M. Pereira
- Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, CIQUP–Physical Analytical Chemistry and Electrochemistry Group, Rua do Campo Alegre, s/n, 4169−007 Porto, Portugal; (A.T.S.C.B.); (R.C.); (A.F.S.)
| |
Collapse
|
20
|
A Review of Supercapacitors: Materials Design, Modification, and Applications. ENERGIES 2021. [DOI: 10.3390/en14227779] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supercapacitors (SCs) have received much interest due to their enhanced electrochemical performance, superior cycling life, excellent specific power, and fast charging–discharging rate. The energy density of SCs is comparable to batteries; however, their power density and cyclability are higher by several orders of magnitude relative to batteries, making them a flexible and compromising energy storage alternative, provided a proper design and efficient materials are used. This review emphasizes various types of SCs, such as electrochemical double-layer capacitors, hybrid supercapacitors, and pseudo-supercapacitors. Furthermore, various synthesis strategies, including sol-gel, electro-polymerization, hydrothermal, co-precipitation, chemical vapor deposition, direct coating, vacuum filtration, de-alloying, microwave auxiliary, in situ polymerization, electro-spinning, silar, carbonization, dipping, and drying methods, are discussed. Furthermore, various functionalizations of SC electrode materials are summarized. In addition to their potential applications, brief insights into the recent advances and associated problems are provided, along with conclusions. This review is a noteworthy addition because of its simplicity and conciseness with regard to SCs, which can be helpful for researchers who are not directly involved in electrochemical energy storage.
Collapse
|
21
|
Xie M, Shi Y, Wang C, Chen R, Shen M, Xia Y. In Situ Growth of Pt-Co Nanocrystals on Different Types of Carbon Supports and Their Electrochemical Performance toward Oxygen Reduction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51988-51996. [PMID: 34296606 DOI: 10.1021/acsami.1c08460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Carbon-supported Pt-M (M = Co, Ni, and Fe) alloy nanocrystals are widely used as catalysts toward oxygen reduction, a reaction key to the operation of proton-exchange membrane fuel cells. Here we report a colloidal method for the in situ growth of Pt-Co nanocrystals on various commercial carbon supports. The use of different carbon supports resulted in not only variations in size and composition for the nanocrystals but also their catalytic activity and durability toward oxygen reduction in acidic media. Among the nanocrystals, those grown on Vulcan XC72 and Ketjenblack EC300J showed the highest specific and mass activities in the 0.1 M HClO4 and 0.05 M H2SO4 electrolytes, respectively. Additionally, the catalysts also showed different durability depending on the strength of the interaction between the nanocrystals and the carbon support. Our analysis demonstrated that the difference in catalytic performance could be ascribed to the distinct effects of carbon support on both the synthetic and catalytic processes.
Collapse
Affiliation(s)
- Minghao Xie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Chenxiao Wang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Min Shen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
22
|
Quasi-solid, bio-renewable supercapacitor with high specific capacitance and energy density based on rice electrolytes and rice straw-derived carbon dots as novel electrolyte additives. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127239] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
YUMAK T, YUMAK S, KARABULUT A. Surface and chemical characteristics of platinum modified activated carbon electrodes and their electrochemical performance. Turk J Chem 2021; 45:1488-1503. [PMID: 34849062 PMCID: PMC8596524 DOI: 10.3906/kim-2103-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/30/2021] [Indexed: 11/27/2022] Open
Abstract
Platinum (Pt) loaded activated carbons (ACs) were synthesized by the thermal decomposition of platinum (II) acetylacetonate (Pt(acac)2) over chemically activated glucose-based biochar. The effect of Pt loading on surface area, pore characteristics, surface chemistry, chemical structure, and surface morphology were determined by various techniques. XPS studies proved the presence of metallic Pt0 on the AC surface. The graphitization degree of Pt loaded ACs were increased with the loaded Pt0 amount. The electrochemical performance of the Pt-loaded ACs (Pt@AC) was determined not only by the conventional three-electrode system but also by packaged supercapacitors in CR2032 casings. The capacitive performance of Pt@AC electrodes was investigated via cyclic voltammetry (CV), galvanostatic charge-discharge curves (GCD), and impedance spectroscopy (EIS). It was found that the Pt loading increased the specific capacitance from 51 F/g to 100 F/g. The ESR drop of the packaged cell decreased with the Pt loading due to the fast flow of charge through the conductive pathways. The results showed that the surface chemistry is more dominant than the surface area for determining the capacitive performance of Pt loaded AC-based packaged supercapacitors.
Collapse
Affiliation(s)
- Tuğrul YUMAK
- Department of Chemistry, Faculty of Arts and Science, Sinop University, SinopTurkey
| | - Serap YUMAK
- Department of Interdisciplinary Nuclear Energy and Energy Systems, Institute of Graduate Studies, Sinop University, SinopTurkey
| | - Abdulkerim KARABULUT
- Department of Basic Sciences, Faculty of Science, Erzurum Technical University, ErzurumTurkey
| |
Collapse
|
24
|
Biswas S, Mandal D, Singh T, Chandra A. Hierarchical NaFePO 4 nanostructures in combination with an optimized carbon-based electrode to achieve advanced aqueous Na-ion supercapacitors. RSC Adv 2021; 11:30031-30039. [PMID: 35480241 PMCID: PMC9040833 DOI: 10.1039/d1ra05474k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/26/2021] [Indexed: 01/05/2023] Open
Abstract
Recent trends in sodium-ion-based energy storage devices have shown the potential use of hollow structures as an electrode material to improve the performance of these storage systems. It is shown that, in addition to the use of hierarchical structures, the choice of the complementary carbon electrode determines the final performance of Na-ion-based devices. Here, we present simple synthesis strategies to prepare different structured carbonaceous materials that can be upscaled to an industrial level. Individual carbon materials deliver specific capacitance ranges from 120 to 220 F g-1 at a current density of 1 A g-1 (with excellent capacity retention). These structures, when combined with hollow NaFePO4 microspheres to fabricate an aqueous supercapacitor, show as high as a 1.7 V working potential window and can deliver a maximum energy density of 25.29 W h kg-1 capacity retention. These values are much higher than those reported by NaFePO4 solid particles and randomly chosen carbon structure-based supercapacitors.
Collapse
Affiliation(s)
- Sudipta Biswas
- Department of Physics, Indian Institute of Technology Kharagpur Kharagpur-721302 India
| | - Debabrata Mandal
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur Kharagpur-721302 India
| | - Trilok Singh
- Functional Materials and Device Laboratory, School of Energy Science & Engineering, Indian Institute of Technology Kharagpur Kharagpur-721302 India
| | - Amreesh Chandra
- Department of Physics, Indian Institute of Technology Kharagpur Kharagpur-721302 India
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur Kharagpur-721302 India
- School of Energy Science & Engineering, Indian Institute of Technology Kharagpur Kharagpur-721302 India
| |
Collapse
|
25
|
Identification of the different contributions of pseudocapacitance and quantum capacitance and their electronic-structure-based intrinsic transport kinetics in electrode materials. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Bi-functional nature cupric bound high pores activated carbon electrode enhanced electrochemical properties for energy storage and energy conversion system. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Construction of NiCo-OH/Ni3S2 core-shell heterostructure wrapped in rGO nanosheets as efficient supercapacitor electrode enabling high stability up to 20,000 cycles. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Krause FC, Jones JP, Smart MC, Chin KB, Brandon EJ. Screening electrolytes designed for high voltage electrochemical capacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Zheng W, Zhao X, Fu W. Review of Vertical Graphene and its Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9561-9579. [PMID: 33616394 DOI: 10.1021/acsami.0c19188] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Vertical graphene (VG) is a thin-film complex material featuring hierarchical microstructures: graphene-containing carbon nanosheets growing vertically on its deposition substrate, few-layer graphene basal layers, and chemically active atomistic defect sites and edges. Thanks to the fundamental characteristics of graphene materials, e.g. excellent electrical conductivity, thermal conductivity, chemical stability, and large specific surface area, VG materials have been successfully implemented into various niche applications which are strongly associated with their unique morphology. The microstructure of VG materials can be tuned by modifying growth methods and the parameters of growth processes. Multiple growth processes have been developed to address faster, safer, and mass production methods of VG materials, as well as accommodating various applications. VG's successful applications include field emission, supercapacitors, fuel cells, batteries, gas sensors, biochemical sensors, electrochemical analysis, strain sensors, wearable electronics, photo trapping, terahertz emission, etc. Research topics on VG have been more diversified in recent years, indicating extensive attention from the research community and great commercial value. In this review article, VG's morphology is briefly reviewed, and then various growth processes are discussed from the perspective of plasma science. After that, the most recent progress in its applications and related sciences and technologies are discussed.
Collapse
Affiliation(s)
- Wei Zheng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- William and Mary Research Institute, College of William and Mary, Williamsburg, Virginia 23187, United States
| | - Xin Zhao
- William and Mary Research Institute, College of William and Mary, Williamsburg, Virginia 23187, United States
| | - Wenjie Fu
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- William and Mary Research Institute, College of William and Mary, Williamsburg, Virginia 23187, United States
| |
Collapse
|
30
|
Dong Q, Yang D, Luo L, He Q, Cai F, Cheng S, Chen Y. Engineering porous biochar for capacitive fluorine removal. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117932] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Meso/Microporous Carbons from Conjugated Hyper-Crosslinked Polymers Based on Tetraphenylethene for High-Performance CO 2 Capture and Supercapacitor. Molecules 2021; 26:molecules26030738. [PMID: 33572605 PMCID: PMC7866987 DOI: 10.3390/molecules26030738] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/17/2023] Open
Abstract
In this study, we successfully synthesized two types of meso/microporous carbon materials through the carbonization and potassium hydroxide (KOH) activation for two different kinds of hyper-crosslinked polymers of TPE-CPOP1 and TPE-CPOP2, which were synthesized by using Friedel–Crafts reaction of tetraphenylethene (TPE) monomer with or without cyanuric chloride in the presence of AlCl3 as a catalyst. The resultant porous carbon materials exhibited the high specific area (up to 1100 m2 g−1), total pore volume, good thermal stability, and amorphous character based on thermogravimetric (TGA), N2 adsoprtion/desorption, and powder X-ray diffraction (PXRD) analyses. The as-prepared TPE-CPOP1 after thermal treatment at 800 °C (TPE-CPOP1-800) displayed excellent CO2 uptake performance (1.74 mmol g−1 at 298 K and 3.19 mmol g−1 at 273 K). Furthermore, this material possesses a high specific capacitance of 453 F g−1 at 5 mV s−1 comparable to others porous carbon materials with excellent columbic efficiencies for 10,000 cycle at 20 A g−1.
Collapse
|
32
|
Roy A, Kar S, Ghosal R, Naskar K, Bhowmick AK. Facile Synthesis and Characterization of Few-Layer Multifunctional Graphene from Sustainable Precursors by Controlled Pyrolysis, Understanding of the Graphitization Pathway, and Its Potential Application in Polymer Nanocomposites. ACS OMEGA 2021; 6:1809-1822. [PMID: 33521422 PMCID: PMC7841780 DOI: 10.1021/acsomega.0c03550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
The key feature of the present work is the dexterous utilization of an apparently destructive process, pyrolysis, for the synthesis of the most esteemed nanomaterial, graphene. This work is an attempt to synthesize graphene from nonconventional sources such as tannic acid, alginic acid, and green tea by a controlled pyrolysis technique. The precursors used in this work are not petroleum-derived and hence are green. A set of pyrolysis experiments was carried out at different temperatures, followed by a thorough step-by-step analysis of the product morphology, enabling the optimization of the graphitization conditions. A time-dependent morphological analysis was also carried out along with isothermal thermogravimetric studies to optimize the ideal pyrolysis time for graphitization. The specific capacitance of the graphene obtained from alginic acid was 315 F/g, which makes it fairly suitable for application as green supercapacitors. The same graphene was also used to fabricate a rubber-latex-based flexible supercapacitor film with 137 F/g specific capacitance. The graphene and graphene-based latex film exhibited room-temperature magnetic hysteresis, indicating their ferromagnetic nature, which also supports their spintronic applications.
Collapse
Affiliation(s)
- Amrita Roy
- Rubber
Technology Centre, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Saptarshi Kar
- Birla
Carbon India Private Limited, MIDC Taloja, Raigad, Maharashtra 410208, India
| | - Ranjan Ghosal
- Birla
Carbon India Private Limited, MIDC Taloja, Raigad, Maharashtra 410208, India
| | - Kinsuk Naskar
- Rubber
Technology Centre, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Anil K. Bhowmick
- Rubber
Technology Centre, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
33
|
Roy CK, Shah SS, Reaz AH, Sultana S, Chowdhury A, Firoz SH, Zahir MH, Ahmed Qasem MA, Aziz MA. Preparation of Hierarchical Porous Activated Carbon from Banana Leaves for High‐performance Supercapacitor: Effect of Type of Electrolytes on Performance. Chem Asian J 2021; 16:296-308. [DOI: 10.1002/asia.202001342] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Chanchal Kumar Roy
- Department of Chemistry Bangladesh University of Engineering and Technology 1000 Dhaka Bangladesh
| | - Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology King Fahd University of Petroleum & Minerals 31261 Dhahran Saudi Arabia
| | - Akter H. Reaz
- Department of Chemistry Bangladesh University of Engineering and Technology 1000 Dhaka Bangladesh
| | - Sharmin Sultana
- Department of Chemistry Bangladesh University of Engineering and Technology 1000 Dhaka Bangladesh
| | - Al‐Nakib Chowdhury
- Department of Chemistry Bangladesh University of Engineering and Technology 1000 Dhaka Bangladesh
| | - Shakhawat H. Firoz
- Department of Chemistry Bangladesh University of Engineering and Technology 1000 Dhaka Bangladesh
| | - Md. Hasan Zahir
- Center of Research Excellence in Renewable Energy King Fahd University of Petroleum & Minerals 31261 Dhahran Saudi Arabia
| | - Mohammed Ameen Ahmed Qasem
- Center of Research Excellence in Nanotechnology King Fahd University of Petroleum & Minerals 31261 Dhahran Saudi Arabia
| | - Md. Abdul Aziz
- Center of Research Excellence in Nanotechnology King Fahd University of Petroleum & Minerals 31261 Dhahran Saudi Arabia
| |
Collapse
|
34
|
Narzary BB, Baker BC, Yadav N, D'Elia V, Faul CFJ. Crosslinked porous polyimides: structure, properties and applications. Polym Chem 2021. [DOI: 10.1039/d1py00997d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Porous polyimides (pPIs) represent a fascinating class of porous organic polymers (POPs). Here the properties and functions of amorphous and crystalline pPIs are reviewed, and applications contributing to solutions to global challenges highlighted.
Collapse
Affiliation(s)
| | | | - Neha Yadav
- School of Molecular Science and Engineering, VISTEC, Thailand
| | - Valerio D'Elia
- School of Molecular Science and Engineering, VISTEC, Thailand
| | | |
Collapse
|
35
|
Sung J, Shin C. Recent Studies on Supercapacitors with Next-Generation Structures. MICROMACHINES 2020; 11:mi11121125. [PMID: 33353019 PMCID: PMC7767088 DOI: 10.3390/mi11121125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Supercapacitors have shown great potential as a possible solution to the increasing global demand for next-generation energy storage systems. Charge repositioning is based on physical or chemical mechanisms. There are three types of supercapacitors-the electrochemical double layer, the pseudocapacitor, and a hybrid of both. Each type is further subdivided according to the material used. Herein, a detailed overview of the working mechanism as well as a new method for capacitance enhancement are presented.
Collapse
|
36
|
Jha MK, Babu B, Parker BJ, Surendran V, Cameron NR, Shaijumon MM, Subramaniam C. Hierarchically Engineered Nanocarbon Florets as Bifunctional Electrode Materials for Adsorptive and Intercalative Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42669-42677. [PMID: 32842723 DOI: 10.1021/acsami.0c09021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Three-dimensional dendritic nanostructured carbon florets (NCFs) with tailored porosity are demonstrated as electrochemically versatile electrodes for both adsorptive and intercalative energy storage pathways. Achieved through a single-step template-driven approach, the NCFs exhibit turbostratic graphitic lamellae in a floral assembly leading to high specific surface area and multi-modal pore distribution (920 m2/g). The synergism in structural and chemical frameworks, along with open-ended morphology, enables bifunctionality of hard carbon NCFs as symmetric adsorptive electrodes for supercapacitors (SCs) and intercalation anodes for hybrid potassium-ion capacitors (KICs). Flexible, all-solid-state SCs through facile integration of NCF with the ionic-liquid-imbibed porous polymeric matrix achieve high-energy density (20 W h/kg) and power density (32.7 kW/kg) without compromising on mechanical flexibility and cyclability (94% after 20k cycles). Furthermore, NCF as an anode in a full-cell hybrid KIC (activated carbon as cathode) delivers excellent electrochemical performance with maximum energy and power densities of 57 W h/kg and 12.5 kW/kg, respectively, when cycled in a potential window of 1.0-4.0 V. The exceptional bifunctional performance of NCF highlights the possibility of utilizing such engineered nanocarbons for high-performance energy storage devices.
Collapse
Affiliation(s)
- Mihir Kumar Jha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Binson Babu
- School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 69551 Kerala, India
| | - Bradyn J Parker
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Vishnu Surendran
- School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 69551 Kerala, India
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| | - Manikoth M Shaijumon
- School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 69551 Kerala, India
| | | |
Collapse
|
37
|
Brza MA, B. Aziz S, Anuar H, Dannoun EMA, Ali F, Abdulwahid RT, Al-Zangana S, Kadir MF. The Study of EDLC Device with High Electrochemical Performance Fabricated from Proton Ion Conducting PVA-Based Polymer Composite Electrolytes Plasticized with Glycerol. Polymers (Basel) 2020; 12:polym12091896. [PMID: 32842522 PMCID: PMC7564960 DOI: 10.3390/polym12091896] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/04/2022] Open
Abstract
In the present work, a novel polymer composite electrolytes (PCEs) based on poly(vinyl alcohol) (PVA): ammonium thiocyanate (NH4SCN): Cd(II)-complex plasticized with glycerol (Gly) are prepared by solution cast technique. The film structure was examined by XRD and FTIR routes. The utmost ambient temperature DC ionic conductivity (σDC) of 2.01 × 10−3 S cm−1 is achieved. The film morphology was studied by field emission scanning electron microscopy (FESEM). The trend of σDC is further confirmed with investigation of dielectric properties. Transference numbers of ions (tion) and electrons (tel) are specified to be 0.96 and 0.04, respectively. Linear sweep voltammetry (LSV) displayed that the PCE potential window is 2.1 V. The desired mixture of activated carbon (AC) and carbon black was used to fabricate the electrodes of the EDLC. Cyclic voltammetry (CV) was carried out by sandwiching the PCEs between two carbon-based electrodes, and it revealed an almost rectangular shape. The EDLC exhibited specific capacitance, energy density, and equivalent series resistance with average of 160.07F/g, 18.01Wh/kg, and 51.05Ω, respectively, within 450 cycles. The EDLC demonstrated the initial power density as 4.065 × 103 W/Kg.
Collapse
Affiliation(s)
- Mohamad A. Brza
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur, Gombak 53100, Malaysia; (M.A.B.); (H.A.)
| | - Shujahadeen B. Aziz
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq;
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Kurdistan Regional Government, Sulaimani 46001, Iraq
- Correspondence:
| | - Hazleen Anuar
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur, Gombak 53100, Malaysia; (M.A.B.); (H.A.)
| | - Elham M. A. Dannoun
- Associate Director of General Science Department, Woman Campus, Prince Sultan University, P. O. Box 66833, Riyadh 11586, Saudi Arabia.
| | - Fathilah Ali
- Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur, Gombak 53100, Malaysia;
| | - Rebar T. Abdulwahid
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq;
- Department of Physics, College of Education, University of Sulaimani, Old Campus, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Shakhawan Al-Zangana
- Department of Physics, College of Education, University of Garmian, Kurdistan Regional Government-Iraq, Kalar 46021, Iraq;
| | - Mohd F.Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
38
|
Veerakumar P, Sangili A, Manavalan S, Thanasekaran P, Lin KC. Research Progress on Porous Carbon Supported Metal/Metal Oxide Nanomaterials for Supercapacitor Electrode Applications. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06010] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, Institute of Atomic and Molecular Sciences Academia Sinica, Taipei 10617, Taiwan
| | - Arumugam Sangili
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Chung-Hsiao East Road, Section 3, Taipei 10608, Taiwan
| | - Shaktivel Manavalan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Chung-Hsiao East Road, Section 3, Taipei 10608, Taiwan
| | - Pounraj Thanasekaran
- Department of Chemistry, Fu Jen Catholic University, Zhongzheng Road, Xinzhuang District, New Taipei City 24205, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Institute of Atomic and Molecular Sciences Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
39
|
da Silva DAC, Paulista Neto AJ, Pascon AM, Fileti EE, Fonseca LRC, Zanin HG. Exploring doped or vacancy-modified graphene-based electrodes for applications in asymmetric supercapacitors. Phys Chem Chem Phys 2020; 22:3906-3913. [DOI: 10.1039/c9cp06495h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here density functional theory calculations and molecular dynamics atomistic simulations to determine the total capacitance of graphene-modified supercapacitors.
Collapse
Affiliation(s)
- Débora A. C. da Silva
- Center for Innovation on New Energies
- Advanced Energy Storage Division
- Carbon Sci-Tech Labs
- University of Campinas
- School of Electrical and Computer Engineering
| | - Antenor J. Paulista Neto
- Institute of Science and Technology of the Federal University of São Paulo
- São José dos Campos
- Brazil
| | - Aline M. Pascon
- Center for Innovation on New Energies
- Advanced Energy Storage Division
- Carbon Sci-Tech Labs
- University of Campinas
- School of Electrical and Computer Engineering
| | - Eudes E. Fileti
- Institute of Science and Technology of the Federal University of São Paulo
- São José dos Campos
- Brazil
| | | | - Hudson G. Zanin
- Center for Innovation on New Energies
- Advanced Energy Storage Division
- Carbon Sci-Tech Labs
- University of Campinas
- School of Electrical and Computer Engineering
| |
Collapse
|
40
|
Najib S, Erdem E. Current progress achieved in novel materials for supercapacitor electrodes: mini review. NANOSCALE ADVANCES 2019; 1:2817-2827. [PMID: 36133592 PMCID: PMC9416938 DOI: 10.1039/c9na00345b] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/27/2019] [Indexed: 05/19/2023]
Abstract
Supercapacitors are highly attractive for a large number of emerging mobile devices for addressing energy storage and harvesting issues. This mini review presents a summary of recent developments in supercapacitor research and technology, including all kinds of supercapacitor design techniques using various electrode materials and production methods. It also covers the current progress achieved in novel materials for supercapacitor electrodes. The latest produced EDLC/hybrid/pseudo-supercapacitors have also been described. In particular, metal oxides, specifically ZnO, used as electrode materials are in focus here. Eventually, future developments, prospects, and challenges in supercapacitor research have been elaborated on.
Collapse
Affiliation(s)
- Sumaiyah Najib
- Sabanci University Nanotechnology Research Centre (SUNUM), Sabanci University TR-34956 Istanbul Turkey
| | - Emre Erdem
- Sabanci University Nanotechnology Research Centre (SUNUM), Sabanci University TR-34956 Istanbul Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University Tuzla 34956 Istanbul Turkey
| |
Collapse
|